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1. Introduction

We discuss existence of positive solutions for the problem{
�2u = f (x, u,�u) in Ω,

u = �u = 0 on ∂Ω,
(1)

where Ω ⊂ R
N , N � 1, is a bounded domain with smooth boundary ∂Ω , �2 is the biharmonic operator and f : Ω ×[0,∞)×

(−∞,0] → [0,∞) is a continuous function, asymptotically linear in a suitable sense such that

f (x, u, p) > 0, x ∈ Ω, (u, p) ∈ ([0,∞) × (−∞,0])∖{
(0,0)

}
.

A well-known result on asymptotically linear problems establishes that{−�u = f (u) in Ω,

u = 0 on ∂Ω

admits a solution if f is continuous, −∞ < f ′(0) < λ1 < f ′(∞) < ∞, where λ1 is the first eigenvalue of (−�, H1
0(Ω)) and

f ′(0) := lim
t→0

f (t)

t
, f ′(∞) := lim

t→∞
f (t)

t
.

In this work we shall assume that f is asymptotically linear at the origin in the sense of conditions (H1) and (H2) below.
(H1) There are nonnegative constants a0,b0,a0,b0 with

a0 + b0 > 0, a0 + b0 > 0,
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such that

a0u − b0 p − ξ1(x, u, p) � f (x, u, p) � a0u − b0 p + ξ2(x, u, p),

for (x, u, p) ∈ Ω × [0,∞) × (−∞,0], where

ξ1, ξ2 : Ω × [0,∞) × (−∞,0] → [0,∞)

are continuous functions satisfying

lim|(u,p)|→0

ξ j(x, u, p)

|(u, p)| = 0 for each x ∈ Ω,

and

|ξ j(x, u, p)|
|(u, p)| � γ j(x) for each x ∈ Ω and

∣∣(u, p)
∣∣ > 0,

where γ j ∈ L∞(Ω), j = 1,2.
Throughout this work,∣∣(u, p)

∣∣ :=
√

u2 + p2, (u, p) ∈ R
2.

(H2) There are nonnegative constants c∞,d∞, c∞,d∞ with

c∞ + d∞ > 0, c∞ + d∞ > 0.

such that

c∞u − d∞p − η1(x, u, p) � f (x, u, p) � c∞u − d∞p + η2(x, u, p),

for (x, u, p) ∈ Ω × [0,∞) × (−∞,0], where

η1, η2 : Ω × [0,∞) × (−∞,0] → [0,∞)

are continuous functions such that

lim|(u,p)|→∞
η j(x, u, p)

|(u, p)| = 0 for each x ∈ Ω,

and

|η j(x, u, p)|
|(u, p)| � ζ j(x) for each x ∈ Ω and

∣∣(u, p)
∣∣ > 0,

where ζ j ∈ L∞(Ω), j = 1,2.
In order to state our main result, we set

μ1(α,β) := λ2
1

β + αλ1
,

where α,β are nonnegative numbers such that

α + β > 0.

The main result of this work is:

Theorem 1.1. Assume (H1), (H2) and

(H3) there are nonnegative numbers a1,a2 with a1 + a2 > 0 such that

f (x, u, p) � a1u − a2 p for each (x, u, p) ∈ Ω × [0,∞) × (−∞,0].
If, in addition, either

μ1(c∞,d∞) < 1 < μ1
(
a0,b0)

or

μ1(a0,b0) < 1 < μ1
(
c∞,d∞)

then problem (1) admits at least one positive solution.
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Our main result was motivated by the recent paper [1] by Ruyun Ma and Jia Xu, where the fourth order ODE problem,{
u′′′′ = f (x, u, u′′) in (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

is studied. Our Theorem 1.1 improves the main result in [1] in the sense that it also holds in dimension one and in that our
assumptions (H1), (H2) are less restrictive than the corresponding ones in [1].

We further refer the reader to Champneys and McKenna [13], Micheletti and Pistoia [9,10], Micheletti and Saccon [11],
Pao and Wang [12], Ruyun Ma [2] and their references, for boundary value problems for fourth order equations.

