
J. Math. Anal. Appl. 427 (2015) 759–786
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Exact solutions of semilinear radial Schrödinger equations by 

separation of group foliation variables

Stephen C. Anco a, Wei Feng b,a, Thomas Wolf a

a Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S3A1, Canada
b Department of Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 August 2014
Available online 24 February 2015
Submitted by R. Popovych

Keywords:
Symmetry group
Exact solutions
Semilinear Schrödinger equation
Group foliation

Explicit solutions are obtained for a class of semilinear radial Schrödinger 
equations with power nonlinearities in multi-dimensions. These solutions include 
new similarity solutions and other new group-invariant solutions, as well as new 
solutions that are not invariant under any symmetries of this class of equations. 
Many of the solutions have interesting analytical behavior connected with blow-
up and dispersion. Several interesting nonlinearity powers arise in these solutions, 
including the case of the critical (pseudo-conformal) power. In contrast, standard 
symmetry reduction methods lead to nonlinear ordinary differential equations for 
which few if any explicit solutions can be derived by standard integration methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An interesting class of nonlinear wave equations consists of the semilinear Schrödinger equations

iut = urr + mur/r + k|u|pu, p �= 0, k �= 0 (1.1)

for u(t, r) ∈ C, where p ∈ R is a nonlinearity power, k ∈ R is the nonlinearity coefficient, and m ∈ R is a 
spatial-derivative coefficient. When m is a positive integer, this wave equation (1.1) physically describes a 
general model for the slow modulation of radial waves in a weakly nonlinear, dispersive, isotropic medium 
[24] in m + 1 dimensions, with radial coordinate r. When m is zero, the equation similarly is a model 
for slow modulation of waves in a one-dimensional, weakly nonlinear, dispersive medium, where r is the 
full-line coordinate. In all other cases Eq. (1.1) can be interpreted instead as modelling the slow modulation 
of two-dimensional radial waves in a planar, weakly nonlinear, dispersive medium containing a point-source 
disturbance at the origin, represented by an extra modulation term (m −1)ur/r [2]. This interpretation can 
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be applied more generally for m �= 2. Hereafter we will call (1.1) the radial gNLS (generalized nonlinear 
Schrödinger) equation and write

m = n− 1 (1.2)

without any restriction on n ∈ R.
Exact solutions have an important role in the study of the radial gNLS equation (1.2), particularly 

for understanding blow-up, dispersive behavior, attractors, and critical dynamics, as well as for testing 
numerical solution methods. Stability and global behavior of solutions to the initial-value problem depend 
on [9,24] the effective dimension n = m + 1, the nonlinearity power p, and the sign of the interaction 
coefficient k. Specifically, for p ≥ 4/n > 0 and k > 0, some solutions exhibit a finite time blow-up such that 
|u(t, r)| → ∞ as t → T < ∞. In the case p = 4/n > 0, which is known as the critical power, a special class 
of blow-up solutions is rigorously known to have the form [24]

u(t, r) = (T − t)−n/2U(ξ) exp(i(ω + r2/4)/(T − t)), ξ = r/(T − t), ω �= 0, (1.3)

which is invariant under a certain pseudo-conformal subgroup in the full symmetry group of Eq. (1.1), where 
U(ξ) satisfies a complex nonlinear second-order ordinary differential equation (ODE)

U ′′ + (n− 1)ξ−1U ′ + ωU + k|U |4/nU = 0. (1.4)

In the supercritical case p > 4/n > 0, a general class of blow-up solutions is believed [24] to asymptotically 
approach an exact similarity form

u(t, r) = (T − t)−1/pU(ξ) exp(iω ln((T − t)/T )), ξ = r/
√
T − t, ω �= 0, (1.5)

which is invariant under a certain scaling subgroup in the full symmetry group of Eq. (1.1), where U(ξ)
satisfies a more complicated complex nonlinear second-order ODE

U ′′ + ((n− 1)ξ−1 − 1
2 iξ)U ′ − (ω + i/p)U + k|U |pU = 0. (1.6)

Both ODEs (1.4) and (1.6) are, however, intractable to solve by standard ODE integration techniques [8,16]
such as symmetry reduction and integrating factors. In fact, as summarized in recent work [2], the only 
explicit solutions which are known to-date for n �= 1 (m �= 0) consist of the obvious constant solution 
U = (−ω/k)n/4 exp(iφ) for the ODE (1.4).

In this paper we will obtain new explicit exact solutions to the radial gNLS equation (1.1) for n �= 1
(m �= 0) by applying a symmetry group method which has been used successfully in previous work [4–6]
to find explicit blow-up and dispersive solutions to semilinear radial wave equations and semilinear radial 
heat equations with power nonlinearities in multi-dimensions. The method uses the group foliation equa-
tions associated with one-dimensional subgroups of the point symmetry group of a given nonlinear partial 
differential equation (PDE) [17]. These equations consist of an equivalent first-order PDE system whose 
independent and dependent variables are respectively defined by the invariants and differential invariants 
of a given point symmetry subgroup. Each solution of the system geometrically corresponds to an explicit 
one-parameter family of exact solutions of the original nonlinear PDE, such that the family is closed under 
the given point symmetry subgroup, which represents a symmetry orbit in the solution space of the PDE. In 
the case of a PDE with power nonlinearities, the form of the resulting group-foliation system allows explicit 
solutions to be found by a systematic separation technique in terms of the group-invariant variables. We 
will use an improved version of this technique, which is able to yield a much wider set of solutions.
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Our results include explicit blow-up solutions having the group-invariant forms (1.3) and (1.5), plus 
explicit blow-up solutions with a non-invariant form, in addition to explicit dispersive solutions, explicit 
standing wave solutions, and explicit monopole solutions. Among the new solutions, some are found to hold 
only for non-integer values of n − 1 (= m), which we interpret as radial planar solutions in the presence of 
a modulation point-source at the origin.

Section 2 provides a short review of the method of group foliation and related applications to nonlinear 
PDEs. In Section 3, the group-foliation method is applied to the symmetry group of the radial gNLS equation 
(1.1). The improved separation technique used for finding explicit solutions of the group foliation equations 
is then introduced in Section 4, and the resulting exact solutions of the radial gNLS equation along with 
their basic analytical features are summarized in Section 5. Finally, some concluding remarks are made in 
Section 6.

2. Method of group foliation

The construction of group foliations using admitted point symmetry groups for partial differential equa-
tions is originally due to Lie and Vessiot [25] and was revived in its modern form by Ovsiannikov [17]. An 
outline of this construction in general goes as follows.

Let F = 0 be a given PDE system of order N ≥ 1 with M ≥ 2 independent variables, admitting a group 
G of point symmetries. Then the solution space of F = 0 is a union of orbits defined by the action of G as 
a transformation group on solutions. Provided that the action of G is regular and projectable, each orbit 
can be geometrically described as a solution of an invariantized system of PDEs, called the group resolving 
system, formulated in terms of the invariants and differential invariants of the symmetry group G. This 
invariantization of the solution space of F = 0 is most easily carried out in jet space by five main steps:

(1) formulate the given PDE system F = 0 as set of surface equations in the jet space of order N using the 
given variables;

(2) express the jet-space variables in all of the surface equations in terms of the invariants and differential 
invariants (up to Nth order) of the symmetry group G;

(3) choose M of the lowest order invariantized variables to be the new independent variables, and take all 
of the remaining invariantized variables to be the new dependent variables;

(4) derive the compatibility conditions that come from having the new dependent variables be functions of 
the new independent variables;

(5) append the set of compatibility equations to the set of invariantized surface equations.

This set of equations comprises the group-resolving system which defines the invariantization of the original 
PDE system F = 0. Moreover, the original dependent variables can be recovered from the invariantized 
variables by solving a G-invariant system of differential equations. Since the solutions of the group resolving 
system geometrically correspond to the orbits of G in the solution space of F = 0, each orbit thereby 
determines a family of solutions to F = 0 such that the family is closed under the action of G.

The method of group foliation was first applied successfully to find exact solutions to nonlinear PDEs 
in Refs. [14,15,12,21,22,11] when the group G of point symmetries is infinite-dimensional, and later it was 
developed in Refs. [4–6] when the point symmetry group G is finite-dimensional.

These two basic approaches have been used in many recent papers (see, e.g. [20,23]) for obtaining exact 
solutions of nonlinear diffusion equations and nonlinear wave equations. In a different direction, the for-
mulation of group foliations of nonlinear PDEs by using exterior differential systems has been studied in 
Refs. [7,10].
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3. Symmetries and group foliations

The group of point symmetries of the radial gNLS equation (1.1) for n �= 1 (m �= 0) is well-known [13,19]
to be generated by the following point transformations acting on (t, r, u, ̄u):

phase rotation Xphas. = iu∂/∂u− iū∂/∂ū for all p, (3.1)

time translation Xtrans. = ∂/∂t for all p, (3.2)

scaling Xscal. = 2t∂/∂t + r∂/∂r − (2/p)u∂/∂u− (2/p)ū∂/∂ū for all p, (3.3)

inversion Xinver. = t2∂/∂t + tr∂/∂r − (2t/p + ir2/4)u∂/∂u

− (2t/p− ir2/4)ū∂/∂ū only for p = 4/n. (3.4)

Note the inversion (3.4) is called a pseudo-conformal transformation, and the special power p = 4/n for 
which it exists is commonly called the critical power.

On solutions u = f(t, r) of the radial gNLS equation (1.1), the one-dimensional symmetry transformation 
groups arising from the separate generators (3.1)–(3.4) are given by

u = exp (iφ)f(t, r), (3.5)

u = f(t− ε, r), (3.6)

u = λ−2/pf(λ−2t, λ−1r), (3.7)

u = (1 + εt)−2/p exp (−iεr2/(4 + 4εt))f(t/(1 + εt), r/(1 + εt)) only for p = 4/n, (3.8)

with group parameters −∞ < ε < ∞, 0 < λ < ∞, 0 ≤ φ < 2π. The full transformation group of point 
symmetries is obtained by compositions of these transformations (3.5)–(3.8).

