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1. Introduction

We discuss existence of positive solutions for the problem
{Azuzf(x,u,Au) in £2,
u=Au=0 on 452,

(1)
where 2 c RN, N >1, is a bounded domain with smooth boundary 852, A? is the biharmonic operator and f : £2 x [0, c0) x
(—00,0] — [0, 00) is a continuous function, asymptotically linear in a suitable sense such that

fx,u,p)>0, xe, (u,p)e([0,00) x (—o0,0])\{(0,0)}.
A well-known result on asymptotically linear problems establishes that
{—Au:f(u) in £2,

u=0 onads2
admits a solution if f is continuous, —oco < f’(0) < A1 < f'(00) < 0o, where A1 is the first eigenvalue of (—A, H(l)(Q)) and
t
f(O)_llm& f'(c0 )_llm&

In this work we shall assume that f is asymptotically linear at the origin in the sense of conditions (H1) and (H2) below.
(H1) There are nonnegative constants dag, bg, a®, b® with

agp+bg >0, ao—+—b0>0,
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such that

agu — bop — E1(x, u, p) < f(x,u, p) <a®u —b°p + & (x,u, p),
for (x,u, p) € 2 x [0, 00) x (—00, 0], where

£1,8& : 82 x [0, 00) x (—o0, 0] — [0, 00)
are continuous functions satisfying

&j(x,u, p)

=0 foreachxe$2,
lw,p)l—=0 [(u, p)l

and
1§ (x, u, p)l
[(u, p)l

where y; € L®(£2), j=1,2.
Throughout this work,

|(u, p)| :=y/u2 +p2, (u,p)eR%

(H2) There are nonnegative constants Co, doo, €, d*° with
g

<yjx) foreachxe 2 and |(u, p)| > 0,

Coo +doo >0, c® +d*® > 0.
such that

Cooll = doop — N1 (x, U, p) < f(X,u, p) <c™u—d>p +na(x, u, p),
for (x,u, p) € 2 x [0, 00) x (—00, 0], where

M, 12 : 82 x [0,00) x (—o0, 0] — [0, 00)
are continuous functions such that

M:O foreach x € £2,
l(u,p)l—o0 |(U, p)|

and
[n;j(x,u, p)l
[(u, p)l

where ;€ L(£2), j=1,2.
In order to state our main result, we set

M
o, p)i=—",
mi(e, B) 5+ an

where o, 8 are nonnegative numbers such that

<¢j(x) foreachx e 2 and |(u, p)| >0,

o+ p8>0.

The main result of this work is:

Theorem 1.1. Assume (H1), (H2) and

(H3) there are nonnegative numbers ay, ay with a; 4+ a; > 0 such that
fx,u,p) >aju—axp foreach (x,u, p) € §2 x [0,00) x (—o0, 0].
If, in addition, either
1 (Coo, doo) < 1 < p1(a®, b°)
or
p1(ao, bo) <1 < puq(c™, d*)

then problem (1) admits at least one positive solution.
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Our main result was motivated by the recent paper [1] by Ruyun Ma and Jia Xu, where the fourth order ODE problem,
{ u" = f(x,u,u"”) in(0,1),
u0)=u(l)=u"0)=u"(1)=0

is studied. Our Theorem 1.1 improves the main result in [1] in the sense that it also holds in dimension one and in that our
assumptions (H1), (H2) are less restrictive than the corresponding ones in [1].

We further refer the reader to Champneys and McKenna [13], Micheletti and Pistoia [9,10], Micheletti and Saccon [11],
Pao and Wang [12], Ruyun Ma [2] and their references, for boundary value problems for fourth order equations.

The techniques we employ below to prove our Theorem 1.1 apply to the problem

{aAzu + BAu=g(x,u) in$2,
Bu=0 onds2,

where o > 0, —oo < 8 < @)1, the boundary condition Bu =0 on 352 means that u = Au=0 on 92 when @ >0 and u=0
on 9§2 when o =0 and g(x, u) satisfies conditions similar to (H1), (H2), (H3). See, e.g. [8] for remarks on the eigenvalues
of the operator a A%u + SAu.

