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is ill-posed and occurs in applied mathematics, e.g. in neurophysiological modeling
of large nerve cell systems with action potential f in mathematical biology. A new

ll\l(zryl;li}r?ggjparabolic problem version of quasi-reversibility method is described. We show that the regularized
Quasi-reversibility method problem (with a regularization parameter 8 > 0) is well-posed and that its solution
Backward problem Up(t) converges on [0, 1] to the exact solution u(t) as 8 — 0F. These results extend
Ill-posed problem some earlier works on the nonlinear backward problem.

Contraction principle © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert space with the inner product (.,.) and the norm ||.||. In this paper, we consider the
backward nonlinear parabolic problem of finding a function « : [0,1] — H such that

{ut+Au=f(u(t)vf)» 0<t<l, (1)

u(l) = ¢,
where the function f is defined later and the operator A is self-adjoint on a dense space D(A) of H
such that —A generates a compact contraction semi-group on H. The backward parabolic problems arise
in different forms in heat conduction [4,10], material science [16], hydrology [3] and also in many other

practical applications of mathematics and engineering sciences. If H = L2?(0,1) for [ > 0, A = —A and
flu(t),t) = u||u||2LQ(0,l) then a concrete version of problem (1) is given as

ur — Au = u”“H%%O,l)7 (x’ t) € (07 l) X (07 1))
u(0,t) = u(l,t) =0, t e (0,1), (2)
u(z, 1) = p(z), x € (0,1).
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The first equality in problem (2) is a semilinear heat equation with cubic-type nonlinearity and has many
applications in computational neurosciences. It occurs in neurophysiological modeling of large nerve cell
systems in mathematical biology (see [17]).

Let u(t) be the (unknown) solution of (1), continuous on ¢ > 0 to H with an (unknown) initial value
u(0). In practice, u(1) is known only approximately by ¢ € H with |ju(1) — ¢| < 8, where the constant j is
a known small positive number. This problem is well known to be severely ill-posed [15] and regularization
methods are required. The homogeneous linear case of problem (1)

u +Au=0, 0<t<l,
{ 3)

u(l) = ¢,

has been considered in many papers, such as [2,1,6-9,11-13,18] and references therein. For nonlinear case,
there are not many results devoted to backward parabolic equations. In [20,21], under assumptions that
f+H xR — H is a global Lipschitz function with respect to the first variable u, i.e. there exists a positive
number k& > 0 independent of w,v € H, t € R such that

||f(w’t)7f(vvt)” ngw*U”, (4)

we regularized problem (1) and gave some error estimates. To improve the convergence of our method,
P.T. Nam [14] gave another method to get the Holder estimate for regularized solution. More recently,
Hetrick and Hughes [5] established some continuous dependence results for nonlinear problem. Their results
are also solved under the assumption (4). Until now, to our knowledge, we did not find any papers dealing
with the backward parabolic equations included the local Lipschitz source f.

In this paper, we propose a new modified quasi-reversibility method to regularize (1) in case of the local
Lipschitz function f. The techniques and methods in previous papers on global Lipschitz function cannot
be applied directly to solve the problem (1). The main idea of the paper is of replacing the operator A
in (1) by an approximated operator Ag, which will be defined later. Then, using some new techniques, we
establish the following approximation problem
{v'ﬁ(t)JrAﬂuﬁ(t) = f(vs(t),1), 0<t<1, )

vs(1) = o,

and give an error estimate between the regularized solution of (5) and the exact solution of (1).
Namely, assume that A admits an orthonormal eigenbasis {¢x} on H corresponding to the eigenvalues
{A\k} of A;ie. Apr = A\p¢r. Without loss of generality, we shall assume that

O<)\1<>\2<)\3<"'7 lim A\, = o

k—o0

For every v in H having the expansion v = >~ (v, ¢r) ¢y, we define
In" v, ,
Z (M — )< Ox) b
where In" (z) = max{lnx,0}. And for 0 <t < s < T, we define

Ga(t,s)(v) = > max{ (B +e )" 1} (v, ¢) .

k=1
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Then, problem (5) can be rewritten as the following integral equation

1

vs(t) = Ga(t, 1) — / Gp(t,3) (vs(s), 5) ds. (6)

t

This paper is organized as follows. In the next section we outline our main results. Its proofs will be given
in Sections 3 and 4.