A group foliation can be constructed using any linear combination X of symmetry generators (3.1)–(3.4)
such that X has a regular projectable [16] action on (t, r). In particular,

X = c1Xphas. + c2Xtrans. + c3Xscal. + c4Xinver. (3.9)

projects to (c2 + 2c3t + c4t
2)∂/∂t + (c3r + c4tr)∂/∂r, whose action on (t, r) is regular if and only if

c22 + c23 + c24 �= 0 (3.10)

(with c4 = 0 if p �= 4/n). For any symmetry generator X of the form (3.9) with the constraint (3.10), a group 
foliation consists of converting the radial gNLS equation (1.1) into a system of first-order equations, called the 
group resolving system, for the orbits of the one-dimensional symmetry group generated by X. This system 
is naturally formulated in terms of a complete set of invariants x(t, r), v(t, r, u), v̄(t, r, ̄u) and a complete 
set of first-order differential invariants G(t, r, u, ut, ur), Ḡ(t, r, ̄u, ̄ut, ̄ur), H(t, r, u, ut, ur), H̄(t, r, ̄u, ̄ut, ̄ur)
of X, which always can be chosen so that the phase-rotation symmetry (3.1) leaves x invariant and acts 
equivariantly on v, ̄v, G, H, Ḡ, H̄. As a consequence, the solution space {u = f(t, r)} of the radial gNLS 
equation (1.1) can be recovered from the phase-equivariant solution space {(G = g(x, v, ̄v), H = h(x, v, ̄v))}
of the group-resolving system by integration of the first-order complex differential equations for u(t, r)

G(t, r, u, ut, ur) = g(x(r, t), v(t, r, u), v̄(t, r, ū)),

H(t, r, u, ut, ur) = h(x(r, t), v(t, r, u), v̄(t, r, ū)), (3.11)

where this pair of differential equations can be reduced to two quadratures due to their built-in invari-
ance with respect to the two-dimensional symmetry group G generated by X and Xphas.. These two 



S.C. Anco et al. / J. Math. Anal. Appl. 427 (2015) 759–786 763
quadratures thereby produce a two-parameter family of radial gNLS solutions u = f(t, r, c1, c2) from each 
phase-equivariant solution (G = g(x, v, ̄v), H = h(x, v, ̄v)) of the group-resolving system. Note that the in-
variance of the differential equations (3.11) under phase-rotations is essential for having a sufficiently large 
symmetry group to allow integrating them to quadratures.

We now set up the group-resolving systems for each of the symmetry generators given by time-translation 
(3.2), scaling (3.3), and inversion (3.4). A general remark is that group-resolving systems arising from 
different choices of symmetry groups G are not related to each other by a point transformation on 
(x, v, ̄v, G, Ḡ, H, H̄), while the form of any specific group-resolving system depends on the complexity of 
the expressions for the symmetry generator X and for the invariants x, v, ̄v and differential invariants 
G, Ḡ, H, H̄. Accordingly, we will leave for other work the consideration of group-resolving systems given 
by linear combinations of the generators (3.1)–(3.4), such as an optimal set with respect to conjugacy in 
the full symmetry group, since such systems have a more complicated form that makes it harder to find 
explicit solutions by separation of variables. (Also see the similar situation for the semilinear wave equation 
in Ref. [4].)

3.1. Time-translation-group resolving system

To proceed, we first write down the obvious invariants

x = r, v = u, v̄ = ū (3.12)

satisfying Xtrans.x = Xtrans.v = Xtrans.v̄ = 0 and additionally Xphas.x = 0, Xphas.v = iv, Xphas.v̄ = −iv̄. 
Similarly, we write down the obvious differential invariants

G = ut, H = ur (3.13)

satisfying X(1)
trans.G = X(1)

trans.H = 0 and X(1)
phas.G = iG, X(1)

phas.H = iH, where X(1)
trans. is the first-order 

prolongation of the time-translation generator (3.2) and X(1)
phas. is the first-order prolongation of the phase-

rotation generator (3.1). Here x, v and v̄ are mutually independent, while G and H are related by equality 
of mixed r, t derivatives on ut and ur, which gives

DrG = DtH, (3.14)

where Dr, Dt denote total derivatives with respect to r, t. Furthermore, v, ̄v, G, H are related through the 
radial gNLS equation (1.1) by

iG− r1−nDr(rn−1H) = kv1+p/2v̄p/2. (3.15)

Now we put G = G(x, v, ̄v), H = H(x, v, ̄v) into Eqs. (3.14)–(3.15) and use Eq. (3.12) combined with the 
chain rule to arrive at a first-order system 

Gx + HGv −GHv + H̄Gv̄ − ḠHv̄ = 0 (3.16a)

iG− (n− 1)H/x−Hx −HHv − H̄Hv̄ = kv1+p/2v̄p/2 (3.16b)

with independent variables x, v, ̄v, and dependent variables G, H (and their complex conjugates). These 
equations will be called the time-translation-group resolving system for the radial gNLS equation (1.1).

The respective solution spaces of Eq. (1.1) and system (3.16) are related by a group-invariant mapping 
that is defined through the invariants (3.12) and differential invariants (3.13), and that preserves phase-
rotation symmetry.
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Lemma 1. Phase-equivariant solutions (G = g(x, |v|)v, H = h(x, |v|)v) of the time-translation-group re-
solving system (3.16) are in one-to-one correspondence with two-parameter families of solutions u =
f(t, r, c1) exp(ic2) of the radial gNLS equation (1.1) satisfying the time-translation invariance property

f(t + ε, r, c1) = f(t, r, c̃1(ε, c1)) exp(ic̃2(ε, c2)) (3.17)

(in terms of group parameter ε) for some c̃1(ε, c1) and c̃2(ε, c2), with c̃1(0, c1) = c1, c̃2(0, c2) = 0. The 
parameters c1, c2 arise as the constants of integration of the pair of first-order DEs

ur = h(r, u, ū), ut = g(r, u, ū) (3.18)

which are invariant under the time-translation symmetry (3.2) and the phase-rotation symmetry (3.1).

The proof of Lemma 1 will be given in Section 4.1. Through the correspondence stated in this lemma, 
time-translation invariant solutions of the radial gNLS equation (1.1) with the two-parameter form

u = f(r, c1) exp(ic2) (3.19)

are characterized by the simple condition

G = 0 (3.20)

on phase-equivariant solutions of the time-translation-group resolving system (3.16). This establishes a direct 
relationship between classical symmetry reduction of the radial gNLS equation (1.1) under time-translation 
and a reduction of the time-translation-group resolving system (3.16) under condition (3.20).

Lemma 2. There is a one-to-one correspondence between two-parameter families of static solutions (3.19)
of the radial gNLS equation (1.1) and phase-equivariant solutions of the time-translation-group resolving 
system (3.16) that satisfy condition (3.20).

3.2. Scaling-group resolving system

We proceed by writing down the invariants and differential invariants determined by the scaling generator 
(3.3) and its first-order prolongation. A simple choice of invariants is given by

x = t/r2, v = r2/pu, v̄ = r2/pū (3.21)

satisfying Xscal.x = Xscal.v = Xscal.v̄ = 0 and Xphas.x = 0, Xphas.v = iv, Xphas.v̄ = −iv̄. The sim-
plest differential invariants G(t, r, ut) and H(t, r, ur) satisfying X(1)

scal.G = X(1)
scal.H = 0 and X(1)

phas.G = iG, 
X(1)

phas.H = iH consist of

G = r2+2/put, H = r1+2/pur. (3.22)

Here the invariants x, v and v̄ are again mutually independent, while the differential invariants G and H
are related by equality of mixed r, t derivatives on ut and ur, which gives

Dr(r−2−2/pG) = Dt(r−1−2/pH). (3.23)
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In addition, v, ̄v, G, H are related through the radial gNLS equation (1.1) by

ir−2−2/pG− r1−nDr(rn−2−2/pH) = kr−2−2/pv1+p/2v̄p/2. (3.24)

Now we put G = G(x, v, ̄v), H = H(x, v, ̄v) into Eqs. (3.23)–(3.24) and apply the chain rule with Eq.
(3.21) to get a first-order system 

2(1 + 1/p)G + Hx + 2xGx − (2/p)(vGv + v̄Gv̄) + GHv −HGv + ḠHv̄ − H̄Gv̄ = 0 (3.25a)
iG + (2 − n + 2/p)H + 2xHx − (2/p)(vHv + v̄Hv̄) −HHv − H̄Hv̄ = kv1+p/2v̄p/2 (3.25b)

with independent variables x, v, ̄v, and dependent variables G, H (and their complex conjugates). These 
equations will be called the scaling-group resolving system for the radial gNLS equation (1.1).

Similarly to the group foliation based on time-translation, here the respective solution spaces of Eq. (1.1)
and system (3.25) are related by a group-invariant mapping, as defined through the invariants (3.21) and 
differential invariants (3.22), preserving phase-rotation symmetry. 

Lemma 3. Phase-equivariant solutions (G = g(x, |v|)v, H = h(x, |v|)v) of the scaling-group resolving system
(3.25) are in one-to-one correspondence with two-parameter families of solutions u = f(t, r, c1) exp(ic2) of 
the radial gNLS equation (1.1) satisfying the scaling invariance property

λ2/pf(λ2t, λr, c1) = f(t, r, c̃1(λ, c1)) exp(ic̃2(λ, c2)) (3.26)

(in terms of group parameter λ) for some c̃1(λ, c1) and c̃2(λ, c2), with c̃1(1, c1) = c1, c̃2(1, c2) = 0, where 
c1, c2 are the constants of integration of the pair of first-order DEs

ut = r−2−2/pg(t/r2, r2/pu, r2/pū), ur = r−1−2/ph(t/r2, r2/pu, r2/pū) (3.27)

which are invariant under the scaling symmetry (3.3) and the phase-rotation symmetry (3.1).

The proof of Lemma 3 is given in Section 4.2. Through the steps in this proof, a simple correspondence 
can be derived between similarity solutions of the radial gNLS equation (1.1) and a particular class of 
solutions of the scaling-group resolving system (3.25) as follows. 

Lemma 4. There is a one-to-one correspondence between two-parameter families of similarity solutions

u = r−2/pf(t/r2, c1) exp(ic2) (3.28)

of the radial gNLS equation (1.1) and phase-equivariant solutions of the scaling-group resolving system (3.25)
that satisfy the condition

H + 2xG = −(2/p)v. (3.29)

This correspondence establishes a relationship between classical similarity reduction of the radial gNLS 
equation (1.1) under scaling symmetry and a reduction of the scaling-group resolving system (3.16) under 
condition (3.29).