The techniques we employ below to prove our Theorem 1.1 apply to the problem{
α�2u + β�u = g(x, u) in Ω,

Bu = 0 on ∂Ω,

where α � 0, −∞ < β < αλ1, the boundary condition Bu = 0 on ∂Ω means that u = �u = 0 on ∂Ω when α > 0 and u = 0
on ∂Ω when α = 0 and g(x, u) satisfies conditions similar to (H1), (H2), (H3). See, e.g. [8] for remarks on the eigenvalues
of the operator α�2u + β�u.

2. Notations, basic results, abstract framework

Consider the space H := H1
0(Ω) ∩ H2(Ω)

The Generalized Green Identity establishes that∫
Ω

∇u∇v dx = −
∫
Ω

u�v dx, u, v ∈ H .

The two inequalities below are well known:

(i)
∫
Ω

|�u|2 dx � λ1

∫
Ω

|∇u|2 dx, (ii)
∫
Ω

|�u|2 dx � λ2
1

∫
Ω

|u|2 dx, u ∈ H . (2)

Now, the space H endowed with the norm and inner product

‖u‖2 :=
∫
Ω

|�u|2 dx, 〈u, v〉 :=
∫
Ω

�u�v dx, u, v ∈ H

is a Hilbert space.
Let h ∈ L2(Ω) and consider the Dirichlet problem

−�u = h in Ω, u = 0 on ∂Ω. (3)

The solution operator associated to (3), namely

S : L2(Ω) → H1
0(Ω) ↪→ L2(Ω)

is linear, compact and symmetric.
The spectral analysis of S gives the principal eigenvalue λ1 of (−�, H1

0(Ω)) whose eigenfunction φ1 is positive in Ω .
On the other hand, a function u ∈ H is a weak solution of

�2u = h in Ω, u = �u = 0 on ∂Ω (4)

if ∫
Ω

�u�v dx =
∫
Ω

hv dx, v ∈ H .

If u ∈ H is the solution of (4) it follows by the elliptic a priori estimates, (see e.g. Gupta [3], Gilbarg and Trudinger [7]), that
u ∈ H1

0(Ω) ∩ H4(Ω) and

‖u‖H4(Ω) � C‖h‖L2(Ω),

for some constant C > 0. Moreover, if u ∈ H is a weak solution then �u = 0 on ∂Ω in the trace sense and, in particular,
�u ∈ H1

0(Ω).
Next, we recall a version of the Maximum Principle for the biharmonic operator.



390 J.V.A. Goncalves et al. / J. Math. Anal. Appl. 384 (2011) 387–399
Proposition 2.1. Let u ∈ H1
0(Ω) ∩ H4(Ω) be a function such that{

�2u � 0 in Ω,

u = �u = 0 on ∂Ω.

Then

u(x) � 0, �u(x) � 0, a.e. x ∈ Ω.

Proof. Set v := �u. Then

v ∈ H1
0(Ω) ∩ H2(Ω) and �v � 0 in Ω.

By the usual Maximum Principle for the Laplacian, supΩ v � sup∂Ω v+ = 0.
Thus we have

u ∈ H1
0(Ω) ∩ H2(Ω) and �u � 0 in Ω.

By the usual Maximum Principle again, we get

inf
Ω

u � inf
∂Ω

u− = 0

and hence

u � 0 in Ω. �
The following result on existence of global branches of solutions (see e.g. Rabinowitz [4,5], Schmitt and Thompson [6]),

is crucial in this paper.

Theorem 2.2. Let E be a real Banach space with norm ‖ · ‖ and let T : R × E → E be a compact operator such that

T (λ,0) = 0, λ ∈ R. (5)

Assume that there are a,b ∈ R with a < b such that u = 0 is an isolated solution of T (λ, u) = u for λ = a and λ = b and that λ = a
and λ = b are not bifurcation points of T (λ, u) = u with respect to the line of trivial solutions (λ,0). Assume also that

deg
(

I − T (a, .), Bδ,0
) 
= deg

(
I − T (b, .), Bδ,0

)
,

where Bδ = {u ∈ E: ‖u‖ < δ} is an isolating neighborhood of the trivial solution and deg means the Leray–Schauder degree. Set

S = {
(λ, u) ∈ R × E: u − T (λ, u) = 0, u 
= 0

} ∪ {[a,b] × {0}}.
Let C ⊂ S be the maximal connected component of S which contains [a,b] × {0}. Then, either

(i) C is unbounded in R × E, or
(ii) C ∩ {R \ {[a,b] × {0}}} 
= ∅.

