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In this paper we consider a semilinear equation driven by an operator not in divergence
form. Precisely, the principal part of the operator is in divergence form, but it has also a
lower order term depending on Du. While the right-hand side of the equation satisfies
superlinear and subcritical growth conditions at zero and at infinity. The problem has not
a variational structure, but, despite that, we use variational techniques in order to prove
an existence and regularity result for the equation.
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1. Introduction

This paper is devoted to semilinear elliptic partial differential equations with homogeneous Dirichlet boundary condition
of the form

Au = f (x, u) in Ω,

u ∈ H1
0(Ω), (P )
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where Ω is a bounded domain of R
N , N � 3, with smooth boundary ∂Ω , Du denotes the gradient of u, Du = (Diu)i=1,...,N ,

Di = ∂/∂xi , and A is the elliptic operator, not in divergence form, given by

Au = −
N∑

i, j=1

Di
(
aij(x)D j u

) +
N∑

i=1

ai(x)Diu + a0(x)u.

Problems of this type are studied by many authors with different methods and techniques: truncation and approximation
arguments, super- and sub-solutions, fixed points theorems and so on. Among the others, we recall the papers [1,4–6,9,13,
15,16,18] and references therein.

Due to the presence of a lower order term containing Du in A, problem (P ) has not a variational structure. Despite that,
here we study it performing variational techniques, combined with an iterative scheme. The idea consists of ‘freezing’ the
gradient in A in order to construct a partial differential equation with a variational structure, so that it can be treated via
critical points theory. Using this new problem and an iterative technique, it is possible to get an existence and regularity
result for (P ).

This method was first introduced in [7] (see also [11,12,14]) in order to study a semilinear equation governed by the
Laplacian operator −�, when the nonlinear term depends also on the gradient of the solution, i.e. when it is of the form
f = f (x, u, Du).

Here we adapt this technique in order to consider an equation with an operator more general than the Laplacian. In
dimension N = 3 and when f = f (x, u, Du), this problem was solved in [14]. The aim of this paper is to extend this result
to a general dimension N . We were able to do this only in the semilinear case, that is when f = f (x, u).

The difficulty in treating problem (P ) with the method introduced in [7] is mainly related to how getting uniform
estimates on the C1,α-norm of the solutions of the problem associated with (P ). This kind of regularity on the solutions is
one of the key point for performing the iteration scheme.

This paper is organized as follows. In Section 2 we give the assumptions on the data of the problem and we state our
existence and regularity result (cf. Theorem 1). Section 3 is devoted to the proof of the main result of the paper.

2. Assumptions and statement of the main theorem

2.1. Assumptions on the data

In this paper we consider the semilinear elliptic problem (P ) where the elliptic operator A given by

Au = −
N∑

i, j=1

Di
(
aij(x)D ju

) +
N∑

i=1

ai(x)Diu + a0(x)u,

is such that aij : Ω → R are functions of class C(Ω) with aij = a ji , i, j = 1, . . . , N , and

λ|ξ |2 �
N∑

i, j=1

aij(x)ξiξ j � Λ|ξ |2 (2.1)

a.e. in Ω and for any ξ ∈ R
N , for some positive constants λ and Λ, while ai,a0 : Ω → R, i = 1, . . . , N , are bounded measur-

able functions with a0(x) � 0 a.e. in Ω . In the following we denote by a the vector-valued function a = (ai)i=1,...,N and with
‖a‖∞ = maxi=1,...,N ‖ai‖∞ .

The nonlinear term f : Ω × R → R is a function satisfying the following conditions

f is locally Lipschitz continuous in Ω × R, uniformly with respect to x ∈ Ω; (2.2)

lim
t→0

f (x, t)

t
= 0, uniformly with respect to Ω and to each bounded subset of R

N ; (2.3)

there exist c1 > 0, 1 < s < 4/(N − 2) such that
∣∣ f (x, t)

∣∣ � c1
(
1 + |t|s) in Ω × R; (2.4)

there exists μ > 2 such that 0 < μF (x, t) � t f (x, t) in Ω × R \ {0},

where F (x, t) =
t∫

0

f (x, τ )dτ for all (x, t) ∈ Ω × R. (2.5)

In the following we denote by LR , R > 0, the Lipschitz constant of f , i.e.

