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Let M be a compact manifold with boundary. In this paper, we discuss some 
rigidity theorems on Riemannian metrics in a same conformal class that fix the 
boundary and satisfy certain integral condition on the scalar curvature and on the 
mean curvature along the boundary. As an application, we will state some rigidity 
theorems on the conformal class of static metrics.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let (M, g0) be a compact n-dimensional Riemannian smooth manifold with n ≥ 2 and nonempty smooth 
boundary ∂M (possibly non-connected). Let Rg0 denote the scalar curvature of (M, g0) and let hg0 =
divg0ηg0 denote the mean curvature of ∂M in (M, g0), in the direction of the exterior conormal η = ηg0 . 
If n = 2 then Kg0 = Rg0/2 denotes the Gaussian curvature and hg0 = κg0 denotes the geodesic curvature 
of the curve ∂M with respect to g0.

We recall that the conformal class of a metric g on M , say [g], is the set of metrics of the form g̃ = μ2g, 
where μ is a positive smooth function defined on M . Escobar [4] had dealt with the following question:

Given a metric g ∈ [g0] with Rg = Rg0 in M , and hg = hg0 on ∂M , when is g = g0?

* Corresponding author.
E-mail addresses: ezequiel@mat.ufmg.br (E. Barbosa), mirandola@im.ufrj.br (H. Mirandola), feliciano@pos.mat.ufal.br

(F. Vitorio).
1 Current address: Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2RH, United Kingdom.
http://dx.doi.org/10.1016/j.jmaa.2016.01.006
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.01.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ezequiel@mat.ufmg.br
mailto:mirandola@im.ufrj.br
mailto:feliciano@pos.mat.ufal.br
http://dx.doi.org/10.1016/j.jmaa.2016.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.01.006&domain=pdf


630 E. Barbosa et al. / J. Math. Anal. Appl. 437 (2016) 629–637
In Corollary 2 of [4], Escobar obtained the following result: Let g ∈ [g0] satisfying Rg = Rg0 ≤ 0 and 
hg = hg0 ≤ 0. Then g = g0. In an opposite direction, in [3], Escobar also described the conformally flat 
metrics g ∈ [δij ] on the ball B = {x ∈ R

n | |x| ≤ 1}, with n ≥ 3, having constant scalar curvature 
and constant mean curvature on ∂B. By this classification theorem, there is a non-compact set of metrics 
g ∈ [δij ] with Rg = 0 and hg = 1.

Min-Oo [9] conjectured the following: Let g be a metric on the upper hemisphere Sn
+ satisfying the following 

properties: The scalar curvature Rg ≥ n(n − 1), the induced metric on ∂Sn
+ agrees with the standard metric 

on ∂Sn
+, and the boundary ∂Sn

+ is totally geodesic in Sn
+. Then, g is isometric to the standard metric gSn

+

on Sn
+. Despite Min-Oo’s conjecture is false (see the counterexample due to Brendle, Marques and Neves [2]), 

Hang and Wang [6] proved Min-Oo’s conjecture is true among metrics that are conformal to gSn
+. Namely, 

they proved the following

Theorem B. (See Theorem 3.4 of [6].) Let g ∈ [gSn
+ ] on Sn

+. Assume that the scalar curvature Rg ≥ RgSn
+

=
n(n − 1) and g = gSn

+ on the boundary ∂Sn
+. Then g = gSn

+ .

The upper hemisphere Sn
+ is a static manifold, that means there is a smooth function f satisfying the 

equation
{

fRic −∇2f + (Δf)g = 0, in M \ ∂M,

f > 0 in M \ ∂M, and f = 0, on ∂M.
(1)

As a solution of (1), we take the height function f(x) = xn+1, for all x = (x1, . . . , xn+1) ∈ Sn
+. Taking the 

trace in (1), we see that static manifolds are solutions of LgSn
+
f = 0, where

Lgf = Δgf + 1
n− 1Rgf, (2)

for some smooth function f that is positive in M and vanishes on ∂M .
Our first theorem says the following:

Theorem 1. Let g0 be a metric on M and g = μ2g0 a metric in the conformal class [g0] such that g = g0
on ∂M . Let f ∈ C1(M) ∩ C2(M \ ∂M) positive almost everywhere satisfying

∫
M

f(Rg −Rg0)dvolg0 + 2
∫

∂M

f(hg − hg0)dHn−1
g0

≥ 0. (3)

If 
∫
M

Lg0f(1 − μ−2)dvolg0 ≥ 0 then g = g0.