2. Notations, basic results, abstract framework

Consider the space H := H}(£2) N H*(R2)
The Generalized Green Identity establishes that

/Vqudx:—/uAvdx, u,veH.
Q Q

The two inequalities below are well known:

i) /|Au|2dx>)q/|Vu|2dx, (ii) /|Au|2dx>)\§f|u|2dx, ueH. (2)

2 2 2 2

Now, the space H endowed with the norm and inner product

JJu|? 1=/|AUI2dX, (u, v) :=/AuAvdx, u,veH
2 2

is a Hilbert space.
Let h € L2(£2) and consider the Dirichlet problem

—Au=h in#$2, u=0 onas2. (3)
The solution operator associated to (3), namely
S:L2(2) — H)(2) — 1%(2)

is linear, compact and symmetric.
The spectral analysis of S gives the principal eigenvalue A1 of (—A, H%(Q)) whose eigenfunction ¢; is positive in 2.
On the other hand, a function u € H is a weak solution of

A’u=h inf2, u=Au=0 onasf (4)
if

/AuAvdx:/hvdx, veH.

2 2

If u € H is the solution of (4) it follows by the elliptic a priori estimates, (see e.g. Gupta [3], Gilbarg and Trudinger [7]), that
ueH\(2)NH*(2) and
lullgacey < Clihll2 o),

for some constant C > 0. Moreover, if u € H is a weak solution then Au =0 on 92 in the trace sense and, in particular,
Au € H)(£2).
Next, we recall a version of the Maximum Principle for the biharmonic operator.
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Proposition 2.1. Let u € H}(£2) N H*(£2) be a function such that
{ A*u>0 in 2,
u=Au=0 onos2.
Then
ux)>0, Aukx)<0, aexef2.

Proof. Set v := Au. Then
veH)(2)NH?*(2) and Av>0 ing.

By the usual Maximum Principle for the Laplacian, supg, v < supyo v =0.
Thus we have

ue Hy(2)NH*(2) and Au<0 ing.
By the usual Maximum Principle again, we get

infu>infu™ =0
2 02

and hence
u>0 in$2. O

The following result on existence of global branches of solutions (see e.g. Rabinowitz [4,5], Schmitt and Thompson [6]),
is crucial in this paper.

Theorem 2.2. Let E be a real Banach space with norm || - || and let T : R x E — E be a compact operator such that
T(»,0 =0, reR. (5)

Assume that there are a, b € R with a < b such that u = 0 is an isolated solution of T(A,u) = u for A =a and A = b and that A = a
and A = b are not bifurcation points of T (A, u) = u with respect to the line of trivial solutions (X, 0). Assume also that

deg(I — T(a, .), Bs,0) #deg(I — T(b,.), Bs,0),
where Bs = {u € E: ||u|| < 8} is an isolating neighborhood of the trivial solution and deg means the Leray-Schauder degree. Set

S={(,u)eRxE:u—TA,u)=0, us#0}U{[a,b]x {0}}.

Let C C S be the maximal connected component of S which contains [a, b] x {0}. Then, either

(i) CisunboundedinR x E, or

(ii) CN{R\ {[a, b] x {O}}} # 4.

Now consider the function 7” 12 x (—00,00) X (—00,00) — [0, 00),
f(x,u,p), xe2,u>0, p<o,

~ f(x,0,p), xe£2,u<0, p<Oo,
fxu,p)=
f(x,u,0), xe2,u=0,p=>0,
f(x,0,0), xe£,u<0, p=0,

which is a continuous extension of f.
We shall study the family of problems

[Azu =Af(x, u, Au) in 2,
u:Au:O OHQ,

where A > 0 is a parameter. N
Consider the Nemytskii operators F, F : H — L2(£2) given by

F(u) = f(x,u, Au), F(u):f(x,u,Au), ueH.

(6)

Using (H1), (H2) one infers that F, F are bounded and continuous.
Now consider the nonlinear operator @ : R x H — H defined by

@, (u)=u—T(x,u) whereT(\,u) :ASZT-:(u), ueH, reR.