LR = sup

{ | f (x, t1) − f (x, t2)|
, x ∈ Ω, ti ∈ R, |ti| � R, i = 1,2, t1 �= t2

}
. (2.6)
|t1 − t2|



192 R. Servadei / J. Math. Anal. Appl. 383 (2011) 190–199
Conditions (2.2)–(2.4) yield that for any ε > 0 there exists δ(ε) > 0 such that

∣∣ f (x, t)
∣∣ � ε|t| + δ(ε)|t|s (2.7)

and, as a consequence

∣∣F (x, t)
∣∣ � ε|t|2 + δ(ε)|t|s+1 (2.8)

uniformly in Ω × R.
While, by (2.5) it easily follows that there exist c2, c3 > 0 such that

F (x, t) � c2|t|μ − c3 in Ω × R. (2.9)

A model for f is given by the function

f (x, t) = b(x)|t|s−1tg(t),

with g ∈ Liploc(R) ∩ L∞(R), g > 0 in R, while b ∈ Liploc(Ω), b > 0 in Ω and s is given in assumption (2.4).

2.2. Notations

Throughout the paper we denote by H1
0(Ω) the usual Sobolev space equipped with the norm

‖u‖ =
(∫

Ω

|Du|2 dx

)1/2

and by Lq(Ω), with q ∈ [1,∞), the usual Lebesgue space with the norm defined as

‖u‖q =
(∫

Ω

|u|q dx

)1/q

.

Moreover, C1,α(Ω) is equipped with the usual norm ‖ · ‖1,α , while C1,α
R (Ω) will be the following set

C1,α
R (Ω) = {

u ∈ C1,α(Ω): ‖u‖1,α � R
}

with α ∈ (0,1) and R > 0.
Finally, in the following λ1 will denote the first eigenvalue of the Laplacian operator −� in Ω , that is

λ1 = inf
u∈H1

0(Ω)\{0}

∫
Ω

|Du|2 dx∫
Ω

|u|2 dx
,

while Sq will be the constant of the Sobolev embedding H1
0(Ω) ↪→ Lq(Ω) for any 1 � q � 2∗ .

2.3. Main theorem

Problem (P ) has not a variational nature, in the sense that it is not the Euler equation of some functional. Despite that,
following [7,11,12], here we study (P ) via variational techniques.

The main result of the paper is the following.

Theorem 1. Assume conditions (2.2)–(2.5) hold true. Then there exist two positive constants R and C depending only on aij , i, j =
1,2,3, a0 , c1 , c2 , c3 , s, μ, N and Ω , such that if

‖a‖∞ < C (2.10)

and

LR < (λλ1)/2, (2.11)

then problem (P ) admits a non-trivial solution u belonging to C1,α(Ω) for any α ∈ (0,1).

The constant LR mentioned in Theorem 1 is defined in formula (2.6), while the explicit formulas for R and C will be
given in (2.17) and (2.18), respectively.
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2.4. Definition of the constants appearing in Theorem 1

Let us fix a function ũ in H1
0(Ω) with ‖ũ‖ = 1 and let us define the constant

H = λ

4

(
λ

8
· 1

δ(λλ1/8)Ss+1
s+1

)1/(s−1)

(2.12)

and the function

h(t) =
(

Λ

2
+ ‖a0‖∞

2λ1

)
t2 − c2tμ‖ũ‖μ

μ + c3|Ω| + H, t � 0, (2.13)

where δ is given in (2.7). Note that H depends only on aij , i, j = 1, . . . , N , δ, s and Ω and therefore only on aij , i, j =
1, . . . , N , c1, s and Ω .