Theorem 1 requires no condition on the first eigenvalue λ1 = λ1(Lg0) of the operator Lg0 . However, the 
first eigenvalue

λ1 = inf{
∫
M

(|∇ϕ|2 − Rg0

n− 1ϕ
2)dvolg0 | ϕ ∈ C∞

0 (M),
∫
M

ϕ2dvolg0 = 1}

satisfies Lg0ϕ1 + λ1ϕ1 = 0, for some C2 eigenfunction ϕ1 = ϕ1(Lg0) that is positive in M and vanishes 
along the boundary ∂M . Thus, by Theorem 1, we have

Corollary 2. Let g = μ2g0 ∈ [g0] satisfying g = g0, on ∂M . Let ϕ1 be the eigenfunction corresponding to the 
first eigenvalue λ1 = λ1(Lg0). Assume 

∫
M

ϕ1(Rg −Rg0)dvolg0 ≥ 0 and λ1
∫
M

ϕ1(1 − μ−2)dvolg0 ≤ 0. Then 
g = g0.
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As a consequence of Corollary 2, since static metrics g on M satisfy λ1(Lg) = 0, it follows

Corollary 3. Let g0 be a static metric on M and g ∈ [g0] such that g = g0 on ∂M . If Rg ≥ R0 then g = g0.

Another consequence of Theorem 1, using that Lg0(1) = 1
n−1Rg0 , is

Corollary 4. Let g = μ2g0 be a metric in the conformal class [g0] such that g = g0 on ∂M . Assume that

∫
M

(Rg −Rg0)dvolg0 + 2
∫

∂M

(hg − hg0)dHn−1
g0

≥ 0. (4)

If 
∫
M

Rg0(1 − μ−2)dvolg0 ≥ 0 then g = g0.

Araujo [1] studied the functional

F (g) =
∫
M

Rg dvolg + 2
∫

∂M

hg dHn−1
g (5)

restricted to the subset of metrics Mab = {g | a volg(M) + bAg(∂M) = 1}. Araujo [1] proved that the 
critical points of F are the Einstein metrics with umbilical boundary that satisfy b(n − 1)Rg = 2nahg. It is 
worthwhile to point out that assumption (4) of Corollary 4 does not imply F (g) ≥ F (g0), since the volume 
and area elements dvolg0 , dHn−1

g0
in (4) do not vary with the metric g.

By Gauss–Bonnet Theorem, Corollary 4 in dimension 2 can be rewritten as

Corollary 5. Let (M, g0) be a surface with smooth boundary ∂M . Let u ∈ C2(M) with u = 0 on ∂M and 
consider the metric g = e2ug0. Assume

∫
M

Kg dvolg0 +
∫

∂M

κgdH1
g0

≥ 2πχ(M).

If 
∫
M

Kg0(1 − e−2u)dvolg0 ≥ 0 then u = 0 in M .

Llarull [8], confirming a Gromov’s conjecture, proved that if g is any metric on the whole sphere Sn

satisfying g ≥ g0 and Rg ≥ RgSn = n(n − 1) then g = gSn . For domains in Sn
+, Hang and Wang [7] proved 

the following

Theorem C. (See Proposition 1 of [7].) Let Ω be a smooth domain in Sn
+ and let g ∈ [gSn

+ ] in Ω̄, satisfying 
Rg ≥ n(n − 1) and g = gSn

+ on ∂Ω. Then, either g = gSn
+ , in Ω, or g > gSn

+ and hg < hgSn
+
.

