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1. Introduction

The nonlinear Schrödinger equation

i
∂ψ

∂t
+ rΔψ + χ|ψ|2ψ = 0, t > 0, x ∈ R

n, (1.1)

arises as a canonical model of physics from the studies of continuum mechanics, condensed matter, nonlinear 
optics, plasma physics [15,34]. A standing wave solution of (1.1) is in a form of ψ(x, t) = exp(λit)Ψ(x) and 
Ψ satisfies a nonlinear elliptic equation:

rΔΨ − λΨ + χ|Ψ|2Ψ = 0, x ∈ R
n, (1.2)

which has been extensively considered in the last a few decades [9,10,33]. Here r is interpreted as the 
normalized Plank constant, χ describes the strength of the attractive interactions and λ is the wavelength. 
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Standing wave solutions of more general Schrödinger type equations have also been studied in [7,8,14,16,
17,20,21,25,26,28,29,36,38].

While the standard spatial setting for the nonlinear Schrödinger equation is the Euclidean space Rn for 
n = 1, 2, 3, there has been recent interests on wave propagations on thin graph-like domains which can be 
approximated by metric graphs (or quantum graphs) [11,18,23,32]. A metric graph is a graph G = (V, E)
with a set V of vertices and a set E of edges, such that each edge e ∈ E is associated with either a closed 
bounded interval Ie = [0, le] of length le > 0, or a closed half-line Ie = [0, ∞) with le = ∞ in this case. 
The notion of graph is central to this paper, and we refer the reader to [12,39] for the basic definitions in 
graph theory. For each edge e ∈ E joining two vertices v1, v2 ∈ V , a coordinate system xe is chosen along 
Ie = [0, le], in such a way that v1 corresponds to xe = 0 and v2 to xe = le, or vice versa. In the case that 
le = ∞, we always assume that the half-line Ie is attached to the remaining part of the graph at xe = 0, 
and the vertex corresponding to xe = +∞ is called a vertex at infinity. The subset of V consisting of all 
vertices at infinity is denoted by V∞ [5].

In this paper, we investigate the existence and nonexistence of ground state solutions to a nonlinear 
Schrödinger (NLS) equation on a connected metric graph G = (V, E):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−u′′
e + ue = |ue|p−2ue, for each edge e ∈ E,∑

e�v

due

dxe
(v) = 0, for each vertex v ∈ V \V∞,

uei(v) = uej (v), if ei � v and ej � v for some v ∈ V \V∞,

u = (ue) ∈ H1(G),

(1.3)

where p > 2 and e � v means that the edge e is incident to a vertex v. In (1.3), the sum of flux from all 
edges incident at the vertex v is zero, which is the Kirchhoff’s circuit law; and second boundary condition 
that uei(v) = uej (v) is known as the continuity condition at the vertex v. If the vertex v is an endpoint 
(only one edge is incident to v), then the Kirchhoff’s condition becomes the Neumann boundary condition 
at v. If v ∈ V∞, there is no given boundary condition but we consider the problem in H1 space hence we 
must have lim

xe→∞
ue(xe) = 0 for ue ∈ H1(Ie) and Ie = [0, +∞). Here Lp(G) is the space defined as the set 

of functions u : G → R such that ∫
G

|u|pdx :=
∑
e∈E

∫
Ie

|ue|pdxe < ∞,

and H1(G) is the Sobolev space defined as the set of functions u : G → R such that u = (ue) is continuous 
on G and ue ∈ H1(Ie) for every edge e ∈ E with the natural norm

‖u‖2
H1(G) =

∫
G

(|u′(x)|2 + |u(x)|2)dx =
∑
e∈E

∫
Ie

(|u′
e(xe)|2 + |ue(xe)|2)dxe.

The energy function corresponding to (1.3) is defined by

J(u,G) = 1
2
∑
e

∫
Ie

(|u′
e(xe)|2 + |ue(xe)|2)dxe −

1
p

∑
e

∫
Ie

|ue(xe)|pdxe, u ∈ H1(G). (1.4)

A critical point u ∈ H1(G) of J(·, G) satisfies that for any w = (we) ∈ H1(G), we have

(J ′(u,G), w) =
∑
e

∫
(u′

ew
′
e + uewe − |ue|p−2uewe)dxe = 0.
Ie
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It can be shown that u is a solution of (1.3) if and only if u is a critical point of J(·, G) (see Lemma 2.1), 
hence (1.3) is the Euler–Lagrange equation for the energy J(·, G). It is easy to see that u = 0 is always a 
trivial solution of (1.3), and any other solution u lies in the Nehari manifold defined as

N(G) = {u ∈ H1(G)\{0} : (J ′(u,G), u) = 0}. (1.5)

The ground state energy of J(·, G) is defined by

E(G) = inf
u∈N(G)

J(u,G), (1.6)

and if E(G) is attained by some u∗ ∈ N(G), that is, J(u∗, G) = E(G), then u∗ is called a ground state 
solution of (1.3).

It is known that the ground state energy is always positive for any metric graph G (see Lemma 2.4). 
When the metric graph G is compact (that is, V∞ = ∅), then a positive ground state solution u∗ always 
exists, although it is possible that u∗ = 1 which is a trivial constant state only when G is compact. Indeed 
we will prove the following result for the ground state solution on a compact metric graph:

Theorem 1.1. Suppose that G is a compact connect graph with the total length l. Then

1. A positive ground state solution u∗(G) exists.
2. If the total length l is sufficiently small, then u∗(G) ≡ 1. Moreover u∗ = 1 is the unique positive solution 

of (1.3).

We remark that it is known that u = 1 is the unique positive solution of (1.2) on a bounded domain in 
R

n with Neumann boundary condition when the diffusion coefficient r is large or the domain is small [24].
For a non-compact metric graph G (V∞ 	= ∅), the existence or nonexistence of a ground state solution 

depends on the topological structure of G. We are interested in the following questions:

(Q1) For what kind of non-compact metric graphs, the ground state energy can (cannot) be attained by a 
ground state solution u∗?

(Q2) When the ground state energy is attained, what is the ground state energy? And is the ground state 
solution unique and monotone?