Being μ > 2 by (2.5), it is easily seen that h(t) → −∞ as t → +∞. Thus, there exists T 	 1, depending only on aij ,
i, j = 1, . . . , N , a0, c1, c2, c3, μ and Ω , such that

h(T ) < 0. (2.14)

Let us define the following constant

σ =
(

Λ

2
+ ‖a0‖∞

2λ1

)
T 2 + H (2.15)

and fix c > 0 as follows

c = (μ − 1)H + √
(μ − 1)2 H2 + 2λμ(μ − 2)T 2σ

λ(μ − 2)T
. (2.16)

Note that c depends only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ and Ω .
Finally, let ε′ = 1 − s(N−2)

4 ∈ (0,1) (thanks to the choice of s, cf. assumption (2.4)) and let us define the following
constants

C̃ = k(N−2)/N[
N/(N − 2)

](N−2)/2
,

with k suitable positive constant depending on ε′ (see the proof of [17, Theorem 2.4] for more details),

K1 = C̃ N/2ε′
[(

c1 + ‖a0‖∞
)(|Ω| + Ss

2∗cs)|Ω| + c√
λ1

]
,

K2 = C̃ N/2ε′ |Ω|(|Ω| + Ss
2∗cs),

Ĉ = K1 + 1,

and

C = c1|Ω|(1 + Ĉ s) + |Ω|Ĉ‖a0‖∞,

all depending only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ, N and Ω .
Furthermore, let CMor be the embedding constant in the Morrey Theorem and CCZ be the constant in the Caldéron–

Zygmund Theorem applied in Lq(Ω), q ∈ [1,+∞). It is well known that the constant CMor depends only on s and Ω , while
CCZ depends only on aij , i, j = 1, . . . , N , q and Ω .

Now we can define the constants R and C appearing in Theorem 1. We put

R = 2CMorCCZC (2.17)

and

C = min

{√
λ1 H√
3cT

,
1

2CMorCCZ|Ω| ,
1

K2 R
,
λ
√

λ1

2

}
. (2.18)

Both R and C depend only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ, N and Ω . Note that it also holds true that

C <

√
λ1 H√
3c

, (2.19)

since T 	 1.
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3. Proof of Theorem 1

Problem (P ) is not variational in nature, due to the presence of Du in the lower order term of A. Despite that, we will
treat it via variational techniques. Precisely, we associate, in a suitable way, with our problem a semilinear elliptic equation
and we essentially adapt to our case the idea introduced in [7] which consists of ‘freezing’ the gradient of u in the lower
order terms of the equation. In this way we have to manage a PDE which can be studied using the classical critical points
theorems. In particular in this work we use the Mountain Pass Theorem of Ambrosetti and Rabinowitz [3].

Proof of Theorem 1. Let α ∈ (0,1) be fixed and let c be as in (2.16), R as in (2.17) and C as in (2.18). Let us fix w in
H1

0(Ω) ∩ C1,α
R (Ω), with ‖w‖ � c.

In order to prove Theorem 1 we proceed by steps:

Step 1: we associate a new PDE (P w ), variational in nature, with problem (P );
Step 2: we prove the existence of a non-trivial weak solution uw for (P w ) using the Mountain Pass Theorem of Ambrosetti

and Rabinowitz [3] and we estimate the H1
0(Ω)-norm of uw ;

Step 3: we show that uw is of class C1,α and we give some estimates on the C1,α-norm of uw ;
Step 4: we consider a sequence of problems (Pn) and, through an iteration technique, we construct a non-trivial solution u

of the equation (P ).