Now consider the function f̃ : Ω × (−∞,∞) × (−∞,∞) → [0,∞),

f̃ (x, u, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (x, u, p), x ∈ Ω, u � 0, p � 0,

f (x,0, p), x ∈ Ω, u � 0, p � 0,

f (x, u,0), x ∈ Ω, u � 0, p � 0,

f (x,0,0), x ∈ Ω, u � 0, p � 0,

which is a continuous extension of f .
We shall study the family of problems{

�2u = λ f̃ (x, u,�u) in Ω,

u = �u = 0 on Ω,
(6)

where λ > 0 is a parameter.
Consider the Nemytskii operators F , F̃ : H → L2(Ω) given by

F (u) = f (x, u,�u), F̃ (u) = f̃ (x, u,�u), u ∈ H .

Using (H1), (H2) one infers that F , F̃ are bounded and continuous.
Now consider the nonlinear operator Φ : R × H → H defined by

Φλ(u) = u − T (λ, u) where T (λ, u) = λS2 F̃ (u), u ∈ H, λ ∈ R.

Notice that by the continuity, boundedness of F̃ and the compactness of S2, T : R × H → H is compact.
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We point out that u ∈ H is a weak solution of problem (6) if and only if u satisfies

Φλ(u) = 0, u ∈ H, λ ∈ R. (7)

Notice that since, by Sobolev’s embeddings, T is a compact operator, Φλ is a compact perturbation of the identity which
enables us to apply the Leray–Schauder degree theory.

Setting λ = 1, the positive solutions u ∈ H of (7) are solutions of (1).

3. Technical lemmata

In this section we shall establish and proof a few usefull technical results.

Lemma 3.1. Suppose (H1), (H2). Let {un} ⊆ H be a sequence such that ‖un‖ > 0 and { un‖un‖ } converges in H. Then

(i) o
ξ j
n (1) ≡

∫
Ω

ξ j(x, un,�un)

‖un‖ φ1 dx
n→∞−→ 0 if ‖un‖ → 0, j = 1,2,

(ii) o
η j
n (1) ≡

∫
Ω

η j(x, un,�un)

‖un‖ φ1 dx
n→∞−→ 0 if ‖un‖ → ∞, j = 1,2.

Proof. Set vn := un‖un‖ so that vn
H→ v for some v ∈ H with ‖v‖ = 1. It follows by (2) that

vn → v, �vn → �v in L2(Ω).

Moreover,

vn → v, �vn → �v a.e. in Ω,

and there are h1,h2 ∈ L2(Ω) such that

|vn| � h1, |�vn| � h2 a.e. in Ω.

We have∣∣∣∣ ξ j(x, un,�un)φ1

‖un‖
∣∣∣∣ = φ1

|ξ j(x, un,�un)|
|(un,�un)|

|(un,�un)|
‖un‖

= φ1
|ξ j(x, un,�un)|

|(un,�un)|
√

v2
n + |�vn|2. (8)

Verification of (i). Setting H(x) := max{h1(x),h2(x)} it follows from (8) that∣∣∣∣ ξ j(x, un,�un)φ1

‖un‖
∣∣∣∣ � φ1γ j(x)H(x).

Notice that φ1γ j H ∈ L2(Ω).
On the other hand, since

un → 0, �un → 0 in L2(Ω),

un → 0, �un → 0 a.e. in Ω,

we infer from (8) that∣∣∣∣ ξ j(x, un,�un)φ1

‖un‖
∣∣∣∣ → 0 a.e. in Ω.

By the Lebesgue Theorem,∫
Ω

ξ j(x, un,�un)φ1

‖un‖ dx
n→ 0.

Verification of (ii). Set

Ω0 := {
x ∈ Ω

∣∣ v(x) = 0
}
.
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It follows (see e.g. Gilbarg and Trudinger [7, Lemma 7.7]) that

�v = 0 a.e. in Ω0.

We infer through an estimate similar to the one in (8) (for η j instead of ξ j ) that∣∣∣∣η j(x, un,�un)φ1

‖un‖
∣∣∣∣ → 0 a.e. in Ω0.