Notice that by the continuity, boundedness of F and the compactness of S2, T:R x H — H is compact.
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We point out that u € H is a weak solution of problem (6) if and only if u satisfies
@, (u)=0, ueH, reR. (7)

Notice that since, by Sobolev’s embeddings, T is a compact operator, @, is a compact perturbation of the identity which
enables us to apply the Leray-Schauder degree theory.
Setting A = 1, the positive solutions u € H of (7) are solutions of (1).

3. Technical lemmata

In this section we shall establish and proof a few usefull technical results.

Lemma 3.1. Suppose (H1), (H2). Let {u,} C H be a sequence such that |u,| > 0 and {2 Hu T } converges in H. Then

, A N . .
(i) of (1)—/51(" St S ) g k"0 i funll > 0, j=1.2.
n

) (X, up, Au . .
(i) to(l)z/W«fnd X =30 iffugl = o0, j=1,2.
n

Proof. Set v, := ” L 0 that v, X v for some v € H with ||v|| = 1. It follows by (2) that

Vvp—>V, Avy,— Av in LZ(.Q).
Moreover,
vp— Vv, Avp— Av ae.in £,
and there are hy, hy € L2(£2) such that
[val <hi, |Avgpl<hy ae.in£2.
We have

Ej(x, un, Aup)n
llunll

|&j(x, un, Aup)| [(Un, Auy)|
[(Un, Aup)| llunl

_ |'§>:j(x’ Up, Aun)| 2 2
—¢17|(un,Aun)| Vit [Avgls. (8)

Verification of (i). Setting H(x) := max{hq(x), ha(x)} it follows from (8) that
&j(x, un, Aup)gy
lunl

Notice that ¢1y;H € L2(£2).
On the other hand, since

1

< or1Yi(OHX).

up — 0, Au,—0 inl%*(9),
u,—0, Au,—0 ae.in g2,
we infer from (8) that
§j(X, Un, An)1
llunll

By the Lebesgue Theorem,
/S](x Up, Alp)dq

llunl

— 0 ae.in$2.

n

dx — 0.

Verification of (ii). Set

Q0:={xe|v(x=0}.
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It follows (see e.g. Gilbarg and Trudinger [7, Lemma 7.7]) that
Av =0 a.e.in £2p.

We infer through an estimate similar to the one in (8) (for n; instead of ;) that
1 X, Un, Aln)oy
llunll
If x € £20° then uy(x) = ||up|l va(x) — £oo. Estimating as we did in (8),

nj(X, Un, Aup)p <¢]In;(x, Un, Alp)]
llunl h [(un, Aup)

— 0 a.e.in £2g.

H ae.in £2¢°.

Thus
n;j(X, Un, Alp)p1
llunll
Applying the Lebesgue Theorem we infer that

/ (X, Un, Aun)e

llunl

— 0 ae.in 20"

n

dx — 0.

This ends the proof of Lemma 3.1. O
The result below establishes an a priori estimate for the bifurcation points of (6).

Lemma 3.2. Assume (H1). Let (A, 0) € RT x H be a bifurcation point of the equation
D, (u)y=0, ueH.

Then
H1 (ao, bo) <A < p(ao, bo).

Proof. We will split the proof into two steps.

Step 1. In order to show that A < w1 (ag, bo) pick sequences {u,} € H and {A,} € R" such that
un#0, lunll =0,  Ap— A
and
A2Up = An f (X, Un, Alp)  in £2,
{ up € HY(2) N H4(£2).
By Proposition 2.1,
up, >0, Au, <0 aexef2.
These facts allow us to rewrite the equation in (9) as
AU = A f (X, up, Aug)  in £2, (10)
or equivalently,
Up = AHSZF(un), up, € H.

Set v, = There is v € H such that

Un
llunll*
H 12
vp—Vv and vp—> V.
Moreover, the equation in (10) rewrites as,

X, Up, Au .
Aan=/\nW in £2, (11)
n

or equivalently

vo=ias?(T) (12)
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On the other hand, estimating, using (H1), we get to

§7 (% un, Aun) 7 (X, Un, Alin) |(uy, Aup)|?
l[un I |(un, Aup)|? llun 12
E2(x, un, Aty)
T |(un, Aup) P2
<yf (vi+1Aval?).

