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We study a nonlinear weighted least-squares finite element method for the Navier–
Stokes equations governing non-Newtonian fluid flows by using the Carreau–Yasuda 
model. The Carreau–Yasuda model is used to describe the shear-thinning behavior 
of blood. We prove that the least-squares approximation converges to linearized 
solutions of the non-Newtonian model at the optimal rate. By using continuous 
piecewise linear finite element spaces for all variables and by appropriately adjusting 
the nonlinear weighting function, we obtain optimal L2-norm error convergence 
rates in all variables. Numerical results are given for a Carreau fluid in the 4-to-1 
contraction problem, revealing the shear-thinning behavior. The physical parameter 
effects are also investigated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The objective of this study is to analyze a nonlinear weighted least-squares finite element method for the 
Carreau–Yasuda non-Newtonian model based on the Navier–Stokes equations. The Carreau–Yasuda model 
is a popular non-Newtonian model for describing the shear-thinning behavior of blood in hemodynamic 
simulations [5,16].

Let Ω be an open, connected, and bounded domain in Rd, d = 2 or 3 with boundary Γ. The steady-state, 
incompressible Navier–Stokes equation with the velocity boundary condition can be posed as follows:

u · ∇u −∇ · τ + ∇p = f̂ in Ω,

τ − 2η (γ̇(u))D(u)
η0Re = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ, (1)
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where D(u) = 0.5(∇u + ∇uT ) is the standard strain rate tensor. Re ≥ 1 is the Reynolds number, 
Re ≡ LUρ/η0, in which η0 is the zero-shear-rate viscosity, L and U are characteristic length and veloc-
ity, respectively, and ρ is the density. f̂ is the body force vector, the unknowns u and τ are the velocity and 
the extra-stress tensor, respectively, and p is the scalar pressure. We assume that the pressure p satisfies a 
zero mean constraint: ∫

Ω

pdx = 0,

in order to assure the uniqueness of pressure [2]. As for the system (1), it is illustrated in [4] that the system 
is suitable for incompressible non-Newtonian flows when a direct approximation of the extra stress tensor 
is desired.

Let γ̇(u) =
√

2 (D(u) : D(u)) be the shear rate with the double-dot product between two second-order 
tensors τ and σ defined as

τ : σ =
∑
i,j

τ ijσji.

We implement the non-Newtonian fluid equation known as the Carreau–Yasuda model [5], i.e.

η(γ̇(u)) = η∞ + (η0 − η∞)[1 + (λcγ̇(u))a]
n−1
a , (2)

where a, n, and λc are determined constant parameters. a > 0 is the dimensionless parameter, λc is the 
Carreau time constant, and the parameter n is the power law exponent. In the case of n = 1, the model 
reduces to the linear Newtonian model, i.e. the Navier–Stokes equations. For a shear-thinning fluid, n is 
less than one, the viscosity decreases by increasing shear rate. At high shear rates, the viscosity of the fluid 
is η∞, whereas at low shear rates, the viscosity is η0. Sample values of the parameters in the Carreau–Yasuda 
model are given in [1]. They indicate that many concentrated polymer solutions and melts can be obtained 
for a = 2 and η∞ = 0. Equation (2), with a = 2, is usually referred to as the Carreau equation, and the 
parameter a is added later by Yasuda; see [1].

Numerous developments using least-squares finite element methods for non-Newtonian fluid flow problems 
have been made in recent years [4,6,8–12]. Least-squares finite element methods have been reported to offer 
several theoretical and computational advantages over the Galerkin method for various boundary value 
problems [2]. Discretization generates an algebraic system that is always symmetric and positive definite, 
and a single approximating space for all variables can be used for programming least-squares finite element 
methods [14]. The least-squares functional of the velocity–pressure–stress formulation has the advantage 
that stress tensor components are computed directly [13]. Hence, the method is suitable for cases in which 
a direct approximation of the extra stress tensor is necessary (e.g., non-Newtonian fluid flows).

In [4], Bose and Carey present a least-squares method using p-type finite elements and a mesh redistri-
bution for non-Newtonian flows, and indicate the importance of scaling in the original differential equations 
for the least-squares minimization process. In [14], Lee and Chen propose a nonlinear weighted least-squares 
(NL-WDLS) method that allows for the use of simple combinations of interpolations, including equal-order 
linear elements for Stokes equations. They indicate the choice of weights used to balance the residual con-
tributions, and their results show some improvement over the case with no weightings. On the basis of 
their ideas, NL-WDLS methods based on the velocity–stress–pressure formulation of Stokes equations have 
been applied to generalized Newtonian and viscoelastic fluid flows in numerical experiments [8,11]. The 
results indicate that when linear approximations in all variables are employed, the least-squares solutions 
exhibit numerical convergence rates of O(h2) in the L2-norm for all dependent variables (or nearly so for 
the viscoelastic case). In [12], an adaptively refined least-squares (AR-LS) approach with an inertial term 
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is applied to the Carreau model; the least-squares approach uses a grading function of velocity magnitude 
to adaptively refine the mesh. The results indicate that by using linear approximations in all variables, the 
resulting convergence rates of the least-squares solutions on uniform grids are not optimal, and those on 
adaptively refined girds can be restored using adaptive mesh refinements.