3.3. Inversion-group resolving system

From the inversion generator (3.4), we first write down the mutually independent invariants

x = t/r, v = rn/2 exp(ir2/(4t))u, v̄ = rn/2 exp(−ir2/(4t))ū (3.30)
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satisfying Xinver.x = Xinver.v = Xinver.v̄ = 0 and Xphas.x = 0, Xphas.v = iv, Xphas.v̄ = −iv̄. Next we write 
down the simplest choice of mutually independent differential invariants G(t, r, u, ut, ur) and H(t, r, u, ut, ur)
satisfying X(1)

inver.G = X(1)
inver.H = 0 and X(1)

phas.G = iG, X(1)
phas.H = iH: 

G = r2+n/2 exp(ir2/(4t))
(
ut + rur/t + (n/(2t) + ir2/(4t2))u

)
, (3.31a)

H = r1+n/2 exp(ir2/(4t)) (ur + iru/(2t)) . (3.31b)

These differential invariants are related by equality of mixed r, t derivatives on ut and ur, and by the radial 
gNLS equation (1.1), which yields

Dr

(
r−2−n/2 exp(−ir2/(4t))(G− r2H/t + (ir4/(4t2) − nr2/(2t))v)

)
= Dt

(
r−1−n/2 exp(−ir2/(4t))(H − ir2v/(2t))

)
, (3.32)

and

i
(
G− r2H/t + (ir4/(4t2) − nr2/(2t))v

)
− r3−n/2 exp(ir2/(4t))Dr

(
r−2+n/2(H − ir2v/(2t)) exp(−ir2/(4t))

)
= kv1+2/nv̄2/n. (3.33)

Putting G = G(x, v, ̄v), H = H(x, v, ̄v) into Eqs. (3.32)–(3.33) and applying the chain rule with Eq. (3.30), 
we get a first-order system 

(2 + n/2)G + xGx − (n/2)(vGv + v̄Gv̄) + GHv −HGv + ḠHv̄ − H̄Gv̄ = 0 (3.34a)

iG + (2 − n/2)H + xHx − (n/2)(vHv + v̄Hv̄) −HHv − H̄Hv̄ = kv1+2/nv̄2/n (3.34b)

with independent variables x, v, ̄v, and dependent variables G, H (and their complex conjugates). These 
equations will be called the inversion-group resolving system for the radial gNLS equation (1.1).

The respective solution spaces of Eq. (1.1) and system (3.34) are related by a group-invariant mapping 
that is defined through the invariants (3.30) and differential invariants (3.31) similarly to the group foliations 
based on time-translation and scaling, and that preserves phase-rotation symmetry.

Lemma 5. Phase-equivariant solutions (G = g(x, |v|)v, H = h(x, |v|)v) of the inversion-group resolving sys-
tem (3.34) are in one-to-one correspondence with two-parameter families of solutions u = f(t, r, c1) exp(ic2)
of the radial gNLS equation (1.1) satisfying the pseudo-conformal invariance property

(1 + εt)−n/2 exp(−iεr2/(4 + 4εt))f(t/(1 + εt), r/(1 + εt), c1)

= f(t, r, c̃1(ε, c1)) exp(ic̃2(ε, c2)) (3.35)

(in terms of group parameter ε) for some c̃1(ε, c1) and c̃2(ε, c2), with c̃1(0, c1) = c1, c̃2(0, c2) = 0, where 
c1, c2 are the constants of integration of the pair of first-order DEs 

ut + (r/t)ur + (ir2/(4t2) + n/(2t))u

= r−2−n/2 exp(−ir2/(4t))g(t/r, rn/2 exp(ir2/(4t))u, rn/2 exp(−ir2/(4t))ū), (3.36a)

ur + ir/(2t)u

= r−1−n/2 exp(−ir2/(4t))h(t/r, rn/2 exp(ir2/(4t))u, rn/2 exp(−ir2/(4t))ū) (3.36b)
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which are invariant under the inversion (pseudo-conformal) symmetry (3.4) and the phase-rotation symme-
try (3.1).

A proof will be given in Section 4.3. Through the steps in the proof, there is a simple correspondence 
between pseudo-conformal solutions of the radial gNLS equation (1.1) and a particular class of solutions of 
the inversion-group resolving system (3.25).

Lemma 6. There is a one-to-one correspondence between two-parameter families of pseudo-conformal solu-
tions

u = r−n/2 exp(−ir2/(4t))f(t/r, c1) exp(ic2) (3.37)

of the radial gNLS equation (1.1) and phase-equivariant solutions of the inversion-group resolving system
(3.34) that satisfy the condition

G = 0. (3.38)

This result gives a direct relationship between classical reduction of the radial gNLS equation (1.1) under 
the pseudo-conformal symmetry group and a reduction of the inversion-group resolving system (3.16) under 
condition (3.38).

4. Solutions of the group-resolving systems

We will now explain how a group-invariant map relating solutions (G = g(x, v, ̄v), H = h(x, v, ̄v)) of a 
group-resolving system and two-parameter families of solutions u = f(t, r, c1) exp(ic2) of the radial gNLS 
equation (1.1) arises from integration of the pair of differential equations (3.11).

Let y be a canonical coordinate given by Xy = 1 where X is the symmetry generator used in constructing 
the group foliation. A change of variables in the differential equations (3.11) via the point transformation 
(t, r, u, ̄u) → (y, x, v, ̄v) then yields vy = g̃(x, v, ̄v) and vx = h̃(x, v, ̄v), where g̃ and h̃ are each given by a 
linear combination of G and H with coefficients depending on x, v, ̄v. This pair of first-order differential 
equations for v(y, x) inherits the invariance of the differential equations (3.11) with respect to the symmetry 
generators X and Xphas., so consequently, g̃ and h̃ can be restricted to have the phase-equivariant form 
g̃(x, v, ̄v) = ĝ(x, |v|)v and h̃(x, v, ̄v) = ĥ(x, |v|)v. Hence the first-order differential equations can be written 
as a pair of parametric ODEs

vy = ĝ(x, |v|)v, vx = ĥ(x, |v|)v (4.1)

exhibiting explicit symmetry invariance with respect to X = ∂/∂y and Xphas. = iv∂/∂v − iv̄∂/∂v̄.
It is straightforward to integrate these ODEs (4.1) after v = A exp(iΦ) is expressed in polar form, giving

Ay = ARe ĝ(x,A), Φy = Im ĝ(x,A), (4.2)

Ax = ARe ĥ(x,A), Φx = Im ĥ(x,A). (4.3)

In the case when Re ĝ �= 0, a further change of variables given by the hodograph transformation (y, x, A, Φ) →
(A, x, y, Φ) converts the polar ODEs (4.2)–(4.3) into the system

yx = −Re ĥ(x,A)/Re ĝ(x,A), yA = 1/(ARe ĝ(x,A)) (4.4)

Φx = Im ĥ(x,A) − Re ĥ(x,A) Im ĝ(x,A)/Re ĝ(x,A), ΦA = Im ĝ(x,A)/(ARe ĝ(x,A)) (4.5)
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for y(x, A) and Φ(x, A). The general solution of this system (4.4)–(4.5) is given by the line integrals

y = c1 +
∫
γ

1
ARe ĝ(x,A)dA− Re ĥ(x,A)

Re ĝ(x,A)dx, (4.6)

Φ = c2 +
∫
γ

Im ĝ(x,A)
ARe ĝ(x,A)dA +

(
Im ĥ(x,A) − Re ĥ(x,A) Im ĝ(x,A)

Re ĝ(x,A)

)
dx (4.7)

in terms of an arbitrary curve γ in the (x, A) plane. These expressions then implicitly determine

A = f1(x, y − c1), Φ = c2 + f2(x, y − c1), (4.8)

whence

v = f(x, y − c1) exp(ic2) (4.9)

for some function f = f1 exp(if2). Next, in the remaining case Re ĝ = 0, the ODEs (4.2)–(4.3) imply 
Dxĝ = 0 which leads directly to the general solution

Φ = c2 +
∫

Im ĥ(x,A(x))dx + y Im ĝ (4.10)

with A(x) being determined up to an integration constant c1 from the first-order ODE

dA

dx
= ARe ĥ(x,A). (4.11)

Hence

A = f1(x, c1), Φ = c2 + f2(x, c1) + (Im ĝ)y, (4.12)

which thereby determines

v = f(x, y, c1) exp(ic2), |f |y = 0, (arg f)y = const. (4.13)

for some function f = f1 exp(i(f2 + (Im ĝ)y)). Finally, changing variables (y, x, v, ̄v) back to (t, r, u, ̄u) in 
the formulas (4.9) and (4.13), we obtain a two-parameter family of solutions u = f(t, r, c1) exp(ic2) of the 
radial gNLS equation (1.1).

We will next explain the separation technique for finding explicit solutions of the group-resolving systems 
(3.16), (3.25), (3.34) for the radial gNLS equation (1.1). These systems can be written in the general form

(
Υ(G,H)
G + Ψ(H)

)
=

(
0

−ikv1+p/2v̄p/2

)
(4.14)

where Ψ and Υ are quadratically nonlinear first-order differential operators that possesses the following two 
properties:
(1) homogeneity 

Υ(αv + βvbv̄a, γv + λvbv̄a) = νv + μvbv̄a, (4.15a)

Ψ(αv + βvbv̄a) = νv + μvbv̄a + εv2b−1v̄2a + κva+bv̄a+b−1, (4.15b)

with α, β, ε, κ, λ, ν, μ denoting functions only of x;
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(2) phase invariance 

Xphas.Υ(va+1v̄a, vb+1v̄b) = iΥ(va+1v̄a, vb+1v̄b), (4.16a)

Xphas.Ψ(vb+1v̄b) = iΨ(vb+1v̄b). (4.16b)

Based on these properties (4.15) and (4.16), a system (4.14) can be expected to have phase-equivariant 
solutions given by the separable power form

H = h1(x)v + h2(x)va+1v̄a, a �= 0, (4.17)

G = −Ψ(h1(x)v + h2(x)va+1v̄a) − ikv1+p/2v̄p/2, a �= 0. (4.18)

In particular, the homogeneity properties (4.15) show that the v term in H will produce terms in Ψ(H) and 
Υ(G, H) that contain the same powers v,va+1v̄a already appearing in H and G. Note that these expressions 
(4.17)–(4.18) for (H, G) have the equivalent phase-equivariant form

H = h(x, |v|)v, G = g(x, |v|)v (4.19)

given by

h = h1 + h2|v|2a, g = −ik|v|p − ν − μ|v|2a − (ε + κ)|v|4a, a �= 0, (4.20)

where ν, μ, ε + κ are certain functions of h1(x) and h2(x).
The separation of variables ansatz (4.17)–(4.18) for (H, G) is more general than the two-term ansatzes 

used in previous work [4–6] where the terms in G were restricted to contain the same powers as the terms 
in H, e.g.

