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In this paper, we investigate the convergence behavior of the Schwarz waveform relaxation
(SWR) algorithms for solving PDEs with time delay. We choose the reaction diffusion
equations with a constant time delay as the underlying model problem and try to derive
optimized transmission conditions of Robin type. To this end, we propose a new method to
get quasi-optimized parameter involved in the transmission conditions and it is shown that
this method is essentially different from the existing ones. Moreover, when the situation is
reduced into the heat equations with a constant delay, we show that this method results
in a more efficient quasi-optimized parameter. Numerical results are provided to validate
our theoretical results.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.

1. Introduction

Delay PDEs arise from various applications, like biology, medicine, control theory, climate models, and many others (see
e.g. Wu [23] and the references therein). A delay PDE differs from a regular PDE in that it depends not only on the solution
at a present stage but also on the solution at some past stage(s). If, additionally, the equation depends on the derivative(s)
of the solution at some past stage(s), then it is a neutral delay PDE. Delay PDEs are also called partial functional differential
equations as their unknown solutions are used in these equations as functional arguments.

While the theoretical properties of delay PDEs have been investigated deeply and widely in the past years, there is little
experience with numerical methods for solving delay PDEs, particularly with parallel computational methods. Zubik-Kowal
and Vandewalle [25] analyzed the convergence of the waveform relaxation methods [15,21] of Gauss–Seidel and Jacobi type,
for solving the discretized delay PDE problems. In that paper, they presented a first analysis of domain decomposition based
waveform relaxation methods for the solution of two model delay PDEs.

Waveform relaxation schemes using domain decomposition in space for PDEs are terminologically called Schwarz wave-
form relaxation (SWR) algorithms. The algorithms are characterized by firstly partitioning the spatial domain into overlapping
subdomains, and then solving simultaneously inside each subdomain through iterations. We refer to [7,11,12,10] for the
original idea of this kind of domain decomposition algorithms.

Due to the excellent capability in parallel computation of PDEs, the SWR algorithms are becoming more and more
popular, particularly in the field of solving time dependent problems. It is a common point that the SWR algorithms can
be classified into two categories depending on the used transmission conditions between subdomains: the classical SWR
algorithms and the optimized ones. For the classical SWR algorithms, Dirichlet conditions are used as transmission condi-
tions (see, e.g., [2–4,6,7,9–13,18]), and in such case the overlap between adjacent subdomains is essentially important to
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guarantee the convergence. It has been shown in [14] that, the Dirichlet condition inhibits the information exchange be-
tween subdomains and therefore the convergence speed of the classical SWR algorithms is slowed down. To speed up the
convergence rate of the SWR algorithms, new transmission conditions are introduced in [14] and [1]. The new transmission
conditions always involve one or two free parameters which can be used to optimize the convergence rate of the SWR
algorithm. Hence, the new algorithm is usually called optimized SWR algorithms. For regular linear PDEs, the optimization
problem arising in determining the best parameters involved in the transmission conditions can be solved in closed formu-
las. The interested reader can refer to the work by Gander and Halpern [14] for Robin type transmission conditions and to
the work by Bennequin et al. [1] for higher order conditions.

Nowadays, optimized SWR algorithms become more and more popular in scientific and engineering computing due to the
much faster convergence speed compared to the classical SWR algorithms, and have been adopted to solve more complex
problems arising from physics and engineering. For example, [8] applied the algorithms to the equations of ferro-magnetics
in the micro-magnetic model; [20,19] and [5] investigated the applications to the shallow-water problem and Maxwell’s
equations, respectively.

However, for PDEs with time delay, the situation becomes very complex and concrete results about convergence behavior
of both the classical and the optimized SWR algorithms are rare. For example, the superlinear convergence of the classical
SWR algorithm can be easily obtained for the regular linear parabolic PDEs by using standard inverse Fourier transform (see,
e.g., [4,14,13]), while it is difficult and still unknown when time delay is taken into account. In the seminal paper [22], Van-
dewalle and Gander have shown that, the techniques that are used to analyze the classical and optimized SWR algorithms
cannot be straightforwardly applied to PDEs with time delay. In that paper, two representative model problems are consid-
ered: a PDE with a constant delay and one with a distributed delay. For the classical SWR algorithms, by using elementary
but very technical arguments, Vandewalle and Gander presented an estimate of the convergence rate. In our previous pa-
per [24], we further analyzed the classical SWR algorithms, where the reaction diffusion equations with a constant delay
were considered as the underlying model problems and the convergence behavior of the SWR algorithms with arbitrary
number of subdomains is highlighted. For the transmission conditions of Robin type, Vandewalle and Gander [22] proposed
a very technical idea to determine the best parameter. However, the details of their idea are not presented in that paper.
Therefore, the convergence behavior of the SWR algorithms with Robin transmission conditions for PDEs with time delay
has not been fully investigated yet, which is still open and remains challenging.

Following the spirit of [22], in this paper we continue to study the optimized SWR algorithms for PDEs with time delay.
By using the reaction diffusion equations with a constant delay as the underlying model problems, we investigate here
how to determine the parameter involved in the transmission conditions as better as possible. We establish an algebraic
analysis method to determine the quasi-optimized parameter, which is different from the geometrical method given in [22].
Moreover, for the heat equation with a constant delay, we show that the new method results in better parameter involved
in the Robin type transmission conditions.

The remainder of this paper is organized as follows. In Section 2, we introduce the used model equations and the SWR
algorithms with transmission conditions of Robin type. The well-posedness of the algorithm is proved in this section. Our
main results are presented in Section 3, where the optimization problem arising from determining the best parameter
involved in the Robin transmission conditions is solved in great details. In Section 4, we consider the special case—the heat
equations with a constant time delay, and we show that the quasi-optimized parameter obtained in this paper is better
than the one given in [22]. In Section 5, we provide several numerical examples to illustrate the effectiveness of our results.
Finally in Section 6, we finish this paper with some conclusion remarks.