On the basis of these studies, we develop a NL-WDLS method for the Carreau–Yasuda non-Newtonian 
model based on the Navier–Stokes equations. Unlike previous studies based on adaptive grids [12], we 
consider the NL-WDLS method by using uniform grids. The least-squares functional involved the L2-norm 
of the residuals of each equation multiplied by appropriate weights including the mass conservation constant, 
a mesh dependent, and a nonlinear weighting function. The analysis of error bounds for the NL-WDLS 
method follows the concept introduced in [2,12,13]. Using continuous piecewise linear finite element spaces 
for all variables, the numerical solutions exhibit a second-order convergence rate in the L2-norm. These 
results show that the additional weighting term does not affect most of the convergence of least-squares 
finite element methods for the linearized Navier–Stokes equations in [2,12]; however, the expected optimal 
convergence rates in numerical results can be restored with a careful choice of nonlinear weighting functions. 
We extend the implementation to simulate the 4-to-1 contraction problem in a range of lower Re numbers 
(1 ≤ Re ≤ 100) as shown in [4,17] and address the physical parameter effects. In [17], Zinani and Frey 
present a Galerkin least-squares (GLS) with an equal-order linear interpolation function that adds stabilized 
formulations to the Carreau model. We show that the results of the NL-WDLS approach are compatible 
with those of the AR-LS method [12], as well as the reduced GLS method presented by Zinani and Frey 
in [17]. We also show that the inertial term and viscosity parameter effects become dominant in cases of 
highly nonlinear viscosity in the non-Newtonian model.

The rest of this paper is organized as follows. Section 2 presents the notation, preliminaries, and ellipticity 
of the H−1 least-squares functional. Section 3 provides the error estimates of the discrete nonlinear weighted 
L2 least-squares approximations. Section 4 presents the nonlinear iterative method for approximating the 
solution of the Navier–Stokes problem with the Carreau–Yasuda model using the nonlinear weighted least-
squares approach. Section 5 provides test problems for the flow past a planar channel and 4-to-1 contraction 
problems, and finally, Section 6 offers concluding remarks.

2. Notation and preliminaries

Let D (Ω) be the linear space of infinitely differentiable functions with compact supports on Ω, that is,

D
(
Ω̄
)

= {ψ|Ω : ψ ∈ D(O) for some open subsect Ω ⊂ O ⊂ R
d};

see [7]. Let Hs (Ω), s ≥ 0, be the Sobolev spaces with the standard associated inner products (· , ·)s and their 
respective norms ‖·‖s. For s = 0, Hs (Ω) coincides with L2 (Ω), and Hs

0 (Ω) denotes the closure of D (Ω) with 
respect to the norm ‖·‖s. For positive values of s, the space H−s (Ω) is defined as the dual space of Hs

0 (Ω)
equipped with the norm

‖σ‖−s := sup
0�=v∈Hs

0 (Ω)

(σ, v)
‖v‖s

,

where (. , .) is the duality pairing between H−s
0 (Ω) and Hs

0 (Ω) when there is no risk of confusion. 
Define the product spaces Hs

0 (Ω)d =
∏d

i=1 H
s
0 (Ω) and H−s

0 (Ω)d =
∏d

i=1 H
−s
0 (Ω). Let H (div; Ω) =

{υ ∈ L2 (Ω)d : ∇ · υ ∈ L2 (Ω)} with the respective norm ‖υ‖H
(
div;Ω

) := (‖υ‖
2

0 + ‖∇ · υ‖
2

0)
1
2 .

The function spaces used in our variational formulations are defined as

V := {v | v ∈ H1 (Ω)d , v = 0 on ∂Ω},
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Q := {q | q ∈ L2 (Ω) ,
∫
Ω

qdx = 0},

Σs := {σ | σ ∈ L2 (Ω)d , σij = σji},

and let the product space Φ := V ×Q × Σs.
Based on [12], linearizing (1) about the approximation

u0 ≈ u,

where we assume

� · u0 = 0, (3)

and

M = max{‖u0‖∞, ‖∇u0‖∞} < ∞, (4)

results in the following replacement rules:

u · ∇u ≈ u0 · ∇u + u · ∇u0 − u0 · ∇u0,

η(γ̇(u))D(u) ≈ η(γ̇(u0))D(u) + η(γ̇(u))D(u0) − η(γ̇(u0))D(u0),

and

η(γ̇(u0)) ≈ η0.

As stated in [12], we apply Newton’s method to the nonlinear viscosity equation (2). Let u = ũ + u0, 
where u0 is the initial guess and ũ is the correction in the Newton iteration. A binomial expansion of 
η (γ̇(u0 + εũ)) yields the equation

η (γ̇(u0 + εũ)) = η (γ̇(u0))
[
1 + εG (u0, ũ) + O

(
ε2
)]

, (5)

where

G (u0, ũ) = 2 a
2 (n− 1)λa

c (D(u0) : D(u0))
(a−2)

2
(D(u0) : D(ũ))
1 + λa

c [γ̇(u0)]a
. (6)

Hence,

η (γ̇(u)) ≈ η0 [1 + G (u0,u) −G (u0,u0)] . (7)

The linearized velocity–pressure–stress system may now be written as

u0 · ∇u + u · ∇u0 −∇ · τ + ∇p = f in Ω, (8)

τ − 2
ReD(u) − 2

ReD(u0)G (u0,u) = g in Ω, (9)

∇ · u = 0 in Ω, (10)

u = 0 on Γ, (11)

where we define
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f = u0 · ∇u0 + f̂ ,

g = −2
Re

D(u0)G (u0,u0) .