2. The main results

From now on, for clarity, we denote the solution of (1) by u(t), and the solution of the problem (5) by
vg(t). We shall make the following assumptions

(Hy) For each p > 0, there exists a constant K, such that f : H xR — H satisfies a local Lipschitz condition

| f(v1,t) = f(v2,1)]| < Kpllvr — val],
for every v1,va € H such that ||v;|| < p,i=1,2.

Noting that if K, is a positive constant, then f is a global Lipschitz function.
(H3) There exists a constant L > 0, such that

<f(’l)1,t) - f(UQvt)avl - U2> + LHvl - /UQH2 2 0.
(Hs) f(0,t) =0 for ¢t € [0,1].
We present examples in which f satisfies the assumptions (H;) and (Hs).

Example 1. If f is a global Lipschitz function, then f satisfies (H;) and (Hz). In fact, if K, = K is
independent of p then (Hj) is true. And we also have

|(f(v1,t) = flvz,t),01 —v2)| < || f(v1,t) = flvz,t)||[lor — o2

< Koy — 2.
So (f(vy,t) — f(va,t),v1 — v2) > —K|lvy — v2||?. This means that (H») is true.

Example 2. Let f(u,t) = uljul|?>. Of course, condition (Hj3) holds in this case. We verify condition (H;). We
have

1£(w) = £ @) = [[ullul® = vl
= [[llul*(u =) + o (llul*  [[o]*) |
< el llw = ol + ol (el + Toll) [l = vl
< (ull® + llollllull + [lol*) 1w = vll.

It is easy to check that f is not global Lipschitz. Let p > 0. For each v1, ve such that ||v;|| < p, i = 1,2,
ll¢ll < p, we can choose K, = 3p®. It follows that condition (H;) holds. We verify (Hs).
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9(u,v) = (f(u) — f(v).u—v) = (ullul® — ool u —v)
= ((w—V)llull® + o(ull? ~ [[o]*),u — o)
= [lu— ol + (o (full® — [0l — v

and

g(u,v) = (f(u) ~ f(o).u—v) = (ullul® = ool u —v)
= (u(llul® ~ lel?) + ol (u — v), u — v)
= [lu— w2l + {(ul® = [ol]?). u — v).

Adding two equalities, we get

2g(u, v) = [lu = ol* (Jlull* + [[v]*) + {(u + o) (lul]* = [[v]*), u = v)
= [lu =l (lull® + lv]*) + (IIUH2 = ol*) {u+v,u— )
(

2
= [lu = ol *([ull® + [[0]1*) + (llul* = [lv]?)” > 0.
Consequently, we have

u2—|— vl|?
[[ull® + Jlv| = ]2, 1)

g(u,v) >
for all u,v € H. This implies that (f(u) — f(v),u —v) > 0. It follows that (Haz) is true.

Now we state main results of our paper. Its proofs will be given in the next section.

Theorem 1. Let 0 < 5 < 1, ¢ € H and let pg € H be a measured data such that ||os — ¢|| < [. Assume
that (Hy), (H3), (Hs) hold. Then the problem

{v%(t) + Agug(t) = flug(t),t), 0<t<1, ®)

vs(1) = @3
has uniquely a solution Ug € C*([0,1]; H).

Theorem 2. Let u € C([0,1]; H) be a solution of (1). Assume that u has the eigenfunction expansion

u(t) =Y o0 (u(t), o) dr such that

/Z/\Q 2’\’“‘<u ¢k>‘ ds < 0.
Then
|Us(t) — u(t)|| < MpB* (ln E) , Vtelo,1], (9)

where M = 225 (-0 p 4 oLO—1),
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Remark 1.