Our next theorem says the following:

Theorem 6. Let g0 be a metric on M satisfying Rg0 ≥ 0 and Lg0f ≤ 0, for some f ∈ C2(M \ ∂M) ∩C1(M)
positive almost everywhere. Let Ω be a smooth domain in M and let g = μ2g0, where μ ∈ C2(Ω) ∩C0(Ω̄) is 
positive with μ|∂Ω = 1. Assume further that χ{μ<1}Rg ≥ χ{μ<1}Rg0 . Then, it holds

μ ≥ 1 in Ω, and hg ≤ hg0 in ∂Ω. (6)

In addition, if Rg ≥ Rg0 in Ω then both inequalities in (6) are strict, unless g = g0.
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Theorem 6 above can be applied for static metrics as they satisfy λ1(Lg0) = 0. More generally, as a 
consequence, we have

Corollary 7. Let g0 be a metric on M with Rg0 ≥ 0 and λ1(Lg0) ≥ 0. Let Ω ⊂ M be a smooth domain and 
let g = μ2g0 be a metric in the conformal class [g0] satisfying g = g0 on ∂M , where μ ∈ C2(Ω) ∩ C0(Ω̄). 
Assume further that χ{μ<1}Rg ≥ χ{μ<1}Rg0 . Then, it holds

g ≥ g0 in Ω, and hg ≤ hg0 in ∂Ω. (7)

In addition, if Rg ≥ Rg0 in Ω, then both inequalities in (7) are strict, unless g = g0.

Finally, using Theorem 6 with f = 1, we have

Corollary 8. Let g0 be a metric on M with Rg0 = 0. Let Ω ⊂ M be a smooth domain. Let g = μ2g0 be a metric 
in the conformal class [g0] satisfying g = g0 on ∂M , where μ ∈ C2(Ω) ∩ C0(Ω̄). Assume χ{μ<1}Rg ≥ 0. 
Then, it holds

g ≥ g0 in Ω, and hg ≤ hg0 in ∂Ω.

In addition, if Rg ≥ 0 in Ω, then both inequalities above are strict, unless g = g0.

2. Proof of Theorem 1

First, consider the case n = 2 and write g = e2ug0, with u ∈ C2(M \∂M) ∩C1(M). Since g = g0 on ∂M , 
one has u|∂M = 0. The geodesic curvatures κg, κg0 satisfy

∂u

∂η
= κge

u − κg0 = κg − κg0 , on ∂M, (8)

where η = ηg0 is the outward unit normal vector of (∂M, g0). Furthermore, the Gaussian curvatures Kg, 
Kg0 of (M, g0) and (M, g), respectively, satisfy

Δg0u−Kg0 + Kge
2u = 0, in M. (9)

Using that u|∂M = 0, by (8), (9) and integration by parts,2 we obtain
∫
M

e−2uΔg0f =
∫
M

fΔg0(e−2u) +
∫

∂M

(e−2u ∂f

∂η
− f

∂(e−2u)
∂η

)

=
∫
M

fΔg0(e−2u) +
∫

∂M

∂f

∂η
+ 2

∫
∂M

f
∂u

∂η

=
∫
M

[−2fe−2u(Δg0u− 2|Du|2g0
) + Δg0f ] + 2

∫
∂M

f(κg − κg0)

=
∫
M

[−2fe−2u(Kg0 −Kge
2u − 2|Du|2g0

) + Δg0f ]

+
∫

∂M

2f(κg − κg0).

2 Hereinafter, for aesthetics reasons, we will sometimes omit the volume and area elements in the integrals.
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Thus, since Δg0f = Lg0f − 2Kg0f , we obtain

∫
M

e−2u(Δg0f + 2Kg0f) =
∫
M

(Lg0f + 4fe−2u|Du|2g0
)

+
∫
M

2f(Kg −Kg0) +
∫

∂M

2f(κg − κg0).

Hence,

∫
M

Lg0f(e−2u − 1) =
∫
M

4fe−2u|Du|2g0

+
∫
M

2f(Kg −Kg0) +
∫

∂M

2f(κg − κg0).

By hypothesis, 
∫
M

Lg0f(1 − e−2u)dvolg0 ≥ 0 and 
∫
M

2f(Kg − Kg0) +
∫
∂M

2f(κg − κg0) ≥ 0. Hence, 
Du = 0, which together the fact that u|∂M = 0, imply that g = g0.