The standard least-squares functional for (8)–(11) is given by

J(u, p, τ ;F)

= ‖u0 · ∇u + u · ∇u0 −∇ · τ + ∇p− f‖2
−1

+
∥∥∥∥τ − 2

ReD(u) − 2D(u0)
Re G(u0,u) − g

∥∥∥∥2

0
+ 1

Re2 ‖∇ · u‖2
0 . (12)

Define the norm

‖|(u, p, τ )‖| =
(
‖τ‖2

0 + ‖p‖2
0 + 1

Re2 ‖u‖2
1

)1/2

,

over Φ. In [13], Lee presents the standard H−1 least-squares functional Js for the velocity–pressure–stress 
formulation of the linearized Navier–Stokes equations as follows

Js(u, p, τ ;F) = ‖u0 · ∇u + u · ∇u0 −∇ · τ + ∇p− f‖2
−1

+
∥∥∥∥τ − 2

ReD(u)
∥∥∥∥2

0
+ 1

Re2 ‖∇ · u‖2
0 , (13)

and establishes the following a priori error estimate,

C‖|(u, p, τ )‖|2 ≤ Js(u, p, τ ;0) ≤ C‖|(u, p, τ )‖|2, (14)

for M in (4) satisfying

M ≤ 1
2Re , (15)

and C > 0 independent of Re, ∀(u, p, τ ) ∈ Φ.
Based on [12] and using (14), we now derive some a priori estimates for the first-order system (8)–(11). 

The a priori estimates will play the crucial roles in the error estimates of our least-squares finite element 
method.

Theorem 1. For any (u, p, τ ) ∈ Φ, there are positive constants, c0 and c1, which depend on Ω, n, λc and M
in (4), such that

c0‖|(u, p, τ )‖|2 ≤ J(u, p, τ ;0) ≤ c1‖|(u, p, τ )‖|2, (16)

for sufficiently small M in Ω satisfying

M ≤ 1
2Re . (17)

Proof. Let (u, p, τ ) ∈ Φ. The upper bound follows naturally from the triangle inequality. Using the inequal-
ity ‖a + b‖2 ≥ (1/2) ‖a‖2 − |b‖2 and the estimate (14) with (15), we have
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J(u, p, τ ;0)

≥ 1
2 (Js(u, p, τ ;0)) − 4‖D(u0)‖2

Re2 ‖G (u0,u) ‖2
0

≥ 1
2
(
‖|(u, p, τ )‖|2

)
− C1(n− 1)2λ2a

c Re−2Ma+2‖u‖2
1

≥ C2

(
‖τ‖2

0 + ‖p‖2
0 + 1

Re2 ‖u‖2
1
(
1 −Ma+2)) . (18)

By using (17), we have 1 −Ma+2 > 0. Hence,

J(u, p, τ ;0) ≥ c0‖|(u, p, τ )‖|2,

for some positive constant c0 which is independent of Re. �
Therefore, the coercivity and continuity estimates of the functional J(u, p, τ ; 0) have been established 

in Theorem 1. The least-squares minimization problem for the solution of system (8)–(11) is to choose 
(u, p, τ ) ∈ Φ such that

J(u, p, τ ;F) = inf
(v,q,σ)∈Φ

J(v, q,σ;F). (19)

The ellipticity of the functional J has been established in Theorem 1, but the H−1 least-squares functional 
is not practical in the computation. Based on [2,13,14], the mesh dependent L2 least-squares functional will 
be considered in the work.

3. A nonlinear weighted least-squares functional

In this section, we define and analyze weighted least-squares methods for the approximate solutions of 
(8)–(11). For the finite element approximation, we assume that the domain Ω is a polygon for d = 2 or 
a polyhedron for d = 3, and that Γh is a regular triangulation of the domain Ω, as Ω =

⋃
T∈Γh

T with 
h = max{diam(T ) : T ∈ Γh} (see [13]). Let Pr(T ) denote the space of polynomials with the degree less than 
or equal to r defined over T . Define finite element spaces for the approximate of (u, p, τ ):

V h = {vh | vh ∈ V ∩ (C0(Ω))d, vh |T ∈ Pr(T )d, ∀T ∈ Γh},
Qh = {qh | qh ∈ Q ∩ C0(Ω), qh |T ∈ Pr(T ), ∀T ∈ Γh},
Σh

s = {σh
s | σh

s ∈ Σs ∩ (C0(Ω))2d, σh
s |T ∈ Pr(T )2d, ∀T ∈ Γh}.

