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supersolutions.
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1. Introduction

We consider fully nonlinear, non-homogeneous second order equations of the form

F (D2u) = f(x) (1.1)

with a uniformly elliptic operator F . A typical statement of the Harnack inequality is that there exists a 
constant C > 0 such that the inequality

max
U

u <= C
{

min
U

u + ‖f‖Ln(V )

}
(1.2)

holds for every non-negative solution u of (1.1) in V . Here V is a set which is (enough) larger than U , and 
n represents the dimension of space. One of well-known proofs of the Harnack inequality is a combination 
of a weak Harnack inequality, which asserts that, for some p > 0,

‖u‖Lp(U) <= C
{

min
U

u + ‖f‖Ln(V )

}
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holds for every non-negative supersolution u, and a local maximum principle (or a mean value inequality):

max
U

u <= C
{
‖u‖Lq(U) + ‖f‖Ln(V )

}

for subsolutions u, where q > 0 is arbitrary. These estimates are well-known in the continuum case 
where (1.1) is studied as a partial differential equation in Rn; for instance, the reader is referred to [9, 
Chapter 9] for linear equations and to [3, Chapter 4] for fully nonlinear equations. The corresponding re-
sults are also obtained in the discrete case when we study (1.1) as a difference equation on lattices. In [13]
the Harnack inequality for elliptic difference equations is derived via the weak Harnack inequality and the 
local maximum principle. See also [15] for the parabolic case and [16,17] for general meshes.

The main goal of this paper is to show that, in the discrete case, a modified proof of the weak Harnack 
inequality implies a new type of the Harnack inequality for discrete supersolutions to (1.1) on rectangular 
lattices (Theorem 4.1). Our proof is direct and simple in the sense that we do not need the local maximum 
principle. Accordingly, the resulting estimate is valid for every supersolution which is not necessarily a 
subsolution. This is a difference from the literature.

It seems that importance of analysis on various non Euclidean spaces has been increasing. In fact, one of 
motivations of this work comes from partial differential equations posed on a discrete space such as graphs, 
whose application include, e.g., stochastic controls, mean field games, social networks, and so on. (See [18]
and references therein.) In the recent paper [18], nonlinear elliptic partial differential equations are studied 
on a finite graph, and uniqueness and existence results of solutions are obtained. Our setting on rectangular 
lattices is a special case of [18]. A flavor of analysis for graph spaces could be seen in the present paper; 
we use the graph distance ρ(x) and the ball Br with respect to this distance (Section 3). They appear 
in the statement of our main theorem (Theorem 4.1). It is our surprise that Harnack estimate holds for 
supersolutions if we consider a discrete space. This enables us to control more functions since our result 
does not rely on a subsolution property of solutions.

It turns out that our Harnack constant, C in (1.2), depends on the graph distance on lattices. Due to 
this, passing to limits in our Harnack inequality does not imply the continuum Harnack inequality since 
the Harnack constant C goes to infinity when the mesh size tends to 0 (Remarks 3.4 and 4.2). Here it 
is worth mentioning that such reconstruction of the continuum Harnack inequality should not be possible 
since (1.2) does not hold even for the Laplace equation if we do not require u to be a subsolution; see 
Example 5.3 for the counter-example. Contribution of this paper is a discovery of a Harnack estimate for 
functions (supersolutions) belonging to a wider class which are excluded in a study of a convergent scheme. 
This is our first attempt to give a priori estimate for discrete solutions, and the extension of the result to 
more general lattices rather than rectangular lattices is one of interesting our future problems.

In the proof of the weak Harnack inequality for fully nonlinear equations of the continuum case ([2,3]), 
we take a radially symmetric and increasing supersolution φ of the Pucci equation

P−(D2φ) = −ξ(x). (1.3)

Here P− is a Pucci operator (see (5.2) or (2.2) for definition) and ξ is a non-negative, continuous function 
whose support is contained in a small ball centered at the origin. Such a function φ is often called a barrier 
function. In the discrete case, we are able to construct the barrier function so that ξ is non-zero only at 
the origin (Lemma 3.1 and Remark 3.2). In other words, its support is only one point. This is a crucial 
difference from the continuous case, and this enables a pointwise estimate for supersolutions of difference 
equations. In our proof of the Harnack inequality, we translate the barrier function so that its minimum 
point, which originally lies at the origin, comes to a maximum point of the supersolution u of (1.1). As a 
result, we obtain the Harnack inequality without discussing the local maximum principle.
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We apply the same idea involving translation of the barrier function to partial differential equations 
in Rn. This gives a Harnack type estimate for viscosity supersolutions of elliptic equations (Theorem 5.7). 
To describe the result, we first note that (1.2) can be stated equivalently as

u(z) <= C
{

min
U

u + ‖f‖Ln(V )

}
for all z ∈ U, (1.4)

which is a pointwise estimate and does not hold for supersolutions. Employing the theory of viscosity 
solutions, we prove that, for a fixed ε > 0, there exists a constant C > 0 depending on ε such that, for every 
z ∈ U , the minimum value of u over {|x − z| <= ε} is dominated by the right-hand side of (1.4). In other 
words, our Harnack inequality needs further information of u around z. The barrier function φ which we will 
use in the proof is chosen so that the support of ξ appearing in (1.3) is contained in {|x| <= ε}. Also, around 
the origin, φ is defined by using a modulus of continuity (from below) of u near z. The resulting estimate 
can be said to be a “very weak Harnack inequality” since the minimum of u over {|x − z| <= ε} is controlled 
by its Lp-norm on U . Thus the method in this paper presents how a simple estimate is established by a 
simple argument without the Calderón–Zygmund decomposition appearing in the literature ([2,3]).