(Q3) When the ground state energy cannot be attained, are there other nontrivial positive solutions for the 
non-compact metric graph G?

In general these questions are hard to answer as the graphs can have complicated topological structure. 
For the simplest non-compact graph G = R (which can be viewed as a graph with two vertices at infinity 
and one finite vertex), it is well-known that the ground state energy is attained by a positive solution u0
which is symmetric with respective to some x0 ∈ R (the center), and u0 is strictly decreasing from the center 
to the infinite vertex. Without loss of generality, we assume that the center of u0 is at the finite vertex. 
That is, u0 is the positive solution of

u′′ − u + up−1 = 0, x ∈ R, u′(0) = 0, lim
|x|→∞

u(x) = lim
|x|→∞

u′(x) = 0. (1.7)

It is well-known that u0 is positive, strictly decreasing for positive x, and decays exponentially at the infinity. 
It is also known that u0 is the unique nontrivial solution of (1.3) in H1(R). We denote by E0 = J(u0, R)
where J(·, R) is the energy functional defined in (1.4). Indeed the explicit formula of u0 is known [15]:

u0(x) =
(p)1/(p−2)

sech2/(p−2)
(
p− 2

x

)
. (1.8)
2 2
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Fig. 1. Three graphs satisfying (H) for which a ground state exists.

Fig. 2. The star graph with k = 4 and m = 4.

In the following we call u0 the canonical soliton solution of (1.3) in R, and we also denote by u+
0 := u0|[0,∞)

which is a half soliton defined on a half line.
To ensure the existence/nonexistence of ground states, a condition on a non-compact graph G was 

proposed in [5] as follows:

(H) After removal of any edge e ∈ E, every connected component of the graph G̃ = (V, E\{e}) contains at 
least one vertex v ∈ V∞.

By using similar arguments as in [5], one can prove the following result regarding the existence/nonexis-
tence of ground states under condition (H) (see subsection 2.3).

Theorem 1.2. Suppose that G = (V, E) is a metric graph satisfying (H). Then a ground state solution u∗(G)
of (1.3) exists if and only if G is one of the three graphs in Fig. 1.

In this paper we are mainly interested in answering the questions above for star graphs. A star graph is 
the one with only one central vertex v0 which is connected to any other vertex via exactly one edge, and 
there is no other edges. In the following we consider a star graph with k finite edges of equal length l and 
m infinite length edges all starting from the central vertex v0, and we call this metric graph the (k, m)-type 
star graph denoted by Sk,m (see Fig. 2). Here k, m ∈ N ∪ {0} and k + m > 0. Note that when m = 0, Sk,0
is the isotropic k-star with finite length, and when k = 0, S0,m is the m-infinite-star graph (a star graph 
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Fig. 3. Star graphs Sk,2 with two infinite edges. Left: k = 1; Right: k = 2.

with m infinite length edges). Also if Sk,m satisfies the condition (H), then it is necessary that k = 0. For 
the case of k = 0, the set of positive solutions of (1.3) can be completely classified as follows.

Theorem 1.3. Let S0,m be the star graph with m edges of infinite length.

1. A ground state solution exists for S0,m if and only if m = 1 or m = 2;
2. When m is an odd integer, then (1.3) has a unique positive solution on S0,m, which equals to u+

0 on 
each edge;

3. When m = 2m1 is an even integer, and u is a positive solution of (1.3) on S0,m, then the edges of S0,m
can be labeled pairwise so that e2i−1 ∪ e2i = R for 1 � i � m1, and u|e2i−1∪e2i = u0 so that the unique 
central vertex v0 has the same coordinate x = xc ∈ R on each e2i−1 ∪ e2i. Hence the positive solution of 
(1.3) is unique up to a translation of the maximum point of u0 on each of e2i−1 ∪ e2i.

A direct consequence is that the positive solution of (1.3) on the m-infinite-star graph has the energy 
level mE0/2, hence it is quantized. For odd m, the maximum point of the positive solution is always at 
the unique central vertex v0 of S0,m, while for even m, the maximum point of the positive solution can 
be translated (uniformly for each pair of (e2i−1, e2i)) to any location on R. We note that the latter case 
provides an example that a positive solution of (1.3) on a symmetric graph is not necessarily symmetric 
with respect to its geometric center (the central vertex here), while the celebrated result of Gidas, Ni and 
Nirenberg [19] showed that a positive of (1.2) is always symmetric with respect to a point x0 ∈ R

n. To be 
more precise, we have the following proposition.

Proposition 1.4. A metric graph G = (V, E) is defined as symmetric with respect to a vertex v0 ∈ V , if 
G\{v0} =

⋃
i∈I Gi, Gi

⋂
Gj = ∅ for i 	= j, and for any i, j ∈ I there is an isomorphism fij : Ḡi → Ḡj such 

that fij(v0) = (v0). A solution u of (1.3) on a symmetric metric graph G = {v0} ∪ (
⋃

i∈I Gi) is symmetric 
if u|Gi

= u|fij(Gi) for any i, j ∈ I. Then for the symmetric graph S0,2m1 with m1 � 2, there exists a positive 
solution of (1.3) which is not symmetric.

For a star metric graph with at least one half-line and at least one finite edge, the existence of ground 
state solution or positive solution is much more difficult to determine. Note that such graphs (Sk,m with 
k � 1 and m � 1) are non-compact and they do not satisfy the condition (H). We have the following results 
on the existence of ground state solution when the star graph has 2 half-lines and 1 or 2 (equal length) 
finite edges (see Fig. 3 for these graphs).

Theorem 1.5. Let Sk,m be the (k, m)-type star graph defined as above.