Let Φh := Vh ×Qh × Σh
s be finite element subspaces of Φ with the following approximation prosperities: 

there exists a positive integer r such that the spaces Sj approximate optimally with respect to the space 
Hr+j (Ω), j = 1, 2. More precisely, we assume that for all u ∈ Hr+j (Ω) there exists an element uI ∈ Sj

such that 0 ≤ m ≤ 1, ∥∥u− uI
∥∥
m

≤ Chr+j−m ‖u‖r+j , (20)

and the spaces Sj satisfy the inverse assumption, i.e. that∥∥vh∥∥1 ≤ Ch−1 ∥∥vh∥∥0 , ∀vh ∈ Sj . (21)

We can consider the nonlinear weighted least-squares functional associated with the first-order system
(8)–(11):
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Jh(u, p, τ ;F)

= h2 ‖u0 · ∇u + u · ∇u0 −∇ · τ + ∇p− f‖2
0

+
∥∥∥∥ws(u0)

(
τ − 2

ReD(u) − 2D(u0)
Re G(u0,u) − g

)∥∥∥∥2

0
+ 1

Re2 ‖∇ · u‖2
0 , (22)

over all u ∈ V h, p ∈ Qh, and τ ∈ Σh
s . In (22), the weight h2 and the function ws are chosen based on 

similar considerations as those used in [13,14]. The weight ws in (22) indicates that the nonlinear weight ws

is evaluated at u0. The nonlinear weight function ws is defined in each element as

ws(u) = 1√
1 + (γ̇(u))2

. (23)

Based on [3,12,13] and application of Theorem 1, we establish error estimates of a discrete least-squares 
finite element functional as follows.

We have the following inequality (cf. [3, p. 583]):

Lemma 1. Assume that Ω is a bounded open region in Ω ⊂ R
d, d = 2 or d = 3 and Th is a uniformly regular 

partition of Ω into finite elements. Then there exists a constant C > 0, independent of h, such that, for all 
u ∈ L2(Ω),

C−1‖u‖−1 ≤ C(h‖u‖0 + ‖u‖−1). (24)

If, in addition, 0 < C < 1, then (24) can be replaced by

‖u‖−1 ≤ C2

1 − C2 (h‖u‖0). (25)

Lemma 2. For any (u, p, τ ) ∈ Φh, there exist positive constants c and C, independent of h, such that

c‖|(u, p, τ )‖|2 ≤ Jh(u, p, τ ;0) ≤ C‖|(u, p, τ )‖|2, (26)

for any h < 1 and sufficiently small values of M in (4) satisfying (17).

Proof. Let (u, τ , p) ∈ Φh. The upper bound is naturally obtained from the triangle inequality and the 
inverse inequalities

‖∇ · τ‖0 ≤ Ch−1 ‖τ‖0 , ‖∇p‖0 ≤ Ch−1 ‖p‖0 .

Application of Theorem 1 and Lemma 1 yields the estimate

c‖|(u, p, τ )‖|2

≤
∥∥∥∥τ − 2

ReD(u) − 2D(u0)
η0Re G(u0,u)

∥∥∥∥2

0
+ Re−2 ‖∇ · u‖2

0

+ h2 ‖u0 · ∇u + u · ∇u0 −∇ · τ + ∇p‖2
0

≤ C1

∥∥∥∥ws(u0)
(
τ − 2

ReD(u) − 2D(u0)
η0Re G(u0,u)

)∥∥∥∥2

0
+ Re−2 ‖∇ · u‖2

0

+ h2 ‖u0 · ∇u + u · ∇u0 + ∇ · τ + ∇p‖2
0 ,

for C1 = 2 max{1, 2M2} |Ω| with (γ̇(u0))2 ≤ 2M2 < ∞ using (4). Hence, the lower bound is established. �
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The discrete least-squares minimization problem for the solution of system (8)–(11) is to choose 
(uh, ph, τh) ∈ Φh such that

Jh(uh, ph, τh;F) = inf
(vh,qh,σh)∈Φh

Jh(vh, qh,σh;F). (27)

Since Φh is a finite element subspace of Φ, using Theorem 1, Lemma 2, and the Lax–Milgram lemma, 
the following theorem is proved.

Theorem 2. The least-squares functional (22) has the unique minimizer out of the space Φh for any h < 1
and sufficiently small M .

Using similar arguments as in [12] and the approximation properties (20), the following error estimate is 
established.

Theorem 3. Let U = (u, p, τ ) ∈ Φ be the solution of the problem (8)–(11) and Uh = (uh, ph, τh) ∈ Φh

denote the solution of the variational problem (27). Then there exists a constant C, independent of the mesh 
size h and Re, such that

∥∥∣∣(u − uh, p− ph, τ − τh)
∥∥∣∣ ≤ Chr+1

(
‖τ‖r+1 + ‖p‖r+1 + 1

Re ‖u‖r+2

)
, (28)

under the assumptions in (4) and (17).

Under some assumptions, the error in (28) is of the same order as the error in the least-squares solutions 
of the linearized Navier–Stokes equations [13]. Note that the use of continuous piecewise linear polynomials 
for all unknowns yields the convergence rates,

‖τ − τh‖0 = O(h), ‖p− ph‖0 = O(h), and ‖u − uh‖1 = O(h).