Our difference equation (2.1) below is “diagonal”; namely it does not include mixed directional derivatives. 
In a study of a finite graph ([18]) it is natural to consider such operators depending only on adjacent points, 
while a convergent scheme allowing mixed directional derivatives is developed in [14]. If we include mixed 
directional derivatives, a definition of a discrete ball Br (Section 3) needs to be changed since difference 
operators depend on values on diagonal points. Also, Pucci operators (2.2) should be defined for symmetric 
matrices as in the continuum case (5.2). However, it seems non-trivial to construct a barrier function in the 
general case. To avoid a technical difficulty we consider (2.1) for a discrete problem. (The equation (5.1) in 
the continuum case is allowed to depend on mixed directional derivatives.)

This paper is organized as follows: Section 2 is devoted to preparation for studies of difference equations 
on rectangular lattices. In Section 3 we construct a barrier function φ in (1.3) so that the support of ξ lies 
only at the origin. Then, in Section 4 we give a proof of the Harnack inequality for non-negative discrete 
supersolutions. Section 5 is concerned with the Harnack inequality in Rn for viscosity supersolutions. We use 
a similar idea to the one presented in Section 4. In Appendix A we establish a unique existence of discrete 
solutions to Dirichlet problems of fully nonlinear uniformly elliptic difference equations. This unique solution 
is needed in Section 4 to derive the Harnack inequality with non-zero f .

2. Preliminaries

In this paper we consider an n-dimensional weighted lattice hZn defined as

hZn := {(h1m1, . . . , hnmn) ∈ Rn | (m1, . . . ,mn) ∈ Zn}.

Here hi is a fixed positive constant which represents a mesh size in the direction of xi. We set hmax :=
max{h1, . . . , hn} and hmin := min{h1, . . . , hn}. For Ω ⊂ hZn we define its closure Ω ⊂ hZn and its boundary 
∂Ω ⊂ hZn as

Ω := Ω ∪ {x± hiei | x ∈ Ω, i ∈ {1, . . . , n}}, ∂Ω := Ω \ Ω,

where {ei}ni=1 ⊂ Rn is the standard orthogonal basis of Rn, e.g., e1 = (1, 0, . . . , 0).
We next introduce difference operators. Let u : hZn → R, x ∈ hZn and i ∈ {1, . . . , n}. We define the 

second order difference operators as follows:

δ2
i u(x) := u(x + hiei) + u(x− hiei) − 2u(x)

2 ,

hi
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�δ2u(x) := (δ2
1u(x), . . . , δ2

nu(x)).

The difference equation we consider is

F (�δ2u(x)) = f(x), (2.1)

where F : Rn → R is uniformly elliptic (Definition 2.2), F (0) = 0 and f : hZn → R.

Definition 2.1. Let Ω ⊂ hZn. We say u : Ω → R is a discrete subsolution (resp. supersolution) of (2.1) in Ω
if F (�δ2u(x)) <= f(x) (resp. >= f(x)) for all x ∈ Ω. If u is both a discrete sub- and supersolution, it is called 
a discrete solution.

Throughout this paper we fix ellipticity constants 0 < λ <= Λ. To describe the uniform ellipticity of F in 
(2.1) we introduce Pucci operators P± : Rn → R, which are defined as

P+( �X) := −λ
∑
Xi>0

Xi − Λ
∑
Xi<0

Xi, P−( �X) := −λ
∑
Xi<0

Xi − Λ
∑
Xi>0

Xi (2.2)

for �X = (X1, . . . , Xn) ∈ Rn. An easy computation shows that the Pucci operators satisfy P−( �X + �Y ) <=
P+( �X) + P−(�Y ) <= P+( �X + �Y ) for all �X, �Y ∈ Rn.

Definition 2.2. We say F : Rn → R is uniformly elliptic if P−( �X − �Y ) <= F ( �X) − F (�Y ) <= P+( �X − �Y ) for 
all �X, �Y ∈ Rn.

Putting �Y = 0, we see that P−( �X) <= F ( �X) <= P+( �X) since F (0) = 0.
We next state the ABP maximum principle (ABP estimate). This is a pointwise estimate for subsolutions 

and supersolutions of elliptic equations, and it will be used in the proof of the Harnack inequality. We prepare 
some notations before stating the estimate. For a ∈ R we set a± := max{±a, 0} (>= 0). Let Ω ⊂ hZn and 
u : Ω → R. We define ΓΩ[u], an upper contact set of u on Ω, as

ΓΩ[u] :=
{
x ∈ Ω

∣∣∣∣∣ there exists some p ∈ Rn such that
u(y) <= 〈p, y − x〉 + u(x) for all y ∈ Ω

}
, (2.3)

where 〈·, ·〉 is the standard Euclidean inner product in Rn. The p-norm (p ∈ [1, ∞)) of u over Ω is given as 
‖u‖�p(Ω) :=

(∑
x∈Ω hn|u(x)|p

)1/p, where hn := h1 × · · · × hn. We only use the case p = n in this paper. The 
diameter of Ω is diam(Ω) := maxx∈Ω,y∈∂Ω |x − y|. Here | · | stands for the standard Euclidean norm in Rn.

Theorem 2.3 (ABP maximum principle). Let Ω ⊂ hZn be bounded. There exists a constant CA = CA(n, λ) >
0 such that, for every discrete subsolution (resp. supersolution) u of (2.1) in Ω, the estimate

max
Ω

u <= max
∂Ω

u+ + CAdiam(Ω)‖f+‖�n(ΓΩ[u+]) (2.4)

(resp. min
Ω

u >= min
∂Ω

(−u−) − CAdiam(Ω)‖f−‖�n(ΓΩ[u−])) (2.5)

holds.

We do not give a proof of Theorem 2.3; see [13, Theorem 2.1], [10, Theorem 4.1].



