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Infinitely many nonlocal symmetries and infinitely many local and nonlocal 
conservation laws of the (1 +1)-dimensional Sine–Gordon (SG) equation are derived 
in terms of its Bäcklund transformation (BT). Some special nonlocal symmetries 
and nonlocal conservation laws are obtained from the linearized equations of the 
SG equation and its BT. Furthermore, one can derive infinitely many nonlocal 
symmetries from a known nonlocal symmetry, but also infinitely many nonlocal 
conservation laws from a known nonlocal conservation law. In addition, infinitely 
many local and nonlocal conservation laws can be directly generated from the BT 
through the parameter expansion procedure.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Symmetries and conservation laws belong to the central studies of nonlinear evolutional equations. Es-
pecially, one nonlinear partial differential equation (NPDE) is believed to be integral in the sense that it 
possesses infinite number of symmetries or conservation laws. Besides, one can construct one or more conser-
vation laws from one known symmetry, but almost all the conservation laws of PDEs may not have physical 
interpretations except for several well-known cases, such as the invariance of the spatial transformation 
ensures the conservation of momentum and the invariance of the temporal transformation guarantees the 
energy conservation.

There are many effective methods to find symmetries and conservation laws of a PDE. Generally, one 
can use the classical Lie group approach, or equivalently, the symmetry approach, to discover classical Lie 
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symmetries, while nonclassical Lie symmetries (conditional symmetries) can be obtained by means of the 
nonclassical Lie group approach involving the prolongation structures [17,2]. Both of them can be recovered 
by the direct method [3,8,12] without using any group theory. However, these methods cannot be applied 
directly to find nonlocal symmetries and even higher order local symmetries. Up to now, various nonlocal 
symmetries have been investigated such as the potential symmetries which can be obtained by applying 
the Lie group approach to the potential form of the given system. Another type of well-studied nonlocal 
symmetries is the so-called eigenfunction symmetries [9,16,15,10]. Recently, nonlocal symmetries related to 
the Darboux transformation for the potential Korteweg–de Vries (KdV) equation have been used to obtain 
explicit interesting interacting wave solutions and new integrable models [5]. Nonlocal symmetries related 
to the Bäcklund transformations (BTs) for the KdV equation have also been used to explore new explicit 
analytic interaction solutions [11]. In addition, the residual symmetry, which is actually related to the BT, 
was proposed and thus obtained for the supersymmetric KdV (SKdV) equation through the truncated 
Painlevé expansion method [4]. The BT related nonlocal symmetries have been used to find symmetry 
reduction solutions of the bosonized SKdV system, which results in the progress of a more generalized tanh 
function expansion method to unearth many more exact solutions.

It is known that conservation laws have a close relation with symmetries, and moreover, have many 
important applications [1]. In addition to the description of physical conserved quantities such as mass, 
energy, momentum as well as angular momentum, and the significance for investigating integrability as 
mentioned above, they can also be used in the analysis of stability and global behavior of solutions, play an 
essential role in numerical methods, and so on. In order to construct conservation laws, different methods 
have been established, for instance, the celebrated Noether’s theorem [14], the conservation law multiplier 
approach [17,13,1], and the characteristic method [19].

In this paper, we focus our attention on the derivation of infinitely many nonlocal symmetries, infinitely 
many local and nonlocal conservation laws related to the BT. Take the (1 + 1)-dimensional Sine–Gordon 
(SG) equation

uxt = m2 sin u, (1)

where m is an arbitrary constant, as a concrete example. The Sine–Gordon equation has various physical 
applications, for instance in relativistic field theory, Josephson junctions, mechanical transmission lines, 
and nonlinear optics. The symmetries, invariance group transformations, local and nonlocal conservation 
laws for the SG equation have already been studied [18,7]. Here, in a different way, it is shown that one 
can obtain some novel special nonlocal symmetries with a nonlocal function and a parameter coming from 
BT of the given system. Thereafter, through the parameter expansion, new series of infinite number of 
nonlocal symmetries can be constructed from one special nonlocal symmetry. From the symmetry equations 
of the given SG equation and its BT, one can also obtain some parameter dependent nonlocal conservation 
laws which could be related to the nonlocal symmetries. In the same manner, infinitely many nonlocal 
conservation laws can be produced from one nonlocal conservation law via the parameter expansion. On 
the other hand, it is clear that the compatibility condition of BT for the SG equation gives the SG equation 
itself, and thus it is demonstrated that infinite number of local and nonlocal conservation laws can also be 
obtained if one expands BT in terms of its parameter.