Step 1: a variational problem (P w ) associated with (P ). Let us consider the following semilinear elliptic PDE

Aw uw = f (x, uw) in Ω,

uw ∈ H1
0(Ω), (P w )

where

Aw u = −
N∑

i, j=1

Di
(
aij(x)D ju

) +
N∑

i=1

ai(x)Di w + a0(x)u. (3.1)

Problem (P w ) has a variational nature, indeed its weak solutions can be found as critical points of I w : H1
0(Ω) → R

defined as

I w(u) = 1

2

N∑
i, j=1

∫
Ω

aij(x)DiuD ju dx + 1

2

∫
Ω

a0(x)u2 dx −
∫
Ω

F (x, u)dx +
N∑

i=1

∫
Ω

ai(x)uDi w dx.

The functional I w is well defined in H1
0(Ω) and it is Fréchet differentiable in H1

0(Ω), thanks to the Sobolev embedding
theorems and (2.4).

Step 2: existence of a non-trivial weak solution uw for (P w ) and estimates on the H 1
0(Ω)-norm of uw . It is enough to find

a non-trivial critical point for I w . For this purpose we apply the Mountain Pass Theorem to I w .
First of all, let us study the geometry of I w . The non-negativity of a0, Hölder inequality, (2.8) and the choice of w , yield

I w(u) � λ

2

∫
Ω

|Du|2dx − ε

∫
Ω

|u|2 dx − δ(ε)

∫
Ω

|u|s+1 dx −
√

3‖a‖∞√
λ1

‖w‖‖u‖

�
(

λ

4
− ε

λ1

)
‖u‖2 − δ(ε)‖u‖s+1

s+1 + λ

4
‖u‖2 −

√
3c√
λ1

‖a‖∞‖u‖

=
[(

λ

4
− ε

λ1

)
− δ(ε)Ss+1

s+1‖u‖s−1
]
‖u‖2 +

[
λ

4
‖u‖ −

√
3c√
λ1

‖a‖∞
]
‖u‖,

for any ε > 0 and for some positive constant δ(ε). Choosing ε = λλ1
8 we obtain

I w(u) �
(

λ

8
− δ(λλ1/8)Ss+1

s+1‖u‖s−1
)

‖u‖2 +
[

λ

4
‖u‖ −

√
3c√
λ1

‖a‖∞
]
‖u‖.

Now, let us take u ∈ H1
0(Ω) with ‖u‖ = ρ . Since (2.10) and (2.19) hold true, we can choose ρ > 0 such that λ

8 >

δ(λλ1/8)Ss+1
s+1ρ

s−1 and λ
4 ρ >

√
3c√
λ1

‖a‖∞ . So that we get

I w(u) � β,
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for some positive β depending only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ and Ω .
Taking into account the choices of T and ũ, (2.9), (2.10) and (2.18) we have

I w(T ũ) �
(

Λ

2
+ ‖a0‖∞

2λ1

)
T 2 − c2T μ‖ũ‖μ

μ + c3|Ω| +
√

3cT√
λ1

‖a‖∞ < h(T ) < 0,

since (2.14) holds true. Hence, there exists e = T ũ ∈ H1
0(Ω), depending only on T and therefore only on aij , i, j = 1, . . . , N ,

a0, c1, c2, c3, μ and Ω , such that I w(e) < 0. Thus, I w has the geometrical structure required by the Mountain Pass Theorem.
It is standard to prove that I w verifies the Palais–Smale condition. Then, by the Mountain Pass Theorem, the functional

I w has a non-trivial critical point uw such that

I w(uw) = inf
γ ∈Γ

max
t∈[0,1] I w

(
γ (t)

)
� β > 0,

where Γ = {γ ∈ C([0,1];R): γ (0) = 0 and γ (1) = e}.
Now, let us estimate the H1

0(Ω)-norm of the solution uw uniformly with respect to w . The Mountain Pass characteriza-
tion of the critical level gives

I w(uw) � max
t∈[0,1] I w

(
γ (t)

)
for all γ ∈ Γ.