(
H

G

)
=

(
h1
g1

)
v +

(
h2
g2

)
va+1v̄a, a �= 0.

Under the improved ansatz (4.17)–(4.18), a group-resolving system (4.14) will reduce to a single equation 
containing the monomial powers v, va+1v̄a, v2a+1v̄2a, v3a+1v̄3a, v1+p/2v̄p/2, va+1+p/2v̄a+p/2, with coefficients 
that depend on the complex functions h1(x), h2(x), the exponents a, p, and the dimension n. From all possible 
balances among these monomial powers, five cases arise:

a = −p/2; a = p/2; a = p/4; a = p/6; a �= −p/2, p/2, p/4, p/6. (4.21)

In each case, the separate coefficients of the monomials must vanish, resulting in an overdetermined system 
of algebraic-differential equations for the unknowns

Reh1(x), Im h1(x),Reh2(x), Im h2(x), a, p, n. (4.22)

Such systems can be solved by a systematic integrability analysis, which we have carried out using the 
computer algebra program Crack [26]. A typical computation is shown in the webpage: lie.ac.brocku.ca/
twolf/papers/AnFeWo2015/readme.txt.

4.1. Results for the time-translation-group resolving system

The overdetermined systems of algebraic-differential equations that arise from reduction of the time-
translation-group resolving system (3.16) under the separation of variables ansatz (4.17)–(4.18) are found 

http://lie.ac.brocku.ca/twolf/papers/AnFeWo2015/readme.txt
http://lie.ac.brocku.ca/twolf/papers/AnFeWo2015/readme.txt
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to admit non-zero solutions (h1(x), h2(x)) only in the cases a = p/2, a = p/4, and a = 1/n. For p �= 0 and 
n �= 1, the solutions are given by:

h1 = h2 = 0; (4.23)

h1 = Reh2 = 0, (x−1h2)′ = 0,

a = 1/n, n �= 0; (4.24)

h1 = (2 − n)x−1, Reh2 = 0, h2
2 = 2k(2 − n)/n,

a = p/4, p = 2/(2 − n), n �= 2; (4.25)

h1 = (2 − n)x−1, Reh2 = 0, h2
2 = −k,

a = p/4, p = 2(3 − n)/(n− 2), n �= 2, 3; (4.26)

h1 = (2 − n)x−1, Im h2 = 0, h2
2 = (2 − n)k,

a = p/4, p = 2(3 − n)/(n− 2), n �= 2, 3; (4.27)

h1 = Im h2 = 0, h′
2 + (n− 1)x−1h2 + k = 0,

a = −1/2, p = −1; (4.28)

Im h1 = Im h2 = 0, h′
1 + h1

2 + (n− 1)x−1h1 = 0,

h′
2 + (h1 + (n− 1)x−1)h2 + k = 0,

a = −1/2, p = −1; (4.29)

Im h1 = Im h2 = 0, x2h′′
1 + (2x2h1 + (n− 1)x)h′

1 − (n− 1)h1 = 0,

h′
2 + (h1 + (n− 1)x−1)h2 + k = 0,

a = −1/2, p = −1. (4.30)

It is simple to integrate the ODEs in Eqs. (4.24), (4.28), (4.29). The ODEs in Eq. (4.30) can be solved 
in terms of Bessel functions by the following steps.

ODE (4.30) for h1(x) has an integrating factor x−2, which yields

h′
1 + h1

2 + (n− 1)x−1h1 = C1 (4.31)

with C1 �= 0. (Note the case C1 = 0 is covered by Eq. (4.29).) This first-order ODE (4.31) is a Riccati 
equation which can be converted into Bessel’s equation by the transformation h1 = (x1−n/2f)′/(x1−n/2f), 
giving

x2f ′′ + xf ′ − (ν2 + C1x
2)f = 0, ν =

{
1 − n/2, n ≤ 2
n/2 − 1, n ≥ 2 . (4.32)

The form of solutions depends on the sign of C1:

fν = C2Jν(
√
−C1x) + C3Yν(

√
−C1x) for C1 < 0, (4.33)

fν = C2Iν(
√

C1x) + C3e
νπiKν(

√
C1x) for C1 > 0. (4.34)

Hence

h1 = f ′
ν/fν ± νx−1, ν = ±(1 − n/2) ≥ 0 (4.35)

yields the general solution for h1(x). Then ODE (4.30) for h2(x) becomes
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(xn/2fνh2)′ = −kxn/2fν . (4.36)

To integrate this Eq. (4.36), we consider the cases C1 > 0 and C1 < 0 separately.
For the case C1 < 0, we will use the Bessel function identity

z∓μfμ±1(z) = ∓(z∓μfμ(z))′. (4.37)

First apply this identity to the right-hand-side of Eq. (4.36) with z =
√
|C1|x and μ = ν ∓ 1 = ∓n/2:

xn/2fν =
{
x1−νfν = −(

√
1/|C1|xn/2fν−1)′, n ≤ 2

x1+νfν = (
√

|1/C1|xn/2fν+1)′, n ≥ 2
. (4.38)

Then Eq. (4.36) can be directly integrated to get

h2 =
{

(k/
√

|C1|)fν−1/fν + C4x
−n/2/fν , n ≤ 2

−(k/
√

|C1|)fν+1/fν + C4x
−n/2/fν , n ≥ 2

. (4.39)

Eq. (4.35) can be written in a similar form through the identity (4.37) with z =
√
|C1|x and μ = ν =

±(1 − n/2):

h1 =
{√

|C1|fν−1/fν , n ≤ 2
−
√
|C1|fν+1/fν , n ≥ 2

. (4.40)

Hence we obtain

h1 = ±
√

|C1|f∓n/2/f|1−n/2|, (4.41)

h2 = ±(k/
√

|C1|)f∓n/2/f|1−n/2| + C4x
−n/2/f|1−n/2|, (4.42)

where the signs are determined by ±(1 −n/2) ≥ 0, and where fν is given by the linear combination of Bessel 
functions (4.33).

The case C1 > 0 is similar but uses the modified Bessel function identity

z∓μfμ±1(z) = (z∓μfμ(z))′. (4.43)

This leads to

h1 =
√
C1f∓n/2/f|1−n/2|, (4.44)

h2 = −(k/
√

C1)f∓n/2/f|1−n/2| + C4x
−n/2/f|1−n/2|, (4.45)

where the signs are again determined by ±(1 − n/2) ≥ 0, while fν is given by the linear combination of 
modified Bessel functions (4.34).

Taking into account special cases in the integration of ODEs (4.24), (4.28), (4.29), (4.30), we obtain 12 
solutions for (h1(x), h2(x)) from Eqs. (4.23)–(4.30). We now list the resulting solutions for (H, G).

Proposition 1. For p �= 0 and n �= 1, the ansatz (4.17)–(4.18) yields 12 phase-equivariant solutions of the 
time-translation-group resolving system (3.16):
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H = 0, G = −ik|v|pv; (4.46)

H = iC1x|v|2/nv, G =
(
iC1

2x2|v|4/n + C1n|v|2/n − ik|v|p
)
v,

n �= 0, C1 �= 0; (4.47)

H =
(
(2 − n)x−1 ± i

√
2k(1 − 2/n)|v|1/(2−n)

)
v,

G =
(
±(4 − n)

√
2k(1 − 2/n)x−1|v|1/(2−n) + ik(1 − 4/n)|v|2/(2−n)

)
v,

p = 2/(2 − n), k(1 − 2/n) > 0, n �= 2; (4.48)

H =
(
(2 − n)x−1 ± i

√
k|v|(3−n)/(n−2)

)
v, G = 0,

p = 2(3 − n)/(n− 2), k > 0, n �= 2, 3; (4.49)

H =
(
(2 − n)x−1 ∓

√
(2 − n)k|v|(n−3)/(2−n)

)
v, G = 0,

p = 2(3 − n)/(n− 2), k(2 − n) > 0, n �= 2, 3; (4.50)

H = (−(k/n)x + C1x
1−n)|v|−1v, G = 0,

p = −1, n �= 0; (4.51)

H = x(C1 − k ln x)|v|−1v, G = 0,

p = −1, n = 0; (4.52)

H =
(
(2 − n)(x + C1x

n−1)−1(1 + (C2 + (k/(2n))x2)|v|−1) − (k/n)x|v|−1) v, G = 0,

p = −1, n �= 0, 2; (4.53)

H =
(
x(x2 + C1)−1(2 − (kC1 ln x + C2)|v|−1) − (k/2)x|v|−1) v, G = 0,

p = −1, n = 0; (4.54)

H =
(
(ln x + C1)−1x−1(1 + (C2 + (k/4)x2)|v|−1) − (k/2)x|v|−1) v, G = 0,

p = −1, n = 2; (4.55)

H = ±
√
C1

(
C2J|1−n/2|(

√
C1x) + C3Y|1−n/2|(

√
C1x)

)−1

×
(
(C2J∓n/2(

√
C1x) + C3Y∓n/2(

√
C1x))(1 + (k/C1)|v|−1) + C4x

−n/2|v|−1
)
v,

G = iC1v,

p = −1, ±(1 − n/2) ≥ 0, C1 > 0; (4.56)

H =
√
C1

(
C2I|1−n/2|(

√
C1x) + C3e

iπ|1−n/2|K|1−n/2|(
√

C1x)
)−1

×
(
(C2I∓n/2(

√
C1x) + C3e

∓iπn/2K∓n/2(
√

C1x))(1 − (k/C1)|v|−1) + C4x
−n/2|v|−1

)
v,

G = −iC1v,

p = −1, ±(1 − n/2) ≥ 0, C1 > 0. (4.57)

Solutions (4.49)–(4.55) satisfy the translation-invariance condition (3.20).