It is well known that the SG equation (1) has the following auto-Bäcklund transformation

ux − vx = 2λm sin
(
u

2 + v

2

)
, (2)

ut + vt = 2m sin
(
u − v

)
, (3)
λ 2 2
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which means that if u is a solution of the SG equation (1), then v determined by Eqs. (2) and (3) also 
satisfies the SG equation, namely,

vxt = m2 sin v. (4)

The paper is organized as follows. In Section 2, the linearized differential equations, i.e., the symmetry 
equations, of Eqs. (1)–(4) are written down from which nonlocal symmetries of the SG equation (1) can be 
derived. In detail, three special solutions of the symmetry equations are explicitly written down, which are 
really the nonlocal symmetries of the SG equation. It is obvious that these special nonlocal symmetries are 
parameter dependent, therefore, infinitely many nonlocal symmetries can be generated from them through 
the parameter expansion, which is demonstrated in detail for one of the special nonlocal symmetries. In 
Section 3, from solving the symmetry equations, three special nonlocal conservation laws related to BT are 
derived. It is quite natural and straightforward to find that they are related to the nonlocal symmetries. 
As the nonlocal conservation laws are also parameter dependent, in the same way, infinitely many nonlocal 
conservation laws can be constructed from one nonlocal conservation law via the parameter expansion. 
Explicitly, one series of infinite number of nonlocal conservation laws is presented. In Section 4, applying 
the same expansion directly to BT (2)–(3), it is shown that not only infinitely many nonlocal conservation 
laws but also infinitely many local conservation laws can be obtained for the SG equation. The last section 
is devoted to summary and discussions.

2. Nonlocal symmetries related to BT

Symmetries of a PDE are actually the solutions of the linearized equation obtained from the requirement 
that the PDE is form invariant under an infinitesimal transformation. Assuming that Eqs. (1)–(4) are form 
invariant under the following transformation

u → u + εσu, v → v + εσv, λ → λ + εδ, (5)

where ε is an infinitesimal parameter, δ is just a constant, σu and σv are functions of (t, x, u, v), we readily 
obtain the linearized system that symmetries σu and σv should satisfy

σu
xt −m2 cos(u)σu = 0, (6)

σv
xt −m2 cos(v)σv = 0, (7)

σu
x − σv

x − 2δm sin
(
u

2 + v

2

)
− λm cos

(
u

2 + v

2

)(
σu + σv

)
= 0, (8)

σu
t + σv

t + 2mδ

λ2 sin
(
u

2 − v

2

)
− m

λ
cos

(
u

2 − v

2

)(
σu − σv

)
= 0. (9)

It is remarkable that σu obtained from Eqs. (6)–(9) depends on the function v, which is related to 
the function u through BT (2)–(3), therefore, the solution σu is actually a nonlocal symmetry of the SG 
equation (1). Though it appears that two undetermined symmetries σu and σv should satisfy four linear 
differential equations (6)–(9), actually, there are only two independent equations, namely (8) and (9), which 
thus makes it hard to find solutions. However, it is possible to write down some special solutions. In the 
following we present three possible special solutions of Eqs. (6)–(9).

Solution I. The first special nonlocal symmetry is obtained without difficulty by assuming δ = 0 and 
σv = 0. In this case, the nonlocal symmetry σu reads

σu
1 = eλmp, (10)
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where p is determined by

px = cos
(
u

2 + v

2

)
, pt = 1

λ2 cos
(
u

2 − v

2

)
. (11)

It is noted that the consistent condition pxt = ptx is satisfied by using BT (2)–(3).
Solution II. If still assuming that σv = 0 and then requiring δ = 1/2m, we can have the second nonlocal 

symmetry as

σu
2 = qeλmp, (12)

where p and q are given by

px = cos
(
u

2 + v

2

)
, pt = 1

λ2
cos(u) + cos(v)

cos(u2 − v
2 ) , (13)

and

qx = e−λmp sin
(
u

2 + v

2

)
, qt = 1

λ2
sin(u) − sin(v)

cos(u2 + v
2 ) e−λmp, (14)

respectively. It is remarkable again that pxt = ptx and qxt = qtx are satisfied identically by utilizing BT 
(2)–(3).