188 N. Hamamuki / J. Math. Anal. Appl. 438 (2016) 184–199
3. Barrier function

In the proof of the Harnack inequality we use a barrier function, which is a radially increasing superso-
lution of P− = 0 except at the origin. (See [3, Lemma 4.1] for the continuum case.)

For x ∈ hZn given as x = (h1m1, . . . , hnmn) with (m1, . . . , mn) ∈ Zn, we define ρ(x) := |m1| + · · ·+ |mn|. 
This represents the graph distance on hZn between 0 and x, i.e., the number of edges in a shortest path 
connecting them. We emphasize that ρ(x) is different from the Euclidean distance between 0 and x. For 
instance, if x = (5h1, 0, . . . , 0) ∈ hZn, then ρ(x) is not 5h1 but 5. Let k ∈ N ∪{0}. We define a ball Bk ⊂ hZn

as Bk := {x ∈ hZn | ρ(x) <= k}, which is a diamond-shaped set. Note that the index k is not the Euclidean 
distance but the graph distance.

Lemma 3.1 (Barrier function). Let k ∈ N. There exists a function φ : Bk → R such that

⎧⎪⎨
⎪⎩

P−(�δ2φ) >= 0 in Bk \ {0}, (a)
φ = 0 on ∂Bk, (b)
φ <= −1 in Bk. (c)

(3.1)

Proof. We will construct a radially symmetric φ satisfying (3.1) (a)–(c). Namely, we seek φ of the form 
φ(x) = am if ρ(x) = m ∈ {0, 1, . . . , k + 1}. First we set ak+1 = 0 and ak = −1, which come from the 
conditions (3.1) (b) and (c). We next define the values ak−1, . . . , a1, a0 by induction so that ak+1 = 0 >
ak = −1 > ak−1 > · · · > a1 > a0. In the rest of the proof we show that, for given am+1 and am such 
that am+1 > am, we have P−(�δ2φ(x)) >= 0 for x with ρ(x) = m if we take am−1 sufficiently small (i.e., 
am−1 
 −1).

Fix m ∈ {1, . . . , k} and x = (x1, . . . , xn) ∈ Bk \ {0} such that ρ(x) = m. Let us calculate δ2
i φ(x). If 

xi = 0, we observe

δ2
i φ(x) = am+1 + am+1 − 2am

h2
i

= 2(am+1 − am)
h2
i

> 0.

On the other hand, if xi �= 0, then

δ2
i φ(x) = am+1 + am−1 − 2am

h2
i

,

which is negative when am−1 
 −1. Thus the definition of P− implies that

P−(�δ2φ(x)) = −λ
∑
xi �=0

δ2
i φ(x) − Λ

∑
xi=0

δ2
i φ(x).

Now, there exists at least one index i such that xi �= 0 since x �= 0. Therefore

P−(�δ2φ(x)) >= −λ
am+1 + am−1 − 2am

h2
max

− Λ2(am+1 − am)
h2

min
(n− 1)

= − λ

h2
max

(
am+1 + am−1 − 2am + 2Λh2

max(n− 1)(am+1 − am)
λh2

min

)
. (3.2)

This is non-negative if am−1 
 −1, and hence (3.1) (a) holds. The conditions (3.1) (b) and (c) are clear by 
construction. �
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Remark 3.2. Using the barrier function φ in Lemma 3.1, we define

ξ(x) :=
{
−P−(�δ2φ(0)) if x = 0,
0 if x �= 0.

Then φ is a supersolution of P− = −ξ in Bk. We also note that ξ(0) > 0 since δ2
i φ(0) = 2(a1 − a0)/h2

i > 0
for all i = 1, . . . , n.

Remark 3.3. In view of the proof, we notice that φ(0) depends on k, n, Λ/λ and hmax/hmin. The positive 
constant −φ(0) will appear as the Harnack constant CH in (4.2).

Remark 3.4. The quantity in parentheses of (3.2) is chosen to be non-positive, and so we have am+1 −am <

am − am−1 for m ∈ {1, . . . , k}. This yields a0 < −k − 1 since ak+1 − ak = 1. It thus follows that the value 
φ(0) = a0 goes to −∞ as k → ∞. This implies that we cannot obtain the continuum Harnack inequality as 
the limit of our discrete Harnack inequality; see Remark 4.2.

4. Harnack inequality

We show the Harnack inequality for non-negative discrete supersolutions of

P+(�δ2u) = −f−(x). (4.1)

Note that a supersolution of (2.1) is also a supersolution of (4.1).

Theorem 4.1 (Harnack inequality). Let r ∈ N. Then there exists a constant CH = CH(r, n, Λ/λ, hmax/

hmin) > 0 such that, for every non-negative discrete supersolution u : B3r → [0, ∞) of (4.1) in B3r, the 
estimate

max
Br

u <= CH

{
min
Br

u + CAdiam(B3r)‖f−‖�n(B3r)

}
(4.2)

holds, where CA is the constant in Theorem 2.3.

We first prove (4.2) in the case when f− ≡ 0; a crucial difference between the discrete case and the 
continuum case appears in this part. We translate ξ in Remark 3.2 so that its support comes to a maximum 
point of u and derive the estimate for u at the point. The proof for a general f is similar to the proof in 
the continuum case; see, e.g., [1, Proof of Theorem 1.11]. We employ a solution v of a Pucci equation and 
study u + v to apply (4.2) with f− ≡ 0.

Proof. Case: f− ≡ 0. 1. We take xM , xm ∈ Br such that u(xM ) = maxBr
u and u(xm) = minBr

u. Our goal 
is to derive u(xM ) <= CHu(xm). Let φ be the barrier function in Lemma 3.1 with k = 2r. Let β > u(xm)
(>= 0). We define φ̃(x) := βφ(x − xM ) and

ξ̃(x) :=
{
−P−(�δ2φ̃(xM )) if x = xM ,

0 if x �= xM .