For each phase-equivariant solution (G = g(x, |v|)v, H = h(x, |v|)v) of the time-translation-group re-
solving system (3.16), the differential invariants (3.13) of Xtrans. yield a pair of DEs (3.18) which take the 
form

vy = ut = G = g(x, |v|)v, vx = ur = H = h(x, |v|)v (4.58)
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expressed in terms of the invariants x = r, v = u, v̄ = ū and the canonical coordinate y = t of Xtrans.. These 
DEs determine a two-parameter family of solutions u = f(t, r, c1) exp(ic2) of the radial gNLS equation (1.1), 
corresponding to orbits of the two-dimensional symmetry group G generated by Xtrans. and Xphas.. In the 
notation (4.1), with ĝ = g and ĥ = h, the explicit polar form u = A exp(iΦ) of the solution families is given 
by the line integral formula (4.6)–(4.7) in the case Re ĝ �= 0 and the integration formula (4.10)–(4.11) in the 
case Re ĝ = 0. Hence, these formulas establish a group-invariant mapping from phase-equivariant solutions 
of the time-translation-group resolving system (3.16) into a class of solutions of the radial gNLS equation 
(1.1) satisfying the time-translation invariance property (3.17), where

c̃1 = c1 − ε, c̃2 = 0, when Re ĝ �= 0, (4.59)

c̃1 = c1, c̃2 = (Im ĝ)ε, when Re ĝ = 0. (4.60)

An inverse mapping can be constructed in each case by the following steps.
Consider the case of solutions of the radial gNLS equation (1.1) having the two-parameter form u =

f(t + c1, r) exp(ic2) with |f |c1 �= 0 holding in some open domain in the (t, r) plane. Under the change of 
variables t = y, r = x, u = v, each such solution determines a function (4.9) from which the differential 
invariants (3.13) of Xtrans. are given by

G = ut = vy = g(y + c1, x)v, H = ur = vx = h(y + c1, x)v (4.61)

as written in terms of the functions g = (ln |v| + i arg v)y and h = (ln |v| + i arg v)x. These two functions are 
related by the differential identity

DxG = DyH (4.62)

and the radial gNLS equation

iG = x1−nDx(xn−1H) + kv1+p/2v̄p/2. (4.63)

Now, from the relation |v| = |f(y + c1, x)|, since |f |c1 = |f |y �= 0 holds locally in the (y, x) plane, the 
implicit function theorem can be used to express y+ c1 = F (x, |v|) in terms of some function F . When this 
expression is substituted into g and h, they each become a function of just x and |v|. Hence the differential 
invariants (4.61) become phase-equivariant functions of x, v, ̄v, which satisfy the time-translation-group 
resolving system (3.16) as consequence of Eqs. (4.62)–(4.63).

Finally, consider the case of solutions of the radial gNLS equation (1.1) given by the two-parameter 
form u = f(t, r, c1) exp(ic2) with |f |t = 0, (arg f)t = const., and |f |c1 �= 0 holding in some open domain 
in the (t, r) plane. Each such solution determines a function (4.13) after the change of variables t = y, 
r = x, u = v. The differential invariants (3.13) of Xtrans. again have the form (4.61) in terms of two 
functions g = (ln |v| + i arg v)y and h = (ln |v| + i arg v)x, satisfying Eqs. (4.62) and (4.63). Now, since 
|f |t = |f |y = 0 and |f |c1 �= 0 hold locally in the (y, x) plane, the implicit function theorem can be applied 
to the relation |v| = |f(y, x, c1)|, giving c1 = F (x, |v|) in terms of some function F . This expression allows 
c1 to be eliminated from h which then yields a function of just x and |v|, while g = (ln |f | + i arg f)y
reduces to a constant as a consequence of |f |y = 0 and (arg f)y = const.. The differential invariants (4.61)
thereby become phase-equivariant functions of x, v, ̄v, which satisfy the time-translation-group resolving 
system (3.16) due to Eqs. (4.62)–(4.63).

This completes the proof of Lemma 1.
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4.2. Results for the scaling-group resolving system

The overdetermined systems of algebraic-differential equations obtained by reduction of the scaling-group 
resolving system (3.25) under the separation of variables ansatz (4.17)–(4.18) are found to admit non-zero 
solutions (h1(x), h2(x)) only in the cases a = p/2, a = p/4, a �= −p/2, p/2, p/4, p/6. For p �= 0 and n �= 1, 
this yields the solutions:

h1 = h2 = 0; (4.64)

h1 = −i/(2x), h2 = 0; (4.65)

h1 = Reh2 = 0, h′
2 = 0,

a = 1/n, p = 2/n, n �= 0; (4.66)

h1 = 2 − n, Reh2 = 0, h2
2 = 2k(2 − n)/n,

a = p/4, p = 2/(2 − n), n �= 2; (4.67)

h1 = 2 − n, Im h2 = 0, h2
2 = k(2 − n),

a = p/4, p = 2(3 − n)/(n− 2), n �= 2, 3; (4.68)

h1 = 2 − n, Reh2 = 0, h2
2 = −k,

a = p/4, p = 2(3 − n)/(n− 2), n �= 2, 3; (4.69)

h1 = 2 − n, h2 = −k/2,

a = −1/2, p = −1; (4.70)

h1 = 0, h2 = −k/n,

a = −1/2, p = −1, n �= 0, 2; (4.71)

h1 = −1, h2 = −ikx,

a = −1/2, p = −1, n = 3; (4.72)

h1 = −i/(2x), h2 = k/4,

a = −1/2, p = −1, n = −4; (4.73)

h1 = 6 − i/(2x), h2 = −k/2,

a = −1/2, p = −1, n = −4; (4.74)

h1 = 2 − n− i/(2x), Im h2 = 0, h2
2 = −kn(n + 2),

a = 1/n, p = 4/n, n2 − n− 4 = 0; (4.75)

h1 = 2 − n− i/(2x), Reh2 = 0, h2
2 = −k,

a = 1/n, p = 4/n, n2 − n− 4 = 0, k > 0; (4.76)

h1 = 2/3 − i/(2x), Reh2 = 0, h2
2 = k,

a = 3/4, p = 3, n = 4/3, k < 0; (4.77)

h1 = −1 − i/(2x), h2 = −i(2k/5)x,

a = −1/2, p = −1, n = 3; (4.78)

Im h1 = −1/(4x), Im h2 = 0, 2xh′
2 + (4 − Reh1)h2 − k = 0,

4x2(Reh1)′ − 2x(Reh1 − 6) Reh1 − 1/(8x) = 0,

a = −1/2, p = −4, n = −1; (4.79)
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Im h1 = −1/(4x), Im h2 = 0, 2xh′
2 + (4 − Reh1)h2 − k = 0,

4x2(Reh1)′′ + 4x(5 − Reh1)(Reh1)′ − 2(Reh1)2 + 12 Reh1 + 1/(8x2) = 0,

a = −1/2, p = −4, n = −1. (4.80)

The ODEs in Eq. (4.79) can be solved in terms of Bessel functions by the following steps. First, the 
Riccati transformation Reh1 = −2x2(x−1f)′/f converts the first-order nonlinear ODE for Reh1 into the 
second-order linear ODE

x2f ′′ + 2xf ′ − (2 − x−2/64)f = 0. (4.81)

A change of variables x = 1/(8z) and f(x) = z1/2f̃(z) transforms this ODE (4.81) into Bessel’s equation

z2f̃ ′′ + zf̃ ′ + (z2 − 9/4)f̃ = 0 (4.82)

whose general solution is a linear combination of Bessel functions J3/2 and Y3/2. Then the general solution 
for ODE (4.81) is given by

f = (8x)−1/2(C1J3/2(1/(8x)) + C2Y3/2(1/(8x))). (4.83)

This yields the general solution for Reh1(x),

Reh1 = (4x)−1C1J1/2(1/(8x)) + C2Y1/2(1/(8x))
C1J3/2(1/(8x)) + C2Y3/2(1/(8x)) . (4.84)

Next, the remaining ODE for h2(x) in Eq. (4.79) becomes

(xfh2)′ = (k/2)f (4.85)

which can be directly integrated to get

h2 = (k/4)
(

1 − C1Si(1/(8x)) − C2Ci(1/(8x)) + C3

2
√
πx(C1J3/2(1/(8x)) + C2Y3/2(1/(8x)))

)
(4.86)

in terms of the Sine integral Si(x) and Cosine integral Ci(x) [1].
Similarly, the ODEs in Eq. (4.80) can be solved in terms of Coulomb functions by the following steps. 

First, the second-order ODE for Reh1(x) reduces by direct integration to a first-order ODE

4x2(Reh1)′ − 2x(Reh1 − 6) Reh1 − 1/(8x) + C1 = 0 (4.87)

with C1 �= 0. (Note the case C1 = 0 is covered by Eq. (4.79).) This ODE (4.87) is a Riccati equation 
which can be converted into a Coulomb wave equation by the transformations Reh1 = 2(zf(z))′/f(z) and 
z = 1/(8x), giving

f ′′ + (1 − C1/z − 2/z2)f = 0. (4.88)

The general solution is given by

f = C2F1(C1/2, z) + C3G1(C1/2, z) (4.89)

in terms of the regular and irregular Coulomb wave functions FL and GL [1]. Hence
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Reh1 = −C1/(8x) +
√

4 + C2
1 (C2F0(C1/2, 1/(8x)) + C3G0(C1/2, 1/(8x)))

8x(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x))) (4.90)

yields the general solution for Reh1(x). Next, the ODE for h2(x) remaining in Eq. (4.80) becomes

(xfh2)′ = (k/2)f. (4.91)

By directly integrating this ODE, we obtain

h2 =
k
∫ x

C4
(C2F1(C1/2, 1/(8ξ)) + C3G1(C1/2, 1/(8ξ)))dξ

2x(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x))) . (4.92)

Altogether from Eqs. (4.64)–(4.80) we obtain 17 solutions for (h1(x), h2(x)). We now list the resulting 
solutions for (H, G).