Solution III. It is also possible to obtain some special solutions when the symmetry σv is nonzero. From 
the SG equation (4), one can easily verify that σv = vx is a solution of Eq. (7). Then solving the remaining 
three symmetry equations in the case of δ = 0, we have the following special nonlocal symmetry

σu
3 = vx + 2mλfeλmp, (15)

where f is determined by

fx = vx cos
(
u

2 + v

2

)
e−λmp, ft = −λmvxte

−λmp, (16)

and p satisfies Eq. (11). It is readily proved that the consistent condition fxt = ftx is satisfied by virtue of 
the SG equation (4) and BT (2)–(3).

It is noted that one can try to obtain more particular solutions by putting σv equal to the characteristic 
of any symmetry of the SG equation (4), namely, a solution of the symmetry equation (7), for instance 
those can be easily found by using the classical Lie group approach, and then solving out σu from Eqs. (8)
and (9).

Obvious, the above three special nonlocal symmetries are parameter dependent, therefore, one can go 
further to obtain infinitely many nonlocal symmetries through the expansions of the special nonlocal sym-
metries around the neighborhood of the spectrum parameter λ coming from BT. Here we just present a 
series of infinite number of nonlocal symmetries from the first special nonlocal symmetry (10). In the same 
way, another two series of infinitely many nonlocal symmetries can be produced.

First, we expand the function p as

p =
∞∑
i=0

piδ
i, (17)

where the expansion coefficients pi are functions of x and t, and δ is an arbitrary expansion constant. 
Inserting the expansion (17) into the nonlocal symmetry (10) with λ replaced by λ + δ, we have
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σu
1 = exp

(
(λ + δ)m

∞∑
i=0

piδ
i

)
≡

∞∑
i=0

σu
1iδ

i, (18)

where σu
1i can be computed by the formula

σu
1i = dnσu

1
dδn

∣∣∣∣
δ=0

. (19)

It is remarkable that all the expansion coefficients σu
1i are nonlocal symmetries satisfying the symmetry 

equation (6). Therefore, from the special nonlocal symmetry (10), infinitely many nonlocal symmetries σu
1i

are generated, which obviously involve the functions pi determined by Eq. (11) with the similar parameter 
expansion. Furthermore, because the functions u and v in Eq. (11) are connected with each other through 
BT (2)–(3), we then also need to make the similar parameter expansion for v. Although it is difficult to 
write down the general explicit expression for infinitely many nonlocal symmetries σu

1i, it is quite easy and 
straightforward to write down the explicit forms one by one from the general expansion formula. Below are 
the explicit descriptions for the first five nonlocal symmetries σu

1i for i = 0, 1, 2, 3, 4,

σu
10 = emλp0 , (20)

σu
11 = m(p0 + λp1)emλp0 , (21)

σu
12 = m

(
1
2m(p0 + λp1)2 + (p1 + λp2)

)
emλp0 , (22)

σu
13 = m

(
1
6m

2(p0 + λp1)3 + m(p0 + λp1)(p1 + λp2) + (p2 + λp3)
)
emλp0 , (23)

σu
14 = m

[
1
24m

3(p0 + λp1)4 + 1
2m

2(p0 + λp1)2(p1 + λp2)

+ m

(
1
2(p1 + λp2)2 + (p0 + λp1)(p2 + λp3)

)
+ (p3 + λp4)

]
emλp0 , (24)

where pi (i = 0, 1, 2, 3, 4) are determined by

p0x = cos
(
u

2 + v0

2

)
, (25)

p0t = 1
λ2 cos

(
u

2 − v0

2

)
, (26)

p1x = −1
2v1 sin

(
u

2 + v0

2

)
, (27)

p1t = − 2
λ3 cos

(
u

2 − v0

2

)
+ 1

2λ2 v1 sin
(
u

2 − v0

2

)
, (28)

p2x = −1
8v

2
1 cos

(
u

2 + v0

2

)
− 1

2v2 sin
(
u

2 + v0

2

)
, (29)

p2t =
(

3
λ4 − v2

1
8λ2

)
cos

(
u

2 − v0

2

)
−

(
v1

λ3 − v2

2λ2

)
sin

(
u

2 − v0

2

)
, (30)

p3x = −1
4v1v2 cos

(
u

2 + v0

2

)
+ 1

48
(
v3
1 − 24v3

)
sin

(
u

2 + v0

2

)
, (31)