1. In two recent papers [19,20], under the assumption of global Lipschitz property of f, the error estimate
between the exact solution and the approximation solution has the form

[u(t) — uc(t)|| < Cer. (10)

The estimate in (10) is not good at ¢t = 0. In our method, we improve it to obtain the error estimate
is of order $*(In %)t_l. If t ~ 1, the first term 3% tends to zero quickly, and if ¢t ~ 0, the second term
(In(5))"~" tends to zero as § — 0F. And if ¢ = 0, the error (9) becomes

-1
[|u(0) — Us(0)|| < M(ln ﬁ> : (11)

We also note that the right hand side of (11) tends to zero when 8 — 0.
2. If f is a global Lipschitz function, the error (9) is similar to the one given in [20].

3. Proof of Theorem 1
First, we shall prove some inequalities which will be used in the main part of our proof.

Lemma 3. For 0 < 3 < 1, the equation Bz +e~% —1 = 0 has uniquely a positive solution xg > ln(%). We
also have

Moreover, for x > 0, we have

1 _ e\) '
o<m () (7 (=(5) )
Br+e=' [ B '

Proof. First, we consider a function m(xz) = fz+e~*—1. The derivative of the function m is m’(z) = f—e*.
The solution of m/(z) = 0is z = In % The function m(z) is decreasing on (0,In %) and is increasing on
(In %, +00). Since m(0) = 0, m(ln(%)) = 6111(%) + 08 —1<0 and lim,;_, ;o m(z) = 400 we conclude that
the equation S + e~* — 1 = 0 has a unique positive solution x5 > 111(%). Moreover, Sz + e~* > 1 holds if

and only if z > zg. It follows that ln(ﬁ) < 0 for © > xg. Therefore

1

Consider the function

1
Br+e*

g(z) =1n , Ve (0,2p),
()
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for 0 < B < 1. Computing the derivative of g(x), we get

_ Bre

g'(x) = =

We have ¢/(z) = 0 when = = In(%). It implies that the function gets its maximum at 2 = In(%). Hence
B B

g(z) < g<1n %) —In (5—1 (ln %) _1>.

-1
1 nt(—1 _
maxq —— 1 = +(Bw+1€*m)<,3 L & . O
Bx+e "

And, we have

Lemma 4. For any 0 < 8 < 1, we have

-1
451l < 1n(6-1(1n§> )

Proof. Let v € H and let v =Y~ (v, ¢x)di, be the eigenfunction expansion of v. Lemma 3 gives
lAgvl* =

1
Int|{ —F—
2| (mwﬂ)

< In? (5—1 (m %)1> §|<v, on)|”

-1
< (5 () )i

This completes the proof of Lemma 4. 0O

2

(v, é1)]”

o

Lemma 5. For any 0 < 8 <1 and 0 <t < s <1, we have

t—s
|Gt )] < 8 (m %) < g,

So, if 0 <s—t < h<1 then
Ga(t,s)|| < B~

Proof. First, letting v € H be as in the proof of Lemma 4, we have

1Gs(t,s) @) =3 max{ (BAc + e )7 1} (v, 1) |”

k=1

2t—2s
< g (mg) ol

which completes the proof of Lemma 5. O

683
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Lemma 6. Suppose vg € C([0,1]; H) is the unique solution of the integral equation (6). Then vg €
C1([0,1]; H) and vg is also a solution of problem (5).

Proof. In fact, for 0 < ¢ < 1, we have the eigenfunction expansion

t) = Z max{ (B)\k + e_’\k)t_l, 1}(90, ) Ok

k=1
—Z(/ max{(ﬂxwe-*k)ti1}<f<vﬁ<s>7s>,¢k>ds>¢’“'

We get by direct computation

d

)= 3o (B e7) s mase{ (e + )7 1 e, dn)en

1

</ It (B + € ) max{ (B +eAk)t8,1}<f<v5<s>,s>,¢k>d$> o

t

(f(va(t),t), dr)dn

M

>
Il
—

+
M8

b
I
—

M

I* (BN + ) (vs (1), i) b + f (vs (1), 1)