The theoretically predicted error bounds are only O(h) in the L2-norm for p and τ and O(h) in the 
H1-norm for u. Hence, we have the optimal convergence rate of the velocity in the H1-norm and suboptimal 
convergence rates of the stress and pressure in the L2-norm.

4. Nonlinear iterative method

In this section, we present a Newton iteration scheme for solving Navier–Stokes equations by using a 
nonlinear weighted least-squares method. The unknowns are denoted as U = (u, p, τ ) ∈ Φ and the steady 
state residual of the system (1) is denoted as

R(U) :=

⎡⎣ u · ∇u −∇ · τ + ∇p− f
τ − (2/Re)(η/η0)D(u) − g

∇ · u

⎤⎦ .

We now approximate the solution to B(U) := PTR(U) = 0 with a diagonal matrix P whose diagonal entries 
consist of least-squares weighting functions for the momentum, constitutive, and continuity equations by 
an inexact Newton iteration. The 
th iterate approximated on Ω is given by U�. Each linear step in this 
iterative procedure is found by solving for the update S� = U�+1 − U� in the linear problem

J(U�)S� = −B(U�), (29)
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where J is the Jacobian of B. The new approximation is given by U�+1 = U� +S�. Each linear problem (29)
is cast as a least-squares minimization problem by defining the linear least-squares functional

Jh
� (S�) = ‖J(U�)S� + B(U�)‖2,

and then finding S� ∈ Φh such that

Jh
� (S�) ≤ Jh

� (V�) ∀V� ∈ Φh.

The solution of the nonlinear systems in (1) is approximated by a sequence of the linearized system 
(8)–(11). Then the least-squares approach to the linearized system (8)–(11) provides an iterative procedure 
as follows. We give an initial approximation Uh

0 = (uh
0 , p

h
0 , τ

h
0 ) and then attempt to seek approximations 

Uh
�+1 = (uh

�+1, p
h
�+1, τ

h
�+1) ∈ Φh for 
 = 0, 1, 2, . . . satisfying

Jh
� (uh

�+1, p
h
�+1, τ

h
�+1;F) = inf

V�=(vh,qh,σh)∈Φh
Jh
� (vh, qh,σh;F), (30)

where the nonlinear weighted least-squares (NL-WDLS) functional Jh
� (u, p, τ ; F) is defined as

Jh
� (u, p, τ ;F) = h2 ∥∥uh

� · ∇u + u · ∇uh
� −∇ · τ + ∇p− f

∥∥2
0 + KRe−2 ‖∇ · u‖2

0

+
∥∥∥∥ws(uh

� )(τ − 2
ReD(u) − 2

ReD(uh
� )G

(
uh
� ,u

)
− g)

∥∥∥∥2

0
, (31)

where

f = uh
� · ∇uh

� + f̂ ,

g = −2
Re D(uh

� )G
(
uh
� ,uh

�

)
,

over the space Φh. In our calculation, stabilization parameters h2, KRe−2, and ws represent the least-
squares weighting functions for the momentum, continuity, and constitutive equations, respectively, as 
shown in [10,13]. The h2-term stabilizes the least-squares form in the momentum equation, and replaces 
the H−1-norm by the L2-norm. The mass conservation weight K improves the convergence of non-linear 
solvers in the problem; where the positive constant K = 10m, where m ranges from 1 to 8, is selected based 
on [8,11]. These results indicate that the ranges of m vary with the problems, and setting K is sufficient 
to obtain satisfactory results. The nonlinear weighting function ws stabilizes the least-squares form in the 
constitutive equation and improves convergence rates over the case of no weighting in Section 5.

5. Test problems

We now consider the flow of the Carreau–Yasuda model with a = 1 and a = 2 in the planar channel and 
the 4-to-1 contraction problems. Two physical domains are symmetric along the centerline of each channel, 
and the one-half domains are used in our computation for efficiency. Both cases presented here use linear 
basis functions for all variables. All calculations are conducted in a computing environment using the C 
programming language.

Results of the least-squares method are generated for three versions of (31): with linear weighting depend-
ing only on K and Re outside of the norms (LS), with linear weighting depending on h, K, and Re outside 
of the norms (WDLS), and with all weights (NL-WDLS). The resulting linear algebraic system of equa-
tions with a symmetric positive-definite coefficient matrix is solved using the Gaussian elimination method. 
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Convergence of the iteration scheme in (31) is declared when the relative norm of the residual in velocities 
‖uh

�+1 − uh
� ‖/‖uh

�+1‖ between two consecutive iterations is less than 10−4. In general, the approximation 
solution is achieved within 4 iterations.

Two test problems are considered for the Newtonian model in [13]. In [13], we display the least-squares 
solutions by using the mass conservation weights K = 10m, where m ranges from 1 to 8 for both cases. The 
results show that we obtain satisfactory least-squares solutions for all variables with K ≥ 102 in the planar 
channel problem and K ≥ 106 in the 4-to-1 contraction channel problem. Therefore, it is sufficient to use 
K = 102 for Problem 1 and K = 106 for Problem 2 in (31).