p3t =
(
−v1v2

2 + v2
1
3 + 4

5

)
cos

(
u − v0

)
+
(

243 − v3
1

2 − v2
3 + 3v1

4

)
sin

(
u − v0

)
, (32)
4λ 4λ λ 2 2 48λ λ 2λ 2 2
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and

p4x =
(

v4
1

384 − v2
2
8 − v1v3

4

)
cos

(
u

2 + v0

2

)
+
(
v2
1v2

16 − v4

2

)
sin

(
u

2 + v0

2

)
, (33)

p4t =
(

v4
1

384λ2 − v2
2

8λ2 − v1v3

4λ2 + v1v2

2λ3 − 3v2
1

8λ4 + 5
λ6

)
cos

(
u

2 − v0

2

)

+
(
− v2

1v2

16λ2 + v4

2λ2 + v3
1 − 24v3

24λ3 + 3v2

2λ4 − 2v2

λ5

)
sin

(
u

2 − v0

2

)
, (34)

respectively, obtained by substituting Eq. (17) and the expansion of v

v =
∞∑
i=0

viδ
i, (35)

into Eq. (11) with λ replaced by λ + δ, and then equating zero all the coefficients of different powers of δ. 
The vi (i = 0, 1, 2, 3, 4) in Eqs. (25)–(34) are determined by the system of

v0x = ux − 2mλ sin
(
u

2 + v0

2

)
, (36)

v0t = −ut + 2m
λ

sin
(
u

2 − v0

2

)
, (37)

v1x = −mλv1 cos
(
u

2 + v0

2

)
− 2m sin

(
u

2 + v0

2

)
, (38)

v1t = −m

λ
v1 cos

(
u

2 − v0

2

)
− 2m

λ2 sin
(
u

2 − v0

2

)
, (39)

v2x = −m(v1 + λv2) cos
(
u

2 + v0

2

)
+ 1

4mλv2
1 sin

(
u

2 + v0

2

)
, (40)

v2t = m

(
v1

λ2 − v2

λ

)
cos

(
u

2 − v0

2

)
+ m

(
2
λ3 − v2

1
4λ

)
sin

(
u

2 − v0

2

)
, (41)

v3x = m

24
(
λ
(
v3
1 − 24v3

)
− 24v2

)
cos

(
u

2 + v0

2

)
+ 1

4mv1(v1 + 2λv2) sin
(
u

2 + v0

2

)
, (42)

v3t = m

(
v3
1 − 24v3

24λ + v2

λ2 − v1

λ3

)
cos

(
u

2 − v0

2

)
−m

(
v2v1

2λ − v2
1

4λ2 + 2
λ4

)
sin

(
u

2 − v0

2

)
, (43)

and

v4x = m

24
(
3λ

(
v2
1v2 − 8v4

)
+
(
v3
1 − 24v3

))
cos

(
u

2 + v0

2

)

+ m

192
(
λ
(
48v2

2 + 96v3v1 − v4
1
)

+ 96v1v2
)
sin

(
u

2 + v0

2

)
, (44)

v4t = m

(
v2v

2
1 − 8v4

8λ − v3
1 − 24v3

24λ2 − v2

λ3 + v1

λ4

)
cos

(
u

2 − v0

2

)

+ m

(
v4
1 − 96v1v3 − 48v2

2
192λ + v1v2

2λ2 − v2
1

4λ3 + 2
λ5

)
sin

(
u

2 − v0

2

)
, (45)

respectively, which are obtained similarly by inserting Eq. (35) into BT (2)–(3) with λ replaced by λ + δ, 
and then equating zero all the coefficients of different orders of δ.
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It is easy to check that the consistent conditions vixt = vitx (i = 0, 1, 2, 3, 4) are all satisfied identically 
with the help of the SG equation (1), while the consistent conditions pixt = pitx (i = 0, 1, 2, 3, 4) are all 
satisfied identically with vi (i = 0, 1, 2, 3, 4) determined by Eqs. (36)–(45). In addition, it is not difficult to 
verify that Eqs. (20)–(24) are all nonlocal symmetries of the SG equation (1) by the direct substitution of 
them with Eqs. (25)–(34) and (36)–(45) into the corresponding symmetry equation (6). It is remarkable 
that these nonlocal symmetries are different than the well-known ones that arise from applying the recursion 
operator to the scaling symmetry of the SG equation [6].