1. If k = 1 or k = 2, and m = 2, then a ground state solution exists.
2. The ground state energy satisfies

1
E0 � E(S1,2) < E0,

1
E0 � E(S2,2) � E0. (1.9)
2 2



JID:YJMAA AID:21787 /FLA Doctopic: Partial Differential Equations [m3L; v1.224; Prn:9/11/2017; 10:18] P.6 (1-25)
6 Y. Li et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
Note that the ground state for S1,1 is obviously u0 (restricted to half line). The existence of a ground 
state for S1,2 (two half-lines and a pendant, see Fig. 3 left) has been considered in [5] with a different setting 
(under a mass constraint, see below), and the result for S2,2 (two half-lines and two pendants) has not been 
considered previously. The existence/nonexistence of a ground state for Sk,m for other values of (k, m) is 
still open. On the other hand, while the existence of a ground state is not always known for star graph Sk,m, 
we show in our last main result that a positive solution (not necessarily with ground state energy) of (1.3)
always exists:

Theorem 1.6. Let Sk,m be the (k, m)-type star graph defined as above. Then for any k � 1 and m � 1, 
(1.3) has a symmetric positive solution in form of (u1, u2, · · · , uk, v1, v2, · · · , vm) satisfying u1 = u2 = · · · =
uk = u and v1 = v2 = · · · vm = v, and (u, v) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′′ − u + up−1 = 0, −l < x < 0,
v′′ − v + vp−1 = 0, 0 < x < ∞,

u′(−l) = 0, lim
x→∞

v(x) = 0,

u(0) = v(0), ku′(0) = mv′(0),

(1.10)

and u′(x) < 0 for −l < x < 0, v′(x) < 0 for x > 0. Moreover the strictly decreasing positive solution of 
(1.10) is unique for any l > 0, k � 1 and m � 1.

It is easy to see that when k = m, then (u(x), v(x)) = (u0(x + l)|[−l,0], u0(x + l)|[0,∞)) is such a sym-
metric solution. Here in Theorem 1.6, we show that such a solution also exists when k 	= m. The proof of 
Theorem 1.6 is based on an ODE shotting method argument for the system (1.10), which is of independent 
interest. The symmetric solution obtained in Theorem 1.6 in general is not a ground state solution, but in 
some special case, the existence of such a symmetric solution implies the existence of a ground state as in 
the following corollary:

Corollary 1.7. Let Sk,m be the (k, m)-type star graph defined as above. If k = 1 and m � 2, then a ground 
state solution exists if the length of the unique finite edge l is sufficiently large.

Whether a ground state exists for S1,m when the length of the unique finite edge l is small is still not 
known.

The ground states of the nonlinear Schrödinger equation on a metric graph have been considered in a 
different but related setting (see [1–6,27,30,35]). In these work, the energy functional

J̃(u,G) = 1
2‖u

′‖2
L2(G) −

1
p
‖u‖pLp(G)

was considered with the mass constraint

‖u‖2
L2(G) = μ.

Here μ > 0 is a fixed number and it is assumed that p ∈ (2, 6). The ground state in this setting is defined 
as u∗ ∈ H1(G) satisfying

J̃(u∗, G) = inf{J̃(u,G) : u ∈ H1(G), ‖u‖2
L2(G) = μ}. (1.11)

Note that in this setting it is required that p ∈ (2, 6) so that the functional J̃(·, G) is bounded from below 
under the mass constraint ‖u‖2

1 = μ, and when p � 6 the infimum in (1.11) is −∞. In our results in this 
L (G)



JID:YJMAA AID:21787 /FLA Doctopic: Partial Differential Equations [m3L; v1.224; Prn:9/11/2017; 10:18] P.7 (1-25)
Y. Li et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 7
paper, we only need p > 2. Another work of nonlinear elliptic equations on a metric graph is [41], in which 
the connection between the stability with respect to reaction–diffusion dynamics and the graph structure is 
considered.

In Section 2, we will show that the existence of a solution to (1.3) corresponds to the existence of a 
critical point of J(u, G) in H1(G). Therefore, we can apply variational methods to obtain the existence of 
critical points of the energy functional J(u, G). Here G may be R. The proofs of Theorems 1.1 and 1.2 are 
given in Section 2. The main existence results for the ground state solutions (Theorems 1.3 and 1.5) are 
proved in Section 3, and in Section 4, we study the symmetric solution of (1.3) using ODE techniques and 
we prove Theorem 1.6 and Corollary 1.7.

2. Preliminaries

In this section, we will give some basic notations and energy estimates.

2.1. Variational setting

We first show that solutions of (1.3) correspond to critical points of J(·, G) defined in (1.4).

Lemma 2.1. Let G be a connected metric graph. Then u is a solution of (1.3) if and only if u is a critical 
point of the functional J(·, G) defined in (1.4).

Proof. Suppose that u ∈ H2(G) is a solution of (1.3), then u ∈ H1(G) and u = (ue) is continuous at every 
vertex. Let w = (we) ∈ H1(G), then by integrating by parts and using the Kirchhoff’s condition, we have

∫
G

(−u′′ + u− |u|p−2u)wdx :=
∑
e∈E

∫
Ie

(−u′′
e + ue − |ue|p−2ue)wedxe

=
∑
e∈E

∫
Ie

(u′
ew

′
e + uewe − |ue|p−2uewe)dxe = (J ′(u,G), w) = 0.

Therefore, u is a critical point of J(·, G) in H1(G). On the other hand, let u = (ue) ∈ H1(G) be a 
critical point of J(·, G), then u is continuous at each finite vertex. Fixing an edge e, choosing an arbitrary 
w = we ∈ C∞

0 (Ie) and integrating by parts, we have

∫
Ie

(−u′′
e + ue − |ue|p−2ue)wedxe =

∫
Ie

(u′
ew

′
e + uewe − |ue|p−2uewe)dxe

= (J ′(u,G), w) = 0,

and then −u′′
e +ue = |ue|p−2ue in H−1(Ie) and ue ∈ H2(Ie) by the elliptic regularity theory. Next we prove 

the Kirchhoff condition. Fixing a vertex v ∈ V \V∞, choosing a test function w ∈ H1(G) which is null at 
every vertex of G except at v, and integrating by parts, we have

−
∑
e�v

due

dxe
(v)w(v) = 0,

since only the boundary terms at v are not zero. Then we have 
∑

e�v
due

dxe
(v) = 0 since w(v) is arbitrary. �

Next we recall the following classical result regarding the Mountain-Pass structure of an energy functional 
(see [40]).
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Proposition 2.2. Let X be a Banach space and J ∈ C1(X, R). Let Ω be a bounded open subset of X, 
and e1, e2 ∈ X with e1 ∈ Ω and e2 /∈ Ω. If inf

u∈∂Ω
J(u) > max{J(e1), J(e2)}, we say that J satisfies the 

Mountain-Pass geometric structure. Let

Γ = {γ ∈ C[0, 1] : γ(0) = e1, γ(1) = e2},

and

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)).