Proposition 2. For p �= 0 and n �= 1, the ansatz (4.17)–(4.18) yields 17 phase-equivariant solutions of the 
scaling-group resolving system (3.25):

H = 0, G = −ik|v|pv; (4.93)

H = −(i/2)x−1v, G =
(
−(n/2)x−1 + (i/4)x−2 − ik|v|p

)
v; (4.94)

H = iC1|v|2/nv, G =
(
iC1

2|v|4/n + (C1n− ik)|v|2/n
)
v,

p = 2/n, n �= 0; (4.95)

H =
(
2 − n∓ i

√
2k(1 − 2/n)|v|p/2

)
v,

G =
(
ik(1 − 4/n)|v|p ∓

√
2k(1 − 2/n)(4 − n)|v|p/2

)
v,

p = 2/(2 − n), n(n− 2)/k > 0, n �= 2; (4.96)

H =
(
2 − n∓

√
k(2 − n)|v|p/2

)
v, G = 0,

p = 2(3 − n)/(n− 2), k(2 − n) > 0, n �= 2, 3; (4.97)

H =
(
2 − n∓ i

√
k|v|p/2

)
v, G = 0,

p = 2(3 − n)/(n− 2), k > 0, n �= 2, 3; (4.98)

H =
(
2 − n− (k/2)|v|−1) v, G = 0,

p = −1; (4.99)

H = −(k/n)|v|−1v, G = 0,

p = −1, n �= 0, 2; (4.100)

H =
(
−1 − ikx|v|−1) v, G =

(
ik2x2|v|−2 − ik|v|−1) v,

p = −1, n = 3; (4.101)

H =
(
−(i/2)x−1 + (k/4)|v|−1) v, G =

(
(i/4)x−2 + 2x−1 − (k/4)x−1|v|−1) v,

p = −1, n = −4; (4.102)

H =
(
6 − i/(2x) − (k/2)|v|−1) v, G =

(
−4x−1 + (i/4)x−2 + (k/2)x−1|v|−1) v,

p = −1, n = −4; (4.103)

H =
(
2 − n− (i/2)x−1 ±

√
−kn/(n + 2)|v|2/n

)
v,
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G =
(
−(n + 4)/(2n + 4) + i/(4x))x−1 ∓

√
−kn/(n + 2)x−1|v|2/n

)
v,

p = 4/n, n2 − n− 4 = 0, kn < 0; (4.104)

H =
(
2 − n− (i/2)x−1 ± i

√
k|v|2/n

)
v,

G =
(
(−4/(n + 3) + i/(4x))x−1 ∓ i

√
kx−1|v|2/n

)
v,

p = 4/n, n2 − n− 4 = 0, k > 0; (4.105)

H =
(
2/3 − (i/2)x−1 ± i

√
−k|v|3/2

)
v,

G =
(
−(8/3)x−1 + (i/4)x−2 ∓

√
−k(i/x− 8/3)|v|3/2 − 2ik|v|3

)
v,

p = 3, n = 4/3, k < 0; (4.106)

H =
(
−1 − (i/2)x−1 − i(2k/5)x|v|−1) v,

G =
(
−(1/2)x−1 + (i/4)x−2 + i(4k2/25)x2|v|−2 − i(3k/5)|v|−1) v,
p = −1, n = 3; (4.107)

H =
(
C1 sin(1/(8x)) − C2 cos(1/(8x)) − (k/8)(C1Si(1/(8x)) − C2Ci(1/(8x)) + C3)|v|−1

4x
(
(8xC1 − C2) sin(1/(8x)) − (8xC2 + C1) cos(1/(8x))

)
− i/(4x) + (k/4)|v|−1

)
v,

G =
(
C1 sin(1/(8x)) − C2 cos(1/(8x)) − (k/8)(C1Si(1/(8x)) − C2Ci(1/(8x)) + C3)|v|−1

8x2
(
(8xC1 − C2) sin(1/(8x)) − (8xC2 + C1) cos(1/(8x))

)
+ 1/x + i/(8x2) − (k/(8x))|v|−1

)
v,

p = −1, n = −4; (4.108)

H =
(

(−2i − C1)/(8x) +
√

4 + C2
1 (C2F0(C1/2, 1/(8x)) + C3G0(C1/2, 1/(8x)))

8x(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x)))

+
k
∫ x

C4
(C2F1(C1/2, 1/(8ξ)) + C3G1(C1/2, 1/(8ξ)))dξ

2x(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x))) |v|−1
)
v,

G =
(

(1 − iC1/2)(1 + i/(8x))/x−
√

4 + C2
1 (C2F0(C1/2, 1/(8x)) + C3G0(C1/2, 1/(8x)))

16x2(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x)))

−
k
∫ x

C4
(C2F1(C1/2, 1/(8ξ)) + C3G1(C1/2, 1/(8ξ)))dξ

4x2(C2F1(C1/2, 1/(8x)) + C3G1(C1/2, 1/(8x))) |v|−1
)
v,

p = −1, n = −4. (4.109)

None of these solutions satisfy the scaling-invariance condition (3.29).

By means of the invariants x = t/r2, v = r2/pu, v̄ = r2/pū and the canonical coordinate y = (1/2) ln t of 
Xscal., we can write the differential invariants (3.22) of Xscal. in terms of x, y-derivatives

G = r2Dtv = vx + (2x)−1vy, H = rDrv − (2/p)v = −2xvx − (2/p)v. (4.110)

Hence, each phase-equivariant solution (G = g(x, |v|)v, H = h(x, |v|)v) of the scaling-group resolving system 
(3.25) yields a pair of DEs (3.27) given by 



778 S.C. Anco et al. / J. Math. Anal. Appl. 427 (2015) 759–786
vy = 2xG + H + (2/p)v = (2xg(x, |v|) + h(x, |v|) + 2/p)v, (4.111a)

vx = −(2x)−1(H + (2/p)v) = −(2x)−1(h(x, |v|) + 2/p)v. (4.111b)

These DEs determine a two-parameter family of solutions u = f(t, r, c1) exp(ic2) of the radial gNLS equation 
(1.1), corresponding to orbits of the two-dimensional symmetry group G generated by Xscal. and Xphas.. In 
polar form u = r−2/pA exp(iΦ), the solution families are given by the line integral formula (4.6)–(4.7) in 
the case Re ĝ �= 0 and the integration formula (4.10)–(4.11) in the case Re ĝ = 0, using the notation ĝ =
2xg+h +2/p and ĥ = −(2x)−1(h +2/p). This establishes a group-invariant mapping from phase-equivariant 
solutions of the scaling-group resolving system (3.25) into a class of solutions of the radial gNLS equation 
(1.1) satisfying the scaling invariance property (3.26), with the integration constants given by expressions 
(4.59)–(4.60) in terms of the group parameter λ = exp(ε). An inverse mapping can be constructed by the 
same steps explained for the time-translation-group resolving system.

This completes the proof of Lemma 3. The proof of Lemma 4 corresponds to the integration case ĝ = 0.

4.3. Results for the inversion-group resolving system

The overdetermined systems of algebraic-differential equations arising from reduction of the inversion-
group resolving system (3.34) under the separation of variables ansatz (4.17)–(4.18) with p = 4/n admit 
non-zero solutions (h1(x), h2(x)) only in the cases a = 2/n, a = 1/n, a �= −2/n, 1/n, 2/n, 2/(3n). For 
n �= 0, 1, the solutions are given by:

h1 = h2 = 0; (4.112)

h1 = Reh2 = 0, (xh2)′ = 0,

a = 1/n; (4.113)

h1 = 2 − n, Im h2 = 0, h2
2 = −kn/(n + 2),

a = 1/n, n2 − n− 4 = 0, kn < 0; (4.114)

h1 = 2 − n, Reh2 = 0, h2
2 = −k,

a = 1/n, n2 − n− 4 = 0, k > 0; (4.115)

h1 = 2/3, Reh2 = 0, h2
2 = k,

a = 1/n, n = 4/3, k < 0; (4.116)

h1 = Im h2 = 0, xh′
2 + 4h2 − k = 0,

a = −1/2, n = −4; (4.117)

Im h1 = Im h2 = 0, xh′
1 − h2

1 + 6h1 = 0, xh′
2 + (4 − h1)h2 − k = 0,

a = −1/2, n = −4; (4.118)

Im h1 = Im h2 = 0, x2h′′
1 − x(2h1 − 9)h′

1 − 2h1(h1 − 6) = 0,

xh′
2 + (4 − h1)h2 − k = 0,

a = −1/2, n = −4. (4.119)

The ODEs in Eqs. (4.113), (4.117), (4.118) are simple to solve, while the ODEs in Eq. (4.119) can be 
solved in terms of Bessel functions by the same steps used to solve the similar ODEs in Eq. (4.30). Altogether 
from Eqs. (4.112)–(4.119) we obtain 9 solutions for (h1(x), h2(x)). We now list the resulting solutions for 
(H, G).
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Proposition 3. For n �= 0, 1, the ansatz (4.17)–(4.18) yields 9 phase-equivariant solutions of the inversion-
group resolving system (3.34) with p = 4/n:

H = 0, G = −ik|v|4/nv; (4.120)

H = iC1x
−1|v|2/nv, G =

(
iC2

1x
−2|v|4/n + C1nx

−1|v|2/n − ik|v|4/n
)
v,

C1 �= 0; (4.121)

H =
(
2/3 ± i

√
−k|v|3/2

)
v, G =

(
±(8/3)

√
−k|v|3/2 − i2k|v|3

)
v,

n = 4/3, k < 0; (4.122)

H =
(
2 − n±

√
−kn/(n + 2)|v|2/n

)
v, G = 0,

n2 − n− 4 = 0, kn < 0; (4.123)

H =
(
2 − n± i

√
k|v|2/n

)
v, G = 0,

n2 − n− 4 = 0, k > 0; (4.124)

H = (C1x
−4 + k/4)|v|−1v, G = 0,

n = −4; (4.125)

H =
(
(1 + C1x

6)−1(6 + (k/4)(C2x
2 − 3)|v|−1) + (k/4)|v|−1) v, G = 0,

n = −4; (4.126)

H =
(√

C1

(
x(C2J3(

√
C1/x) + C3Y3(

√
C1/x))

)−1

×
(
(C2J2(

√
C1/x) + C3Y2(

√
C1/x))(1 + (k/C1)x2|v|−1) + C4|v|−1

))
v,

G = iC1x
−2v,

n = −4, C1 > 0; (4.127)

H =
(√

C1

(
x(C2I3(

√
C1/x) + C3e

i3πK3(
√

C1/x))
)−1

×
(
(C2I2(

√
C1/x) + C3e

i2πK2(
√

C1/x))(1 − (k/C1)x2|v|−1) + C4|v|−1
))

v,

G = −iC1x
−2v,

n = −4, C1 > 0. (4.128)

Only solutions (4.123)–(4.126) satisfy the pseudo-conformal-invariance condition (3.38).