3. Nonlocal conservation laws related to the nonlocal symmetries

The essence for a conservation law of a PDE is to find a divergence expression holding for all solutions of 
the given PDE. In detail, for our case, if there are two differentiable functions ρ and θ satisfying the identity

∂

∂t
ρ(x, t) + ∂

∂x
J(x, t) = 0, (46)

for any solution u of the SG equation (1), then this identity is called the conservation law of the SG equation, 
and the functions ρ and J are called the conserved density and the conserved flux, correspondingly.

It is found that when solving the symmetry equations (8) and (9), some auxiliary functions are introduced 
and the relations between these functions can rightly yield this kind of divergence expression (46) holding 
on the solution of the SG equation. Therefore, without using any known methods, we can obtain several 
new special nonlocal conservation laws, as is shown in the following.

Now directly solving Eqs. (8) and (9), namely, the symmetry equations of the BT, yields

σu = 2memλpqδ + 2memλpλ

∫
pxσ

ve−mλpdx + σv + emλpC, (47)

and

σu = −2ms

λ2 e
mr
λ δ − 2m

λ
e

mr
λ

∫
rtσ

ve−
mr
λ dt− σv + e

mr
λ C, (48)

respectively, where p, q, r, s satisfy

px = cos
(
u

2 + v

2

)
, (49)

qx = sin
(
u

2 + v

2

)
emλp, (50)

rt = cos
(
u

2 − v

2

)
, (51)

st = sin
(
u

2 − v

2

)
e−

mr
λ , (52)

and both integration functions are simplified to be the same constant C. The equivalence of Eqs. (47) and 
(48) and the arbitrariness of the constants δ and C allow us to derive three equations

r − λ2p = 0, (53)

s + λ2q = 0, (54)



692 J.-y. Wang et al. / J. Math. Anal. Appl. 421 (2015) 685–696
and
∫

pxσ
ve−mλpdx +

∫
ptσ

ve−mλpdt + 1
mλ

σve−mλp = 0. (55)

Hereafter, one can, without any difficulty, write down three kinds of nonlocal conservation laws from the 
above three Eqs. (53)–(55) with the help of Eqs. (49)–(52). The corresponding conserved density and flux 
are given by

ρ1 = λ2 cos
(
u

2 + v

2

)
, J1 = − cos

(
u

2 − v

2

)
, (56)

ρ2 = λ2

σu
1

sin
(
u

2 + v

2

)
, J2 = 1

σu
1

sin
(
u

2 − v

2

)
, (57)

and

ρ3 = λσv
x

mσu
1
, J3 = σv

σu
1

cos
(
u

2 − v

2

)
, (58)

respectively, where σu
1 is given by Eq. (10), and σv is the symmetry of the function v determined by 

Eqs. (6)–(9). Two remarks are in order. First, the conservation law (56) can also be directly obtained from 
Eq. (11) as a trivial rewriting of pxt = ptx. Second, the conservation laws (56) and (57) can also be obtained 
in an alternative way. One can find that the BT (2)–(3) possesses the conservation law ρ0 = λ2 cos((u +v)/2), 
J0 = cos((u −v)/2), which leads to a potential p satisfying Eq. (11), and then apply the multipliers depending 
on p to the BT yielding both Eqs. (56) and (57).

It is evident that the above nonlocal conservation laws are connected with the nonlocal symmetries. 
Similarly, the above nonlocal conservation laws are parameter dependent, therefore, one can construct 
infinitely many nonlocal conservation laws from any one of them via the parameter expansion procedure. 
Here we just present the result obtained from the nonlocal conservation law (56). Substituting Eq. (35) into 
the conserved density and flux (56) with λ replaced by λ + δ, and then collecting the same orders of δ, 
infinitely many nonlocal conservation laws ∂tρ1i(x, t) + ∂xJ1i(x, t) = 0, i = 0, 1, 2, ..., are generated. The 
first five nonlocal conserved densities are given explicitly as follows

ρ10 = λ2 cos
(
u

2 + v0

2

)
, (59)

ρ11 = 2λ cos
(
u

2 + v0

2

)
− 1

2λ
2v1 sin

(
u

2 + v0

2

)
, (60)

ρ12 =
(

1 − 1
8λ

2v2
1

)
cos

(
u

2 + v0

2

)
− λ

(
v1 + 1

2λv2

)
sin

(
u

2 + v0

2

)
, (61)

ρ13 = −1
4λv1(v1 + λv2) cos

(
u

2 + v0

2

)
+

[
λ2

(
1
48v

3
1 − 1

2v3

)
− λv2 −

1
2v1

]
sin

(
u

2 + v0

2

)
, (62)

