
Accepted Manuscript

Characterization of Birkhoff-James orthogonality

Tirthankar Bhattacharyya, Priyanka Grover

PII: S0022-247X(13)00439-3
DOI: http://dx.doi.org/10.1016/j.jmaa.2013.05.022
Reference: YJMAA 17606

To appear in: Journal of Mathematical Analysis and
Applications

Received date: 7 February 2013

Please cite this article as: T. Bhattacharyya, P. Grover, Characterization of Birkhoff-James
orthogonality, J. Math. Anal. Appl. (2013), http://dx.doi.org/10.1016/j.jmaa.2013.05.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmaa.2013.05.022


CHARACTERIZATION OF BIRKHOFF-JAMES ORTHOGONALITY

TIRTHANKAR BHATTACHARYYA1 AND PRIYANKA GROVER

ABSTRACT. The Birkhoff-James orthogonality is a generalization of Hilbert
space orthogonality to Banach spaces. We investigate this notion of or-
thogonality when the Banach space has more structures. We start by
doing so for the Banach space of square matrices moving gradually to
all bounded operators on any Hilbert space, then to an arbitrary C∗-
algebra and finally a Hilbert C∗-module.

1. INTRODUCTION

Let X be a complex Banach space. An element x ∈ X is said to
be Birkhoff-James orthogonal to another element y ∈ X if ‖x + λy‖ ≥
‖x‖ for all complex numbers λ. It is easy to see that Birkhoff-James or-
thogonality is equivalent to the usual orthogonality in case X is a Hilbert
space. When X = M(n), the Banach space of all n × n complex square
matrices, a very tractable condition of Birkhoff-James orthogonality was
found by Bhatia and Šemrl in [4]. They showed that an n × n matrix A
is Birkhoff-James orthogonal to an n × n matrix B if and only if there is
a unit vector x ∈ Cn such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0. Here ‖A‖
denotes the operator norm of A. Later Benitez, Fernandez and Soriano
[3] found a necessary and sufficient condition for the norm of a real finite
dimensional normed space X to be induced by an inner product. This
condition is that for any A,B ∈ B(X), A is orthogonal to B if and only if
there exists a unit vector x ∈ X such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.

Motivated by these, in this note we explore Birkhoff-James orthogonal-
ity in the setting of Hilbert C∗-modules. All inner products in this note
are linear in the second component. We start by giving a new proof of the
Bhatia-Šemrl theorem using tools of convex analysis. This is more illumi-
nating because it involves minimization of a certain convex function and
is therefore a geometric approach. This is a new way of looking at the
theorem and might be useful elsewhere. Another method was given by
Kečkic̀ in [7]. He first computes the ϕ-Gateaux derivative Dϕ,A(B) of the
norm at A, in the B and ϕ directions, which is defined by Dϕ,A(B) =
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lim
t→0+

‖A+ teiϕB‖ − ‖A‖

t
. Then he uses the property that A is Birkhoff-

James orthogonal to B if and only if inf
ϕ

Dϕ,A(B) ≥ 0 to prove the Bhatia-

Šemrl theorem. The unit vector x that crops up naturally suggests that
this theorem should be generalizable to Hilbert C∗-modules with x re-
placed by a state of the underlying C∗-algebra. We handle the special
module B(H,K) in section 3 with several applications to operator tuples.
Section 4 is on arbitrary Hilbert C∗-modules.

These results can be applied to obtain some distance formulas in M(n)
and other C∗-algebras. These are also important in problems related to
derivations and operator approximations. In approximation theory the
condition that A is Birkhoff-James orthogonal to B can be interpreted as
follows. Suppose A ∈ M(n) is not in the CB, the subspace spanned by the
matrix B. Then the zero matrix is the best approximation to A among all
matrices in CB.

Recently, orthogonality in Hilbert C∗-modules has been studied in [1]
as our work was in progress. Some of our results overlap with them. Our
approach is very different from that in [1]. We proceed gradually from
square matrices to Hilbert C∗-modules. This is a natural development.

2. BHATIA-ŠEMRL THEOREM

The statement of the theorem is as follows.