Set B := xM +B2r. Then Br ⊂ B ⊂ B3r since xM ∈ Br. By virtue of Lemma 3.1 and Remark 3.2, we have⎧⎪⎨
⎪⎩

P−(�δ2φ̃) >= −ξ̃ in B, (a)
φ̃ = 0 on ∂B, (b)
φ̃ < −β in B. (c)

(4.3)

=
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2. Let us study a function u + φ̃. For every x ∈ B we deduce from (4.3) (a) that

P+(�δ2u(x) + �δ2φ̃(x)) >= P+(�δ2u(x)) + P−(�δ2φ̃(x)) >= 0 − ξ̃(x).

Namely, u + φ̃ is a supersolution of P+ = −ξ̃ in B. Applying the ABP maximum principle (2.5) to u + φ̃, 
we obtain

min
B

(u + φ̃) >= min
∂B

{−(u + φ̃)−} − CAdiam(B)‖ξ̃‖�n(ΓB [(u+φ̃)−]). (4.4)

Since u is non-negative and (4.3) (b) holds, we have u + φ̃ >= 0 on ∂B, and thus min∂B{−(u + φ̃)−} = 0. As 
for the left-hand side of (4.4), using (4.3) (c), we compute

min
B

(u + φ̃) <= min
B

u− β <= min
Br

u− β < 0.

Therefore it follows from (4.4) that 0 > −‖ξ̃‖�n(ΓB [(u+φ̃)−]). Since ξ̃ is nonzero only at xM by its definition, 
we must have

xM ∈ ΓB [(u + φ̃)−]. (4.5)

3. We claim (u + φ̃)(xM ) < 0. Suppose by contradiction that (u + φ̃)(xM ) >= 0, i.e., (u + φ̃)−(xM ) = 0. 
Then, since (u + φ̃)− = 0 on ∂B, (4.5) implies

(u + φ̃)− = 0 on B. (4.6)

Indeed, by (4.5) there exists some p = (p1, . . . , pn) ∈ Rn such that

0 <= (u + φ̃)−(y) <= (u + φ̃)−(xM ) + 〈p, y − xM 〉 = 〈p, y − xM 〉 (4.7)

for all y ∈ B. Fix i ∈ {1, . . . , n} and choose k+, k− ∈ N such that xM ± k±hiei ∈ ∂B. (Such numbers k±
exist since B is bounded.) Taking y = xM ± k±hiei in (4.7), we observe

0 <= 〈p, k+hiei〉 = k+hipi, 0 <= 〈p,−k−hiei〉 = −k−hipi,

which imply pi = 0. Finally, applying p = 0 to (4.7) yields (4.6). However, at a minimum point xm we have 
(u + φ̃)(xm) <= u(xm) − β < 0. This contradicts to (4.6).

By the claim we have u(xM ) < −φ̃(xM ) = −βφ(0), and sending β → u(xm) yields u(xM ) <= CHu(xm)
with CH = −φ(0).

Case: f− �≡ 0. 1. Let v be the discrete solution of

{
P−(�δ2v) = f− in B3r,

v = 0 on ∂B3r.

We will prove a unique existence of solutions in Appendix A (Theorem A.4) for more general Dirichlet 
problems. By the ABP maximum principles we see that v satisfies

max
B3r

v <= max
∂B3r

v+ + CAdiam(B3r)‖(f−)+‖�n(ΓB3r [v+])

<= 0 + CAdiam(B3r)‖f−‖�n(B3r) (4.8)
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and

min
B3r

v >= min
∂B3r

(−v−) − CAdiam(B3r)‖(f−)−‖�n(ΓB3r [v−])

= 0 − 0. (4.9)

2. We now consider a function u + v. By the non-negativity of u and (4.9), we have u + v >= 0 in B3r. 
Next, for x ∈ B3r we compute

P+(�δ2u(x) + �δ2v(x)) >= P+(�δ2u(x)) + P−(�δ2v(x)) >= −f−(x) + f−(x) = 0.

Thus u + v is a non-negative supersolution of P+ = 0 in B3r. From the Harnack inequality of the case 
f− ≡ 0 it follows that

max
Br

(u + v) <= CH min
Br

(u + v).

Finally, applying the estimates (4.8) and (4.9) to the right- and the left-hand side respectively, we obtain 
(4.2). �
Remark 4.2. Passing to limits in (4.2) as h → 0 does not imply the Harnack inequality in the continuum 
case. Indeed, to derive the continuum Harnack inequality on a bounded set K ⊂ Rn, one needs to “cover” 
K by a discrete ball Br ⊂ hZn. When the mesh size goes to 0, the radius r ∈ N must tend to infinity, and 
thus the value CH = −φ(0) goes to infinity as we observed in Remark 3.4.

5. Continuum case

We consider elliptic partial differential equations of the form

F (D2u(x)) = f(x), (5.1)

where D2u(x) = (∂2
iju(x))ij denotes the Hessian matrix, F ∈ C(Sn) is uniformly elliptic (Definition 5.2), 

F (O) = 0 and f ∈ C(Rn). Here Sn is the set of real n × n symmetric matrices. In this section, applying 
the idea of the proof of Theorem 4.1, we deduce a Harnack type inequality for supersolutions of (5.1).

We employ a notion of viscosity solutions to solve (5.1) since it is fully nonlinear.

Definition 5.1. Let Ω ⊂ Rn be open. We say that u ∈ C(Ω) is a viscosity subsolution (resp. supersolution) 
of (5.1) in Ω if F (D2φ(x)) <= f(x) (resp. >= f(x)) for all (x, φ) ∈ Ω × C2(Ω) such that u − φ attains a local 
maximum (resp. minimum) at x.