2. Model problems and the SWR algorithms

We consider the following reaction diffusion equation with a constant time delay as the model problem:⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
− ν2 ∂2u

∂x2
+ a1u(x, t) + a2u(x, t − τ ) = f (x, t), (x, t) ∈ R × (0, T ),

u(x, t) = u0(x, t), (x, t) ∈ R × [−τ ,0],
u(±∞, t) = 0, t ∈ (0, T ),

(2.1)

where τ > 0, ν > 0 and a1, a2 are constants with a2 �= 0. This equation is also the basic model investigated by [23]. For
ν = 1, a1 = 0 and a2τ > 0, (2.1) reduces to the one discussed in [22]. We decompose the spatial domain Ω = R into two
overlapping subdomains Ω1 = (−∞, L] and Ω2 = [0,+∞) with L � 0. The SWR algorithms then consist of solving iteratively
subproblems on Ω j ×R

+ , j = 1,2, using as a boundary condition at the interfaces x = 0 and x = L the values obtained from
the previous iteration. The iterative scheme is thus for iteration index k given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂uk

1

∂t
− ν2 ∂2uk

1

∂x2
+ a1uk

1(x, t) + a2uk
1(x, t − τ ) = f (x, t), (x, t) ∈ Ω1 × (0, T ),

uk
1(x, t) = u0(x, t), (x, t) ∈ Ω1 × [−τ ,0],

B1uk (L, t) = B1uk−1(L, t), t ∈ (0, T ),

(2.2)
1 2
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂uk
2

∂t
− ν2 ∂2uk

2

∂x2
+ a1uk

2(x, t) + a2uk
2(x, t − τ ) = f (x, t), (x, t) ∈ Ω2 × (0, T ),

uk
2(x, t) = u0(x, t), (x, t) ∈ Ω2 × [−τ ,0],

B2uk
2(0, t) = B2uk−1

1 (0, t), t ∈ (0, T ),

(2.3)

where u0
1 and u0

2 are initial guesses, and B1, B2 denote the Robin type transmission conditions:

B1 = ∂

∂x
+ p

ν
, B2 = ∂

∂x
− p

ν
(2.4)

with p a free parameter.
We next show the well-posedness of each subdomain problem. We consider this problem in anisotropic Sobolev spaces

Hr,s(Ω × (0, T )) = L2(Hr(Ω); (0, T )) ∩ Hs(L2(Ω); (0, T )) where (0, T ) denotes the time intervals; see [16]. Without loss of
generality, we consider the following subdomain problem on Ω1 × (0, T ) only:⎧⎪⎪⎨

⎪⎪⎩
∂ w

∂t
− ν2 ∂2 w

∂x2
+ a1 w(x, t) + a2 w(x, t − τ ) = f (x, t), on Ω1 × (0, T ),

w(x, t) = w0(x, t), on Ω1 × [−τ ,0],
B1 w(L, t) = g(t), t ∈ (0, T ).

(2.5)

Lemma 2.1. (See [14, Theorem 5.5].) For the following equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ w̃

∂t
− ν2 ∂2 w̃

∂x2
+ a1 w̃(x, t) = f̃ (x, t), (x, t) ∈ Ω1 × (0, T ),

w̃(x,0) = w̃0(x), x ∈ Ω1,(
∂

∂x
+ p

ν

)
w̃(L, t) = g(t), t ∈ (0, T ),

(2.6)

if a1 > 0, p � 0, f̃ ∈ H1, 1
2 (Ω1 × (0, T )), w̃0(x) ∈ H2(Ω1), g(t) ∈ H

3
4 (0, T ), and the compatibility condition

∂ w̃0(L)

∂x
+ p

ν
w̃0(L) = g(0)

is satisfied, then the solution w̃(x, t) of (2.6) is in H3, 3
2 (Ω1 × (0, T )). Moreover, the following compatibility property holds at x = 0:

lim
t→0+

(
∂

∂x
w̃ + p

ν
w̃

)
(0, t) = ∂

∂x
w̃0(0) + p

ν
w̃0(0).

Lemma 2.2. Assume a1 > 0, p � 0, f ∈ H1, 1
2 (Ω1 × (0, T )), w0(x, t) ∈ H3, 3

2 (Ω1 × (−τ ,0)), g(t) ∈ H
3
4 (0, T ) and the following

compatibility property holds

∂ w0(L,0)

∂x
+ p

ν
w0(L,0) = g(0). (2.7)

Then the solution w(x, t) of (2.5) is in H3, 3
2 (Ω1 × (0, T )). Moreover, the following compatibility property holds at x = 0:

lim
t→0+

(
∂

∂x
w + p

ν
w

)
(0, t) = ∂

∂x
w0(0,0) + p

ν
w0(0,0).

Proof. In subinterval [0, τ ], (2.5) takes the form of (2.6) with f̃ = a2 w0(x, t − τ ) + f (x, t) ∈ H1, 1
2 (Ω1 × (0, τ )), and

w̃0(x) = w0(x,0). By the trace theorem (see Theorem 3 in [17]), we know that w0(x,0) ∈ H2(Ω1) since w0(x, t) ∈
H3, 3

2 (Ω1 × (−τ ,0)). Hence, by the compatibility condition (2.7) and Lemma 2.1, the solution of (2.5)—denoted by wτ (x, t),

is in H3, 3
2 (Ω1 × (0, τ )). Moreover, wτ satisfies

wτ (x, τ ) ∈ H2(Ω1) and lim
t→0+

(
∂

∂x
wτ + p

ν
wτ

)
(0, t) = ∂

∂x
w0(0,0) + p

ν
w0(0,0).

Similarly, in the next subinterval [τ ,2τ ], by using the boundary condition ( ∂
∂x wτ + p

ν wτ )(L, τ ) = g(τ ) and Lemma 2.1,

we know that there exists a solution—denoted by w2τ (x, t), of (2.5) in H3, 3
2 (Ω1 × (τ ,2τ )). Therefore, by a simple in-

duction technique, we can obtain a unique solution w(x, t) of (2.5) in H3, 3
2 (Ω1 × (0, T )) with limt→0+( ∂

∂x w + p
ν w)

(0, t) = ∂ w0(0,0) + p w0(0,0). �

∂x ν
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By using Lemma 2.2 and induction rule, we can prove the well-posedness of the SWR algorithm (2.2)–(2.4).

Theorem 2.1. Assume a > 0, p � 0, u0(x, t) ∈ H3, 3
2 (R × [0,−τ ]) and f ∈ H1, 1

2 (R × R
+). Let g0, gL be given in H

3
4 (R+) and the

initial guesses u0
1, u0

2 of the SWR algorithm (2.2)–(2.4) satisfy ( ∂
∂x u0

1 + p
ν u0

1)(L, t) = gL(t) and ( ∂
∂x u0

2 + p
ν u0

2)(0, t) = g0(t). Then,

algorithm (2.2)–(2.4) defines a sequence of iterates (uk
1, uk

2) in H3, 3
2 (Ω1 × R

+) × H3, 3
2 (Ω2 × R

+).