Theorem 2.1. Let A,B ∈ M(n). Then ‖A + λ B‖ ≥ ‖A‖ for all λ ∈ C if
and only if there is a unit vector x such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.

Our approach will revolve around the function f(λ) = ‖A + λ B‖ map-
ping C into R+. To say that A is Birkhoff-James orthogonal to B is to say
that f attains its minimum at the point 0. Since f is a convex function, the
tools of convex analysis are available. The crux of our argument lies in
calculating the subdifferential ∂f(λ) of f , and then showing that the point
0 is in the set ∂f(0).
Definition 2.2. Let f : X → R be a convex function. The subdifferential of
f at a point x ∈ X is the set ∂f(x) of linear functionals v∗ ∈ X∗ such that

f(y) − f(x) ≥ Re v∗(y − x) for all y ∈ X.

It is a convex subset of X∗. Its importance lies in the following proposi-
tion.

Proposition 2.3. A convex function f : X → R attains its minimum value
at x ∈ X if and only if 0 ∈ ∂f(x).

We want to apply this to the function f(λ) = ‖A + λB‖ which we shall
realize as the composition of two functions. The first of them is λ →
A + λB from R into M(n). The second is from M(n) to R+, sending any
T ∈ M(n) to ‖T‖. Thus we need to find subdifferentials of compositions.
The subdifferential of the norm function has been calculated in [11]. We
need it at a positive semidefinite matrix.
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Proposition 2.4. Let A be a positive semidefinite matrix. Then

(2.1) ∂‖A‖ = convex hull of{uu∗ : ‖u‖ = 1,Au = ‖A‖u}.

To handle the composition maps, we need a chain rule.

Proposition 2.5. Consider the composite map

Rn L
−−→ M(n) g

−→ R,
where g is a convex map and L(x) = A+S(x) for all x ∈ Rn, with S : Rn →
M(n) being a linear map. Then the subdifferential of g ◦L at a point x ∈ Rn

is given by

(2.2) ∂(g ◦ L)(x) = S∗∂g(L(x)) for all x ∈ Rn,

where S∗ : M(n) → Rn is the adjoint of S satisfying

(S∗(T ))′y = Re trT ∗S(y) for all T ∈ M(n), y ∈ Rn.

(Here (S∗(T ))′ means the transpose of the vector S∗(T ).)
These elementary facts can be found in [6]. We are now ready to prove

a real version of Bhatia-Šemrl theorem using these concepts.

Theorem 2.6. Let A,B ∈ M(n). Then ‖A+ t B‖ ≥ ‖A‖ for all t ∈ R if and
only if there exists a unit vector x such that ‖Ax‖ = ‖A‖ and Re〈Ax,Bx〉 =
0.

Proof. If such a unit vector x exists, then for t ∈ R
‖A+ t B‖2 ≥ ‖(A+ t B)x‖2

= ‖Ax‖2 + t2‖Bx‖2 + 2tRe〈Ax,Bx〉

= ‖Ax‖2 + t2‖Bx‖2

≥ ‖Ax‖2

= ‖A‖2.

Conversely let

(2.3) ‖A + t B‖ ≥ ‖A‖ for all t ∈ R.
First note that it is enough to show that if A is a positive semidefinite
matrix and B ∈ M(n) such that (2.3) holds then there exists a unit vector
y such that

(2.4) Ay = ‖A‖y and Re〈Ay,By〉 = 0.
The general case may be reduced to this by using singular value decom-
position of A. Let A = UA†V be the singular value decomposition of A.
Then (2.3) implies

(2.5) ‖A† + t U∗BV ∗‖ ≥ ‖A†‖ for all t ∈ R.
If there exists a unit vector y such that

A†y = ‖A†‖y and Re〈A†y, U∗BV ∗y〉 = 0,
then for x = V ∗y we have

‖Ax‖ = ‖A‖ and Re〈Ax,Bx〉 = 0.



4 BHATTACHARYYA AND GROVER

Thus assume that A is a positive semidefinite matrix in (2.3). Let S : R →
M(n) be the linear map defined as

S(t) = t B

and let L : R → M(n) be the affine map

L(t) = A+ S(t).
Let g : M(n) → R be the convex map given by

g(T ) = ‖T‖.