E

=1

(t) + £ (vs(t), 1)

|
|
N
Y
<
=

It is clear that vg(1) = > "2 (o, dr)dr = ¢. Hence, vg is the solution of problem (5). O

Lemma 7. For 0 < < 1 and ¢ € H, put P = ||p||e148I+L) | Letting M be such that M > Q%MP, we put

N = [MKM (13)

1
. +1+ [267 K], h=—
MQKM—P] [267 K] N

where [x] is the integer part of the real number x and Kpr is the Lipschitz constant in (Hy) with respect
to M. For ¢; € H, ||¢i|| < P, we define

T,=1—4h, i=0,1,...,N,

Li={ve (T, }H), o) =i sup_[e(t)] < M},
Ti 41 <t<Ts

T;

Jiv=Gg(t, T;)p; — /G/g(t, s)f (v(s), s) ds.

t

Then the operator J; has a unique fized point on L;.

Proof. For v € L;, one has

T;
0] < 6. Tl + [ 16t 1 w(s), )] s

t
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From Lemma 5, one has for T; — h <t < T;

ot <5 (1t + 701091

Assumptions (Hs) and (H3) give

£ (v(s),8)|| < KaalJu(s)|| < MEas.

So, we have for T; 11 <t < T;

[ Tiv(®)]] < B~ (lsll + MEarh) < B7"(P + MKyrh).

From (13), we have N > 261Ky and N > — MKy Hence, h = % < 2L and h =

M2 Km —p K
=B
It implies that =" < 2%Ka and
1
_ M9 Far _ P _
B~M(P 4+ MKyh) < ﬁ”‘ﬁd (P+MKMM> = 62wa —
MKy, 9O Rar
It is easy to prove that for 8 € (0,1)
B%B < ez < 2.
Combining (15), (16) and (17), we obtain
| w(e)| < M.

It follows that J;(L;) C L;. Now, for vy,vy € L;, one has for Tj11 <t < T;
T
[ iva(t) — Tin(8)]] < /HG@(t, £ (01(5),5) — F(vals), s)]|| ds
t

T;
g/ﬂfhKMHUl(s)—vg(s)Hds
t

ShB"Ky  sup [jui(t) — va(t)|

Tip1 <t<Ts
B
R T P
617h
< sup  ||vr(t) — va(t) ||

2 Tip1<t<Ts

1
< 5, Sup Hvl(t) —’Ug(t)”.
Tip1 <t<Ts

So J; is contractive on L;. Using the Banach fixed point principle, we get Lemma 7.

O

685
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Lemma 8. Assume that f satisfies (H2), (Hs). Let 0 < 7 < 1 and let ug € C'([,1]; H) satisfy

L)+ A t) = t),t), <t<1,
uj(t) + Agug(t) = f(up(t),t), T (18)
ug(l) = .
Then for T <t <1
Jus ()] < [lgfleIAl+E).
Proof. One has
1d 9 9
5 gpllusll® + (Agus,ug) = (f (up(t),t),us) = —Ljugl”.
It follows that
1 1
1 2 1 2 2
5”%(1)“ + [ (Apug(s),us(s)) ds — 5”%@)” > —L [ |Jus(s)|" ds.
t t
So we have
1
1 2 1 9 2
5”“@@)” < gllell” + ((Apug(s),up(s)) + Lfug(s)||") ds.
t
It follows that
1
2 2
s < Il + 201440 + 2) [ Ihus(s)|*ds.
t
Gronwall’s inequality gives
2 _
||Uﬁ(t)“ < H‘PH2€2(1 t)([[Agll+L) < ||SD||2€2(IIA3H+L). O
Proof of Theorem 1. We shall prove by induction that the equation
V' (t) + Agu(t) = f(v(t),1) (19)
subject to the condition v(1) = ¢ has a unique solution on [T}, 1] for i = 0,1,2,..., N. In fact, for ¢ = 0, we

put g = ¢. From Lemma 7, we can find ug € C([T1, 1]; H) such that Jyug = ug. Using Lemma 6, we can
verify that ug satisfies (19) on [T7, 1]. From (14), we have