3. Towards the best parameter of p

In this section, we focus on determining the best choice of parameter p in the transmission conditions (2.4). We consider
the case T = +∞, i.e., the SWR algorithm (2.2)–(2.4) is implemented on sufficient long time intervals. Let e j

k be the errors
on subdomain Ω j ( j = 1,2) at iteration k � 0, i.e.,

e1
k = u|Ω1 − u1

k , e2
k = u|Ω2 − u2

k .

Then the homogeneous error equations for the SWR iterations (2.2)–(2.4) are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂e1
k

∂t
− ν2 ∂2e1

k

∂x2
+ a1e1

k (x, t) + a2e1
k (x, t − τ ) = 0, (x, t) ∈ Ω1 × R

+,

e1
k (x, t) = 0, (x, t) ∈ Ω1 × (−τ ,0),(
∂

∂x
+ p

ν

)
e1

k (L, t) =
(

∂

∂x
+ p

ν

)
e2

k−1(L, t), t ∈ R
+,

(3.1a)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂e2
k

∂t
− ν2 ∂2e2

k

∂x2
+ a1e2

k (x, t) + a2e2
k (x, t − τ ) = 0, (x, t) ∈ Ω2 × R

+,

e2
k (x,0) = 0, (x, t) ∈ Ω2 × (−τ ,0),(
∂

∂x
− p

ν

)
e2

k (0, t) =
(

∂

∂x
− p

ν

)
e1

k−1(0, t), t ∈ R
+.

(3.1b)

We perform the Fourier transform in time of the error equations (3.1), and this gives⎧⎪⎪⎨
⎪⎪⎩

∂2ê1
k (x,ω)

∂x2
− a1 + a2e−iωτ + iω

ν2
ê1

k (x,ω) = 0,(
∂

∂x
+ p

ν

)
ê1

k (L,ω) =
(

∂

∂x
+ p

ν

)
ê2

k−1(L,ω),

(3.2a)

and ⎧⎪⎪⎨
⎪⎪⎩

∂2ê2
k (x,ω)

∂x2
− a1 + a2e−iωτ + iω

ν2
ê2

k (x,ω) = 0,(
∂

∂x
− p

ν

)
ê2

k (0,ω) =
(

∂

∂x
− p

ν

)
ê1

k−1(0,ω),

(3.2b)

where ê j
k(x,ω) = 1

2π

∫
R

e j
k(x, t)e−iωt dt (we extend e j

k = 0 for t < −τ and denote the extension by e j
k , too), j = 1,2. We

are thus led to solve an ordinary differential equation in each subdomain. The roots of the corresponding characteristic
polynomial are

λ+ =
√

a1 + a2e−iωτ + iω

ν
, λ− = −

√
a1 + a2e−iωτ + iω

ν
. (3.3)

A routine calculation yields

λ+ = ξ(ω) + iψ(ω)

ν
, λ− = −ξ(ω) + iψ(ω)

ν
, (3.4)

where

ξ(ω) =
√

a1 + a2 cos(ωτ) + √
(a1 + a2 cos(ωτ))2 + (ω − a2 sin(ωτ))2

2
,

ψ(ω) = δ

√
−a1 − a2 cos(ωτ) + √

(a1 + a2 cos(ωτ))2 + (ω − a2 sin(ωτ))2

2
, (3.5)

where δ = sign(ω − a2 sin(ωτ)).
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Clearly, �(λ+) � 0 and �(λ−) � 0, and thus the solutions of (3.2) that do not increase exponentially at infinity are{
ê1

k (x,ω) = αk(ω)eλ+(x−L), for (x,ω) ∈ (−∞, L) × R,

ê2
k (x,ω) = βk(ω)eλ−x, for (x,ω) ∈ (0,+∞) × R,

(3.6)

where αk(ω) and βk(ω) will be computed with the boundary conditions on x = L and x = 0:

αk(ω) = (λ− + p
ν )eλ−L

λ+ + p
ν

βk−1(ω), βk(ω) = (λ+ − p
ν )e−λ+L

λ− − p
ν

αk−1(ω). (3.7)

Hence, the errors ê j
k(x,ω) ( j = 1,2) satisfy

ê j
k(x,ω) = (λ− + p

ν )(λ+ − p
ν )

(λ+ + p
ν )(λ− − p

ν )
e(λ−−λ+)L ê j

k−2(x,ω), j = 1,2. (3.8)

By these relations and the well-known Parseval–Plancherel identity we get∥∥e1
k

∥∥
L2 � ρ(p, L)

∥∥e1
k−2

∥∥
L2 ,

∥∥e2
k

∥∥
L2 � ρ(p, L)

∥∥e2
k−2

∥∥
L2 , (3.9)

where ρ(p, L) is the convergence factor of the SWR algorithm (2.2)–(2.4) and will be defined later.
We note that in a numerical computation, a numerical grid in time with spacing �t cannot carry arbitrary high

frequencies—this means that the quantity ω in λ− and λ+ cannot vary from −∞ to +∞; an estimate of the highest
frequency is ωmax = π

�t (see [14]). Therefore, the convergence factor ρ(p, L) in (3.9) should be defined by

ρ(p, L) = max
ω∈[−ωmax,ωmax]

∣∣∣∣ (λ− + p
ν )(λ+ − p

ν )

(λ+ + p
ν )(λ− − p

ν )
e(λ−−λ+)L

∣∣∣∣. (3.10)

Hence, the best constant p involved in the transmission condition of Robin type should be determined by the following
min–max problem:

min
p>0

max
ω∈[−ωmax,ωmax]

∣∣∣∣ (λ− + p
ν )(λ+ − p

ν )

(λ+ + p
ν )(λ− − p

ν )
e(λ−−λ+)L

∣∣∣∣. (3.11)

We next show that this is a complex problem and is essentially different from the regular cases studied in [1,14]. By
(3.3) and (3.10) we know that the convergence factor ρ can be rewritten as

ρ(p, L) = max
z∈Γ

∣∣∣∣ (z − p)2

(z + p)2
e−2 z

ν L

∣∣∣∣, (3.12a)

where

Γ = {
z: z =

√
a1 + iω + a2e−iωτ , ω ∈ [−ωmax,ωmax]