The invariants (3.30) and the canonical coordinate y = −1/t of Xinver. can be used to write the differential 
invariants (3.31) of Xinver. in the form of x, y-derivatives

G = r2(Dtv + (r/t)Drv) = x−2vy, H = rDrv − (n/2)v = −xvx − (n/2)v. (4.129)

Then each solution (G = g(x, |v|)v, H = h(x, |v|)v) of the inversion-group resolving system (3.34) yields a 
pair of DEs (3.36) given by

vy = x2G = x2g(x, |v|)v, vx = −x−1(H + (n/2)v) = −x−1(h(x, |v|) + n/2)v (4.130)
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which determines a two-parameter family of solutions u = f(t, r, c1) exp(ic2) of the radial gNLS equation 
(1.1), corresponding to orbits of the two-dimensional symmetry group G generated by Xinver. and Xphas.. 
These solution families are given by the polar form u = r−2/pA exp(i(Φ −r2/(4t))) obtained from the line in-
tegral formula (4.6)–(4.7) in the case Re ĝ �= 0 and the integration formula (4.10)–(4.11) in the case Re ĝ = 0, 
where ĝ = x2g and ĥ = −x−1(h + n/2). This establishes a group-invariant mapping from phase-equivariant 
solutions of the inversion-group resolving system (3.34) into solutions of the radial gNLS equation (1.1)
satisfying the pseudo-conformal invariance property (3.35) such that the relations (4.59)–(4.60) hold. An 
inverse mapping can be constructed using the same steps explained for the time-translation-group resolving 
system.

This completes the proof of Lemma 5, while the proof of Lemma 6 corresponds to the integration case 
ĝ = 0.

5. Main results

Here we will write out all of the radial gNLS solutions u(t, r) arising from Propositions 1, 2, and 3, via 
the quadrature formulas (4.6)–(4.7) and (4.10)–(4.11).

Theorem 1. The radial gNLS equation (1.1) has the following exact solutions arising from the explicit 
solutions of the group resolving systems (3.16), (3.25), (3.34) for n �= 1:

u = (c2/k)1/p exp(ic1 − ic2t); (5.1)

u = (c2 + c3t)−n/2 exp
(
ic1 −

ic3r2

4(c2 + c3t)
+ 2ik

c3(np− 2)(c2 + c3t)1−np/2
)
,

p �= 2/n, n �= 0, c3 �= 0; (5.2)

u = (c2 + c3t)−n/2 exp
(
ic1 −

ic3r2

4(c2 + c3t)
− ik

c3
ln |c2 + c3t|

)
,

p = 2/n, n �= 0, c3 �= 0; (5.3)

u = (±
√

n(n− 2)/(2k))2−n
(
(c2 + (n− 4)t)/r

)n−2 exp
(
ic1 + i(1 − n/2)r2/(c2 + (n− 4)t)

)
,

p = 2/(2 − n), n(n− 2)/k > 0, n �= 2; (5.4)

u =
(
k(n− 3)2/(2 − n)3

)(2−n)/(6−2n)(
r + c2r

3−n
)(2−n)/(3−n) exp(ic1),

p = 2(3 − n)/(n− 2), k(2 − n) > 0, n �= 2, 3; (5.5)

u =
(
c22(n− 2)2/k

)(n−2)/(6−2n)
r2−n exp(ic1 + ic2rn−2),

p = 2(3 − n)/(n− 2), k > 0, n �= 2, 3, c2 �= 0; (5.6)

u =
(
−k/c6 + r1−n/2(c2J|1−n/2|(

√
c6r) + c3Y|1−n/2|(

√
c6r)

)

×
(
1 + c5

r∫
c4

z−1(c2J|1−n/2|(
√
c6z) + c3Y|1−n/2|(

√
c6z))−2 dz

))
exp(ic1 + ic6t),

p = −1, c6 > 0; (5.7)

u =
(
k/c6 + r1−n/2(c2I|1−n/2|(

√
c6r) + c3K|1−n/2|(

√
c6r)

)

×
(
1 + c5

r∫
c4

z−1(c2I|1−n/2|(
√
c6z) + c3K|1−n/2|(

√
c6z))−2 dz

))
exp(ic1 − ic6t),

p = −1, c6 > 0; (5.8)
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u = (−kr2/(2n) + c3r
2−n + c2) exp(ic1),

p = −1, n �= 0, 2; (5.9)

u = (c2/(rt1/2)) exp
(
ic1 − ir2/(4t) − 2ikrt3/2/(5c2) + ik2t4/(25c22)

)
,

p = −1, n = 3; (5.10)

u = (c2/r) exp
(
ic1 − iktr/c2 + ik2t3/(3c22)

)
,

p = −1, n = 3; (5.11)

u = (−kr2/4 + c3 ln r + c2) exp(ic1),

p = −1, n = 2; (5.12)

u = (−(k/2)r2 ln r + c3r
2 + c2) exp(ic1),

p = −1, n = 0; (5.13)

u =
(
(k/8)r2 + c3r

6/t4 + c2t
2) exp(ic1 − ir2/(4t)),

p = −1, n = −4; (5.14)

u =
(
−(k/c6)t2 + (r3/t) (c2J3(

√
c6r/t) + c3Y3(

√
c6r/t))

×
(
1 + c5

r/t∫
c4

z−1(c2J3(
√
c6z) + c3Y3(

√
c6z))−2 dz

))
exp

(
ic1 − ic6/t− ir2/(4t)

)
,

p = −1, n = −4, c6 > 0; (5.15)

u =
(

(k/c6)t2 + (r3/t)(c2I3(
√
c6r/t) + c3K3(

√
c6r/t))

×
(
1 + c5

r/t∫
c4

z−1(c2I3(
√
c6z) + c3K3(

√
c6z))−2 dz

))
exp

(
ic1 + ic6/t− ir2/(4t)

)
,

p = −1, n = −4, c6 > 0; (5.16)

u =
(
±
√

−k(1 + 3/n)/2
)−n/2(

r + c2t
−1+4/nr2(1−2/n))−n/2 exp(ic1 − ir2/(4t)),

p = 8/(1 ±
√

17) = (±
√

17 − 1)/2, n = (1 ±
√

17)/2, kn < 0; (5.17)

u =
(
c22(8 − 3n)/k

)n/4
r2−nt−2+n/2 exp

(
ic1 − ir2/(4t) + ic2rn−2t2−n

)
,

p = 8/(1 ±
√

17) = (±
√

17 − 1)/2, n = (1 ±
√

17)/2, k > 0; (5.18)

u = (−16k)−1/3r2/3(t(1 + c2t))−2/3 exp
(
ic1 − ir2(1 + 2c2t)/(8t(1 + c2t))

)
,

p = 3, n = 4/3, k < 0; (5.19)

u = (k/8)
(
(c2r2 + 8c3t) cos(r2/(8t)) + (c3r2 − 8c2t) sin(r2/(8t))

)

×
r2/(8t)∫
c4

ξ2(c2Si(ξ) − c3Ci(ξ)) + (c3ξ − c2) sin(ξ) + (c2ξ + c3) cos(ξ)(
(c2 − c3ξ) sin(ξ) − (c3 + c2ξ) cos(ξ)

)2 dξ

× exp
(
ic1 − ir2/(8t)

)
,

p = −1, n = −4; (5.20)
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u = −(kr2/4)
(
c3F1(c2, r2/(8t)) + c4G1(c2, r2/(8t))

)

×
r2/(8t)∫
c5

(
c3Fi1(c2, ξ) + c4Gi1(c2, ξ)

)
(
c3F1(c2, ξ) + c4G1(c2, ξ)

)2 dξ exp(ic1 − ir2/(8t) − ic2 ln t),

p = −1, n = −4, c2 �= 0, (5.21)

where

FiL(ρ, ξ) =
ξ∫

c6

z−2FL(ρ, z)dz, GiL(ρ, ξ) =
ξ∫

c6

z−2GL(ρ, z)dz, c6 �= 0.

Here Si(x) and Ci(x) denote the Sine integral and Cosine integral; FL(ρ, x) and GL(ρ, x) denote the 
regular and irregular Coulomb wave functions. (See Ref. [1].)

Remark 1. Solutions (5.2), (5.7)–(5.9), (5.12), (5.13) come from the time-translation-group resolving sys-
tem (3.16). Solutions (5.10), (5.11), (5.20), (5.21) come from the scaling-group resolving system (3.25). 
Solutions (5.14)–(5.16) come from the inversion-group resolving system (3.34). Of the remaining solutions, 
(5.1) and (5.3)–(5.6) come from both the time-translation-group and scaling-group resolving systems, while 
(5.17)–(5.19) come from both the inversion-group and scaling-group resolving systems.