Then J has a (PS)c sequence, that is, a sequence {un} ⊆ X such that J(un) → c and J ′(un) → 0 as n → ∞.

Now we show that for any metric graph G, the energy functional J(·, G) possesses such a Mountain-Pass 
structure, thus it always has a (PS)c sequence.

Lemma 2.3. Suppose that G is a connected metric graph.

1. There exist r, α > 0 such that inf
‖u‖H1(G)=r

J(u, G) = α > 0.

2. There exists u1 ∈ H1(G) with ‖u1‖H1(G) > r such that J(u1, G) < 0.
3. J(·, G) possesses a bounded (PS)c sequence {un} ⊆ H1(G) where

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t), G), and Γ = {γ ∈ C[0, 1] : γ(0) = 0, γ(1) = u1}. (2.1)

Proof. 1. For u ∈ H1(G), since

J(u,G) = 1
2

∫
G

(|u′|2 + |u|2) − 1
p

∫
G

|u|p = 1
2‖u‖

2
H1(G) −

1
p
|u|pp � 1

2‖u‖
2
H1(G) − Cp‖u‖pH1(G),

then we can choose a small r > 0 such that J(u, G) � r2
(

1
2 − Cpr

p−2
)

:= α > 0 for any u satisfying 

‖u‖H1(G) = r.
2. Let u ∈ H1(G) be fixed. Since

J(tu,G) = 1
2 t

2‖u‖2
H1(G) −

1
p
tp|u|pLp(G),

then J(tu, G) → −∞ as t → ∞. Therefore, we can choose t > 0 large enough such that J(tu, G) < 0 and 
‖tu‖H1(G) > r. Let u1 = tu then the conclusion holds.

3. From part 1, 2 and Proposition 2.2, J(·, G) possesses a (PS)c sequence {un} ⊆ H1(G) where c is given 
by (2.1). We prove that {un} is bounded. Indeed

‖un‖H1(G) + c � J(un, G) − 1
p
(J ′(un, G), un) =

(
1
2 − 1

p

)
‖un‖2

H1(G), (2.2)

which implies that {un} is bounded. This proof actually shows any (PS) sequence is bounded. �
Next we prove some properties of the Nehari manifold N(G), which is also similar to the ones on a region 

of Rn.
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Lemma 2.4. Suppose that G is a connected metric graph.

1. E(G) := inf
u∈N(G)

J(u, G) > 0 where N(G) is defined in (1.5).

2. For any u ∈ H1(G)\{0}, there exists a unique tu ∈ (0, ∞) such that tuu ∈ N(G) and J(tuu, G) =
maxt�0 J(tu, G).

Proof. 1. First we show that if u ∈ N(G), then ‖u‖H1(G) � C for some constant C > 0 independent of u. 
In fact, if u ∈ N(G), then

0 = (J ′(u,G), u) = ‖u‖2
H1(G) − |u|pLp(G) � ‖u‖2

H1(G) − Cp‖u‖pH1(G).

Therefore, ‖u‖H1(G) � C for some C > 0. Then by using that 0 = (J ′(u, G), u) = ‖u‖2
H1(G) − |u|pLp(G), we 

obtain that

J(u,G) = 1
2‖u‖

2
H1(G) −

1
p
|u|pLp(G) =

(
1
2 − 1

p

)
‖u‖2

H1(G) �
(

1
2 − 1

p

)
C2.

Hence E(G) � (1/2 − 1/p)C2 > 0.
2. For any u ∈ H1(G)\{0}, define

g(t) := J(tu,G) = 1
2 t

2‖u‖2
H1(G) −

1
p
tp|u|pLp(G).

Then

g′(t) = t‖u‖2
H1(G) − tp−1|u|pLp(G),

and there exists a unique tu ∈ (0, ∞) such that g′(tu) = 0. Moreover, g′(t) > 0 for t ∈ (0, tu) and g′(t) < 0
for t ∈ (tu, ∞). Therefore, J(tuu, G) = maxt�0 g(t) = maxt�0 J(tu, G). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. 1. If G is a compact graph, then J(·, G) satisfies the (PS) condition and Propo-
sition 2.2 implies the existence of a ground state which is also a Mountain-Pass solution. Moreover the 
Mountain-Pass energy level c defined in (2.1) is coincident with the ground state energy E(G). This proof 
is similar to the one of NLS equation with subcritical nonlinearity on a bounded domain of RN .

2. Let u be a positive solution of (1.3) and decompose u as u = uG + φ, where

uG = 1
l

∫
G

u(x)dx,
∫
G

φ(x)dx = 0.

Then from (1.3), we have

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−φ′′
e + φe = up−1

G − uG + (p− 1)(
∫ 1
0 |uG + tφe|p−2dt)φe, for each edge e ∈ E,∑

e�v

dφe

dxe
(v) = 0, for each vertex v ∈ V,

φei(v) = φej (v), if ei � v and ej � v for some v ∈ V,

φ = (φ ) ∈ H1(G).

(2.3)
e
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Multiplying both sides of (2.3) by φe and integrating over e, and using the boundary conditions, we have

∫
G

|φ′|2dx +
∫
G

|φ|2dx = (p− 1)
∫
G

φ2(
1∫

0

|uG + tφ|p−2dt)dx. (2.4)

For any v ∈ H1(G), according to Lemma 2.1 and [13, Remark 2.1], we have

∣∣∣∣∣∣
∫
G

(u′v′ + uv)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
G

|u|p−2uv

∣∣∣∣∣∣
�

∫
G

|u|p−1dx|v|∞ � (l−1/2 + l1/2)
∫
G

|u|p−1dx‖v‖H1(G).