}
. (3.12b)

Clearly, for τ = 0 we have Γ = {z: z = √
(a1 + a2) + iω, ω ∈ [−ωmax,ωmax]}, which is obviously a simple curve in the

complex plane (see Fig. 3.1). However, for τ �= 0, the curve Γ is complex which can be seen in Fig. 3.2, where a1 = 1.5,
a2 = −1 and τ = 1.5, 3 are considered. For L = 0, ν = 1 and a1 = 0, Vandewalle and Gander [22] proposed that:

1. Choose a regular box (denoted by B) which contains the curve Γ ; see the sketch map in Fig. 3.3;
2. Solve the following min–max problem instead of (3.11) with L = 0:

min
p>0

max
z∈B

∣∣∣∣ (z − p)2

(z + p)2

∣∣∣∣. (3.13)

Clearly, the solution of (3.13) is a quasi-optimized solution of the min–max problem (3.11) with L = 0. It is a pity that we
have not found the details about how to choose the box B and how to solve the min–max problem in the bounding box B.
In this paper, we continue to consider the case L = 0 and try to derive a better quasi-optimized solution of the min–max
problem (3.11).

Remark 3.1. The homogeneous error equations (3.1a)–(3.1b) can be equivalently written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂e1
k

∂t
− ν2 ∂2e1

k

∂x2
+ a1e1

k (x, t) + a2e1
k (x, t − τ ) = 0, (x, t) ∈ Ω1 × R

+,

e1
k (x, t) = 0, (x, t) ∈ Ω1 × (−τ ,0),(
1 ∂ + 1

)
e1

k (L, t) =
(

1 ∂ + 1
)

e2
k−1(L, t), t ∈ R

+,

p ∂x ν p ∂x ν
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Fig. 3.1. The curve Γ for τ = 0 and a1 + a2 = 2.

Fig. 3.2. The curve Γ for a1 = 1.5, a2 = −1 and τ = 1.5 (left), τ = 3 (right).

Fig. 3.3. Sketch map of the curve Γ (solid line) and the box B (dash–dot line).
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and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂e2
k

∂t
− ν2 ∂2e2

k

∂x2
+ a1e2

k (x, t) + a2e2
k (x, t − τ ) = 0, (x, t) ∈ Ω2 × R

+,

e2
k (x,0) = 0, (x, t) ∈ Ω2 × (−τ ,0),(
1

p

∂

∂x
− 1

ν

)
e2

k (0, t) =
(

1

p

∂

∂x
− 1

ν

)
e1

k−1(0, t), t ∈ R
+.

Then, by letting p → +∞ we get⎧⎪⎪⎨
⎪⎪⎩

∂e1
k

∂t
− ν2 ∂2e1

k

∂x2
+ a1e1

k (x, t) + a2e1
k (x, t − τ ) = 0, (x, t) ∈ Ω1 × R

+,

e1
k (x, t) = 0, (x, t) ∈ Ω1 × (−τ ,0),

e1
k (L, t) = e2

k−1(L, t), t ∈ R
+,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂e2
k

∂t
− ν2 ∂2e2

k

∂x2
+ a1e2

k (x, t) + a2e2
k (x, t − τ ) = 0, (x, t) ∈ Ω2 × R

+,

e2
k (x,0) = 0, (x, t) ∈ Ω2 × (−τ ,0),

e2
k (0, t) = e1

k−1(0, t), t ∈ R
+,

which corresponds to the error equations for the SWR iterations (2.2)–(2.3) with Dirichlet transmission conditions—B1 =
B2 = I , where I denotes the identity operator. Hence, by letting p → +∞ in (3.10) we get the convergence factor of the
SWR algorithms with Dirichlet transmission conditions

ρDir := max
ω∈[−ωmax,ωmax]

∣∣e(λ−−λ+)L
∣∣.

Clearly, ρDir = 1 if L = 0. This means that L > 0 is necessary to theoretically guarantee the convergence of the SWR algo-
rithms with Dirichlet transmission conditions. However, as we will show in the sequel that for L = 0 the SWR algorithms
with Robin transmission conditions can be convergent with satisfactory convergence rate by properly choosing the parame-
ter p (see the results shown in Fig. 4.2).

To solve the min–max problem (3.13) with L = 0, we first rewrite ρ(p,0) in (3.12a)–(3.12b) as

ρ(p,0) = max
ω∈[−ωmax,ωmax]

∣∣∣∣ [ξ(ω) + iψ(ω) − p]2

[ξ(ω) + iψ(ω) + p]2

∣∣∣∣ = max
ω∈[−ωmax,ωmax]

(ξ(ω) − p)2 + ψ2(ω)

(ξ(ω) + p)2 + ψ2(ω)
, (3.14)

where ξ(ω) and ψ(ω) are defined by (3.5). Since ξ2(ω) − ψ2(ω) = a1 + a2 cos(ωτ), we get from (3.14) that

ρ(p,0) = max
ω∈[−ωmax,ωmax]

(ξ(ω) − p)2 + ξ2(ω) − a1 − a2 cos(ωτ)

(ξ(ω) + p)2 + ξ2(ω) − a1 − a2 cos(ωτ)
. (3.15)

Define

ζ0 = min
ω∈[−ωmax,ωmax] ξ(ω), ζ1 = max

ω∈[−ωmax,ωmax] ξ(ω),

ρ̂(p,0) = max
ζ∈[ζ0,ζ1],s∈[−1,1]

(ζ − p)2 + ζ 2 − a1 + |a2|s
(ζ + p)2 + ζ 2 − a1 + |a2|s . (3.16)

Then, it is clear that

ρ(p,0) � ρ̂(p,0). (3.17)

Moreover, for any ζ ∈ [ζ0, ζ1] it is easy to get

max
s∈[−1,1]

(ζ − p)2 + ζ 2 − a1 + |a2|s
(ζ + p)2 + ζ 2 − a1 + |a2|s = (ζ − p)2 + ζ 2 − a1 + |a2|

(ζ + p)2 + ζ 2 − a1 + |a2| , (3.18)

since |a2| > 0. Therefore, ρ̂(p,0) = maxζ∈[ζ0,ζ1] (ζ−p)2+ζ 2−a1+|a2|
(ζ+p)2+ζ 2−a1+|a2| . Hence, from (3.17) we have

minρ(p,0) � min

(
max

(ζ − p)2 + ζ 2 − a1 + |a2|
2 2

)
. (3.19)
p>0 p>0 ζ∈[ζ0,ζ1] (ζ + p) + ζ − a1 + |a2|
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Let

α̃ = a1 − |a2|, R̃(ζ, p, α̃) = (ζ − p)2 + ζ 2 − α̃

(ζ + p)2 + ζ 2 − α̃
. (3.20)

Then by using (3.19) we have

min
p>0

ρ(p,0) � min
p>0

(
max

ζ∈[ζ0,ζ1] R̃(ζ, p, α̃)
)
. (3.21)

Lemma 3.1. The quantities α̃ and ζ0 satisfy ζ 2
0 � α̃.