The full group of point symmetries (3.5)–(3.8) for the radial gNLS equation (1.1) can be applied to each 
of the solutions u = f(t, r) listed in Theorem 1. Phase rotations (3.5) and scalings (3.7) change only the 
constants appearing in these solutions, while time-translations (3.6) at most shift t by a new constant. 
In contrast, inversions (3.8) have a non-trivial action on solutions, which is summarized as follows: (5.1)
with p = 4/n is transformed to the p = 4/n case of (5.2) up to phase shift (via t/(1 + c3t) = (1/c3) −
(1/c3)/(1 + c3t)); (5.2) with p = 4/n is unchanged up to phase shift; (5.5) with p = 4/n = 2(3 − n)/(n − 2)
is transformed to (5.17) up to time-translation; (5.6) with p = 4/n = 2(3 − n)/(n − 2) is transformed to 
(5.18) up to time-translation; (5.9) with n = −4 is transformed to (5.14) up to time-translation; (5.7) with 
n = −4 is transformed to (5.15) up to time-translation; (5.8) with n = −4 is transformed to (5.16) up to 
time-translation; (5.14)–(5.18) are unchanged; (5.19) is transformed to

u = (−16k)−1/3r2/3(t(1 + (c2 + c3)t))−2/3

× exp
(
ic1 − ir2(1 + 2(c2 + c3)t)/(8t(1 + (c2 + c3)t))

)
,

p = 3, n = 4/3, k < 0; (5.22)

(5.4) up to time-translation with p = 4/n = 2/(2 − n) is also transformed to (5.22); (5.20) and (5.21) are 
respectively transformed to

u = (k/8)
(
(c2r2 + 8c3t(1 + c5t)) cos(r2/(8t(1 + c5t)))

+ (c3r2 − 8c2t(1 + c5t)) sin(r2/(8t(1 + c5t)))
)

×
r2/(8t(1+c5t))∫

c4

ξ2(c2Si(ξ) − c3Ci(ξ)) + (c3ξ − c2) sin(ξ) + (c2ξ + c3) cos(ξ)(
(c2 − c3ξ) sin(ξ) − (c3 + c2ξ) cos(ξ)

)2 dξ

× exp
(
ic1 − ir2/(8t(1 + c5t)) − ic5r2/(4(1 + c5t))

)
,

p = −1, n = −4, (5.23)
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and

u = −(kr2/4)
(
c3F1(c2, r2/(8t(1 + c7t))) + c4G1(c2, r2/(8t(1 + c7t)))

)

×
r2/(8t(1+c7t))∫

c5

c3Fi1(c2, ξ) + c4Gi1(c2, ξ)
(c3F1(c2, ξ) + c4G1(c2, ξ))2

dξ

× exp
(
ic1 − ir2/(8t(1 + c7t)) − ic7r2/(4(1 + c7t)) − ic2 ln(t/(1 + c7t))

)
,

p = −1, n = −4, c2 �= 0. (5.24)

These solutions (5.22)–(5.24) fall outside of the solutions listed in Theorem 1 up to time-translations, 
scalings, and phase shifts.

Hence we have the following result.

Theorem 2. For p = 4/n, the pseudo-conformal symmetry subgroup (3.8) applied to the exact solutions
(5.1)–(5.21) of the radial gNLS equation (1.1) yields three additional exact solutions (5.22)–(5.24).

Finally, we note that solutions (5.21) and (5.24) do not converge if c6 = 0 (in the integrals of the Coulomb 
functions), while solutions (5.20) and (5.23) do not converge if c3 = c4 = 0 when c2 �= 0.

5.1. Analytical features

We now discuss some basic analytical features of the solutions in Theorem 1 and Theorem 2. Firstly, 
the solutions will be divided into two classes: (I) solutions (5.1)–(5.12) in which the allowed values of n are 
positive integers; (II) solutions (5.13)–(5.24) in which the allowed values of n are non-positive integers or 
non-integers. Class (I) describes n-dimensional radial waves and monopoles of the gNLS equation (1.1), (1.2), 
whereas class (II) is interpreted as describing two-dimensional radial waves and monopoles of the planar 
gNLS equation (1.1) containing an extra point-source term (m − 1)ur/r [2] with a parameter m = n − 1
(which is applicable for any value of n ∈ R).

Secondly, within each class (I) and (II), the solutions will be categorized by their dynamical behavior: 
static, i.e. u = f(r); time-periodic, i.e. u = f(r) exp(iωt); dispersive, i.e. |u| → 0 for t → ∞; blow-up, 
i.e. |u| → ∞ for t → T < ∞; non-dispersive, i.e. |u| bounded away from 0 for t → ∞. Additionally, the 
smoothness of the solutions at r = 0 will be classified by the conditions: limr→0 |u| < ∞ and limr→0 |ur| = 0, 
i.e. regular; limr→0 |u| < ∞ and limr→0 |ur| �= 0, i.e. conical; limr→0 |u| = ∞, i.e. singular.

Thirdly, the invariance property of each solution with respect to the symmetry group of the gNLS equation 
will be listed.

A summary of these results is presented in Tables 1, 2, and 3.

6. Concluding remarks

Out of the 24 gNLS solutions (5.1)–(5.24) we have obtained in Theorems 1 and 2, the time-translation 
invariant solutions (5.5), (5.9), (5.12), (5.13), the pseudo-conformal invariant solutions (5.2) for p = 4/n and 
(5.17) were derived in recent work [2] studying group-invariant solutions of the radial gNLS equation (1.1)
in multi-dimensions, while the general non-invariant form of solution (5.2) for p �= 4/n appears in Ref. [18]
(without a derivation).

The remaining 18 solutions are new (to the best knowledge of the authors). Relative to the symmetry 
group (3.5)–(3.8) of the radial gNLS equation (1.1), 15 of these new solutions are group-invariant and the 
other 3 new solutions are non-invariant, as summarized in Table 3.
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Table 1
Behavior of solutions of n-dimensional radial gNLS equation (1.1)–(1.2).

Solution Nonlin. coeff. k Power p �= 0 Dimen. n > 1 Dynamical behavior Regularity at r = 0

(5.1) �= 0 any any time-periodic regular
(5.2) �= 0 �= 2/n any c2/c3 > 0, dispersive regular

c2/c3 < 0, blow-up regular
(5.3) �= 0 2/n any c2/c3 > 0, dispersive regular

c2/c3 < 0, blow-up regular
(5.4) > 0 2/(2 − n) �= 2 non-dispersive singular
(5.5) < 0 (6 − 2n)/(n − 2) �= 2, 3 static c2 = 0, regular

c2 �= 0, singular
(5.6) > 0 (6 − 2n)/(n − 2) �= 2, 3 static singular
(5.7) �= 0 −1 any time-periodic c3 = c5 = 0, regular

c3 �= 0, singular
c5 �= 0, singular

(5.8) �= 0 −1 any time-periodic c3 = c5 = 0, regular
c3 �= 0, singular
c5 �= 0, singular

(5.9) �= 0 −1 �= 2 static c3 = 0, regular
c3 �= 0, singular

(5.10) �= 0 −1 3 dispersive singular
(5.11) �= 0 −1 3 non-dispersive singular
(5.12) �= 0 −1 2 static c3 = 0, regular

c3 �= 0, singular

Table 2
Behavior of solutions of 2-dimensional radial gNLS equation (1.1) with a point source-term.

Solution Nonlin. coeff. k Power p �= 0 Source coeff. m Dynamical behavior Regularity at r = 0

(5.13) �= 0 −1 −1 static regular
(5.14) �= 0 −1 −5 non-dispersive regular
(5.15) �= 0 −1 −5 non-dispersive regular
(5.16) �= 0 −1 −5 non-dispersive regular
(5.17) < 0 8/(1 +

√
17) (

√
17 − 1)/2 c2 > 0, dispersive singular

c2 < 0, blow-up singular
(5.17) < 0 8/(1 −

√
17) −(

√
17 + 1)/2 non-dispersive conical

(5.18) > 0 8/(1 +
√

17) (
√

17 − 1)/2 dispersive singular
(5.18) > 0 8/(1 −

√
17) −(

√
17 + 1)/2 dispersive conical

(5.19) < 0 3 1/3 dispersive conical
(5.20) �= 0 −1 −5 non-dispersive regular
(5.21) �= 0 −1 −5 non-dispersive c5 = 0, regular

c5 �= 0, conical
(5.22) < 0 3 1/3 dispersive conical
(5.23) �= 0 −1 −5 non-dispersive regular
(5.24) �= 0 −1 −5 non-dispersive c5 = 0, regular

c5 �= 0, conical

Altogether, these 24 solutions encompass a wide range of different dynamical behaviors: static; time-
periodic; dispersive; blow-up; and non-dispersive. In particular, one case of solution (5.3) exhibits a similarity 
blow-up (1.5) in which |u| → ∞ in a finite time t (though only for the subcritical power p = 2/n), and another 
case of this solution displays dispersion such that |u| → 0 for long times t → ∞ (again for the subcritical 
power p = 2/n). Other solutions exist for special nonlinearity powers p = 2/(2 − n), p = (2n − 6)/(2 − n)
which are not distinguished by the symmetry structure of the radial gNLS equation (1.1).

A detailed discussion of the interesting analytical features of all of the solutions will be given in a 
forthcoming paper [3].

The method we have used in the present work can be applied more generally to find explicit exact solutions 
to other complex (U(1)-invariant) semilinear evolutions in n ≥ 1 dimensions, such as derivative-type gNLS 
equations iut = uxx + i(a|u|pux + b(|u|p)xu) and mKdV-type equations ut = uxxx + a|u|pux + b(|u|p)xu in 
one dimension, and Landau–Ginzburg equations iut = 
u + iau + b|u|pu, Cahn–Hilliard equations ut =

(
u +au +b|u|pu), and Kuramoto–Sivashinsky equations ut = 
2u +a
u +b|∇u|pu in multi-dimensions.
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Table 3
Symmetry invariance of radial gNLS solutions.

Solution Power p �= 0 Invariance group generator

(5.1) any Xtrans. − c2Xphas.

(5.2) 4/n c2
2Xtrans. + c3c2Xscal. − kXphas. + c3

2Xinver.
(5.2) �= 2/n, 4/n non-invariant
(5.3) 2/n 2c2Xtrans. + c3Xscal. − 2kXphas.
(5.4) 2/(2 − n) 2c2Xtrans. + (n − 4)Xscal.
(5.5) (6 − 2n)/(n − 2) Xtrans.
(5.6) (6 − 2n)/(n − 2) Xtrans.
(5.7) −1 Xtrans. + c6Xphas.
(5.8) −1 Xtrans. − c6Xphas.
(5.9) −1 Xtrans.
(5.10) −1 non-invariant
(5.11) −1 non-invariant
(5.12) −1 Xtrans.
(5.13) −1 Xtrans.
(5.14) −1 Xinver. (also Xscal. when c2 = 0 or c3 = 0)
(5.15) −1 Xinver.
(5.16) −1 Xinver.

(5.17) 8/(1 ±
√

17) Xinver. (also Xscal. when c2 = 0)
(5.18) 8/(1 ±

√
17) Xinver.

(5.19) 3 Xscal. + 2c2Xinver.
(5.20) −1 Xscal.
(5.21) −1 Xscal. − c2Xphas.
(5.22) 3 Xscal. + 2(c2 + c3)Xinver.
(5.23) −1 Xscal. + 2c6Xinver.
(5.24) −1 Xscal. + 2c7Xinver. − c2Xphas.
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