o (@) = [[Aguo®)|| + || f (wo(t),t)[| < [ A5 M + MK
This implies that ug € C*([T1,1]; H). Now, we assume that (19) has a unique solution v € C*([Ty, 1]; H),
1<k <N -1 with u(1) = ¢. We shall prove that we can extend this solution to the interval [Tyy1,1]. In

fact, from Lemma 8, we have

Ju(®)]] < P = ljplei4o1+5
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for T, <t < 1. Put ¢ = u(ty). From Lemma 7, we can find ux, € C([Tg+1,Tx]; H) such that Jyur = uy.
Using Lemma 6, we can verify that wy satisfies (19) on [Tk41,Tk] with ui(Tg) = uw(Tk). And we also
obtain u, € CY([Tk+1,Tx]; H). So we can extend the solution u on [Ty41,1] by putting u(t) = ux(t) for

Ti+1 <t < Tj. By induction, we can complete the proof of Theorem 1. O

4. Proof of Theorem 2

Lemma 9. Let ug and vg be two solutions of problem (5) corresponding to final values ¢ and w respectively,

then

t—1
8 ot e
Jus(®) = o) < H08 (m S ) -l
Here we recall that the constant L is in (Ha).

Proof. For a > 0, we put
wp(t) = "D (ug(t) - vp(t)).
By direct computation, we get
d _
i 0s(t) + Agwp(t) — awp(t) = "D (fup(t), 1) — f(vs(t),1)).
It follows that

(wh(t) + Apwg(t) — awg(t), ws(t)) = (e (f(us(t),t) — f(va(t),t)), ws(t)).

We obtain in view of condition (Hz)

(" (f (up(t),t) = fup(t), 1)), wa(t)) = D f (up(t),t) — f(va(t),t), up(t) — vs(t))
> —Le* V] jug(t) — vs(t)||* = ~Llwg>.

From Lemma 4, we have
-1
(= Aus(e). )| < (57 (m5) ) fustol”
which gives

(—Apwg(t), ws(t)) > —In (51 <1n ;)1> [HG]

It follows that

d 2 2 2 1 e\ 2
%EHwﬂ(t)H > al|wa(t)]|” = Llws (®)]] —ln(ﬂ_ (ln5> )ng(t)H.

Then, we get

s @)]* ~ us®)]* > 2 / (=23 () ) ost P

(20)
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We choose a = L + In(871(In £)~!) then

B
2 2
[ws@®)]” < lws " = e —wl*.
Hence, we get
N
Jus(®) = o] < 00—l = H0H (mE) -l

Lemma 10. Let vg be a solution of problem (5). Then

(2L+1) e\t

|u(t) —vs(t)]| <e 2 7Dp <1n E) E, vte(0,1], (21)

where we recall

1 o0
E= /Z)\ﬁe”‘kKu(s),d)kHQd&
0

k=1
Proof. Since vz and u are two solutions of problems (5) and (1) respectively, we have
d
S0s(t) + Agop(t) = f(0p(2),1),
Uﬁ(l) =,
and
d
Zru() + Agu(t) = (Ag — Au(t) + f(u(t), 1),
u(l) = .
For any b > 0, let
z5(t) = (D (va(t) — u(t)).
Then by direct calculation

d

Ezﬁ(t) = peP(t=1) (va(t) — u(t)) + b1 (vg(t) —u'(t))

=bzp(t) + ebt=1) (—Aﬁvg(t) + f(v/g(t),t) + Agu(t) — f(u(t),t)) — eb(t_l)(Ag — A)u(t)
= bzp(t) — Apza(t) + €V (F(vp(t),t) — F(u(t), 1) — (Ag — Au(t)). (22)
By taking the inner product two sides of the latter equality with z5, we get

() + Az (1) — b2a(t), za(0)) = (D (F(va(0), 1) — f(ult), 1)), 2a(8))
— MDAy — Ault), z(1)). (23)
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This means that

D es )] = 2~ Ap2p(0).250) + 20

+ 20D (f (v (t),t) — f(ult),t)), 2z5(t))
— 2€b(t_1)<(A3 — A)u(t), 25(t)).