ρ14 =
[
λ2

(
1

384v
4
1 − 1

8v
2
2 − 1

4v1v3

)
− 1

2λv1v2 −
1
8v

2
1

]
cos

(
u

2 + v0

2

)

+
[
λ2

(
1
16v

2
1v2 −

1
2v4

)
+ λ

(
1
24v

3
1 − v3

)
− 1

2v2

]
sin

(
u

2 + v0

2

)
, (63)

and the corresponding nonlocal conserved fluxes read
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J10 = − cos
(
u

2 − v0

2

)
, (64)

J11 = −1
2v1 sin

(
u

2 − v0

2

)
, (65)

J12 = 1
8v

2
1 cos

(
u

2 − v0

2

)
− 1

2v2 sin
(
u

2 − v0

2

)
, (66)

J13 = 1
4v1v2 cos

(
u

2 − v0

2

)
+
(

1
48v

3
1 − 1

2v3

)
sin

(
u

2 − v0

2

)
, (67)

J14 =
(
− 1

384v
4
1 + 1

8v
2
2 + 1

4v1v3

)
cos

(
u

2 − v0

2

)
+

(
1
16v

2
1v2 −

1
2v4

)
sin

(
u

2 − v0

2

)
, (68)

respectively, where vi (i = 0, 1, 2, 3, 4) are determined by Eqs. (36)–(45).

4. Local and nonlocal conservation laws related to BT

It is clear that any two functions satisfying Eq. (46) can be viewed as a conservation law. Therefore, 
one can naturally expect infinitely many conservation laws of the SG equation (1) using the compatibility 
condition of its BT (2)–(3) through the parameter expansion method. The BT has been expanded in 
Section 2, as given by Eqs. (36)–(45), one can then write down explicitly the corresponding conservation 
laws from the compatibility conditions ∂tvix = ∂xvit, i = 0, 1, 2, 3, 4. The conserved density and conserved 
flux have the following form

ρ0 = ux − 2mλ sin
(
u

2 + v0

2

)
, (69)

J0 = ut −
2m
λ

sin
(
u

2 − v0

2

)
, (70)

ρ1 = −2m sin
(
u

2 + v0

2

)
−mv1λ cos

(
u

2 + v0

2

)
, (71)

J1 = 2m
λ2 sin

(
u

2 − v0

2

)
+ mv1

λ
cos

(
u

2 − v0

2

)
, (72)

ρ2 = 1
4mλv2

1 sin
(
u

2 + v0

2

)
−m(v1 + λv2) cos

(
u

2 + v0

2

)
, (73)

J2 = m(v2
1λ

2 − 8)
4λ3 sin

(
u

2 − v0

2

)
− m(v1 − v2λ)

λ2 cos
(
u

2 − v0

2

)
, (74)

ρ3 = 1
4v1m(v1 + 2v2λ) sin

(
u

2 + v0

2

)

+ m

24
(
v3
1λ− 24v2 − 24λv3

)
cos

(
u

2 + v0

2

)
, (75)

J3 = m

4λ4

(
8 − v2

1λ
2 + 2v1v2λ

3) sin
(
u

2 − v0

2

)

+ m

24λ3

(
24v1 − v3

1λ
2 − 24v2λ + 24v3λ

2) cos
(
u

2 − v0

2

)
, (76)

ρ4 = − m

192
(
v4
1λ− 48v2

2λ− 96v1v2 − 96v1v3λ
)
sin

(
u

2 + v0

2

)

+ m (
v3
1 + 3λv2

1v2 − 24v3 − 24λv4
)
cos

(
u + v0

)
, (77)
24 2 2
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and

J4 = − m

192λ5

(
384 − 48v2

1λ
2 + 96v1v2λ

3 − 48v2
2λ

4 + v4
1λ

4 − 96v1v3λ
4) sin

(
u

2 − v0

2

)

+ m

24λ4

(
24v2λ− 24v1 − 3v2

1v2λ
3 + 24v4λ

3 + v3
1λ

2 − 24v3λ
2) cos

(
u

2 − v0

2

)
, (78)

respectively.
It is remarkable that the conservation laws determined by Eqs. (69)–(78) are nonlocal conservation 

laws of the SG equation (1) derived with the help of its BT (2)–(3). It is interesting that in addition to 
infinitely many nonlocal conservation laws, we can also construct infinitely many local conservation laws 
if the functions are expanded in the parameter λ at the zero position. In this case, just substituting the 
expansion (35) into Eqs. (2)–(3) with λ replaced by δ, and then setting zero the coefficients of different 
orders of δ, a system of equations determining the expansion coefficient functions vi is obtained. Then the 
compatibility conditions of vi will lead to infinitely many local conservation laws of the SG equation (1). It 
is noted that some trivial local conservation laws might be involved, and thus one needs to further exclude 
them.