5.1. Problem 1: flow in the planar channel

The first problem is a square test domain with exact boundary conditions and non-zero right-hand sides 
determined by the exact solutions used to measure convergence rates. For numerical tests, consider the flow 
in a planar channel on the square domain [0, 1] × [0, 1], where we have a line of symmetry along y = 0. The 
velocity u = [u, v]T is specified on the inflow, outflow, and wall boundaries. On the symmetry boundary, the 
v and τxy vanish. The pressure p is specified at the intersection of the wall and outflow boundaries. Smooth 
exact solutions are given in [12] by

uexact =
[

1 − y4

0

]

and

pexact = −x2.

The exact solution for the extra-stress tensor is calculated using

τ exact = 1
Re (2η (γ̇(uexact))D(uexact)) .

A forcing function, f , must be added to the momentum equation, specifically

f =
[ 1

Re

(
12y2 (1 + 4anλa

cy
3a) (1 + (4λcy

3)a
)n−1−a

a

)
− 2x

0

]
.

In the convergence results, the constitutive equation parameters in (2) are set as η0 = 1, η∞ = 0, n = 0.1, 
λc = 1, and Re = 1. Three uniform directional triangular meshes are verified from 8 × 8, 16 × 16 to 32 × 32
and used for all calculations as shown in [13]. We verify these least-squares methods for the Carreau–Yasuda 
model at a = 1 and 2, and show the errors of these least-squares solutions in Figs. 1 and 2, respectively. 
Figs. 1 (a = 1) and 2 (a = 2) show optimal convergence rates in L2-norm and H1-norm for u and at 
least suboptimal convergence rates in L2-norm for p and τ . This is consistent with our analysis for the 
least-squares method in Section 3. However, some improvements are seen when using the WDLS method 
over the LS method. The NL-WDLS method improves convergence rates over the WDLS method in p and 
τ from 2 to 2.3 and 1.8 to 2, respectively. We obtain optimal convergence rate of the NL-WDLS solutions 
for all variables. The convergence rates for τ and p are better than those of the theoretically predicted O(h)
in L2-norm. Our results show the expected optimal convergence rates in L2-norm of O(h2) for all variables 
can be restored with a careful choice of nonlinear weighting functions.

5.2. Problem 2: flow in the 4-to-1 contraction channel

The second domain is the 4-to-1 contraction channel problem consisting of an upstream channel that 
abruptly narrows to a one quarter channel of the original width. For the 4-to-1 contraction domain, the 
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Fig. 1. a = 1. L2 errors in (a) u, (b) p, (c) τ , and (d) H1 errors in u of LS (o), WDLS (*), and NL-WDLS (+) solutions at Re = 1, 
λc = 1, and n = 0.1.

Fig. 2. a = 2. L2 errors in (a) u, (b) p, (c) τ , and (d) H1 errors in u of LS (o), WDLS (*), and NL-WDLS (+) solutions at Re = 1, 
λc = 1, and n = 0.1.
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Fig. 3. Union Jack grids with a minimum mesh spacing of 0.03125.

Fig. 4. Streamlines in the Carreau–Yasuda models at (a) a = 1 and (b) a = 2 for Re = 1, n = 0.1, and λc = 1.

velocity u = [u, v]T is specified on the inflow and wall boundaries. On the symmetry boundary, the v and τxy
vanish. The pressure p = 0 and the v = 0 are specified on the outflow boundary. These boundary conditions 
are also used in [12,13].

To further show the NL-WDLS scheme’s capability, we applied the method using uniform grids to the 
4-to-1 contraction channel with x (the flow direction) varying as −r ≤ x ≤ r, r = 10, and the contraction 
occurring at x = 0. The upstream channel width is 1, thus the downstream width is 1/4. In [13], using the 
Union Jack grids with a minimum mesh spacing of 0.03125 as shown in Fig. 3, we employ the NL-WDLS 
method to the Newtonian model, and obtain convergence profiles of the horizontal velocity for the 4-to-1 
contraction problem. Therefore, in our computations, the uniform Union Jack grid is considered as the 
uniform mesh next.

The Carreau–Yasuda equation (2) involves five parameters (η0, η∞, λc, n, a) to describe the fluid 
rheology. In our calculation, these parameters in (2) are set as η0 = 1 and η∞ = 0, and four dimensionless 
parameters are needed to define the flow: parameters a, power-law indices n, Carreau time numbers λc, 
and Reynolds numbers Re. n and λc dominate the nonlinear viscosity, and Re dominates the inertia effects. 
For the dimensionless parameter a, we evaluate the effects of the parameter a on the streamline patterns 
in Fig. 4. Figs. 4(a) and 4(b) present the streamline patterns of a = 1 and a = 2 for Re = 1, n = 0.5, and 
λc = 1, respectively. The results show that the size of the corner vortex for the two a cases is similar and 
causes a light increase as a increases. Therefore, the case of a = 2 is considered next.

To illustrate capability of these least-squares finite element formulations, we present the streamline pat-
terns of two weighted cases, WDLS and NL-WDLS formulations for Re = 1, n = 0.5, and λc = 1 in Fig. 5. 
The results show that in comparison with the NL-WDLS solution, the recirculation zone of fluid in the 
WDLS solution seems too large. The NL-WDLS results agree with the AR-LS results [12], outperform the 
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Fig. 5. Streamlines in (a) WDLS and (b) NL-WDLS solutions for Re = 1, n = 0.5, and λc = 1.