Estimating as in the proof of Lemma 9, we get

("D (f (vp (1), 1) — f(u(®),1)), 2(8)) > —Le® D |ug(t) — u(@)[|” = —L] 26>

and

(~Apzs(t), 25(1)) > —ln<61 (mg)) st

This implies that for ¢ € [0,1] and s € [¢, 1]

Dz + 2671 ((A5 — Au(s), z6(5)) > D z5()]” — 2L 25(5)]

- 2ln<ﬂ_1 (m %>_1> 5%

Choosing b = In(~*(In %)’1) and integrating the latter inequality from ¢ to 1, we obtain

1 1
zs(D)|* = |25 ®)||” + /2eb<5*”<(Aa — A)u(s), z5(s)) ds > —2L/||z/s(s>||2ds~

This can be rewritten as
1 1
Hzﬂt)HQ < QL/HZ,B(S)H2 ds + /2eb(5_1)<(A5 — A)u(s), z5(s)) ds.
t t

Applying Hélder’s inequality and e2*(*=1) < 1 for s € [t, 1], we have

/2eb(3_1)<(A5 — A)u(s),zﬂ(s)> ds < /egb(s_l)H(Aﬁ — A)u(s)H2 ds + /HZB(S)HQdS

t

1
< [l1¢as = pu }ds—i—/”zg )2 ds.
t

Since u(s) = > poq (u(s), pr)dr, it follows that

/1H (Ag — A H dS_/Z<>\k—1n <5>\ e /\k>>2|<u(s),¢>k>]2ds

1

Z 1n2(1+Bx\ke>"“)’<u(s),¢k>’2ds—|—/ Z /\2‘<u , Ok | ds.

t )\k<x5 t )\k

689

(24)

(25)
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Here the positive number zg is defined in Lemma 3. We have

S (14 Bae)| (uls) ) ds < /Zfﬁ”k (5).60)|" ds

t )\k<LEﬁ

1 o0

< ﬁQ/ZAie”k |(u(s), én)|” ds

o k=1

= B2E2. (26)

Using the inequality zg > In %, we get

1
[ 3 a0 ds = / Do AR (uls), on)| " ds

t Ak2Tg T Ak2Tg
1

Se‘hﬁ/ Z )\262>"“’<u(3),¢k>‘2d5

+ )\k2x5
1 o0
<8 [ St |(uts),on) | ds = B (27)
0 k=1
From (24), (25), (26) and (27), we obtain
1
D lug () — u(t)||” < (2L + 1 /e%(S V|jvg(s) — uls)|| ds + 262E2.
t

It implies that

e [lus () *U(t)HQ < (2L +1) /eQbSHvB(S) _ u(5)||2d5+5262bE2

1

-2
= (2L+1)/62bs|{v5(5) —u(s)”zds—i-EQ(ln%) . (28)

t

Here we recall that e’ = 371(In %)_1. Using Gronwall’s inequality, we obtain

Pt ||va(t) — u(t)HZ < 2(2LH1)(1-0) <1n %) 5

It can be rewritten as

2t—-2
los (1) = u()||* < 222002 (ln %) E”.
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Thus

t—1
va(t) —ut)|| < 25008 (S B
’ 3

This ends the proof of Lemma 10. O
Now, we shall finish the proof of Theorem 2.

Proof of Theorem 2. Let vg, Ug be the solutions of problem (5) corresponding to ¢ and g respectively.
Using Lemma 9 and Lemma 10, we have

U5 (6) = u@)[] < [[Us(t) = vs(1)]] + ||vﬁ —u(®)]

t—1
< ettt 1(1 ) ”80—90,8”4-26—2(%;1 “‘t)ﬂt(ln E) E
=1 g2L+1
¥k (ln6> (2 (l_t)E—l-eL(l_t)),

for every t € [0,1].
This completes the proof of Theorem 2. 0O
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