(V,% + |AVn|2)

Since y;j € L°°(£2) we infer that

(x, s A . .
{W} is bounded in € L?(£2).
n

As a consequence, using (H1) again,

{ F(un) }
llunll
is bounded in L%(£2).

By (H1), it follows that F : H — L2(£2) is bounded and continuous and so S2F : H — H is compact.
Since {A,} converges we infer from (12) that {v,} admits a convergent subsequence, still denoted {v,}, that is

H
vp—>v, |v|=1.
Multiplying the equation in (11) by ¢1, integrating, using (H1) we have,

)\% / Vg dx = / szn¢1 dx > Ay /(aOVn —boAvy)erdx — Oil M
2 2 2

= An /(ao¢1 — boAgr)vpdx — 05 (1)
2

=M@M¢M0/wmw—ﬁml
2

Passing to the limit, in the inequality above, using Lemma 3.1, we get

M
_— —A vprdx > 0.
(ao-i-boM )/ ¢
2

Since the integral above is strictly positive it follows that,
A < pa(ao, bo).

This ends the proof in Step 1.

Step 2. The verification that A > w1 (a%, b%) follows by arguments similar to those in Step 1.
This ends the proof of Lemma 3.2. O

The result below is about non-existence of solutions of the Banach space equation:

&, u)=0, (h,u)eR" xH.

Lemma 3.3. Assume (H1). If A C R is compact and
(1 (GO, bo), ui(ao,bo)|NA=9
then there is §1 > 0 such that

@, () £0 if0<|lull <8, AeA, 0<8<s.
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Proof. Arguing by contradiction, there are sequences {u,} € H and {\;} € A such that
D, (up) =0,
1
0<I|un||<a- (13)

By eventually taking subsequences we have, A, — A € A.
Set v, = Hl’j—:” There is a function v € H such that

vp—7Vv IinH, Vp—> Vv inLZ(.Q) and v, — v a.e.in 2.
We have
X, Up, AU
Ay, =5 % tn Ati)
llunl

Arguing as in the proof of Lemma 3.2,

H
vp—=>v, |v|=1.

Multiplying by ¢ and integrating, using (H1) we get to

A3 / Vngr dx = / Avpgrdx > hn /(aovn — boAvy)pr dx — 05 (1)
2 2 2

=An /(ao¢1 — boAgr)vpdx — 05 (1)
2

— Jn(@0 + bor1) / Vgt dx — 0 (1).
2

Passing to the limit, applying Lemma 3.1,

2
—_— —A vprdx > 0.
<ao+bo)»1 )/ ¢
2

Since v is nontrivial and nonnegative the integral just above is positive. Hence,
A < p1(ao, bo).

By a similar argument we obtain, using by (H1) again,
A > pq(a®,b0).

This contradicts A € A obtained as before. This ends the proof of Lemma 3.3. O
Next we will use the previous lemma to compute the Leray-Schauder degree of @, for A € (0, w1 (ao, b%y).

Lemma 3.4. Assume (H1). Then
deg(®,, Bs,0) =1,
where 0 < 8 < 81,0 < A < 141(a®, b0).

Proof. Setting A = [0, 1], we have
AN [ (ao, bo), p1(ao, bo)] =9.
Consider the homotopy N : [0, 1] x Bs — Bs defined by
N(t,u) =u —tAS?F(u), te[0,1], ueBsCH.
We claim that
N(t,u) #0, tel[0,1], u € dBs.
Indeed, the case t =0 is obvious, so let 0 <t < 1. Notice that the equation

N(t,u)=0, uediBs,
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is equivalent to
@)t (u)=0, ueadBys,

which is not solvable by Lemma 3.3, showing the claim.
By the homotopy invariance property of the Leray-Schauder degree,

deg(N(1,.), B5,0) = deg(N(0, .), Bs, 0) = deg(I, B;, 0) =1,
showing that
deg(®,, Bs,0) =1. O
Next, we state a non-existence result for the Banach space equation &, (u) = t¢; with A big enough, which will be
useful in the computation of some topological degrees.