Proof. By the definitions of α̃ and ζ0, it is sufficient to prove ξ2(ω)�a1 −|a2| for all ω∈R, since ζ0 =minω∈[−ωmax,ωmax] ξ(ω).
Straightforward calculations yield

ξ2(ω) − (
a1 − |a2|

) =
√[a1 + a2 cos(ωτ)]2 + [ω − a2 sin(ωτ)]2 + a1 + a2 cos(ωτ)

2
− a1 + |a2|

=
√[a1 + a2 cos(ωτ)]2 + [ω − a2 sin(ωτ)]2 − a1 + 2|a2| + a2 cos(ωτ)

2

�
√[a1 + a2 cos(ωτ)]2 + [ω − a2 sin(ωτ)]2 − a1 − a2 cos(ωτ)

2
� 0, (3.22)

which completes the proof. �
Remark 3.2. For regular reaction diffusion equations, for example a2 = 0 and a1 > 0, it is easy to get ζ0 = √

a1 and α̃ = ζ 2
0 .

In this case, the problem minp>0(maxζ∈[ζ0,ζ1] R̃(ζ, p, ζ 2
0 )) can be solved in closed formulas and the interested reader can

refer to the work by Gander et al. [1,14]. However, if time delay is involved, i.e., τ > 0 and a2 �= 0, we know from Lemma 3.1
that α̃ � ζ 2

0 , which means that we need to solve a more general min–max problem than the regular case.

In what follows, we try to solve the min–max problem in the right-hand side of (3.21), and the solution can be regarded
as a quasi-optimized parameter of minp>0 ρ(p,0).

Theorem 3.1. Assume ζ0 > 0. Then the best parameter which solves the following min–max problem

min
p>0

(
max

ζ∈[ζ0,ζ1] R̃(ζ, p, α̃)
)

(3.23)

is determined as

p∗ =
√

2ζ0ζ1 + α̃, (3.24a)

if ζ 2
0 − ζ0ζ1 − α̃ � 0 and ζ 2

1 − ζ0ζ1 − α̃ � 0; otherwise,

p∗ =
⎧⎨
⎩

√
2ζ 2

0 − α̃, if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) � R̃(ζ1,

√
2ζ 2

0 − α̃, α̃),√
2ζ 2

1 − α̃, if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃, α̃).

(3.24b)

With parameter p∗ , the convergence factor ρ can be bounded by

ρ
(

p∗,0
)
�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ζ0−p∗)2+ζ 2
0 −α̃

(ζ0+p∗)2+ζ 2
0 −α̃

, if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) � R̃(ζ1,

√
2ζ 2

0 − α̃, α̃),

ζ 2
0 − ζ0ζ1 − α̃ > 0 or ζ 2

1 − ζ0ζ1 − α̃ < 0,

(ζ1−p∗)2+ζ 2
1 −α̃

(ζ1+p∗)2+ζ 2
1 −α̃

, otherwise.

(3.25)

Proof. For any ζ ∈ [ζ0, ζ1], it is easy to get

∂ R̃(ζ, p, α̃) = 4ζ
p2 − 2ζ 2 + α̃

2 2 2
. (3.26)
∂ p [(ζ + p) + ζ − α̃]
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Hence, the best parameter p∗ shall satisfies
√

2ζ 2
0 − α̃ � p∗ �

√
2ζ 2

1 − α̃. Otherwise, if p ∈ (0,

√
2ζ 2

0 − α̃ ), we have

∂p R̃(ζ, p, α̃) < 0 and therefore increasing p will decrease R̃ . Similarly, if p >

√
2ζ 2

1 − α̃, we have ∂p R̃(ζ, p, α̃) > 0, which

means that decreasing p will decrease R̃ .

For any p ∈ [
√

2ζ 2
0 − α̃,

√
2ζ 2

1 − α̃ ], we state the following three conclusions.

(a) R̃ does not have local maximum in the interior of the interval [ζ0, ζ1]. By the contrary, there exists some ζ ∗ ∈ (ζ0, ζ1)

such that ∂ R̃(ζ ∗,p,α̃)
∂ζ

= 0, i.e., ζ ∗ =
√

p2−α̃
2 , since

∂ R̃(ζ, p, α̃)

∂ζ
= 4p

2ζ 2 − p2 + α̃

[(ζ + p)2 + ζ 2 − α̃]2
. (3.27)

On the other hand, a straightforward calculation yields

∂2 R̃(ζ, p, α̃)

∂ζ 2
= 16p

D(ζ )

[(ζ + p)2 + ζ 2 − α̃]3
, (3.28)

where

D(ζ ) = −2ζ 3 + 3
(

p2 − α̃
)
ζ + p

(
p2 − α̃

)
. (3.29)

It is easy to get

D
(
ζ ∗) = −2

(√
p2 − α̃

2

)3

+ 3
(

p2 − α̃
)(√

p2 − α̃

2

)
+ p

(
p2 − α̃

) = (
p2 − α̃

)(
2

√
p2 − α̃

2
+ p

)
. (3.30)

Moreover, since ζ ∗ ∈ (ζ0, ζ1), it shall holds
√

p2−α̃
2 > ζ0, i.e., p2 > 2ζ 2

0 + α̃, which gives p2 − α̃ > 0 since ζ0 > 0. By (3.30) we

get D(ζ ∗) > 0 and this means ∂2 R̃(ζ,p,α̃)

∂ζ 2 |ζ=ζ ∗ > 0. Hence, ζ = ζ ∗ is not a local maximum point of R̃ , but a local minimum

point. Therefore,

min
p>0

(
max

ζ∈[ζ0,ζ1] R̃(ζ, p, α̃)
)

= min
p>0

{
R̃(ζ0, p, α̃), R̃(ζ1, p, α̃)

}
. (3.31)

(b) R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) have a unique intersection point

p̄∗ =
√

2ζ0ζ1 + α̃,

provided 2ζ0ζ1 + α̃ � 2ζ 2
0 − α̃, i.e.,

ζ 2
0 − ζ0ζ1 − α̃ � 0. (3.32)

(c) R̃(ζ0, p, α̃) increases and R̃(ζ1, p, α̃) decreases with respect to p, respectively. This can be deduced from (3.26)
straightforwardly.