Now, we assume n ≥ 3 and write g = u
4

n−2 g0, for some u ∈ C2(M \ ∂M) ∩ C1(M), positive in M and 
with u = 1 on ∂M . The mean curvatures hg0 = divg0ηg0 and hg = divgηg satisfy

∂u

∂η
= n− 2

2(n− 1)(hgu
n

n−2 − hg0) = n− 2
2(n− 1)(hg − hg0), on ∂M, (10)

where η = ηg0 . Furthermore, the scalar curvatures Rg and Rg0 satisfy

Δg0u− n− 2
4(n− 1)Rg0u + n− 2

4(n− 1)Rgu
n+2
n−2 = 0, in M. (11)

Let λ be a constant to be chosen soon. Using that u|∂M = 1, integrating by parts we obtain

∫
M

uλΔg0f =
∫
M

fΔg0u
λ +

∫
∂M

(uλ ∂f

∂η
− f

∂(uλ)
∂η

)

=
∫
M

(fλuλ−1Δg0u + fλ(λ− 1)uλ−2|Du|2g0
) +

∫
∂M

∂f

∂η
− λf

∂u

∂η

=
∫
M

[(fλuλ−1Δg0u + fλ(λ− 1)uλ−2|Du|2g0
) + Δg0f ]

− (n− 2)
2(n− 1)λ

∫
∂M

f(hg − hg0)

=
∫
M

[fλuλ−1( n− 2
4(n− 1)(Rg0u−Rgu

n+2
n−2 ) + fλ(λ− 1)uλ−2|Du|2g0

)]

+
∫
M

Δg0f − (n− 2)
2(n− 1)λ

∫
∂M

f(hg − hg0).

Hence,
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∫
M

uλ(Δg0f − λf
n− 2

4(n− 1)Rg0) = −λ
n− 2

4(n− 1)

∫
M

fRgu
λ−1+ n+2

n−2

+
∫
M

Δg0f + λ(λ− 1)
∫
M

fuλ−2|Du|2g0

− (n− 2)
2(n− 1)λ

∫
∂M

f(hg − hg0).

Now, we choose λ = 1 − n+2
n−2 = −4

n−2 . We obtain

∫
M

u
−4
n−2Lg0f =

∫
M

f
Rg

n− 1 +
∫
M

(Lg0f − Rg0

n− 1f)

+ 4(n + 2)
(n− 2)2

∫
M

fu
−2n
n−2 |Du|2g0

+ 2
n− 1

∫
∂M

f(hg − hg0).

Therefore, we have
∫
M

Lg0f(u
−4
n−2 − 1) = 4(n + 2)

(n− 2)2

∫
M

fu
−2n
n−2 |Du|2g0

+ 1
n− 1

∫
M

f(Rg −Rg0) + 2
n− 1

∫
∂M

f(hg − hg0).

By hypothesis, g = u
4

n−2 g0 satisfies (3) and 
∫
M

Lg0f(1 − u
−4
n−2 ) ≥ 0. Thus, it follows that Du = 0. Since 

u|∂M = 1, one has u = 1 in M ; hence g = g0. Theorem 1 is proved.

3. Proof of Theorem 6

First, consider the case n = 2 and rewrite g = e2ug0 with u ∈ C2(Ω) ∩C0(Ω̄). Since u|∂Ω = 0 the geodesic 
curvatures κg, κg0 satisfy

∂u

∂η
= κge

u − κg0 = κg − κg0 , in ∂Ω, (12)

where η = ηg0 is the outward unit normal vector of (∂Ω, g0). Furthermore, the Gaussian curvatures Kg, Kg0

of (Ω, g0) and (Ω, g), respectively, satisfy

Δg0u = Kg0 −Kge
2u. (13)

Let ū = min{u, 0}. It turns out that ū is continuous and, in the sense of distributions, it holds Δg0ū ≤
χ{u<0}Δg0u. One can see it by observing that ū = limε→0 uε, where uε = 1

2 (u −
√
u2 + ε2). Hence, in 

the sense of distributions, Δg0 ū ≤ χ{u<0}Δg0u = χ{u<0}(Kg0 − Kge
2u) ≤ χ{u<0}Kg0(1 − e2u), since 

χ{u<0}Kg ≥ χ{u<0}Kg0 .
Let Au = χ{u<0}Kg0(1 − e2u). It holds that Au = Aū is a nonnegative continuous function, and

Δg0 ū ≤ Aū, in Ω,

in the sense of distributions. The function Aū is Lipschitz in Ω̄. In fact, given x, x0 ∈ Ω̄, if either x, x0 ∈
{u < 0}, or x, x0 ∈ {u ≥ 0}, we have |Aū(x) −Aū(x0)| = χ{u<0}|K0(x)e2u(x)−K0(x0)e2u(x0)| ≤ c dg0(x, x0), 
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for some c > 0, since K0e
2u ∈ C1(Ω̄). Thus, we assume that u(x) < 0 and u(x0) ≥ 0. In this case, 

|Aū(x) − Aū(x0)| = |Aū(x)| = |Kg0(x)|(1 − e2u) ≤ (max |Kg0 |)(e2u(x0) − e2u(x)) ≤ c dg0(x, x0), for some 
c > 0, since u ∈ C1(Ω̄).