Therefore we have

‖u‖H1(G) � (l−1/2 + l1/2)
∫
G

|u|p−1dx. (2.5)

On the other hand, integrate (1.3), it follows from the Kirchhoff condition that∫
G

udx =
∫
G

up−1dx. (2.6)

The Hölder inequality implies that

∫
G

|u|p−1dx =
∫
G

up−1dx =
∫
G

udx �

⎛⎝∫
G

up−1dx

⎞⎠1/(p−1)

l(p−2)/(p−1),

and hence ∫
G

udx =
∫
G

up−1dx � l. (2.7)

Combining (2.7) with (2.5), we get

‖u‖H1(G) � l1/2 + l3/2. (2.8)

According to [13, Remark 2.1] and (2.8),

|u|∞ � (l−1/2 + l1/2)‖u‖H1(G) � (l1/2 + l3/2)(l−1/2 + l1/2) = (1 + l)2. (2.9)

Using the estimate (2.9), we find that |uG + tφ| = |tu + (1 − t)uG| � max |u| � (1 + l)2 for x ∈ G and 
t ∈ [0, 1]. Hence (2.4) is reduced to∫

(|φ′|2 + φ2)dx � (p− 1)(1 + l)2(p−2)
∫

φ2dx. (2.10)

G G
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Since 
∫
G
φdx = 0, there exists a point x0 ∈ G such that φ(x0) = 0. For any x ∈ G, therefore [13, Remark 2.2]

shows that ∫
G

φ2dx � l2
∫
G

|φ′|2dx. (2.11)

Thus, (2.10) and (2.11) show that

(
l−2 + 1

) ∫
G

φ2dx � (p− 1)(1 + l)2(p−2)
∫
G

φ2dx. (2.12)

Therefore, for l sufficiently small, φ ≡ 0 and then u = uG is a positive constant. However, (1.3) has a unique 
positive constant solution 1. Hence u ≡ 1. �

We note that an explicit bound of l can be estimated from (2.12). For example, by using

1
(l + 1)2 < l−2 + 1 � (p− 1)(1 + l)2(p−2),

we obtain that

l �
(

1
p− 1

)1/(2(p−1))

− 1. (2.13)

2.2. Rearrangement

The decreasing rearrangement u∗ of a function u ∈ H1(G) for G being a metric graph was first used 
in [18]. As in the case of G being an interval, this kind of rearrangement does not increase the Dirichlet 
integral (see also [2,22]). Other than the decreasing rearrangement u∗, we will also need the symmetric 
rearrangement û which is defined below (see [5]).

Let u ∈ H1(G). Assume that

m = inf
G

|u| � 0, M = sup
G

|u| > 0. (2.14)

Let μ(·) denote the distribution function of u:

μ(t) =
∑
e∈E

meas({xe ∈ Ie : |ue(xe)| > t}), t � 0,

where the ue is a branch of u, that is ue = u|e. Set

r =
∑
e∈E

meas(Ie), I∗ = [0, r), Î = (−r/2, r/2),

where r ∈ [0, ∞] is the total length of G. One can define the following rearrangements of u:

1. the decreasing rearrangement u∗ : I∗ → R as the function

u∗(x) = inf{t � 0 : μ(t) � x}, x ∈ I∗;
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2. the symmetric decreasing rearrangement û : Î → R as the function

û(x) = inf{t � 0 : μ(t) � 2|x|}, x ∈ Î .

If G is a noncompact graph, I∗ = [0, +∞) and Î = (−∞, +∞). Since |u|, u∗ and û are all equimeasurable, 
one has that ∫

I∗

|u∗(x)|qdx =
∫
Î

|û(x)|qdx =
∫
G

|u(x)|qdx, q > 0, (2.15)

and

inf
I∗

u∗ = inf̂
I
û = inf

G
|u| = m, sup

I∗
u∗ = sup

Î

û = sup
G

|u| = M.

When G is a connected metric graph, it is known ([22]) that u∗ ∈ H1(I∗) and û ∈ H1(Î) respectively. 
Moreover, ŝu = sû for s > 0. In fact, we can easily see that μsu(t) = μu(t/s), and then

ŝu(x) = inf{t � 0 : μsu(t) � 2|x|} = inf{t � 0 : μu(t/s) � 2|x|}

= s inf{τ � 0 : μu(τ) � 2|x|} = sû(x).
(2.16)

Similarly we also have (su)∗ = su∗.
Let

N(t) = #{x ∈ G : |u(x)| = t}, t ∈ (m,M).

We have the following result regarding the Dirichlet integral and N(t) (see Proposition 3.1 of [5]).

Proposition 2.5. Let G be a connected metric graph, and let u ∈ H1(G) satisfying (2.14). Then∫
I∗

|(u∗)′(x)|2dx �
∫
G

|u′(x)|2dx, (2.17)

where equality holds only when N(t) = 1 for a.e. t ∈ (m, M). Moreover, if N(t) � 2 for a.e. t ∈ (m, M), 
then ∫

Î

|(û)′(x)|2dx �
∫
G

|u′(x)|2dx, (2.18)

where equality holds only when N(t) = 2 for a.e. t ∈ (m, M).

Proof. By the Proposition 3.1 of [2], we only need to prove that∫
G

|u′|2dx =
∫
G

|(|u|)′|2dx.

In fact, let u+ = max{u, 0}, u− = max{−u, 0}, then u = u+−u− and |u| = u++u−. Moreover, u± ∈ H1(G)
and
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∫

G

|u′|2dx =
∫
G

((u′
+)2 + (u′

−)2 − 2u′
+u

′
−)dx =

∫
G

((u′
+)2 + (u′

−)2)dx

=
∫
G

[(u+ + u−)′]2dx =
∫
G

|(|u|)′|2dx. �

2.3. Basic estimates

First we establish the following basic energy estimate for any non-compact graph G.

Lemma 2.6. Let E0 be the ground state energy of (1.3) on R. Suppose that G is a connected metric graph 
with at least one half-line, then the ground state energy E(G) satisfies

1
2E0 � E(G) � E0. (2.19)

Proof. Let {un} ⊆ H1(R) be a sequence such that each un has a compact support and un → u0 strongly 
in H1(R). Since un → u0 also in Lp(R) as n → ∞, we see that

J(un,R) → J(u0,R) = E0, (J ′(un,R), un) → (J ′(u0,R), u0) = 0, n → ∞.