We next consider the following three cases.

Case 1: ζ 2
0 −ζ0ζ1 −α̃ >0. In this case, R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) do not intersect. Hence, for any p ∈[

√
2ζ 2

0 − α̃
√

2ζ 2
1 − α̃ ],

by the monotonicity of R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃), we know{
R̃(ζ0, p, α̃) � R̃(ζ1, p, α̃), if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃, α̃),

R̃(ζ0, p, α̃) � R̃(ζ1, p, α̃), otherwise.

(3.33)

The above two situations are illustrated in Fig. 3.4. Therefore, ∀p ∈ [
√

2ζ 2
0 − α̃,

√
2ζ 2

1 − α̃ ], we get

max
ζ∈[ζ0,ζ1] R̃(ζ, p, α̃) =

{
R̃(ζ1, p, α̃), if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃, α̃),

R̃(ζ0, p, α̃), otherwise.
(3.34)

Therefore, by using the monotonicity of R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) again, the solution of the min–max problem (3.23) is

p∗ =
⎧⎨
⎩

√
2ζ 2

1 − α̃, if R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃, α̃),√
2ζ 2 − α̃, otherwise.

(3.35)
0
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Fig. 3.4. Sketch map of R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) for ζ 2
0 − ζ0ζ1 − α̃ > 0. Left: R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃ ); Right: R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) �
R̃(ζ1,

√
2ζ 2

0 − α̃ ).

Fig. 3.5. Sketch map of R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) for ζ 2
0 − ζ0ζ1 − α̃ � 0 and ζ 2

1 − ζ0ζ1 − α̃ < 0. Left: R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) < R̃(ζ1,

√
2ζ 2

0 − α̃ ); Right:

R̃(ζ0,

√
2ζ 2

0 − α̃, α̃) � R̃(ζ1,

√
2ζ 2

0 − α̃ ).

Case 2: ζ 2
0 − ζ0ζ1 − α̃ � 0 and p̄∗ >

√
2ζ 2

1 − α̃ (i.e., ζ 2
1 − ζ0ζ1 − α̃ < 0). In this case, R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) intersect

at p = p̄∗ , which satisfies p̄∗ >

√
2ζ 2

1 − α̃. Therefore, there are two situations that need to be considered as illustrated in

Fig. 3.5; the analysis for this case is similar to that of Case 1 and we therefore omit it.

Case 3: ζ 2
0 − ζ0ζ1 − α̃ � 0 and p̄∗ �

√
2ζ 2

1 − α̃ (i.e., ζ 2
1 − ζ0ζ1 − α̃ � 0). In this case, the unique intersection point p̄∗

satisfies

p̄∗ ∈ [√
2ζ 2

0 − α̃,

√
2ζ 2

1 − α̃
]
.

Hence, the solution of the min–max problem (3.23) is the point where R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) are balanced (see the
illustration map shown in Fig. 3.6), i.e., p∗ = p̄∗ = √

2ζ0ζ1 + α̃. Moreover, we have

max
ζ∈[ζ0,ζ1] R̃

(
ζ, p∗, α̃

) = R̃
(
ζ0, p∗, α̃

) = R̃
(
ζ1, p∗, α̃

)
. (3.36)

By the analysis of Case 3 we get (3.24a) and combining Case 1 and Case 2 leads to (3.24b). The bound of the convergence
factor as shown in (3.25) can be deduced from the above analysis straightforwardly. �
Remark 3.3. The method proposed in [22] is geometrical since it depends on the selected box which contains the curve Γ .
Clearly, compared to the geometrical method, our method is algebraic and it depends on the selected ρ̂ which is an upper
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Fig. 3.6. Sketch map of R̃(ζ0, p, α̃) and R̃(ζ1, p, α̃) for ζ 2
0 − ζ0ζ1 − α̃ � 0 and ζ 2

1 − ζ0ζ1 − α̃ � 0.

of the convergence factor ρ . In Section 4 and Section 5, we will show numerically that the new method can result in a
more efficient quasi-optimized parameter.

4. Some comparison results

In this section, we consider the degenerated situation—∂t u − ∂xxu + a2u(x, t − τ ) = 0, i.e., the heat equation with time
delay. In [22], by using the geometrical method, i.e., the box technique introduced in Section 3.1, Vandewalle and Gander
presented the following results for the case L = 0.

Theorem 4.1. (See [22, Theorem 6].) Let L = 0 and b = �(

√
i(ωmax + 2π

τ ) + a2e−iωmaxτ ). Assume 0 < a2τ � 1, then the solution of

the min–max problem over the bounding box is given by

p∗ =
⎧⎨
⎩

√
2 cos(a2τ )b − a2, if b � a2 cos(a2τ ) + 1

cos(a2τ )
,√

2a2
2 cos2(a2τ ) + a2, if b < a2 cos(a2τ ) + 1

cos(a2τ )
.

(4.1)

By using the parameter p∗ , the convergence factor of the SWR algorithm can be bounded as

ρ
(

p∗,0
)
�

(p∗ − a2 cos(a2τ ))2 + a2
2 cos2(a2τ ) + a2

(p∗ + a2 cos(a2τ ))2 + a2
2 cos2(a2τ ) + a2

. (4.2)

We note that Theorem 4.1 requires 0 < a2τ � 1 and we do not know whether the parameter p∗ given by (4.1) is still
efficient or not when a2τ > 1. But, from the following theorem which is also given in [22], we know that the SWR algorithm
(2.2)–(2.3) with Robin transmission conditions (2.4) converges if 0 < a2τ � π

2 .

Theorem 4.2. (See [22, Theorem 5].) Assume a2 and τ satisfy 0 < a2τ � π
2 . Then, the SWR algorithm (2.2)–(2.3) with the Robin

transmission conditions (2.4) converges, whenever L � 0.