Fig. 6. Streamlines in NL-WDLS solutions at (a) Re = 1, n = 0.5, λc = 1, (b) Re = 1, n = 0.1, λc = 1, (c) Re = 1, n = 0.5, λc = 2, 
and (d) Re = 10, n = 0.5, λc = 1.

WDLS method, and yield results which are compatible to those presented in [12]. Therefore, the NL-WDLS 
functional (31) is considered for this 4-to-1 contraction problem.

We next evaluate the effects of three physical parameters n, λc, and Re on corner vortex behaviors, 
viscosity contour behaviors, and the horizontal velocity component along the outlet and the axis of symmetry 
in the contraction plane. To evaluate how physical parameters affect the vortex upstream of the contraction 
plane, we varied Re = 1 and Re = 10, λc = 1 and λc = 2, and n = 0.5 and n = 0.1 in Fig. 6. For Re = 1 and 
λc = 1, Figs. 6(a) (n = 0.5) and 6(b) (n = 0.1) show that a decrease in n only causes a light decrease in the 
vortex upstream of the contraction plane. For Re = 1 and n = 0.5, Figs. 6(a) (λc = 1) and 6(c) (λc = 2) 
display that the sized of the corner vortex near the contraction is decreased as λc increases. To evaluate the 
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Fig. 7. Re = 1, λc = 1. Contours of the viscosity η at (a) n = 0.75, (c) n = 0.5, and (e) n = 0.25, and the horizontal velocity 
component u at (b) n = 0.75, (d) n = 0.5, and (f) n = 0.25. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 8. Re = 1, λc = 1. Profiles of (a) the viscosity function η(r, y) and (b) the horizontal velocity u(r, y) along the outlet r = 10
at n = 1 (o), n = 0.75 (+), n = 0.5 (�), and n = 0.25 (�).

inertia effect, for n = 0.5 and λc = 1, Figs. 6(a) (Re = 1) and 6(d) (Re = 10) present an obvious decrease in 
the vortex upstream of the contraction plane as Re increases. The results show that the size of the corner 
vortex is decreased as n decreases, λc and Re increase.

Next, the physical parameter effects on the viscosity function η and the horizontal velocity component u
are investigated. To evaluate the effects of the power-law index n, we employ n = 0.75, 0.5, and 0.25 with 
Re = 1 and λc = 1 in Fig. 7. These figures show the contours of the viscosity η and the horizontal velocity u. 
Our results indicate a build up of boundary layers in the downstream of the reentrant corner, and the feature 
of the contour near the wall in the downstream becomes more obvious as indices n are decreased. Figs. 8(a) 
and 8(b) show the profiles of the viscosity function η and the horizontal velocity component u along the 
outlet, respectively. The results in Fig. 8(a) show that the viscosity of the fluids with n < 1 at the wall 
(y = 0.25) is lower than that at the axis of symmetry (y = 0). Because the low-index fluid near the wall 
has a low viscosity, the velocity growth rate away from the wall of the low-index fluid is greater than in 
the high-index fluid. To ensure mass conservation, in the axis of symmetry the velocity of the low-index 
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Fig. 9. Re = 1, n = 0.5. Contours of the viscosity η at (a) λc = 1, (c) λc = 10, and (e) λc = 100, and the horizontal velocity 
component u at (b) λc = 1, (d) λc = 10, and (f) λc = 100. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 10. Re = 1, n = 0.5. Profiles of (a) the viscosity function η(r, y) and (b) the horizontal velocity u(r, y) along the outlet r = 10
at the Newtonian model(o), λc = 1 (+), λc = 10 (�), and λc = 100 (�).

fluid is lower than in the high-index fluid, as shown in Fig. 8(b). The results show that when n = 0.25, the 
fluid velocity near the wall is higher than for other values of n and also causes the flattest velocity profile 
at the outlet. By decreasing n, the viscous effects become less dominant and these profiles become flatter. 
Further analysis of the viscosity data indicates that the feature of nonlinearity becomes more obvious as n
decreases.

To evaluate the effects of the Carreau time number λc, Re = 1, and n = 0.5 are used. We employ λc = 1, 
10, and 100 in Fig. 9. These figures show the contours of the viscosity η and the horizontal velocity u. 
The results show that the feature of the contour near the corner in the upstream becomes more obvious 
when λc is increased. Figs. 10(a) and 10(b) show the profiles of the viscosity function η and the horizontal 
velocity component u along the outlet, respectively. These results show that as λc increases, the feature 
of nonlinearity of the viscosity function η becomes more obvious and flattens the u profile. The velocity 
growth rate away from the wall of the high λc fluid is greater than that of the low λc fluid. The effect of 
increasing λc is similar to that of decreasing n. Note that according to the viscosity contour, the Carreau 
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Fig. 11. Profiles of the velocity u(r, y) along the outlet r = 10 for (a) n = 0.5, λc = 1 and (b) n = 0.5, λc = 100 at Re = 1 (o) and 
Re = 10 (+).