Now, let v̄ : Ω̄ → R be a solution of the Dirichlet problem:

Δg0 v̄ = Aū, in Ω, and v̄|∂Ω = 0.

Since Aū is Lipschitz in Ω̄ we have v ∈ C2(Ω̄) (see Theorem 8.34, p. 211, of [5]). Furthermore, since 
Δg0(ū− v̄) ≤ 0 and (ū− v̄)|∂Ω = 0, one has v̄ ≤ ū ≤ 0. This implies 1 − e2ū ≤ 1 − e2v̄ and χ{ū<0} ≤ χ{v̄<0}, 
hence Aū ≤ Av̄ in Ω̄, since Kg0 ≥ 0. Hence,

Δg0 v̄ ≤ Av̄, in Ω, and v̄|∂Ω = 0.

Let v : M → R be defined by

v(x) =
{

v̄(x), if x ∈ Ω̄;
0, if x ∈ M \ Ω̄.

We have Av is Lipschitz, since v̄ ∈ C2(Ω̄), and v satisfies

Δg0v ≤ Av, in M,

in the sense of distributions, and v|∂M = 0. Let ω be a solution of the Dirichlet problem

Δg0ω = Av, in M, and ω|∂M = 0.

Since Ω is a domain in M , it follows v = 0 in a neighborhood U of ∂M in M , hence Av = 0 in U , hence 
ω ∈ C2(M). Furthermore, we have Δg0(v− ω) ≤ 0, (v− ω)|∂M = 0 and v = 0 in U . These imply ω ≤ v ≤ 0
and

∂ω

∂η
≥ ∂v

∂η
= 0 on ∂M. (14)

In addition, we also have Av ≤ Aω, since Kg0 ≥ 0 in M . Hence, Δg0ω ≤ Aω. Thus, the metric g̃ = e2ωg0
satisfies

Kg̃ = e−2ω(Kg0 − Δg0ω)

≥ e−2ω(Kg0 −Aω) = e−2ω(Kg0 − χ{ω<0}Kg0(1 − e2ω))

= e−2ω(Kg0(1 − χ{ω<0}) + χ{ω<0}Kg0e
2ω)

= Kg0 .

The last equality follows just analyzing the cases ω < 0 and ω = 0. Furthermore, by (14), one has kg̃ =
∂ω
∂η + kg0 ≥ kg0 .

Since ω ≤ 0 and, by hypothesis, Lg0f ≤ 0, for some f ∈ C2(M \ ∂M) ∩ C1(M) positive a.e., we obtain 
Lg0f(1 − e−2ω) ≥ 0. By Theorem 1, one has g̃ = g0, hence ω = 0. This implies v = v̄ = ū = 0, hence u ≥ 0. 
Hence, g ≥ g0. Moreover, using u ≥ 0 and u|∂Ω = 0, one has ∂u∂η ≤ 0, hence, by (8), it follows that κg ≤ κg0 .

Now, assume further Kg ≥ Kg0 in Ω. Using (13), one has Δg0u ≤ 0. Since ∂u
∂η ≤ 0 and u|∂Ω = 0, by 

interior maximum principle and Hopf Lemma, it follows that u = 0 in Ω̄, provided u = 0 somewhere in Ω
or ∂u = 0 somewhere on ∂Ω.
∂η
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Now, let us consider the case n ≥ 3. We rewrite g = u
4

n−2 g0, for u ∈ C2(Ω̄) positive and satisfying u = 1
on ∂Ω. Let ū = min{1, u}. The function ū is continuous in Ω̄ and satisfies ū|∂Ω = 1. Furthermore, Δg0 ū ≤
χ{u<1}Δg0u, in the sense of distributions. One can see it, by observing that ū = limε→0(u+1

2 − ϕε(u−1
2 )), 

where ϕε(t) =
√
t2 + ε2. Thus, using χ{u<1}Rg ≥ χ{u<1}Rg0 ≥ 0, by (11), we obtain