Therefore, there exists a sequence {tn} satisfying tnun ∈ N(R) and tn → 1 as n → ∞. By translation, we 
may assume that tnun(· +xn) is supported in [0, ∞). Identifying this interval with one of the half-lines of G, 
we may consider tnun(· +xn) as a function in H1(G), by extending it to zero on any other edge of G. Then 
we obtain that

E(G) = inf
N(G)

J(u,G) � lim
n→∞

J(tnun(· + xn), G) = lim
n→∞

J(tnun,R) = lim
n→∞

J(un,R) = E0.

On other hand, for any u ∈ N(G), then u∗ ∈ H1(R+) and there exists a t > 0 such that tu∗ ∈ N(R+). 
Therefore from Lemma 2.4,

J(u,G) � J(tu,G) � J(tu∗,R+) � inf
N(R+)

J(u,R+) = 1
2E0. �

Next we recall the following parametrization of a metric graph G (see [5, Lemma 5.1]).

Lemma 2.7. Assume that G is connected and satisfies the condition (H). Then G as a metric space satisfies 
the following condition as well:

(H′) For every point x0 ∈ G, there exists two injective curves γ1, γ2 : [0, ∞) → G parameterized by arclength, 
with disjoint images except for finitely many points, and such that γ1(0) = γ2(0) = x0.

Similar to [5, Theorem 2.3], we show that under the condition (H), the ground state energy E(G) can be 
determined.

Lemma 2.8. Assume that G is connected and satisfies condition the condition (H). Then, E(G) = E0.

Proof. Let u ∈ N(G). Since J(|u|, G) = J(u, G), we may assume that u � 0. Therefore we have that 
M = maxG u > 0 and that m = infG u = 0, as G contains at least two half-lines. Thus, û ∈ H1(R). We 
claim that

N(t) = #{x ∈ G : |u(x)| = u(x) = t} � 2 for a.e. t ∈ (0,M). (2.20)
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Indeed from Lemma 2.7, the condition (H′) holds. Let γ1, γ2 be as in (H′), relative to a point x0 ∈ G where 
u(x0) = M . We define a continuous function v : R → R by

v(y) =
{
u(γ1(y)), y � 0,
u(γ2(−y)), y < 0.

(2.21)

Clearly v(0) = u(x0) = M . Moreover, as each γi parameterizes a half-line of G for y large enough, we have 
that v(y) → 0 as |y| → ∞. Hence v has at least two distinct preimages for every value t ∈ (0, M). Since the 
images of γ1 and γ2 are disjoint except for finitely many points of G, then (2.20) follows.

For any u ∈ N(G), from Lemma 2.4, there exists a t0 > 0 such that t0û ∈ N(R). Therefore from 
Lemma 2.4 and Proposition 2.5, we have

E0 = inf
N(R)

J(u,R) � J(t0û,R) = J(t̂0u,R) � J(t0u,G) � J(u,G).

Thus E0 = J(u0, R) = infN(R) J(u, R) � infN(G) J(u, G) = E(G). Combining with Lemma 2.6, we conclude 
that E(G) = E0. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. The proof is similar to the one for [5, Theorem 2.5]. The graph in Fig. 1 (a) is 
apparently isometric to R, then u0 can be seen as an element of H1(G), and then the infimum is achieved. 
For the graph G in Fig. 1 (b), suppose the length of finite loop is 2a > 0, then u0 can be identified as 
an element of H1(G) by letting x = 0 corresponding to the mid-point of the finite loop, and x = ±a

corresponding to x1. Again the infimum is achieved. For the graph G in Fig. 1 (c), the two edges between 
each xi and xi+1 are of equal length, hence u0 can also be identified as an element of H1(G) for which the 
two half-lines intersect at x = ±ai for some an > an−1 > · · · > a1 > 0, then the infimum is attained by u0
under this correspondence.

On the other hand, assume that u ∈ H1(G) achieves the infimum E(G). Then from Lemma 2.8, 
E(G) = E0, (2.20) holds and we may assume that u > 0 and J(u, G) = J(û, R). Thus we must have 
û = u0, and G = Γ = Γ1 ∪ Γ2, where Γi is the image of the curve γi (defined as in Lemma 2.7). The 
remaining parts of the proof are same as the proof of [5, Theorem 2.5], which are omitted. �
3. Existence of ground states

In this section, we prove our main existence results (Theorems 1.3 and 1.5). First we show the following 
partial symmetry result for a positive solution u with energy level less than or equal to E0.

Lemma 3.1. Assume that G is a star graph with m infinite edges (half-lines) and k finite edges (with possibly 
unequal length), m � 2 and m + k � 3. If u ∈ H1(G) is a positive solution of (1.3) with J(u, G) � E0, then 
u is symmetric on all m half-lines and it is strictly decreasing on [0, ∞) for each half-line.

Proof. Since u is a positive solution of (1.3), then u ∈ N(G) and we have∫
G

[|u′(x)|2 + |u(x)|2]dx =
∫
G

|u(x)|pdx. (3.1)

Let G = Sk,m and let u = (u1, u2, · · · , uk, v1, v2, · · · , vm) ∈ H1(G) be a positive solution of (1.3), then 
vi ∈ H1(R+) (1 � i � m) is a positive solution of the equation
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{
−u′′ + u = up−1, x ∈ R+,

u > 0, u ∈ H1(R+),
(3.2)

and vi(0) = vj(0) > 0. From the uniqueness of the positive solution of (1.7), we must have vi(x) = u0(x ±x1)
where x1 > 0 satisfies u0(x1) = vi(0) for each i.