If x ∈ Ω0
c then un(x) = ‖un‖ vn(x) → ±∞. Estimating as we did in (8),∣∣∣∣η j(x, un,�un)φ1

‖un‖
∣∣∣∣ � φ1

|η j(x, un,�un)|
|(un,�un)| H a.e. in Ω0

c .

Thus ∣∣∣∣η j(x, un,�un)φ1

‖un‖
∣∣∣∣ → 0 a.e. in Ω0

c.

Applying the Lebesgue Theorem we infer that∫
Ω

η j(x, un,�un)φ1

‖un‖ dx
n→ 0.

This ends the proof of Lemma 3.1. �
The result below establishes an a priori estimate for the bifurcation points of (6).

Lemma 3.2. Assume (H1). Let (λ,0) ∈ R
+ × H be a bifurcation point of the equation

Φλ(u) = 0, u ∈ H .

Then

μ1
(
a0,b0) � λ � μ1(a0,b0).

Proof. We will split the proof into two steps.

Step 1. In order to show that λ � μ1(a0,b0) pick sequences {un} ⊆ H and {λn} ⊆ R
+ such that

un 
≡ 0, ‖un‖ → 0, λn → λ

and {
�2un = λn f̃ (x, un,�un) in Ω,

un ∈ H1
0(Ω) ∩ H4(Ω).

(9)

By Proposition 2.1,

un � 0, �un � 0 a.e. x ∈ Ω.

These facts allow us to rewrite the equation in (9) as

�2un = λn f (x, un,�un) in Ω, (10)

or equivalently,

un = λn S2 F (un), un ∈ H .

Set vn = un‖un‖ . There is v ∈ H such that

vn
H
⇀ v and vn

L2→ v.

Moreover, the equation in (10) rewrites as,

�2 vn = λn
f (x, un,�un)

‖un‖ in Ω, (11)

or equivalently

vn = λn S2
(

F (un)
)

. (12)
‖un‖
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On the other hand, estimating, using (H1), we get to

ξ2
j (x, un,�un)

‖un‖2
= ξ2

j (x, un,�un)

|(un,�un)|2
|(un,�un)|2

‖un‖2

= ξ2
j (x, un,�un)

|(un,�un)|2
(

v2
n + |�vn|2

)
� γ 2

j

(
v2

n + |�vn|2
)
.

Since γ j ∈ L∞(Ω) we infer that{
ξ j(x, un,�un)

‖un‖
}

is bounded in ∈ L2(Ω).

As a consequence, using (H1) again,{
F (un)

‖un‖
}

is bounded in L2(Ω).
By (H1), it follows that F : H → L2(Ω) is bounded and continuous and so S2 F : H → H is compact.
Since {λn} converges we infer from (12) that {vn} admits a convergent subsequence, still denoted {vn}, that is

vn
H→ v, ‖v‖ = 1.

Multiplying the equation in (11) by φ1, integrating, using (H1) we have,

λ2
1

∫
Ω

vnφ1 dx =
∫
Ω

�2 vnφ1 dx � λn

∫
Ω

(a0 vn − b0�vn)φ1 dx − oξ1
n (1)

= λn

∫
Ω

(a0φ1 − b0�φ1)vn dx − oξ1
n (1)

= λn(a0 + b0λ1)

∫
Ω

vnφ1 dx − oξ1
n (1).

Passing to the limit, in the inequality above, using Lemma 3.1, we get(
λ2

1

a0 + b0λ1
− λ

)∫
Ω

vφ1 dx � 0.

Since the integral above is strictly positive it follows that,

λ � μ1(a0,b0).

This ends the proof in Step 1.

Step 2. The verification that λ � μ1(a0,b0) follows by arguments similar to those in Step 1.
This ends the proof of Lemma 3.2. �
The result below is about non-existence of solutions of the Banach space equation:

Φλ(u) = 0, (λ, u) ∈ R
+ × H .