For given ellipticity constants 0 < λ <= Λ we define Pucci operators P± : Sn → R as

P+(X) := −λ
∑
μi>0

μi − Λ
∑
μi<0

μi, P−(X) := −λ
∑
μi<0

μi − Λ
∑
μi>0

μi, (5.2)

where μi (i = 1, . . . , n) are the eigenvalues of X ∈ Sn. It is easily seen that these operators satisfy P−(X +
Y ) <= P+(X) + P−(Y ) <= P+(X + Y ) for all X, Y ∈ Sn. We also have

P+(X) = sup{−trace(AX) | A ∈ Sn, λI <= A <= ΛI},

P−(X) = inf{−trace(AX) | A ∈ Sn, λI <= A <= ΛI},
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i.e., P± are Bellman type operators. Here I is the identity matrix, and for X, Y ∈ Sn we write X <= Y if 
〈(Y −X)ξ, ξ〉 >= 0 for all ξ ∈ Rn.

Definition 5.2. We say F : Sn → R is uniformly elliptic if P−(X − Y ) <= F (X) − F (Y ) <= P+(X − Y ) for 
all X, Y ∈ Sn.

Now, we shall give examples showing that the usual Harnack inequality does not hold in the continuum 
case if we require u to be only a non-negative supersolution. In this section Br stands for the open ball 
{|x| < r} in Rn. The closure of it in Rn is denoted by Br. Also, set Br(z) := {|x − z| < r}.

Example 5.3. We consider the Laplace equation −Δu = 0 in Rn when n >= 3. Set u(x) = min{c|x|2−n, 1}
with c > 0. As is known, |x|2−n is the fundamental solution of the Laplace equation while any constant is 
trivially a solution. Since the minimum of two supersolutions is still a supersolution ([5, Lemma 4.2]), u is a 
viscosity supersolution. On the other hand, u is not a viscosity subsolution. Indeed, letting φ(x) = −ε|x|2 for 
ε > 0 small, we see that u −φ takes a maximum at a point z such that c|z|2−n = 1, but −Δφ(z) = 2nε > 0. 
Now, let us fix r > 0. We then have maxBr

u = 1 and minBr
u = cr2−n for c small. Thus the ratio 

(maxBr
u)/(minBr

u) tends to ∞ as c → 0. This implies that the Harnack inequality does not hold.
The functions u(x) = min{|x|2−n, M} with M > 0 also show that the Harnack inequality does not hold 

by letting M → ∞.

We state the ABP maximum principle for viscosity solutions. Let Ω ⊂ Rn be an open set and u :
Ω → R. Similarly to the discrete case, we define an upper contact set ΓΩ[u] by (2.3). Set ‖u‖Ln(Ω) :=
(
∫
Ω |u(x)|ndx)1/n.

Theorem 5.4 (ABP maximum principle). Let Ω ⊂ Rn be a bounded open set. There exists a constant 
CA = CA(n, λ) > 0 such that, for every viscosity subsolution (resp. supersolution) u ∈ C(Ω) of (5.1) in Ω, 
the estimate

max
Ω

u <= max
∂Ω

u+ + CAdiam(Ω)‖f+‖Ln(ΓΩ[u+]) (5.3)

(resp. min
Ω

u >= min
∂Ω

(−u−) − CAdiam(Ω)‖f−‖Ln(ΓΩ[u−])) (5.4)

holds.

For the proof see [4, Proposition 2.12, Appendix A] or [11, Proposition 6.2, Section 7.2].
To present a barrier function in the continuum case, we first prepare

Lemma 5.5. Let 0 < ρ < R and define ψ(x) := M1 −M2|x|−α with

M1 = R−α

ρ−α −R−α
, M2 = 1

ρ−α −R−α
, α = max

{
1, (n− 1)Λ

λ
− 1

}
. (5.5)

Then ⎧⎪⎨
⎪⎩

P−(D2ψ) >= 0 in Rn \ {0}, (a)
ψ >= 0 in Rn \BR, (b)
ψ <= −1 in Bρ. (c)

(5.6)

Proof. The proof uses a similar technique to [3, Proof of Lemma 4.1]. Indeed, the choices of M1 and M2
guarantee (5.6) (b) and (c). Also, at a point z = (r, 0, . . . , 0) with r > 0, we have ∂2

ijψ(z) = 0 (i �= j), 
∂2
11ψ(z) = −M2α(α + 1)r−α−2 and ∂2

iiψ(z) = M2αr
−α−2 (i >= 2). Since ψ is radially symmetric, for x �= 0
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Fig. 1. The graphs of ω0 and φ.

P−(D2ψ(x)) = λ ·M2α(α + 1)|x|−α−2 − Λ · (n− 1)M2α|x|−α−2

= M2α|x|−α−2{λ(α + 1) − Λ(n− 1)},

which is non-negative by the definition of α. Thus (5.6) (a) is fulfilled. �
Let ε > 0. We say that a function ω : [0, ε] → [0, ∞) is a modulus on [0, ε] if ω(0) = 0, limr→0 ω(r) = 0

and ω is non-decreasing on [0, ε].

Lemma 5.6. Let ω be a modulus on [0, ε]. Let δ > 0. Then there exists a modulus ω0 on [0, ε] such that 
ω0 ∈ C2(0, ε), ω0 > ω on (0, ε] and ω0(r) = ω(ε) + δ for all r ∈ [ε/2, ε].