Taking γ (t) = te, where t ∈ [0,1], by (2.5), the definition of e, (2.10) and (2.18) we get

I w(uw) � max
t∈[0,1]

{
Λt2

2
‖e‖2 + t2

2λ1
‖a0‖∞‖e‖2 −

∫
Ω

F (x, te)dx +
√

3ct√
λ1

‖a‖∞‖e‖
}

�
(

Λ

2
+ ‖a0‖∞

2λ1

)
‖e‖2 +

√
3c√
λ1

‖a‖∞‖e‖

<

(
Λ

2
+ ‖a0‖∞

2λ1

)
T 2 + H = σ , (3.2)

where σ is the constant defined in (2.15).
Furthermore, the definition of I w yields

I w(uw) − 1

μ

〈
I ′w(uw), uw

〉
�

(
1

2
− 1

μ

)
λ‖uw‖2 +

(
1

2
− 1

μ

)∫
Ω

a0(x)u2
w −

∫
Ω

F (x, uw)

+ 1

μ

∫
Ω

f (x, uw)uw +
(

1 − 1

μ

) N∑
i=1

∫
Ω

ai(x)uw Di w dx.

Thus, taking into account that uw is a critical point of I w , (3.2), (2.5), the non-negativity of a0 and again (2.10) and (2.18),
we get(

1

2
− 1

μ

)
λ‖uw‖2 �

(
1

2
− 1

μ

)
λ‖uw‖2 +

(
1

2
− 1

μ

)∫
Ω

a0(x)u2
w

< σ +
(

1 − 1

μ

)√
3c‖a‖∞√

λ1
‖uw‖

< σ +
(

1 − 1

μ

)
H

T
‖uw‖,

which, by direct calculations, yields

‖uw‖ < c, (3.3)

since μ > 2. Here the constant c is the one defined in (2.16). Hence, we have shown that, starting from w ∈ H1
0(Ω) such

that ‖w‖ � c, we can find a non-trivial weak solution uw ∈ H1
0(Ω) of (P w ) such that ‖uw‖ < c.

Now we claim that

‖uw‖ � b, (3.4)

for some positive constant b depending only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ and Ω . Since uw is a weak solution
of (P w ), using the non-negativity of a0 and (2.7) we get
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λ‖uw‖2 �
∫
Ω

f (x, uw)uw dx −
N∑

i=1

∫
Ω

ai(x)uw Di w dx

� ε

∫
Ω

|uw |2 dx + δ(ε)

∫
Ω

|uw |s+1 dx +
√

3c√
λ1

‖a‖∞‖uw‖

<
ε

λ1
‖uw‖2 + δ(ε)Ss+1

s+1‖uw‖s+1 + c

T
H,

for any ε > 0, thanks to (2.10), (2.18) and (3.3). Thus, the claim easily follows, being s > 1. We remark that the constant b
does not depend on w .

Step 3: C 1,α-regularity of uw and estimate on the C 1,α-norm of uw . Now let us prove that uw ∈ C1,α(Ω) and ‖uw‖1,α � R .
Since uw ∈ H1

0(Ω) is a weak solution of problem (P w ), uw solves the semilinear PDE with homogeneous Dirichlet
boundary condition

Ãuw = g(x) in Ω,

u = 0 on ∂Ω,

where

Ãu = −
N∑

i, j=1

Di
(
aij(x)D ju

)

and g(x) = f (x, uw(x)) − ∑N
i=1 ai(x)Di w(x) − a0(x)uw(x) in Ω .

The term g satisfies the following growth condition

∣∣g(x)
∣∣ � c1

(
1 + ∣∣uw(x)

∣∣s) + ‖a‖∞R + ‖a0‖∞
∣∣uw(x)

∣∣ a.e. in Ω, (3.5)

thanks to assumption (2.4) and the regularity of a, a0 and w .
It is standard to show that uw is a classical solution of (P w ) (see, for instance, [2]). In particular uw ∈ C(Ω), and so

uw ∈ L∞(Ω). Let us estimate the L∞-norm of uw . First of all note that |g(x)| = h(x)(1 + |uw(x)|), where

h(x) = |g(x)|
1 + |uw(x)|

� c1(1 + |uw(x)|s) + ‖a‖∞R + ‖a0‖∞|uw(x)|
1 + |uw(x)|

�
(
c1 + ‖a‖∞R + ‖a0‖∞

)(
1 + ∣∣uw(x)

∣∣s)
.