Then (2.3) can be rewritten as

(g ◦ L)(t) ≥ (g ◦ L)(0).
By Proposition 2.3 we get

(2.6) 0 ∈ ∂(g ◦ L)(0).
Using Proposition 2.4 and 2.5, we obtain

(2.7) ∂(g ◦ L)(0) = convex hull of {Re〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u}.

The set {〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u} is the restriction of the numer-
ical range of B to the eigenspace of A corresponding to the maximum
eigenvalue ‖A‖. By the Hausdorff-Toeplitz theorem, this is a convex set.
Therefore the set {Re〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u} is convex. So from
(2.6) and (2.7) we get that there exists a unit vector y such that

Ay = ‖A‖y and Re〈y, By〉 = 0.
These together imply that

(2.8) Re〈Ay,By〉 = 0.
�

Remark: Another necessary and sufficient condition for a matrix A to
be orthogonal to another matrix B is given in [9, Theorem 3.1(c)]. In
the case when A is positive semidefinite and k is the multiplicity of the
largest eigenvalue ‖A‖, it says that for any n× k matrix U with orthonor-
mal columns that form a basis for the eigenspace of A corresponding to
‖A‖, we have 0 belongs to the numerical range of U∗BAU . This can also
be interpreted as 0 belongs to the numerical range of A, restricted to the
eigenspace of A corresponding to the largest eigenvalue ‖A‖. An analo-
gous condition for ‖A+t B‖ ≥ ‖A‖ for all t ∈ R is established through our
proof. We obtain that if A is positive semidefinite and ‖A + t B‖ ≥ ‖A‖
for all t ∈ R then 0 belongs to the real part of the numerical range of B,
restricted to the eigenspace of A corresponding to ‖A‖. The general case,
when A is not necessarily positive semidefinite, can be obtained from this
by using singular value decomposition.

We now go to complex scalars.

Theorem 2.7. Let A,B ∈ M(n). Then ‖A+λ B‖ ≥ ‖A‖ for all λ ∈ C if and
only if there exists a unit vector x such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.
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Proof. If such a unit vector x exists, then by a similar argument as in the
proof of Theorem 2.6 we get that

(2.9) ‖A+ λ B‖ ≥ ‖A‖ for all λ ∈ C.

Now suppose (2.9) holds, that is,

‖A+ reiθ B‖ ≥ ‖A‖ for all r, θ ∈ R.

Fix θ and let Bθ = eiθ B. Then we have

‖A+ r Bθ‖ ≥ ‖A‖ for all r ∈ R.

We can assume A to be positive semidefinite as in the proof of Theorem
2.6. By (2.4), there exists a unit vector yθ such that

(2.10) Ayθ = ‖A‖yθ and Re eiθ〈Ayθ, Byθ〉 = 0.
Consider the set {〈B∗Ay, y〉 : ‖y‖ = 1, Ay = ‖A‖y}. This is the restriction
of numerical range of B∗A to the eigenspace of A corresponding to the
maximum eigenvalue ‖A‖ and therefore is a compact convex set in C. If
0 does not belong to this set, then there exists z ∈ C such that for all unit
vectors y satisfying Ay = ‖A‖y, we have

(2.11) Re z̄〈B∗Ay, y〉 > 0.
This is a consequence of the Separating Hyperplane theorem. A proof of
this can be found in [12, page 13]. Putting z = |z|eiθ0 in (2.11) we get

Re e−iθ0〈B∗Ay, y〉 > 0 for all y such that ‖y‖ = 1, Ay = ‖A‖y.

This is a contradiction to (2.10). Thus we get that

0 ∈ {〈B∗Ay, y〉 : ‖y‖ = 1, Ay = ‖A‖y},

that is, there exists a unit vector y such that

Ay = ‖A‖y and 〈Ay,By〉 = 0.
�

3. THE INFINITE DIMENSIONAL CASE

Theorem 3.1. Let H and K be two Hilbert spaces. Let A,B ∈ B(H,K).
Then A is Birkhoff-James orthogonal to B if and only if there exists a se-
quence of unit vectors {xn} in H such that ‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 →
0.