Fig. 12. Profiles of the velocity u(x, 0) along the symmetric line. Re = 1 for (a) n = 0.5 with λc = 10 (line) and λc = 100 (dash 
line), and (b) λc = 10 with n = 0.5 (line) and n = 0.1 (dash line).

time number appears to be more sensitive to viscosity compared with the power-law indices, particularly 
in the upstream region of the contraction flow path. The effects of the power-law index and Carreau time 
number on the velocity field are similar to those observed by Zinani and Frey [17].

To evaluate the inertia effects, we employ Re = 1 and 10 in the Carreau model at n = 0.5, and two 
values of time numbers, λc = 1 and λc = 100 in Figs. 11(a) and 11(b), respectively. For the low Carreau 
time number (λc = 1), the same profiles of the horizontal velocity component u along the outlet are shown 
for various Re cases in Fig. 11(a), although the size of the vortex changes in Figs. 6(a) and 6(d). The figure 
results show that the inertia effects on the vortex near the corner are more obvious than the velocity profiles 
in the fully developed outlet. For the high Carreau time number (λc = 100, Fig. 11(b)), the growth rate of 
the velocity away from the wall of the high Re fluid is greater than in the low Re fluid. The results show that 
the high Carreau time number fluid at high Re may have affected velocity. For the high Carreau time fluid, 
the effects of Re become dominant and are similar to that of decreasing n. The effects of Re on the velocity 
field for a high Carreau time fluid are similar to those found by Reddy and Padhye [15] for a power-law 
fluid.

Fig. 12 shows the plots of u(x, 0) along the symmetric line for the effects of different Carreau time 
numbers λc (λc = 10 and λc = 100, Fig. 12(a)) and indices n (n = 0.5 and n = 0.1, Fig. 12(b)). Fig. 12(a) 
shows that for the same Re and n, an increase in λc only causes a slight decrease in centerline velocity 
values upstream and almost overlaps the regions of fully developed flow. Fig. 12(b) shows that for the same 
Re and λc, a change in the n index strongly affects flow behavior, particularly downstream and near the 
contraction. Because of the high strain rates in these regions, a more flattened velocity profile is formed 
as n decreases. The results show that the index n effects in the centerline velocity values downstream are 
stronger than the Carreau time number λc effects.
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Fig. 13. Profiles of the velocity u(x, 0) along the symmetric line. Re = 1 (line) and Re = 100 (dash line) for (a) λc = 1, n = 0.5, 
and (b) λc = 1, n = 0.1.

Fig. 14. Comparison between results of the NL-WDLS and the AR-LS, and those of Zinani and Frey. Profiles of the velocity u(x, 0)
along the symmetric line for Re = 1 at λc = 10, n = 0.5.

Fig. 13 shows the profiles of u(x, 0) along the symmetric line for different Re numbers (Re = 1 and 
Re = 100) in the case of λc = 1, n = 0.5 (Fig. 13(a)) and n = 0.1 (Fig. 13(b)). For the high index n = 0.5
fluid (Fig. 13(a)), the maximum velocity in the regions of fully developed flow is the same for both Re. The 
main differences between the Re = 1 and Re = 100 cases occur near the contraction, because these regions 
are subjected to high strain rates. For the low-index n = 0.1 fluid (Fig. 13(b)), an increase in Re causes a 
slight decrease in centerline velocity values downstream and an increase in the entrance length for high Re. 
The Re number effects become more dominant for the case of low n. These results show that the NL-WDLS 
solutions agree with the shear-thinning physical behavior of a high shear rate near the channel wall causing 
low viscosity in the region. Because the physical parameters have a large exchange, a high shear rate is 
produced and a nonlinear phenomenon of the viscosity is more obvious. Therefore, the physical parameter 
effects become dominant for the case of the high nonlinear viscosity.

Fig. 14 displays a comparison between our NL-WDLS results with the AR-LS [12] and GLS results of 
Zinani and Frey [17] for the horizontal velocity u profiles along the symmetric line in the contraction plane 
for Re = 1, λc = 10, and n = 0.5. The figure shows that the profiles used in the NL-WDLS method are 
similar to those used in the AR-LS and GLS methods. Therefore, it is assumed that the results are in 
agreement.
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6. Conclusion

We present a NL-WDLS finite element approximation to the Carreau–Yasuda non-Newtonian model. 
Comparisons are made with various least-squares formulations such as LS, WDLS, and NL-WDLS. These 
results show that by using linear polynomials in all variables, the expected optimal convergence rates in 
numerical results can be restored with a careful choice of nonlinear weighting functions, and are superior 
to those theoretically predicted. In addition, we extended the NL-WDLS method to the 4-to-1 contraction 
problem and address the physical parameter effects. For flows in the planar contraction, the NL-WDLS 
method is able to capture shear-thinning features such as the flattening of the velocity profiles in the 
contraction plane because of decaying viscosity. For the case of high nonlinear viscosity, our results show 
that the effects of the power-law index and of the time number become dominant, and that the inertial 
term in the momentum equation cannot be neglected. These results agree with published AR-LS and GLS 
results. Furthermore, the NL-WDLS method is simpler to implement than the AR-LS and GLS methods. 
We will extend the approach to more physically realistic domains, including more complex geometries and 
higher Re non-Newtonian flows in the future.
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