Proof. We set ω1(0) := 0, ω1(ε) = ω1(ε/2) := ω(ε) + δ and ω1(ε/2j+1) := ω(ε/2j) for j ∈ N. On each 
interval [ε/2j , ε/2j−1] we interpolate ω1 by a linear function. Then ω1 is a modulus such that ω1 >= ω on 
[0, ε]. We next define ω2(r) := min{2ω1(r), ω(ε) + δ}, which is again a piecewise linear modulus satisfying 
ω2 > ω on (0, ε] and ω0(r) = ω(ε) + δ for all r ∈ [ε/2, ε]. Finally, mollifying ω2 near each corner of the 
graph, we obtain the desired C2-function ω0. �

A similar technique to make a smooth modulus can be found in [8, Lemma 2.1.9]. Using the above 
functions, let us construct a barrier function which will be used in the proof of our Harnack inequality. Let 
0 < ε < ρ < R and ω be a modulus on [0, ε]. We also give positive constants β, δ > 0. Set

Kε := −(M1 −M2ε
−α) > 0, (5.7)

which will appear as the Harnack constant CH in (5.11). We define

φ(x) :=
{
βψ(x) if |x| >= ε,

ω0(|x|) − βKε − 2δ − ω(ε) if |x| <= ε/2.

On {ε/2 <= |x| <= ε} we extend φ smoothly so that φ ∈ C2(Rn \ {0}) and −βKε − δ <= φ(x) <= −βKε if 
ε/2 <= |x| <= ε; see Fig. 1. Then, by Lemma 5.5 and 5.6, the function φ possesses the following properties:⎧⎪⎪⎨

⎪⎪⎩
P−(D2φ) >= 0 in Rn \Bε,

φ >= 0 in Rn \BR,

φ <= −β in Bρ

(5.8)

and

φ(x) − φ(0) > ω(|x|) if 0 < |x| <= ε. (5.9)
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Since φ is not necessarily a C2-function on the whole space, we next mollify it near the origin. For j ∈ N we 
mollify φ in Bε/2j so that φj ∈ C2(Rn), φj <= −β in Bρ and φj converges to φ uniformly in Rn as j → ∞. 
Then each φj satisfies the three properties in (5.8). We next define ξj(x) := |P−(D2φj(x))|. It then follows 
that

P−(D2φj) >= −ξj(x) in Rn, supp(ξj) ⊂ Bε.

Here supp(ξj) := {x ∈ Rn | ξj(x) �= 0}.
We now derive the Harnack inequality for viscosity supersolutions of

P+(D2u) = −f−(x). (5.10)

A viscosity supersolution of (5.1) is always a supersolution of (5.10).

Theorem 5.7 (Harnack type inequality). Let r > 0 and 0 < ε < 2r. Then there exists a constant CH =
CH(r, ε, n, Λ/λ) > 0 such that, for every non-negative viscosity supersolution u ∈ C(B4r) of (5.10) in B4r, 
the estimate

min
Bε(z)

u <= CH

{
min
Br

u + CAdiam(Ω)‖f−‖Ln(B4r)

}
(5.11)

holds for all z ∈ Br, where CA is the constant in Theorem 5.4. Moreover, the constant CH is explicitly given 
as Kε in (5.7), i.e.,

CH = Kε = −(M1 −M2ε
−α), (5.12)

where M1, M2 and α are the constants in (5.5) with ρ = 2r and R = 3r.

Proof. Case: f− ≡ 0. 1. Fix any z ∈ Br. For t ∈ [0, ε] we define ω(t) := u(z) − minBt(z) u. It is easily seen 

that ω is a modulus on [0, ε]. Choose xm as a minimum point of u over Br, i.e., u(xm) = minBr
u, and let 

β > u(xm) (>= 0). We take φ, φj and ξj as the functions given after Lemma 5.6 with ρ = 2r and R = 3r, 
where ω and β are chosen as above. Define φ̃(x) := φ(x − z), φ̃j(x) := φj(x − z) and ξ̃(x) := ξ(x − z). We 
furthermore set B′ := B2r(z) and B := B3r(z), so that we have Br ⊂ B′ ⊂ B ⊂ B4r.

By (5.9) we see that u + φ̃ attains its strict minimum at z over Bε(z). Indeed, if 0 < |x − z| <= ε, we 
compute

u(x) + φ̃(x) > {u(z) − ω(|x− z|)} + {φ̃(z) + ω(|x− z|)} = u(z) + φ̃(z).

We let zj be a minimum point of u + φ̃j over Bε(z). Then, since φ̃j uniformly converges to φ̃, it follows that 
zj → z as j → ∞.

2. We show that u + φ̃j is a viscosity supersolution of P+ = −ξ̃j in B. Assume that u + φ̃j −ψ attains a 
local minimum at x ∈ B for ψ ∈ C2(B). Since u + φ̃j − ψ = u − (ψ − φ̃j) and u is a viscosity supersolution 
of (5.10), we observe

0 <= P+(D2ψ(x) −D2φ̃j(x)) <= P+(D2ψ(x)) − P−(D2φ̃j(x))

<= P+(D2ψ(x)) + ξ̃j(x),

which implies the assertion. Therefore the ABP maximum principle (5.4) implies

min(u + φ̃j) >= min{−(u + φ̃j)−} − CAdiam(B)‖ξ̃j‖Ln(ΓB [(u+φ̃j)−]).

B ∂B
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Similarly to the discrete case, we have min∂B{−(u + φ̃j)−} = 0 and minB(u + φ̃j) < 0 by the properties 
of φ̃j , and hence ‖ξ̃j‖Ln(ΓB [(u+φ̃j)−]) > 0. Since supp(ξ̃j) ⊂ Bε(z), we see that the set Bε(z)∩ΓB [(u + φ̃j)−]
is not empty.

3. Choose an arbitrary y ∈ Bε(z)∩ΓB [(u + φ̃j)−]. Then we see (u + φ̃j)(y) < 0 by a similar argument to 
the discrete case. Since u + φ̃j attains its minimum at zj over Bε(z), it follows that

u(zj) + φ̃j(zj) <= u(y) + φ̃j(y) < 0.