Proof. First suppose that such a sequence {xn} of unit vectors in H exists.
Then for every λ ∈ C

‖A+ λB‖2 ≥ ‖(A+ λB)xn‖2

= ‖Axn‖2 + |λ|2‖Bxn‖2 + 2Re λ̄ 〈Axn, Bxn〉 .

This holds for all n. Taking lim inf on both the sides as n → ∞ we get

‖A+ λB‖2 ≥ ‖A‖2 + |λ|2 lim inf
n→∞

‖Bxn‖2 ≥ ‖A‖2.
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Conversely let A be orthogonal to B. For any operator T : H → K we
denote by T̃ , the operator on H ⊕ K given by

T̃ =
[

0 0
T 0

]

.

Note that ‖T̃‖ = ‖T‖. Therefore we have ‖Ã + λB̃‖ ≥ ‖Ã‖ for all λ ∈ C.
By Remark 3.1 in [4], we get a sequence {hn⊕kn} of unit vectors in H⊕K
such that
(3.1)

‖Ã(hn ⊕ kn)‖ → ‖Ã‖ and
〈

Ã(hn ⊕ kn), B̃(hn ⊕ kn)
〉

→ 0 as n → ∞.

The first equation gives

(3.2) ‖Ahn‖ → ‖A‖ as n → ∞.

Now
‖A‖ = lim

n→∞
‖Ahn‖ ≤ ‖A‖ lim

n→∞
‖hn‖.

Therefore lim
n→∞

‖hn‖ ≥ 1. Since ‖hn‖ ≤ 1 for every n, we obtain

lim
n→∞

‖hn‖ = 1.

Consider xn =
{

hn

‖hn‖
if hn 6= 0

0 if hn = 0 . Passing onto a subsequence, if neces-

sary, we get a sequence {xn} of unit vectors in H such that

‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 → 0 as n → ∞.

�

Corollary 3.2. Let H and K be two finite dimensional Hilbert spaces. Then
A is orthogonal to B in the Birkhoff-James sense if and only if there exists a
unit vector x ∈ H such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.

Proof. If A is orthogonal to B then from Theorem 3.3 we obtain a se-
quence {xn} of unit vectors such that ‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 → 0
as n → ∞. Since {xn} is a bounded sequence therefore it has a conver-
gent subsequence converging to a vector x. This x is the required unit
vector. �

Corollary 3.3. Let H and K be two Hilbert spaces. Let A,B ∈ B(H,K).
Then A is Birkhoff-James orthogonal to B if and only if there exists a state ϕ
on B(H) such that ϕ(A∗A) = ‖A‖2 and ϕ(A∗B) = 0. (Note that this state
ϕ may not be of the form ϕ(T ) = 〈x, Tx〉 for any x.)

Proof. First suppose that such a state exists. For every λ ∈ C we have

‖A+ λB‖2 ≥ |ϕ((A+ λB)∗(A + λB))|
= |ϕ(A∗A) + λ̄ ϕ(B∗A) + λ ϕ(A∗B) + |λ|2 ϕ(B∗B)|
≥ ‖A‖2.(3.3)
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Conversely let A be orthogonal to B. Then by Theorem 3.3 there ex-
ists a sequence {xn} of unit vectors in H such that ‖Axn‖ → ‖A‖ and
〈Axn, Bxn〉 → 0 as n → ∞. Define ϕn : B(H) → C as

ϕn(T ) = 〈xn, Txn〉.

Then ϕn is a state on B(H). Note that ϕn(A∗A) = 〈Axn, Axn〉 → ‖A‖2 and
ϕn(A∗B) = 〈Axn, Bxn〉 → 0 as n → ∞. Since the collection of all states
on any C∗-algebra is weak* compact, {ϕn} has a convergent subsequence
{ϕnk

} converging to a state ϕ in weak* topology. We have

ϕ(A∗A) = lim
k→∞

ϕnk
(A∗A) = ‖A‖2

and
ϕ(A∗B) = lim

k→∞
ϕnk

(A∗B) = 0.