Lemma 3.5. Assume (H1) and A > 1(ag, bo). Then there is 8, > 0 such that
D, () #tdh1, T€[0,1], 0<|ufl <d, 0<8<d.

Proof. Assume, on the contrary, that there are sequences {u,} € H and {t,} C [0, 1] such that

D) (up) =Tpp1 and 0 < flugll <

S| =

We have,

up—0 inH, up,—0 inl?2), up—0 ae.in$ and|us| <h, hel?).
The equation above can be rewritten as

up =ASYF (up) + T in Q2.
It follows that

A%up = Af (X, up, Aup) + ToA%¢  in £2,

!uneH, up, >0, Au, <0 in 2.
Now using the continuity of the operator S2F and the fact that |u,| — 0,

S?F(up) = 0 in H.

Dividing the equation above by ||uy| and setting v, = ﬁ we have
F(u T
vn=k52< ( ”)>+ "4, ing2. (14)
lunll llunll
By standard arguments there is a function v € H such that
vp— Vv inH, Vp— Vv ian(Q), vy, — Vv ae.in £2.

Arguing as in the proof of Lemma 3.2 one infers that

{52 ( Ii;u””)) } is bounded.

Since also {v,} is bounded, it follows by (14) that {2} is bounded.

llunll
Using the compactness of S2F, it follows from (14) that v, — v in H.
From (14),

[, un, Atlp) | Tn
llunll llunl
Multiplying by ¢ in the equation above, integrating, using (H1), we have

Avy, = A A%p; inf2

i / Vng1 dx = / AVngpy dx > A /(aovn — boAvy)$1 dx — 05 (1)
£2 2 Q

=An/(ﬂo¢1 — boAgr)vndx — 05 (1)
2

= An(ap + boi1) / Vno1 dx — OEI (1.
2
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Passing to the limit in the set of inequalities above, and applying Lemma 3.1

M
— 1T vy dx > 0.
(ao+bo)»1 )f ¢
2

Since ||v|]=1, v >0 and ¢ > 0 it follows that

A < w1(ao, bo),
which is a contradiction. This ends the proof of Lemma 3.5. O

In the next lemma we will use the preceding result to compute the Leray-Schauder degree of &;,, for A €
(i1 (ao, bo), +00).

Lemma 3.6. Assume (H1) and A € (ft1(ag, bo), 00). Then
deg(®;, B5,0) =0, 0<3<é.

Proof. Consider the homotopy M : [0, 1] x Bs — Bs given by
M(t,u) =®,(u) —t¢1, ueBs, tel0,1].

It follows by Lemma 3.5 that
M(t,u)#0, uedBs, 0<t<1.

By property of homotopy invariance of the Leray-Schauder degree,
deg(M(0,.), Bs, 0) =deg(M(1, ), Bs, 0) =0.

As a consequence,
deg(®;, Bs,0) =0.

This finishes the proof of the lemma. O

4. Proof of the main result

As a first step we establish and prove a result on existence of a continuum of positive solutions of Eq. (7).
Pick n big enough such that

(@)~ >0
Consider the numbers
an = p1(a’, b%) — % bn=M1(ao,b0)+%~
The lemma below is based on Proposition 3.6 of Ruyun Ma and Jia Xu in [1].
Lemma 4.1. Suppose (H1). Then there is an unbounded connected component Cy, of positive solutions of Eq. (7) such that [ay, by] X
{0} CCp and
Ca N {{R\[an, bul} x {0} = 4.

Proof. By Lemma 3.2, a, and b, are not bifurcation points of
P, (u)=0,

and u =0 is an isolated solution of this equation for both A =a, and A = by.
Let § = min(d1, §2). By Lemmas 3.4 and 3.6, we infer that

deg(®q,,B3,0)=1 and deg(®p,, B3, 0)=0.
Set

Sp={(u)eRx H|®,(u)=0, uz0}U{[an, by] x {0}}
and denote by C,;, C S, the connected component which contains
[an, bn] x {0},

given by Theorem 2.2. Hence either
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(i) Cy is unbounded in R x H, or
(i) Co N {{R\ [an, bnl} x {0}} # 0.