We prove that vi(x) = u0(x +x1) for each i. Suppose to the contrary, there exists i (without loss generality, 
we assume i = 1) such that vi(x) = u0(x −x1). Since m � 2, then v2(x) = u0(x ±x1). If v2(x) = u0(x +x1), 
then from (3.1), we have

J(u,G) = (1
2 − 1

p
)
∫
G

[|u′(x)|2 + |u(x)|2]dx

> (1
2 − 1

p
)

∞∫
0

[|v′1(x)|2 + |v1(x)|2]dx + (1
2 − 1

p
)

∞∫
0

[|v′2(x)|2 + |v2(x)|2]dx

= (1
2 − 1

p
)

∞∫
−x1

[|u′
0(x)|2 + |u0(x)|2]dx + (1

2 − 1
p
)

∞∫
x1

[|u′
0(x)|2 + |u0(x)|2]dx = E0,

(3.3)

which contradicts with the assumption that J(u, G) � E0. Note that the inequality in (3.3) is strict since 
m + k � 3. On the other hand, if v2(x) = u0(x − x1), then similar to (3.3), we have

J(u,G) = (1
2 − 1

p
)
∫
G

[|u′(x)|2 + |u(x)|2]dx

> (1
2 − 1

p
)

∞∫
0

[|v′1(x)|2 + |v1(x)|2]dx + (1
2 − 1

p
)

∞∫
0

[|v′2(x)|2 + |v2(x)|2]dx

= (1
2 − 1

p
)

∞∫
−x1

[|u′
0(x)|2 + |u0(x)|2]dx + (1

2 − 1
p
)

∞∫
−x1

[|u′
0(x)|2 + |u0(x)|2]dx > E0,

(3.4)

which again contradicts with J(u, G) � E0. Hence for each 1 � i � m, we have vi(x) = u0(x + x1). This 
implies that vi(x) = vj(x) and are decreasing on [0, ∞). �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. 1. Suppose that u is a positive ground state solution of (1.3) when G = S0,m, the 
star graph with no finite edges but m infinite edges. From Lemma 2.6, E(G) � E0. Suppose m � 3, then 
according to Lemma 3.1, for each 1 � i � m, vi(x) = u0(x + x1) for some x1 > 0. The Kirchhoff condition 
implies that x1 = 0 hence vi(x) = u0(x) for all i = 1, 2, · · · , m. Similar to (3.3), we have

J(u,G) = (1
2 − 1

p
)
∫
G

[|u′(x)|2 + |u(x)|2]dx

= (1
2 − 1

p
)

m∑
i=1

∞∫
0

[|v′i(x)|2 + |vi(x)|2]dx = m

2 E0 > E0.

(3.5)

That contradicts with J(u, G) = E(G) � E0. Hence there is no positive ground state solution of (1.3) when 
m � 3. When m = 1 or m = 2, a ground state obviously exists: u = u0|R+ for m = 1, and u = u0 for m = 2.



JID:YJMAA AID:21787 /FLA Doctopic: Partial Differential Equations [m3L; v1.224; Prn:9/11/2017; 10:18] P.16 (1-25)
16 Y. Li et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
2. Suppose that u is a positive solution of (1.3) when G = S0,m with m odd. Then similar to the proof of 
Lemma 3.1, u = (v1, · · · , vm) and each vi is a solution of (3.2) such that vi(0) = vj(0) > 0 for all i, j. Then 
again vi(x) = u0(x ± x1) which implies that

m∑
i=1

dvi
dxi

(0) = pu′
0(x1), (3.6)

where p is an odd integer. Then the Kirchhoff condition implies that u′
0(x1) = 0 hence x1 = 0. Therefore u

equals to u0|R+ on each edge, and u is unique.
3. Suppose that u is a positive solution of (1.3) when G = S0,m with m = 2m1 even. Then same as part 2, 

we have vi(x) = u0(x ± x1) and (3.6) holds for p = 0. That implies that exactly m1 of vi(x) = u0(x + x1), 
and the other m1 satisfying vi(x) = u0(x −x1). So the 2m1 edges can be paired into m1 whole solitons with 
an arbitrary x1 > 0. �
Remark 3.2. In Lemma 3.1, we show that a positive solution with energy � E0 must be symmetric on all 
infinite edges. The results in Theorem 1.3 parts 2 and 3 show that the energy constraint is a necessary 
condition for the symmetry.

The next lemma is a key of proving Theorem 1.5.

Lemma 3.3. Assume that G is a star graph with m infinite edges (half-lines) and k finite edges (with possibly 
unequal length), m � 1 and k � 1. If E(G) < E0, then E(G) can be attained by a positive solution of (1.3).

Proof. Suppose that G = Sk,m with m � 1 and k � 1. Let un ∈ N(G) be a minimizing sequence such that 
J(un, G) → E(G) as n → ∞. Let un = (u1

n, u
2
n, · · · , uk

n, v
1
n, v

2
n, · · · , vmn ), where ui

n is defined on the i-th 
finite edge for 1 � i � k, and vjn is defined on the j-th half-line for 1 � j � m.

Define

M(u,G) = (J ′(u,G), u) = ‖u‖2
H1(G) − |u|pLp(G).

Since un ∈ N(G), then M(un, G) = 0 and

(
1
2 − 1

p

)
‖un‖2

H1(G) = J(un, G) − 1
p
M(un, G) → E(G), n → ∞,

which implies that {un} is bounded in H1(G). Moreover, there exists a sequence λn ∈ R such that

J ′(un, G) − λnM
′(un, G) → 0, n → ∞.

Since un ∈ N(G), then by the proof of Lemma 2.4, we have

(M ′(un, G), un) = 2‖un‖2
H1(G) − p|un|pLp(G) = (2 − p)‖un‖2

H1(G) � −(p− 2)C2.

Hence λn → 0 and consequently J ′(un, G) → 0 as n → ∞.
Therefore, subject to a subsequence, there exists a function u ∈ H1(G) such that

un ⇀ u, in H1(G); un → u, in Lq (G), q ∈ [1,+∞], n → ∞. (3.7)
loc
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If u 	= 0, then u ∈ N(G) and

J(u,G) = 1
2‖u‖

2
H1(G) −

1
p
|u|pLp(G) =

(
1
2 − 1

p

)
‖u‖2

H1(G)

� lim inf
n→∞

(
1
2 − 1

p

)
‖un‖2

H1(G) = lim inf
n→∞

J(un, G) = E(G).

Hence E(G) is attained by u 	= 0.
In the following, we consider the case of u ≡ 0. Then (3.7) implies that un ⇀ 0 in H1(G) and un → 0 in 

Lq
loc(G) for q ∈ [1, ∞] as n → ∞. Let ξR, ηR ∈ C∞(R+) be defined by

ξR(x) =
{

1, x > 2R,

0, x < R,
ηR(x) = 1 − ξR(x).