Lemma 3.3. Assume (H1). If Λ ⊂ R
+ is compact and[

μ1
(
a0,b0),μ1(a0,b0)

] ∩ Λ = ∅
then there is δ1 > 0 such that

Φλ(u) 
= 0 if 0 < ‖u‖ � δ, λ ∈ Λ, 0 < δ � δ1.
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Proof. Arguing by contradiction, there are sequences {un} ⊆ H and {λn} ⊆ Λ such that

Φλn(un) = 0,

0 < ‖un‖ � 1

n
. (13)

By eventually taking subsequences we have, λn → λ ∈ Λ.
Set vn = un‖un‖ . There is a function v ∈ H such that

vn ⇀ v in H, vn → v in L2(Ω) and vn → v a.e. in Ω.

We have

�2 vn = λn
f (x, un,�un)

‖un‖ in Ω.

Arguing as in the proof of Lemma 3.2,

vn
H→ v, ‖v‖ = 1.

Multiplying by φ1 and integrating, using (H1) we get to

λ2
1

∫
Ω

vnφ1 dx =
∫
Ω

�2 vnφ1 dx � λn

∫
Ω

(a0 vn − b0�vn)φ1 dx − oξ1
n (1)

= λn

∫
Ω

(a0φ1 − b0�φ1)vn dx − oξ1
n (1)

= λn(a0 + b0λ1)

∫
Ω

vnφ1 dx − oξ1
n (1).

Passing to the limit, applying Lemma 3.1,(
λ2

1

a0 + b0λ1
− λ

)∫
Ω

vφ1 dx � 0.

Since v is nontrivial and nonnegative the integral just above is positive. Hence,

λ � μ1(a0,b0).

By a similar argument we obtain, using by (H1) again,

λ � μ1
(
a0,b0).

This contradicts λ ∈ Λ obtained as before. This ends the proof of Lemma 3.3. �
Next we will use the previous lemma to compute the Leray–Schauder degree of Φλ for λ ∈ (0,μ1(a0,b0)).

Lemma 3.4. Assume (H1). Then

deg(Φλ, Bδ,0) = 1,

where 0 < δ � δ1 , 0 < λ < μ1(a0,b0).

Proof. Setting Λ = [0, λ], we have

Λ ∩ [
μ1

(
a0,b0),μ1(a0,b0)

] = ∅.

Consider the homotopy N : [0,1] × Bδ → Bδ defined by

N(t, u) = u − tλS2 F̃ (u), t ∈ [0,1], u ∈ Bδ ⊂ H .

We claim that

N(t, u) 
= 0, t ∈ [0,1], u ∈ ∂ Bδ.

Indeed, the case t = 0 is obvious, so let 0 < t � 1. Notice that the equation

N(t, u) = 0, u ∈ ∂ Bδ,
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is equivalent to

Φλt(u) = 0, u ∈ ∂ Bδ,

which is not solvable by Lemma 3.3, showing the claim.
By the homotopy invariance property of the Leray–Schauder degree,

deg
(
N(1, .), Bδ,0

) = deg
(
N(0, .), Bδ,0

) = deg(I, Bδ,0) = 1,

showing that

deg(Φλ, Bδ,0) = 1. �
Next, we state a non-existence result for the Banach space equation Φλ(u) = τφ1 with λ big enough, which will be

useful in the computation of some topological degrees.

Lemma 3.5. Assume (H1) and λ > μ1(a0,b0). Then there is δ2 > 0 such that

Φλ(u) 
= τφ1, τ ∈ [0,1], 0 < ‖u‖ � δ, 0 < δ � δ2.

Proof. Assume, on the contrary, that there are sequences {un} ⊆ H and {τn} ⊆ [0,1] such that

Φλ(un) = τnφ1 and 0 < ‖un‖ � 1

n
.

We have,

un → 0 in H, un → 0 in L2(Ω), un → 0 a.e. in Ω and |un| � h, h ∈ L2(Ω).

The equation above can be rewritten as

un = λS2 F̃ (un) + τnφ1 in Ω.

It follows that{
�2un = λ f (x, un,�un) + τn�

2φ1 in Ω,

un ∈ H, un � 0, �un � 0 in Ω.

Now using the continuity of the operator S2 F and the fact that ‖un‖ → 0,

S2 F (un) → 0 in H .

Dividing the equation above by ‖un‖ and setting vn = un‖un‖ we have

vn = λS2
(

F (un)

‖un‖
)

+ τn

‖un‖φ1, in Ω. (14)

By standard arguments there is a function v ∈ H such that

vn ⇀ v in H, vn → v in L2(Ω), vn → v a.e. in Ω.