�
In the following three corollaries, we reformulate the result of Corol-

lary 3.2 to show what it looks like in three specific situations. In these
corollaries, all the Hilbert spaces considered are finite-dimensional.

Corollary 3.4. Let Aj ∈ B(H,Kj) for j = 1, . . . , d. Consider the column

operator









A1
...
Ad









: H → K1 ⊕· · ·⊕Kd which takes x ∈ H to









A1x
...

Adx









. Then

∥

∥

∥

∥

∥

∥

∥

∥









A1 + λB1
...

Ad + λBd









∥

∥

∥

∥

∥

∥

∥

∥

≥

∥

∥

∥

∥

∥

∥

∥

∥









A1
...
Ad









∥

∥

∥

∥

∥

∥

∥

∥

for all λ ∈ C

if and only if there exists a unit vector x ∈ H such that
d

∑

j=1
‖Ajx‖2 = ‖

d
∑

j=1
A∗
jAj‖ and

d
∑

j=1
〈Ajx,Bjx〉 = 0.

Corollary 3.5. Let Aj ∈ B(Hj ,K) for j = 1, . . . , d. Consider the row opera-

tor (A1, . . . , Ad) : H1⊕· · ·⊕Hd → K which takes









x1
...
xd









toA1x1+· · ·+Adxd.

Then

‖(A1 + λB1, . . . , Ad + λBd)‖ ≥ ‖(A1, . . . , Ad)‖ for all λ ∈ C

if and only if there exists a unit vector









x1
...
xd









∈ H1 ⊕ · · · ⊕ Hd such that

‖(A1, . . . , Ad)‖2 =
d

∑

j=1
‖Ajxj‖

2+
d

∑

i,j=1
i6=j

〈Aixi, Ajxj〉 and
d

∑

i,j=1
〈Aixi, Bjxj〉 = 0.
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Corollary 3.6. LetAj ∈ B(Hj ,Kj) for j = 1, . . . , d. Consider the “diagonal”
operator









A1
. . .

Ad









: H1 ⊕ · · · ⊕ Hd → K1 ⊕ · · · ⊕ Kd.

Then
∥

∥

∥

∥

∥

∥

∥

∥









A1 + λB1
. . .

Ad + λBd









∥

∥

∥

∥

∥

∥

∥

∥

≥

∥

∥

∥

∥

∥

∥

∥

∥









A1
. . .

Ad









∥

∥

∥

∥

∥

∥

∥

∥

for all λ ∈ C

if and only if there exists a unit vector









x1
...
xd









∈ H1 ⊕ · · · ⊕ Hd such that

max
1≤k≤d

‖Ak‖
2 =

d
∑

j=1
‖Ajxj‖

2 and
d

∑

j=1
〈Ajxj , Bjxj〉 = 0.

As an application of this, we have the following.

Corollary 3.7. Let n1, . . . , nk be a partition of a positive integer n, that is,
∑

nj = n. Let A,B ∈ M(m,n). Let A = [A1, . . . , Ak] , where each Aj is an
m× nj matrix. Define

‖A‖col = max
1≤j≤k

‖Aj‖.

Suppose this maximum is attained at d indices, say j1, . . . , jd. Then A is
Birkhoff-James orthogonal to B in ‖ · ‖col if and only if [Aj1, . . . , Ajd

] is
Birkhoff-James orthogonal to [Bj1, . . . , Bjd

] in ‖ · ‖col.

Proof. If [Aj1, . . . , Ajd
] is orthogonal to [Bj1, . . . , Bjd

] then for all λ ∈ C
‖A+ λB‖col = max

1≤j≤k
‖Aj + λBj‖

≥ max
1≤p≤d

‖Ajp
+ λBjp

‖

= ‖[Aj1, . . . , Ajd
] + λ[Bj1, . . . , Bjd

]‖col
≥ ‖[Aj1, . . . , Ajd

]‖col
= ‖Ajp

‖ for all 1 ≤ p ≤ d

= ‖A‖col.