Now let us first substitute the expansion (35) into Eq. (2) with λ replaced by δ, and then vanish the 
coefficients of the same powers of δ. From the zeroth order, we have sin(u/2 − v0/2) = 0, and thus

v0 = u. (79)

Making use of the result (79), the next five equations can be written as

v1x = −2m sin u, (80)

v2x = −mv1 cosu, (81)

v3x = −mv2 cosu + 1
4mv2

1 sin u, (82)

v4x = 1
24m

(
v3
1 − 24v3

)
cosu + 1

2mv1v2 sin u, (83)

v5x = 1
8m

(
v2
1v2 − 8v4

)
cosu− 1

192m
(
v4
1 − 48v2

2 − 96v1v3
)
sin u. (84)

Then the substitution of the expansion (35) into Eq. (3) with λ replaced by δ, and the vanish of the 
coefficients of δi (i = 0, 1, 2, 3, 4) yield a sequence of equations. The first equation also gives the solution 
(79) and the next five equations have the results

v1 = − 2
m
ut, (85)

v2 = − 1
m
v1t, (86)

v3 = − 1
m
v2t + 1

24v
3
1 , (87)

v4 = − 1
m
v3t + 1

8v
2
1v2, (88)

v5 = − 1
v4t + 1

v2
1v3 + 1

v1v
2
2 − 1

v5
1 . (89)
m 8 8 1920



J.-y. Wang et al. / J. Math. Anal. Appl. 421 (2015) 685–696 695
Now, as before, we are ready to derive explicit local conservation laws from the consistent conditions 
∂tvix = ∂x∂tvi (i = 1, 2, 3, 4, 5) for Eqs. (80)–(89). The first five local conserved densities read

ρ1 = uxt = m2 sin u, (90)

ρ2 = uxtt = m2ut cosu, (91)

ρ3 = uttuxtt

ut
= m2utt cosu, (92)

ρ4 = uxttuttt − u2
tuttuxt

ut
= −m2ututt sin u + m2uttt cosu, (93)

ρ5 = uxttu
2
tutt + 2uxttutttt − 2uxtu

2
tuttt − uxtu

2
ttut

ut

= −m2(u2
tt + 2ututtt

)
sin u + m2(2utttt + u2

tutt

)
cosu, (94)

and the corresponding local conserved flows are

J1 = −utt, (95)

J2 = −uttt, (96)

J3 = −u2
tutt − utttt, (97)

J4 = −2utu
2
tt − utttu

2
t − uttttt, (98)

J5 = −16ututtuttt − 3u2
tutttt − uttu

4
t − 5u3

tt − 2utttttt. (99)

It is evident that the first two are trivial conservation laws, however, the others are all nontrivial.

5. Summary and discussions

In summary, by solving the linearized equations of the SG equation together with its BT, not only 
three novel nonlocal symmetries, but also three special nonlocal conservation laws for the SG equation are 
obtained directly. Since these results depend on one parameter stemming from BT while not existing for 
the SG equation, therefore, the parameter expansion procedure is effective to generate three sequences of 
infinite number of nonlocal symmetries and three sequences of infinite number of nonlocal conservation laws 
from the new special nonlocal symmetries and nonlocal conservation laws, respectively.

Though it is difficult to derive the general formula for the sequence of infinitely many nonlocal symmetries 
and nonlocal conservation laws, it is quite obvious to write down their explicit expressions one by one. Here 
only one sequence of nonlocal symmetries and one family of nonlocal conservation laws are presented in 
detail. Furthermore, it is shown that infinitely many local and nonlocal conservation laws can also be 
generated via the same expansion procedure directly from BT of the SG equation.

It is remarkable that after obtaining the nonlocal symmetries, one can go further to explore symmetry 
reductions and new explicit analytic solutions by means of the localization method [5,11,4]. Besides, one 
can also explore new integrable systems from nonlocal symmetries and conservation laws.
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