Arguing as in the proof of Lemma 3.2 one infers that{
S2

(
F (un)

‖un‖
)}

is bounded.

Since also {vn} is bounded, it follows by (14) that { τn‖un‖ } is bounded.

Using the compactness of S2 F , it follows from (14) that vn → v in H .
From (14),

�2 vn = λ
f (x, un,�un)

‖un‖ + τn

‖un‖�2φ1 in Ω

Multiplying by φ1 in the equation above, integrating, using (H1), we have

λ2
1

∫
Ω

vnφ1 dx =
∫
Ω

�2 vnφ1 dx � λn

∫
Ω

(a0 vn − b0�vn)φ1 dx − oξ1
n (1)

= λn

∫
Ω

(a0φ1 − b0�φ1)vn dx − oξ1
n (1)

= λn(a0 + b0λ1)

∫
vnφ1 dx − oξ1

n (1).
Ω
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Passing to the limit in the set of inequalities above, and applying Lemma 3.1(
λ2

1

a0 + b0λ1
− λ

)∫
Ω

vφ1 dx � 0.

Since ‖v‖ = 1, v � 0 and φ1 > 0 it follows that

λ � μ1(a0,b0),

which is a contradiction. This ends the proof of Lemma 3.5. �
In the next lemma we will use the preceding result to compute the Leray–Schauder degree of Φλ , for λ ∈

(μ1(a0,b0),+∞).

Lemma 3.6. Assume (H1) and λ ∈ (μ1(a0,b0),∞). Then

deg(Φλ, Bδ,0) = 0, 0 < δ � δ2.

Proof. Consider the homotopy M : [0,1] × Bδ → Bδ given by

M(t, u) = Φλ(u) − tφ1, u ∈ Bδ, t ∈ [0,1].
It follows by Lemma 3.5 that

M(t, u) 
= 0, u ∈ ∂ Bδ, 0 � t � 1.

By property of homotopy invariance of the Leray–Schauder degree,

deg
(
M(0, .), Bδ,0

) = deg
(
M(1, .), Bδ,0

) = 0.

As a consequence,

deg(Φλ, Bδ,0) = 0.

This finishes the proof of the lemma. �
4. Proof of the main result

As a first step we establish and prove a result on existence of a continuum of positive solutions of Eq. (7).
Pick n big enough such that

μ1
(
a0,b0) − 1

n
> 0.

Consider the numbers

an = μ1
(
a0,b0) − 1

n
, bn = μ1(a0,b0) + 1

n
.

The lemma below is based on Proposition 3.6 of Ruyun Ma and Jia Xu in [1].

Lemma 4.1. Suppose (H1). Then there is an unbounded connected component Cn of positive solutions of Eq. (7) such that [an,bn] ×
{0} ⊆ Cn and

Cn ∩ {{
R

∖[an,bn]
} × {0}} = ∅.

Proof. By Lemma 3.2, an and bn are not bifurcation points of

Φλ(u) = 0,

and u = 0 is an isolated solution of this equation for both λ = an and λ = bn .
Let δ̃ = min(δ1, δ2). By Lemmas 3.4 and 3.6, we infer that

deg(Φan , B δ̃ ,0) = 1 and deg(Φbn , B δ̃ ,0) = 0.

Set

Sn = {
(λ, u) ∈ R × H

∣∣ Φλ(u) = 0, u 
= 0
} ∪ {[an,bn] × {0}}

and denote by Cn ⊂ Sn the connected component which contains

[an,bn] × {0},
given by Theorem 2.2. Hence either
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(i) Cn is unbounded in R × H, or
(ii) Cn ∩ {{R \ [an,bn]} × {0}} 
= ∅.

We claim that (ii) does not hold.
Indeed, let

Λ ⊂ R \ [an,bn]
be a compact set. By Lemma 3.3,

Φλ(u) 
= 0, 0 < ‖u‖ � δ̃, u ∈ H, λ ∈ Λ.

It follows that (ii) does not hold. Thus the continuum Cn is unbounded and in addition Cn ∩ {{R \ [an,bn]} × {0}} = ∅. This
ends the proof of the lemma. �
4.1. Proof of Theorem 1.1

It is enough is to show that the unbounded component of positive solutions C = Cn given by Lemma 4.1 meets {1} × H .
In order to do that, pick a sequence {(σk, uk)} ∈ C such that

σk + ‖uk‖ → +∞.