For the converse, first note that, by virtue of the norm on A being max-
imum of the norms of Aj , the matrix [A1, . . . , Ak] being orthogonal to the
matrix [B1, . . . , Bk] is same as saying that

(3.4)









A1
. . .

Ak









is orthogonal to









B1
. . .

Bk









.

Assume, without loss of generality, that jp = p for all 1 ≤ p ≤ d, that is,

‖A‖col = ‖A1‖ = · · · = ‖Ad‖.
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Thus we have to prove that








A1
. . .

Ad









is orthogonal to









B1
. . .

Bd









.

Now we use equation (3.4) and Corollary 3.6 to conclude that there
exist xj ∈ Cnj , j = 1, . . . , k, satsifying
k

∑

j=1
‖xj‖

2 = 1,
k

∑

j=1
‖Ajxj‖

2 = ‖A1‖
2 = · · · = ‖Ad‖

2 and
k

∑

j=1
〈Ajxj , Bjxj〉 = 0.

Now

‖A1‖
2 =

k
∑

j=1
‖Ajxj‖

2 ≤
k

∑

j=1
‖Aj‖

2‖xj‖
2 ≤ ‖A1‖

2.

This gives
k

∑

j=1
‖Aj‖

2‖xj‖
2 = ‖A1‖

2 = · · · = ‖Ad‖
2.

Therefore we get xd+1 = · · · = xk = 0. So now we have x1, . . . , xd in
Cn1 , . . . ,Cnd respectively such that
d

∑

j=1
‖xj‖

2 = 1,
d

∑

j=1
‖Ajxj‖

2 = ‖A1‖
2 = · · · = ‖Ad‖

2 and
d

∑

j=1
〈Ajxj , Bjxj〉 = 0.

Again by Corollary 3.6, we are done. �

4. ORTHOGONALITY IN HILBERT C∗-MODULES

Proposition 4.1. Let A be a C∗-algebra. Let a, b ∈ A. Then ‖a+ λb‖ ≥ ‖a‖
for all λ ∈ C if and only if there exists a state ϕ on A such that

ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0.

Proof. If such a state exists, then a similar proof as in (3.3) shows that
‖a + λb‖ ≥ ‖a‖ for all λ ∈ C. For converse let π : A → B(H) be a faithful
representation. Let A = π(a) and B = π(b). Then we have ‖A + λB‖ ≥
‖A‖ for all λ ∈ C. By Corollary 3.3 there exists a state ψ on B(H) such
that

(4.1) ψ(A∗A) = ‖A‖2 and ψ(A∗B) = 0.
Let ϕ : A → C be defined as ϕ(a) = ψ(π(a)). Then ϕ is a state on A.
Equation (4.1) implies that

ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0.
�

For any given a ∈ A and state ϕ on A , let variance of a with respect to
ϕ, denoted by varϕ(a), be defined as

varϕ(a) = ϕ(a∗a) − |ϕ(a)|2.
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Let ∆(a) = min{‖a − λ1‖ : λ ∈ C} be the distance of a from C1. The
following corollary describes ∆(a) in terms of varϕ(a). This is a general-
isation of Theorem 9 in [2] and has been described in Theorem 3.10 in
[10]. We provide a proof of it using the above theorem.

Corollary 4.2. With the notations as above, we have for any a ∈ A

(4.2) ∆(a)2 = max{varϕ(a) : ϕ ∈ S(A)},
where S(A) denotes the state space of A.

Proof. First note that for any ϕ ∈ S(A),
ϕ(a∗a) ≤ ‖a‖2.

Therefore
varϕ(a) = ϕ(a∗a) − |ϕ(a)|2 ≤ ‖a‖2.

Let λ ∈ C. Changing a to a+ λ1 in the above equation, we see

varϕ(a+ λ1) = ϕ((a+ λ1)∗(a+ λ1)) − |ϕ(a+ λ1)|2 ≤ ‖a+ λ1‖2.

The left hand side is invariant under the translation a → a + λ1, that is,

varϕ(a + λ1) = varϕ(a).
This gives

(4.3) max{varϕ(a) : ϕ ∈ S(A)} ≤ ∆(a)2.