Theorem 4.2 predicts the convergence of the Robin type SWR algorithm (2.2)–(2.4) for both the cases L > 0 and L = 0,
if a2τ ∈ (0, π

2 ]. Therefore, it is nature to compare the effectiveness of the two quasi-optimized parameters given by Theo-
rem 3.1 and Theorem 4.1 for a2τ ∈ (0, π

2 ]. Due to the complexity of the convergence factor ρ , it is difficult to compare the
two methods theoretically and we have to rely on numerical calculations only. Since L = 0, it is clear that both methods
depend on the quantities a2 and τ only. We therefore define the convergence region of the two methods on “a2–τ ” plane as

D =
{
(a2, τ )

∣∣∣ a2 > 0, τ > 0 such that ρ
(

p∗,0
) = max

z∈Γ

∣∣∣∣ (z − p∗)2

(z + p∗)2

∣∣∣∣ < 1

}
, (4.3)

where Γ is the curve along which one needs to solve the min–max problem to find the optimal parameter in the Robin
transmission conditions and p∗ is the quasi-optimized parameters derived by using the algebraic method (i.e., Theorem 3.1)
or the geometrical method (i.e., Theorem 4.1). In what follows, we denote these two quasi-optimized parameters by p∗

new
and p∗ , respectively.
old
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Fig. 4.1. Contour plots of the geometrical method (left) and the algebraic method (right).

Fig. 4.2. Convergence factors ρ(p∗
new,0) (solid line) and ρ(p∗

old,0) (dash line). Left: τ = 3 and a2 varies from 0 to π
2τ ; Right: a2 = 2.5 and τ varies from 0

to π
2a2

.

In Fig. 4.1, we show the contour plots of the two methods for the heat equation with a constant delay, in which we

see clearly that for a given quantity r ∈ (0,1) such that maxz∈Γ | (z−p∗)2

(z+p∗)2 | � r, the algebraic method allows larger region of

(a2, τ ). Moreover, we find numerically that the both methods are valid in a region with boundary curve a2τ = π
2 .

We next show that for a given pair of (a2, τ ), the algebraic method also results in a sharper convergence speed of the
SWR algorithm. To illustrate this intuitively, for τ = 3 we plot ρ with respect to different a2 in the left panel of Fig. 4.2.
Similarly, in the right panel we plot ρ with respect to different τ when a2 = 2.5 is fixed. From these two panels, we see
clearly that the algebraic method is more feasible and results in more efficient parameter.

5. Numerical results

We perform in this section several numerical experiments to measure the effectiveness of the derived quasi-optimized
parameter for the numerical implementation of the SWR algorithms. We use the PDE model problem (2.1) with x ∈ (0,4)

(i.e., Ω = (0,4)) and t ∈ (0,10). We impose homogeneous boundary conditions, u(0, t) = 0 and u(4, t) = 0, and use various
source function f (x, t) and initial condition u0(x, t) for (x, t) ∈ Ω × [−τ ,0]. We first use a decomposition of the domain Ω

into the two subdomains Ω1 = (0, L2) and Ω2 = (L1,4) with L1 � L2, and hence the overlap size L = L2 − L1.
We show results of numerical experiments for only the algorithm with overlap since with overlap we can compare

the results to the classical Schwarz waveform relaxation algorithms with Dirichlet transmission conditions, which does
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Fig. 5.1. Top: convergence rate of the classical SWR algorithms (dash–dot line) and the Robin type SWR algorithms with parameter p = p∗
new (solid line).

Bottom: the errors obtained by running the SWR algorithms with Robin transmission conditions after 6 iterations and various choices of the free parame-
ters p, and indicated by a star the choice p = p∗

new.

not converge without overlap. We remark that even though the quasi-optimized parameter p∗ is analyzed at the special
level L = 0, we can use it for the case L > 0. Of course, such p∗ may be far away from the solution of minp>0 ρ(p, L) =
minp>0 maxz∈Γ | (z−p)2

(z+p)2 e−2 z
ν L |. In fact, we will see later that the quasi-optimized parameters p∗ given by Theorems 3.1

and 4.1 result in significant acceleration compared to the classical SWR algorithms.
We discretize the fully continuous SWR algorithm (2.2)–(2.3) using the central finite difference discretization in space

with mesh parameter �x = 0.05 and a backward Euler discretization in time, with time step �t = 0.02.

Example 5.1 (The case a1 �= 0). We choose the coefficients a1 = 1, a2 = 2.3 and τ = 1.5 and by using Theorem 3.1, we know
that the quasi-optimized parameter p∗

new = 1.14017563430500. In this first set of experiments, the initial condition and the
source function are chosen as:

u0(x, t) = t sin(πx), f (x, t) = cos
(
xet). (5.1)

In Fig. 5.1 on the top, we show the convergence rate of the two kinds of SWR algorithms for L = 2�x (top left) and
L = 8�x (top right). We see clearly in these two panels that, compared to the classical SWR algorithms the Robin type
SWR algorithms with the quasi-optimized parameter p∗

new possesses drastically faster convergence speed. We next verify
to what degree the choice for the parameter p = p∗

new derived using the algebraic method corresponds to the best choice
one can make in the fully discretized situation. In Fig. 5.1 on the bottom we show the errors obtained after running the
SWR algorithms with Robin transmission conditions for 6 iterations using various values for the free parameter p in the
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Fig. 5.2. Left: convergence rate of the classical SWR algorithms (dash–dot line) and the Robin type SWR algorithms with parameter p = p∗
old (dash line).

Right: convergence rate of the Robin type SWR algorithms with parameters p = p∗
new (solid line) and p = p∗

old (dash line). Bottom: the errors obtained by
running the algorithms with Robin transmission conditions after 20 iterations and various choices of the free parameters p, and indicated by a star and a
circle the choices p = p∗

new and p = p∗
old , respectively.

transmission conditions; the left and right panels correspond to the result for the case of L = 2�x and L = 8�x, respectively.
In each panel, the choice p = p∗

new is indicated by a star. One can find in these two panels that the quasi-optimized
parameter p = p∗

new analyzed in the special level L = 0 predicts the best one well.