Letting j → ∞, we have

u(z) <= −φ̃(z) = −φ(0) = βKε + 2δ + ω(ε).

By the definition of ω, this gives

min
Bε(z)

u <= βKε + 2δ.

Finally, sending β → u(xm) and δ → 0 yield minBε(z) u <= CHu(xm) with CH = Kε.

Case: f− �≡ 0. 1. Let {fj}∞j=1 ⊂ C∞(Rn) be a sequence of smooth functions such that fj >= f− in B4r
for all j ∈ N and that fj converges to f− uniformly on B4r as j → ∞. We consider the Dirichlet problem

{
P−(D2vj) = fj in B4r,

vj = 0 on ∂B4r
(5.13)

and denote by vj ∈ C2(B4r) ∩ C(B4r) the solution of (5.13). The existence of smooth solutions is due to 
the classical results by Evans–Krylov for convex/concave (or Bellman type) equations. See [6,7,12] or [11, 
Section 7.3]. The ABP maximum principles, (5.3) and (5.4), yield

0 <= vj <= CAdiam(Ω)‖fj‖Ln(B4r) on B4r. (5.14)

2. Now, it is easy to see that u + vj is a viscosity solution of P+ = 0 in B4r. Since u + vj is non-negative 
on B4r by (5.14), the Harnack inequality (5.11) with f− ≡ 0 implies

min
Bε(z)

(u + vj) <= CH min
Br

(u + vj).

Applying the first and the second inequality in (5.14) to the left- and the right-hand side of the above 
estimate respectively, we obtain

min
Bε(z)

u <= CH

{
min
Br

u + CAdiam(Ω)‖fj‖Ln(B4r)

}
.

Sending j → ∞ gives (5.11). �
Remark 5.8. The estimate (5.11) we established can be written as

u(z) <= CH

{
min
Br

u + CAdiam(Ω)‖f−‖Ln(B4r)

}
+ ω(ε),

which gives a pointwise estimate for u, but the right-hand side involves a modulus of continuity from below 
of u around z.
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Remark 5.9. The functions in Example 5.3 shows that the Harnack constant CH in (5.11) must go to infinity 
when ε → 0. Indeed, our Harnack constant (5.12) tends to infinity as ε → 0.

As a byproduct of this observation, we see non-existence of a radially symmetric function ψ ∈ C(Rn) ∩
C2(Rn \ {0}) satisfying the three conditions (5.6) (a)–(c). (Note that the function ψ in Lemma 5.5 does 
not belong to C(Rn).) If there were such a ψ, by a similar argument to the proof of Theorem 5.7 we would 
have the Harnack inequality (5.11) with CH which is less than −ψ(0), a contradiction.

Remark 5.10. The result in Theorem 5.7 still holds for Lp-viscosity solutions, although we do not give the 
details in this paper. In the theory of Lp-viscosity solutions, f is just assumed to be in Lp(Ω) and solutions 
are defined by test functions belonging to W 2,p

loc . In this case, we do not need to approximate f− by smooth 
functions fj in the proof of the Harnack inequality because the Dirichlet problem (5.13) with f− instead of 
fj admits a solution in W 2,p

loc . Also, it is not difficult to extend the result to more general equations of the 
form

P+(D2u) + μ|Du| = −f−(x)

with μ >= 0. See [4] and [11, Sections 6 and 7] for the theory of Lp-viscosity solutions and the above 
generalized equation.
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Appendix A. A well-posedness of uniformly elliptic equations

We prove that the Dirichlet problem

F (�δ2u(x)) = f(x) in Ω, (A.1)

u(x) = g(x) on ∂Ω (A.2)

has a unique discrete solution. Here Ω ⊂ hZn is a bounded set, F : Rn → R is uniformly elliptic, F (0) = 0, 
f : Ω → R and g : ∂Ω → R is a given boundary datum. The uniqueness easily follows from the ABP 
maximum principle. The existence of solutions to elliptic difference equations is more or less known even 
when the equation is degenerate; for example, the fixed point theorem is one of powerful tools to show the 
existence. However, we present it here to make the paper self-contained and to give the proof based on 
Perron’s method, which cannot be found much in discrete problems.

For �X, �Y ∈ Rn given as �X = (X1, . . . , Xn) and �Y = (Y1, . . . , Yn), we write �X <= �Y if Xi <= Yi for all 
i ∈ {1, . . . , n}. By the uniform ellipticity of F , we have F ( �X) >= F (�Y ) if �X <= �Y . This is a degenerate 
ellipticity ([5, (0.3)]).

From the ABP maximum principle (Theorem 2.3) we immediately deduce a comparison principle for a 
discrete sub- and supersolution of (A.1). This implies a uniqueness of solutions.

Corollary A.1 (Comparison principle). Let u and v be, respectively, a discrete subsolution and supersolution 
of (A.1). If u <= v on ∂Ω, then u <= v in Ω.

Proof. Since F is uniformly elliptic, we observe

P−(�δ2u(x) − �δ2v(x)) <= F (�δ2u(x)) − F (�δ2v(x)) <= f(x) − f(x) = 0



N. Hamamuki / J. Math. Anal. Appl. 438 (2016) 184–199 197
for all x ∈ Ω. Therefore u − v is a discrete subsolution of the Pucci equation P− = 0 in Ω. We now apply 
the ABP maximum principle to obtain maxΩ(u − v) <= max∂Ω(u − v) <= 0. �

We turn to an existence problem. To construct discrete solutions, we employ the idea of Perron’s method 
for viscosity solutions ([5, Section 4]).

Proposition A.2 (Perron’s method). Let v and V be, respectively, a discrete sub- and supersolution of (A.1)
such that v <= V on Ω. Let

S :=
{
w : Ω → R

∣∣∣∣∣ w is a discrete subsolution of (A.1)
such that v <= w <= V on Ω

}
.