Now let ∆(a) = ‖a − λ0‖, for some λ0 ∈ C. We denote a − λ0 by a0.
Then ‖a0 + λ1‖ ≥ ‖a0‖ for all λ ∈ C. By Proposition 4.1, there exists a
state ψ on A such that

(4.4) ψ(a∗
0a0) = ‖a0‖

2 and ψ(a∗
0) = 0.

So from the first equation in (4.4) we have

∆(a)2 = ‖a0‖2 = ψ(a∗
0a0) = ψ(a∗a) − λ0ψ(a) − λ0ψ(a) + |λ0|

2.

From the second equation in (4.4) we get ψ(a) = λ0. Using this we obtain

∆(a)2 = ψ(a∗a) − |ψ(a)|2 = varψ(a) ≤ max{varϕ(a) : ϕ ∈ S(A)}.
This together with (4.3) completes the proof. �

We now obtain a characterization of Birkhoff-James orthogonality in
Hilbert C∗-modules. For this we require the following lemma, which is a
reinterpretation of Theorem 3.4 in [5].

Lemma 4.3. Let E be a Hilbert C∗-module over a C∗-algebra A. Then E
can be isometrically embedded in B(H,K) for some Hilbert spaces H,K.
Here H is a Hilbert space such that there exists a faithful representation
π : A → B(H) and the isometric embedding L : E → B(H,K) satisfies

〈L(e1)h1, L(e2)h2〉 = 〈h1, π(〈e1, e2〉)h2〉 .

Our next theorem is same as Theorem 2.7 in [1]. We give a simple
proof of that using the above lemma. This makes the characterization
more natural.
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Theorem 4.4. Let E be a Hilbert C∗-module over a C∗-algebra A. Let
e1, e2 ∈ E . Then e1 is orthogonal to e2 in the Banach space E in the Birkhoff-
James sense, that is,

(4.5) ‖e1 + λe2‖ ≥ ‖e1‖ for all λ ∈ C

if and only if there exists a state ϕ on A such that

ϕ(〈e1, e1〉) = ‖e1‖2 and ϕ(〈e1, e2〉) = 0.

Proof. First suppose that such a state exists. Then for every λ ∈ C

‖e1 + λe2‖
2 = ‖ 〈e1 + λe2, e1 + λe2〉 ‖

≥ |ϕ(〈e1, e1〉) + λ̄ ϕ(〈e2, e1〉) + λ ϕ(〈e1, e2〉) + |λ|2 ϕ(〈e2, e2〉)|
≥ ‖e1‖

2.

Now suppose (4.5) holds. Let L : E → B(H,K) be the isometric em-
bedding of E into B(H,K) as given in the previous lemma. Then (4.5)
gives

‖L(e1) + λL(e2)‖ ≥ ‖L(e1)‖ for all λ ∈ C.
By Theorem 3.3 there exists a sequence of unit vectors {xn} in H such
that ‖L(e1)xn‖ → ‖L(e1)‖ and 〈L(e1)xn, L(e2)xn〉 → 0 as n → ∞. Define
ϕn : A → C as

ϕn(a) = 〈xn, π(a)xn〉,

where π : A → B(H) is a faithful representation, as in the previous
lemma. Then ϕn is a state on A. Note that ϕn(〈e1, e1〉) = 〈L(e1)xn, L(e1)xn〉 →
‖L(e1)‖2 and ϕn(〈e1, e2〉) = 〈L(e1)xn, L(e2)xn〉 → 0 as n → ∞. Since the
collection of all states on A is a weak* compact subset of A∗, {ϕn} has
a convergent subsequence {ϕnk

} which converges to some ϕ in weak*
topology. We have

ϕ(〈e1, e1〉) = lim
k→∞

ϕnk
(〈e1, e1〉) = ‖e1‖

2

and
ϕ(〈e1, e2〉) = lim

k→∞
ϕnk

(〈e1, e2〉) = 0.
�
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[6] J.B. Hiriart-Urruty, C. Lemarèchal, Fundamentals of Convex Analysis, Springer, 2000.
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