Using the fact that

C ∩ {{
R

∖[an,bn]
} × {0}} = ∅,

we infer that, there is a subsequence still denoted {(σk, uk)} such that uk 
= 0.
We claim that σk > 0. Indeed, notice that each (σk, uk) satisfies

�2uk = σk f̃ (x, uk,�uk) in Ω, uk ∈ H1
0(Ω) ∩ H4(Ω). (15)

If some σk = 0, then by (15), uk = 0, impossible.
On the other hand, if some σk is negative then C would cross {0} × H , impossible. In conclusion, each σk is positive.
Using the fact that f̃ � 0, it follows by the maximum principle that

uk � 0 and �uk � 0.

We claim that the sequence {σk} is bounded. Indeed, estimating using (H3), we have

�2uk � σk(a1uk − a2�uk) in Ω.

Multiplying this equation by φ1 and integrating, we obtain

λ2
1

∫
Ω

ukφ1 dx =
∫
Ω

�2ukφ1 dx � σk

∫
Ω

(a1uk − a2�uk)φ1 dx

= σk

∫
Ω

(a1φ1 − a2�φ1)uk dx

= σk(a1 + a2λ1)

∫
Ω

ukφ1 dx. (16)

Since
∫
Ω

ukφ1 > 0, we obtain from (16) that

0 < σk � μ1(a1,a2) < ∞.

It follows that σk → σ and ‖uk‖ → ∞, up to a subsequence.
Let

vk = uk

‖uk‖ .

There is a function v ∈ H such that

vk ⇀ v in H, vk → v in L2(Ω), vk → v a. e. in Ω.

Dividing the equation in (15) by ‖uk‖, we have⎧⎨⎩�2 vk = σk
f (x, uk,�uk)

‖uk‖ in Ω,
vk ∈ H, vk � 0, �vk � 0 on Ω.
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Arguing as in the proof of Lemma 3.2 we infer that

vk
H→ v, ‖v‖ = 1.

At this point we recall that {(σk, uk)} ∈ C , 0 < σk � μ1(a1,a2) < ∞ and ‖uk‖ → ∞. We distinguish between two cases:

Case 1. μ1(c∞,d∞) < 1 < μ1(a0,b0).

Using (H2) we have

�2 vk � σk(a0 vk − b0�vk) − σk
η1(x, u,�uk)

‖uk‖ .

Multiplying by φ1 and integrating, we obtain

λ2
1

∫
Ω

vkφ1 dx =
∫
Ω

�2 vkφ1 dx � σk

∫
Ω

(c∞vk − d∞�vk)φ1 dx − σkoη1
k (1)

= σk

∫
Ω

(c∞φ1 − d∞�φ1)vk dx − σkoη1
k (1)

= σk(c∞ + d∞λ1)

∫
Ω

φ1 vk dx − σkoη1
k (1).

Taking limits and applying Lemma 3.1 we get(
λ2

1

c∞ + d∞λ1
− σ

)∫
Ω

vφ1 dx � 0.

As a consequence,

σ � μ1(c∞,d∞) < 1 < μ1
(
a0,b0),

and so(
σ ,μ1

(
a0,b0)) ⊆ ProjR+ C.

Thus C meets {1} × H .

Case 2. μ1(a0,b0) < 1 < μ1(c∞,d∞).

It follows using (H2), that

λ2
1

∫
Ω

vkφ1 dx =
∫
Ω

�2 vkφ1 dx � σk

∫
Ω

(
c∞vk − d∞�vk

)
φ1 dx + σkoη2

k (1)

= σk

∫
Ω

(
c∞φ1 − d∞�φ1

)
vk dx + σkoη2

k (1)

= σk
(
c∞ + d∞λ1

)∫
Ω

φ1 vk dx + σkoη2
k (1).

Passing to the limit, applying Lemma 3.1 we get to

σ � μ1
(
c∞,d∞)

> 1 > μ1(a0,b0).

As a consequence,(
μ1(a0,b0),σ

) ⊆ ProjR+ C,

showing that C meets {1} × H .
This ends the proof of Theorem 1.1. �
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