Hence, h ∈ L2∗/s(Ω) and

‖h‖2∗/s �
(
c1 + ‖a‖∞R + ‖a0‖∞

)(|Ω| + ‖uw‖s
2∗

)
. (3.6)

Then, using [17, Theorem 2.4] with ε′ = 1 − s(N−2)
4 ∈ (0,1) (thanks to the choice of s), we get the following estimate

∣∣uw(x)
∣∣ � C̃ N/2ε′(‖uw‖2 + |Ω|‖h‖2∗/s

)
in Ω, (3.7)

where C̃ = k(N−2)/N [N/(N − 2)](N−2)/2 with k suitable positive constant depending on ε′ (see [17, Theorem 2.4] for more
details). Thus, by (3.6) and (3.7), the Sobolev embeddings theorems and the fact that ‖uw‖ � c, we have

‖uw‖∞ � K1 + K2‖a‖∞R, (3.8)

where K1 = C̃ N/2ε′ [(c1 +‖a0‖∞)(|Ω|+ Ss
2∗ cs)|Ω|+ c√

λ1
] and K2 = C̃ N/2ε′ |Ω|(|Ω|+ Ss

2∗ cs) depend only on aij , i, j = 1, . . . , N ,

a0, c1, c2, c3, s, μ, N and Ω . Then, by (2.10) and (2.18) we get

‖u‖∞ � K1 + 1 =: Ĉ , (3.9)

where Ĉ depends only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ, N and Ω .
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Hence, by (3.5) g ∈ L∞(Ω) and so g ∈ Lq(Ω) for all q ∈ [1,+∞). Using the Sobolev embedding theorems, (3.3) and (3.5),
we get

‖g‖q � c1|Ω|(1 + ‖uw‖s∞
) + |Ω|‖a‖∞R + |Ω|‖a0‖∞‖uw‖∞

� c1|Ω|(1 + Ĉ s) + |Ω|‖a‖∞R + |Ω|Ĉ‖a0‖∞
� C + |Ω|‖a‖∞R, (3.10)

where C = c1|Ω|(1 + Ĉ s) + |Ω|Ĉ‖a0‖∞ depends only on aij , i, j = 1, . . . , N , a0, c1, c2, c3, s, μ, N and Ω . Hence C is
independent of w and R .

Being aij ∈ C(Ω), i, j = 1, . . . , N , by the Caldéron–Zygmund Theorem (see, for instance [10, Lemma 9.17]) we also have
that u ∈ H2,q(Ω) and

‖uw‖2,q � CCZ‖g‖q, (3.11)

where CCZ is a positive constant depending only on Ω , q and the coefficients aij , i, j = 1, . . . , N .
Taking q > N , by Morrey Theorem (see, for instance [8, Section 5.6, Theorem 5]), we easily deduce that u ∈ C1,α(Ω), for

any α ∈ (0,1), and

‖uw‖1,α � CMor‖uw‖2,q, (3.12)

where CMor is a positive constant depending only on α and Ω .
Combining (3.10)–(3.12) we get

‖uw‖1,α � CMorCCZ
[
C + |Ω|‖a‖∞R

]
, (3.13)

and so, by (2.10) and (2.18) we have

‖uw‖1,α � R/2 + CMorCCZ|Ω|‖a‖∞R < R/2 + R/2 = R.

In conclusion we have shown that

if ‖w‖1,α � R then ‖uw‖1,α < R,

that is on the C1,α-norm of uw we have the same control as for ‖w‖1,α . This will be important in order to perform an
iterative technique.