We claim that (ii) does not hold.
Indeed, let
A CR\ [an, bn]
be a compact set. By Lemma 3.3,
@, (u)#£0, 0<|ul| <5, ueH, reA.
It follows that (ii) does not hold. Thus the continuum C, is unbounded and in addition C, N {{R \ [a,, by]} x {0}} = @. This

ends the proof of the lemma. O

4.1. Proof of Theorem 1.1
It is enough is to show that the unbounded component of positive solutions C = C, given by Lemma 4.1 meets {1} x H.
In order to do that, pick a sequence {(oy, uy)} € C such that
o + llukll = +o0.
Using the fact that
¢ N {{R\[an, bal} x {0}} =2,

we infer that, there is a subsequence still denoted {(oy, uy)} such that uy # 0.
We claim that o}, > 0. Indeed, notice that each (oy, uy) satisfies

Auy =0 f (x, up, Aug) in 2, u € HY(2) N HA(2). (15)

If some o =0, then by (15), uy = 0, impossible.
On the other hand, if some oy is negative then C would cross {0} x H, impossible. In conclusion, each oy is positive.
Using the fact that f > 0, it follows by the maximum principle that

u, >0 and Au<0.
We claim that the sequence {o}} is bounded. Indeed, estimating using (H3), we have
Auy > op(ajug —azAuy)  in £2.

Multiplying this equation by ¢ and integrating, we obtain

A%/uk¢1 dx:/Azukdn dX>U/</(aluk—azAuk)¢1 dx
2

2 2

=0y f(amh — ax A¢r)ugdx
2

= ok(a +02)»1)/U1<¢1 dx. (16)
2

Since ]9 ui$1 > 0, we obtain from (16) that
0 <oy < p(ay,a2) < oo.

It follows that o, — o and |ug|| — oo, up to a subsequence.
Let
Uk
V= ——.
llull

There is a function v € H such that

Vp— Vv inH, v — v inL%(£2), vp— Vv a.e.inf2.
Dividing the equation in (15) by |Jug|, we have

(X, Uy, Aug) .
szkzo’kfl%k in Q,
[kl

vieH, vp>0, Aviy<0 on£2.
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Arguing as in the proof of Lemma 3.2 we infer that

H
vi—= Vv, [vll=1.

At this point we recall that {(oy, ug)} € C, 0 < o < 1(ay, az) < oo and |jug|| — oo. We distinguish between two cases:
Case 1. (11 (Coo, doo) <1 < p11(a®, bO).

Using (H2) we have
n1(x, u, Aug)
llull

Multiplying by ¢ and integrating, we obtain

2
A“vy 2 o (agVvi — boAvy) — ok

A3 / Vipr dx = / A’V dx > oy /(Coovk — doo AVi)$1 dx — 030, (1)
2 2 2

=0} f (Cooh1 — doo A1) Vi dX — ok0}]" (1)
2

= 0k(Coo +dook1)/¢1 vidx — oo (1).
2

Taking limits and applying Lemma 3.1 we get

M
— 1 v dx > 0.
<Coo+doo)\1 )/ o
2

As a consequence,

0 < U1(Coos doo) < 1 < p1(a’, b°),
and so

(0, 11(a®, b°)) S Projg+C.
Thus C meets {1} x H.

Case 2. 111(ag, bp) <1 < pu1(c®,d™®).
It follows using (H2), that
A3 / Vipy dx = / A%vipr dx < o /(C‘X’Vk — d® Avi)¢r dx + 00, (1)
2 2 2

=0y /(coo¢1 —d™A¢1)vidx + o0, (1)
2

= O'k(CC>o + doo)q) / P1vidx + ako;zz (D).
2

Passing to the limit, applying Lemma 3.1 we get to
o > p1(c>,d*®) > 1> p1(ao, bo).

As a consequence,
(m1(ao, bo), o) € Projg+C,

showing that C meets {1} x H.
This ends the proof of Theorem 1.1. O
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