Example 5.2 (The case a1 = 0). We now consider the case a1 = 0 in (2.1), i.e., the heat equations with a constant delay.
We compare the performance of the two quasi-optimized parameters p = p∗

new and p = p∗
old, which are predicted by Theo-

rems 3.1 and 4.1, respectively. We choose the initial condition and the source function in (2.1) as:

u0(x, t) = 1 + cos
(
et sin(πx)π

)
, f (x, t) = (x − 1)(x − 3) sin

(
xt2). (5.2)

Let a2 = 0.028, τ = 3 and then we get the two quasi-optimized parameters: p∗
new=1.71410236659459 and p∗

old =
4.21342663346202. Here we consider L = 2�x and in Fig. 5.2 on the left we show the convergence rate of the classical
SWR algorithms (dash–dot line) and the Robin type SWR algorithms (dash line) with p = p∗

old, in which one can see the
significant acceleration effect of the Robin type transmission conditions. To illustrate the difference between p∗

old and p∗
new

intuitively, we show the convergence rate of the Robin type SWR algorithms with p = p∗
old (dash line) and p = p∗

new (solid
line) in a single panel—the right panel of Fig. 5.2, in which one can see how much faster the algorithm with p = p∗

new
converges compared to the one with p = p∗

old.
Next, we verify to what degree the choices for the parameter p = p∗

new and p = p∗
old derived using the algebraic method

and the geometrical method correspond to the best choice one can make in the fully discretized situation with L > 0. In
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Fig. 5.3. Convergence behavior of the SWR algorithms in many subdomain case. Left: convergence rate of the classical SWR algorithms (dash–dot line) and
the Robin type algorithms with parameter p = p∗

old (dash line). Right: convergence rate of the Robin type SWR algorithms with parameters p = p∗
new (solid

line) and p = p∗
old (dash line). Bottom: the errors obtained by running the algorithms with Robin transmission conditions after 20 iterations and various

choices of the free parameters p. The choices p = p∗
new and p = p∗

old are indicated by a star and a circle, respectively.

Fig. 5.2 on the bottom, we show the errors obtained after running the SWR algorithms with Robin transmission conditions
for 20 iterations using various values for the free parameter p in the transmission conditions. The choices p = p∗

new and
p = p∗

old are indicated by a star and a circle, respectively. One can find in this panel that the quasi-optimized parameter
p = p∗

new analyzed in the special level L = 0 predicts the best choice very well and particularly much better than p = p∗
old.

Example 5.3 (The case of many subdomains). To finish this section, we now show experiments which indicate that the results
we obtained for two subdomains are also relevant for many subdomains. Using the same model problem and the same
parameters for the SWR algorithms as in Example 5.2, we now decompose the domain into 6 subdomains and the results
are shown in Fig. 5.3. One can see on the left how important the transmission conditions are in the many subdomain case.
Again, to illustrate the difference between p∗

old and p∗
new intuitively in many subdomain situation, we show the convergence

rate of the Robin type SWR algorithms with p = p∗
old (dash line) and p = p∗

new (solid line) in a single panel|the right panel
of Fig. 5.3, in which one can see clearly that p = p∗

new is also a much better choice than p = p∗
old. In particular, the iteration

number for the algorithm with p = p∗
new and p = p∗

old is 55 and 80, respectively. Like what we have done in Example 5.2,
we show in the bottom panel the errors obtained by running the algorithm with Robin transmission conditions after 20
iterations and various choices of the free parameters p, and indicated by a star and a circle the choices p = p∗

new and
p = p∗

old, respectively. In this panel, we can see clearly that the new choice p = p∗
new still outperforms the old one, and

compared to the two subdomain case, both p = p∗
new and p = p∗

old are much more far away from the best choice.
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Remark 5.1. We have theoretically shown in Remark 3.1 that when the overlap size L = 0, the SWR algorithms with Robin
transmission conditions are convergent, but the ones with Dirichlet transmission conditions (i.e., the classical SWR algo-
rithms) are not. Here, we further compare the two types of transmission conditions for the case L > 0 by several numerical
results. From the results, we can see that the SWR algorithms with Robin transmission conditions are convergent greatly
faster than the ones with Dirichlet transmission conditions, provided the parameter involved in the Robin transmission
conditions is chosen properly.

6. Conclusion and discussion

SWR algorithms have been investigated deeply and widely for regular PDEs, while there is little experience of this kind
of algorithms for PDEs with delay. In this paper, we focus on investigating the convergence behavior of the algorithms with
Robin type transmission conditions, in which a free parameter p is involved. We use the reaction diffusion equations with
a constant delay as the underlying model problem and try to determine the best parameter in the transmission condi-
tions. We propose the algebraic method to obtain a quasi-optimized parameter p = p∗

new. The key point for this method
lies in constructing a proper upper bound of the convergence factor. Such upper bound contains the free parameter p and
the min–max problem concerned with this bound can be solved in closed formulas. For the case L = 0, it is shown that
the SWR algorithms with Robin transmission conditions can be convergent with satisfactory convergence rate by using the
quasi-optimized parameter p = p∗

new, while in theory the SWR algorithms with transmission conditions of Dirichlet type are
not convergent (see Remark 3.1). Moreover, for the case L > 0, we have shown numerically that the Robin transmission con-
ditions with parameter p∗

new can remarkably outperform the Dirichlet transmission conditions in the sense of convergence
speed.

When the situation is reduced into the heat equations with a constant delay, it is shown that the algebraic method
outperforms the geometrical method introduced in [22]. In particular, the algebraic method has two significant merits:

(a) it allows larger region of (a2, τ ). In particular, the restriction a2τ ∈ (0,1] required in [22] can be removed and for
a2τ ∈ (0, π

2 ] the algebraic method can still result in suitable quasi-optimized parameter;
(b) for given a2 and τ which satisfy 0 < a2τ � π

2 , the algebraic method results in more efficient parameter for the Robin
transmission conditions.

There are still some important problems that need to be answered. Firstly, we only considered the case L = 0 which is
very special in the field of SWR algorithms. For the general case L > 0, the min–max problem becomes more complex and
therefore it is difficult to be analyzed. In our forthcoming paper, we will generalize the algebraic method proposed in this
paper to the case L > 0.

The second problem is the generalization of this method to the 2D or 3D case. This generalization is far from obvious.
A first step in this direction can be quite easily performed, which consists in deriving the general form of the errors in
the Fourier space. In a similar way to what was done in the 1D case, these errors are expressed in terms of λ+ and λ− .
However, the expressions of λ+ and λ− are quite complicated, which makes it very difficult to derive relevant results in
such a general case.
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