Step 4: the iterative scheme. Let us fix u0 ∈ C1,α
R (Ω) ∩ H1

0(Ω) with ‖u0‖ � c and consider the following sequence of semi-
linear elliptic PDE

Anun = f (x, un),

un ∈ H1
0(Ω), (Pn)

where Anu = Aun−1 u and n ∈ N (cf. the definition (3.1)).
Every Eq. (Pn) admits a non-trivial solution un ∈ H1

0(Ω) such that ‖un‖ � b for any n ∈ N, where b is independent of n.

Moreover, un ∈ C1,α
R (Ω), that is un ∈ C1,α(Ω) and ‖un‖1,α � R for any n ∈ N. In particular we have that

∣∣un(x)
∣∣ � R a.e. in Ω for any n ∈ N. (3.14)

Moreover, the following equations hold true for any v ∈ H1
0(Ω) and n ∈ N

N∑
i, j=1

∫
Ω

aij(x)Diun D j v dx +
N∑

i=1

∫
Ω

ai(x)Diun−1 v dx +
∫
Ω

a0(x)un v dx =
∫
Ω

f (x, un)v dx,

N∑
i, j=1

∫
Ω

aij(x)Diun+1 D j v dx +
N∑

i=1

∫
Ω

ai(x)Diun v dx +
∫
Ω

a0(x)un+1 v dx =
∫
Ω

f (x, un+1)v dx.

Taking v = un+1 − un as a test function in both these equations, subtracting one equation from the other and using the
non-negativity of a0, we get



198 R. Servadei / J. Math. Anal. Appl. 383 (2011) 190–199
λ‖un+1 − un‖2 �
∫
Ω

[
f (x, un+1) − f (x, un)

]
(un+1 − un)dx −

N∑
i=1

∫
Ω

ai(x)Di(un − un−1)(un+1 − un)dx

� LR

∫
Ω

|un+1 − un|2 dx + ‖a‖∞
∫
Ω

|Dun − Dun−1|(un+1 − un)dx

� LR

λ1
‖un+1 − un‖2 + ‖a‖∞√

λ1
‖un − un−1‖‖un+1 − un‖,

for any n ∈ N, being (2.2), (2.6) and (3.14) valid. Then, by (2.10) and (2.18), it follows that

λ‖un+1 − un‖ <
LR

λ1
‖un+1 − un‖ + λ

2
‖un − un−1‖, ∀n ∈ N.

Now (2.11) yields

0 <

(
λ − LR

λ1

)
‖un+1 − un‖ <

λ

2
‖un − un−1‖, ∀n ∈ N,

so that (un)n is a Cauchy sequence in H1
0(Ω), again thanks to assumption (2.11). Thus

un → u in H1
0(Ω) as n → ∞ (3.15)

for some u ∈ H1
0(Ω). Passing to the limit in the weak form of (Pn) as n → ∞ it is easy to see that

N∑
i, j=1

∫
Ω

aij(x)DiuD j v dx +
N∑

i=1

∫
Ω

ai(x)Diuv dx +
∫
Ω

a0(x)uv dx =
∫
Ω

f (x, u)v dx,

that is, u is a weak solution of Eq. (P ).
We claim that u �≡ 0 in Ω . By (3.4) and (3.15), it easily follows that ‖u‖ � b > 0, so that the claim is proved. Hence u is

a non-trivial weak solution of Eq. (P ).
Finally, since un ∈ C1,α

R (Ω) for any n ∈ N, the sequences (un)n and (Dun)n are equicontinuous and equibounded in Ω .
The Ascoli–Arzelà Theorem implies that un → u and Dun → Du uniformly in Ω as n → ∞, so that u ∈ C1(Ω). With the
same arguments we also deduce that u ∈ C1,α

R (Ω).
Then, Theorem 1 is completely proved. �

Remark. In the proof of Theorem 1 it is crucial to show that (un)n is a Cauchy sequence in H1
0(Ω). Indeed, as a consequence,

we have strong convergence of the whole sequences (un)n and (Dun)n in L2(Ω) and not only up to subsequences.
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