Then u(x) := supw∈S w(x) is a discrete solution of (A.1).

Proof. 1. We first prove that u is a discrete subsolution. Fix x ∈ Ω and ε > 0. By the definition of u there 
exists some wε ∈ S such that u(x) − ε <= wε(x) <= u(x). We then observe

δ2
i u(x) = u(x + hiei) + u(x− hiei) − 2u(x)

h2
i

>=
wε(x + hiei) + wε(x− hiei) − 2(wε(x) + ε)

h2
i

= δ2
iwε(x) − 2ε

h2
i

for each i ∈ {1, . . . , n}. Thus

�δ2u(x) >= �δ2wε(x) − 2ε
h2

min
(1, . . . , 1).

From the uniform ellipticity of F it follows that

F (�δ2u(x)) <= F

(
�δ2wε(x) − 2ε

h2
min

(1, . . . , 1)
)

<= F (�δ2wε(x)) − P−
(

2ε
h2

min
(1, . . . , 1)

)

= F (�δ2wε(x)) + Λ 2εn
h2

min
. (A.3)

We now have F (�δ2wε(x)) <= f(x) since wε ∈ S. Applying this to (A.3) and then letting ε → 0, we obtain 
F (�δ2u(x)) <= f(x). This implies that u is a discrete subsolution.

2. We next show that u is a discrete supersolution. Suppose that this were false. Then we could find some 
y ∈ Ω such that

F (�δ2u(y)) < f(y). (A.4)

For such y and δ > 0 we define

U(x) :=
{
u(y) + δ if x = y,

u(x) if x �= y.

We claim that U ∈ S for a sufficiently small δ > 0. Showing this claim yields a contradiction since U is 
strictly larger than u at y.
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We first prove u(y) < V (y). Suppose u(y) = V (y). Then, noting that u(x) <= V (x) for x �= y, we would 
have �δ2u(y) <= �δ2V (y). Since V is a supersolution, it would follow that F (�δ2u(y)) >= F (�δ2V (y)) >= f(y), 
a contradiction to (A.4). Thus v <= U <= V on Ω if we take δ <= V (y) − u(y).

Let us show that U is a subsolution. Let x ∈ Ω. It is easily seen that �δ2U(x) = �δ2u(x) if x �∈ {y} and that 
�δ2U(x) >= �δ2u(x) if x ∈ {y} \ {y}. Therefore the ellipticity of F implies that F (�δ2U(x)) <= F (�δ2u(x)) <= f(x)
for x �= y. We next consider the case x = y. Then

δ2
iU(y) = u(y + hiei) + u(y − hiei) − 2(u(y) + δ)

h2
i

= δ2
i u(y) − 2δ

h2
i

,

and so the same calculation as in Step 1 yields

F (�δ2U(y)) <= F (�δ2u(y)) + Λ 2δn
h2

min
= f(y) + Λ 2δn

h2
min

− {f(y) − F (�δ2u(y))}.

In view of (A.4), it follows that F (�δ2U(y)) <= f(y) if δ <= h2
min{f(y) − F (�δ2u(y))}/(2Λn). Summarizing the 

above argument, we conclude that U ∈ S, and hence u is a discrete supersolution. �
The remaining thing is to construct v and V in Proposition A.2 which attain a given boundary datum 

on ∂Ω. For this purpose, we prepare quadratic functions on lattices. We will use these functions to make 
such v and V .

Example A.3. Let A = (A1, . . . , An) ∈ Rn. We define a quadratic function q = qA : hZn → R as q(x) :=∑n
j=1 Ajx

2
j for x = (x1, . . . , xn) ∈ hZn. Then δ2

i q is a constant for each i ∈ {1, . . . , n}. Indeed, we observe

δ2
i q(x) = q(x + hiei) + q(x− hiei) − 2q(x)

h2
i

= Ai(xi + hi)2 + Ai(xi − hi)2 − 2Aix
2
i

h2
i

= 2Ai

for all x ∈ hZn. In particular, if we take Ai = −c/(2λn) with c >= 0, then

P−(�δ2q(x)) = −λ · −c

λn
· n = c,

i.e., q is a discrete solution of the above Pucci equation in hZn.

Theorem A.4 (Unique solvability). The Dirichlet problem (A.1) and (A.2) admits a unique discrete solution.

Proof. The uniqueness is a consequence of the comparison principle, Corollary A.1. To show the existence 
we construct v and V in the statement of Proposition A.2 such that v = V = g on ∂Ω; then Proposition A.2
ensures that u := supw∈S w is a discrete solution of (A.1) and (A.2). To construct such v and V we 
use quadratic functions in Example A.3. Let qA be the quadratic function in Example A.3 with Ai =
−(maxΩ |f |)/(2λn), so that

P−(�δ2qA(x)) = max
Ω

|f | in Ω. (A.5)

Choose k >= 0 such that qA + k >= max∂Ω g on Ω, and define

V (x) :=
{
qA(x) + k if x ∈ Ω,

g(x) if x ∈ ∂Ω.
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Then V is a discrete supersolution of (A.1). Indeed, since V <= qA + k on ∂Ω, we have �δ2V (x) <=
�δ2(qA + k)(x) = �δ2qA(x) for x ∈ Ω. Therefore it follows from ellipticity that F (�δ2V (x)) >= F (�δ2qA(x)) >=
P−(�δ2qA(x)). By virtue of (A.5) we conclude that V is a discrete supersolution of (A.1).

Similarly, using a suitable quadratic function, we are able to construct a discrete subsolution v which 
satisfies v = g on ∂Ω and v <= min∂Ω g in Ω. The proof is now complete since v <= min∂Ω g <= max∂Ω g <= V

in Ω. �
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