Δg0 ū ≤ n− 2
4(n− 1)χ{u<1}(Rg0u−Rgu

n+2
n−2 ) (15)

≤ n− 2
4(n− 1)χ{ū<1}Rg0(ū− ū

n+2
n−2 )

= Aū ū, in Ω,

in the sense of distributions, where Aū = n−2
4(n−1)χ{ū<1}Rg0(1 − ū

4
n−2 ). As in the two-dimensional case we 

observe that Aū ≥ 0 is Lipschitz in Ω̄.
Let v̄ ∈ C2(Ω̄) be a solution of the Dirichlet problem

Δg0 v̄ −Aū v̄ = 0 and v̄|∂Ω = 1

(see Theorem 8.34, p. 211, of [5]). By the strong maximum principle, one has v̄ > 0 in Ω. Furthermore, 
since Δg0(v̄ − ū) −Aū(v̄ − ū) ≥ 0 and (ū− v̄)|∂Ω = 0, also by the strong maximum principle, we have that 
v̄ ≤ ū ≤ 1. We obtain that χ{v̄<1} ≥ χ{ū<1} and 1 − v̄

4
n−2 ≥ 1 − ū

4
n−2 . This implies Av̄ ≥ Aū, since Rg0 ≥ 0. 

Hence,

Δg0 v̄ −Av̄ v̄ ≤ 0, in M, and v̄|∂Ω = 1.

Let v : M → R be defined by

v(x) =
{

v̄(x), if x ∈ Ω̄;
1, if x ∈ M \ Ω̄.

Note that v ≤ 1 in M and Av is Lipschitz. Furthermore, it holds

Δg0v −Avv ≤ 0, in M, (16)

in the sense of distributions.
Let w ∈ C2(M) be a solution of the Dirichlet problem

Δg0w −Av w = 0, in M, and w|∂M = 1. (17)

Since Av ≥ 0, by the strong maximum principle, −w cannot achieve a nonnegative maximum in M \ ∂M , 
unless w is constant. Hence w > 0, since w|∂M = 1. Furthermore, by (16) and (17), we have Δg0(w − v) −
Av(w − v) ≥ 0, in M , in the sense of distributions, and w − v = 0 in ∂M . Again by the strong maximum 
principle, we obtain w ≤ v ≤ 1 in M , hence Aw ≥ Av. Thus, by (17),

Δg0w −Aw w ≤ 0, in M, and w|∂M = 1. (18)

Consider the metric g̃ = w
4

n−2 g0. By (11), the scalar curvatures Rg̃ and Rg0 satisfy
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Rg̃ = w− n+2
n−2 (Rg0w − 4(n− 1)

n− 2
Δg0w)

≥ w− n+2
n−2 (Rg0w − 4(n− 1)

n− 2
Aw w)

= w− n+2
n−2 ((1 − χ{w<1})Rg0w + χ{w<1}Rg0w

n+2
n−2 )

= Rg0 .

The last equality follows just by analyzing the cases w < 1 and w = 1. Furthermore, since w ≤ 1 and 
w|∂M = 1, we have ∂w∂η ≥ 0 on ∂M . By (10), the mean curvatures hg0 and hg̃ satisfy

hg̃ = hg0 + 2(n− 1)
n− 2

∂w

∂η
≥ hg0 .

Since 1 − w
−4
n−2 ≤ 0, and, by hypothesis, there exists f ∈ C2(M \ ∂M) ∩ C1(M) positive a.e. such that 

Lg0f ≤ 0, it follows that Lg0f(1 − w
−4
n−2 ) ≥ 0. By Theorem 1, it holds g̃ = g0, hence w = 1. This implies 

that v = v̄ = ū = 1, hence u ≥ 1. Thus, g ≥ g0. Moreover, since u ≥ 1 and u|∂M = 1, we also have ∂u∂η ≤ 0, 
hence hg ≤ hg0 .

Now, we assume further Rg ≥ Rg0 in Ω. Since u ≥ 1 and Rg0 ≥ 0, by (11), one has Δg0u ≤ 0. Thus, if 
u = 1, somewhere in Ω, or ∂u∂η = 0, somewhere in ∂Ω, then, by interior maximum principle or Hopf Lemma, 
it holds u = 1 in Ω. Theorem 6 is proved.
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