Moreover, we may assume that |ξ′R|, |η′R| � 2/R, 0 � ξR, ηR � 1 for x ∈ R+. Let l be the maximum of the 
lengths of all finite edges, and we fix R > l. Then

unηR = (u1
n, u

2
n, · · · , uk

n, v
1
nηR, v

2
nηR, · · · , vmn ηR), unξR = (0, 0, · · · , 0, v1

nξR, v
2
nξR, · · · , vmn ξR).

Clearly unηR, unξR ∈ H1(G) and {unηR}, {unξR} are bounded in H1(G). From J ′(un, G) → 0 as n → ∞, 
we have ∫

G

(|u′
n|2ηR + η′Ru

′
nun + |un|2ηR − |un|pηR)dx = (J ′(un, G), ηRun) → 0, n → ∞. (3.8)

By using un → 0 in Lq
loc(G) (n → ∞), we have

∣∣∣∣∣∣
∫
G

u′
nunη

′
Rdx

∣∣∣∣∣∣ � 2
R

∫
x∈[0,2R]

|u′
nun| � 2

R

⎛⎜⎝ ∫
x∈[0,2R]

|un|2

⎞⎟⎠
1
2

‖un‖H1(G) → 0, as n → ∞,

∣∣∣∣∣∣
∫
G

|un|2ηR − |un|pηR

∣∣∣∣∣∣ �
∫

x∈[0,2R]

(|un|2 + |un|p) → 0, as n → ∞.

(3.9)

Combining (3.8) and (3.9), we obtain that∫
G

|u′
n|2ηR → 0, and

∫
x∈[0,2R]

(|u′
n|2 + |un|2) → 0 as n → ∞. (3.10)

Because of un ∈ N(G), we have

0 = 〈J ′(un, G), un〉 =
∫
G

(|u′
n|2 + u2

n − |un|p)dx

=
∫

x>2R

(|u′
n|2 + |un|2 − |un|p)dx +

∫
x∈[0,2R]

(|u′
n|2 + |un|2 − |un|p)dx.

This together with (3.10) and un → 0 in Lp
loc(G) implies that∫

(|u′
n|2 + |un|2 − |un|p)dx → 0, n → ∞. (3.11)
x>2R
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On the other hand, by (3.10) and un → 0 in Lp
loc(G), we obtain that

∣∣∣∣∣∣∣
∫

x∈[0,2R]

(|u′
n|2|ξR|2 + 2u′

nunξRξ
′
R + |un|2|ξ′R|2 + |un|2ξ2

R − |un|pξpR)

∣∣∣∣∣∣∣
�

∫
x∈[0,2R]

(
2|u′

n|2 + (3 + 4R−2)|un|2 + |un|p
)
→ 0, n → ∞.

(3.12)

Therefore, from (3.12) and (3.11), we obtain that

(J ′(unξR, G), unξR)

=
∫
G

(|u′
n|2|ξR|2 + 2u′

nunξRξ
′
R + |un|2|ξ′R|2 + |un|2ξ2

R − |un|pξpR)

=
∫

x>2R

(|u′
n|2 + |un|2 − |un|p)

+
∫

x∈[0,2R]

(|u′
n|2|ξR|2 + 2u′

nunξRξ
′
R + |un|2|ξ′R|2 + |un|2ξ2

R − |un|pξpR)

=
∫

x>2R

(|u′
n|2 + |un|2 − |un|p) + o(1) = o(1), n → ∞.

(3.13)

Similarly,

J(unξR, G) =
∫
G

(1
2 |u

′
n|2|ξR|2 + u′

nunξRξ
′
R + 1

2 |un|2|ξ′R|2 + 1
2 |un|2ξ2

R − 1
p
|un|pξpR)

=
∫

x>2R

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p)

+
∫

x∈[0,2R]

(1
2 |u

′
n|2|ξR|2 + u′

nunξRξ
′
R + 1

2 |un|2|ξ′R|2 + 1
2 |un|2ξ2

R − 1
p
|un|pξpR)

=
∫

x>2R

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p) + o(1), n → ∞.

(3.14)

On the other hand, we have J(un, G) → E(G) as n → ∞, and

J(un, G) =
∫
G

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p)

=
∫

x>2R

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p)dx +

∫
x∈[0,2R]

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p)dx

=
∫

(1
2 |u

′
n|2 + 1

2 |un|2 −
1
p
|un|p)dx + o(1), n → ∞.

(3.15)
x>2R
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Now combining (3.14), (3.15), we obtain that

lim
n→∞

J(unξR, G) = E(G). (3.16)

From unξR ∈ H1(G), there exists tn > 0 such that tnunξR ∈ N(G). By (3.13) and (3.16), we must have 
tn → 1.

If m � 2, then tnunξR ∈ H1(S0,m) and tnunξR ∈ N(S0,m). Denote vn = tnunξR ∈ N(S0,m). Then 
J(vn, S0,m) → E(G) as n → ∞. Therefore, according to Lemma 2.8, we have

E0 = E(S0,m) � J(vn,S0,m) = J(vn, G) = E(G) + o(1).

This is a contradiction with the assumption E(G) < E0.
If m = 1, then vn ∈ H1(R) and then vn ∈ N(R). Hence,

E0 = E(R) � J(vn,R) = J(vn, G) = E(G) + o(1).

This is also a contradiction with the assumption E(G) < E0. Therefore, u 	= 0 and the proof is com-
pleted. �

To prove the existence of ground state solution for G = Sk,2 with k = 1, we recall the following hybrid 
rearrangement from [5], and here the conclusion (iv) is new.

Lemma 3.4 (Hybrid rearrangement). Let G = S1,2 be the star graph with 1 finite edge and 2 half-lines. 
Assume that u = (u1, v1, v2) ∈ H1(G) such that u > 0 and meas({u = t}) = 0 for every t > 0. Then there 
exists ũ ∈ H1(G), ũ = (ũ1, ̃v1, ̃v2) with the following properties:

(i) ṽ1 = ṽ2, and it is decreasing on (0, ∞).
(ii) ũ1 : [−l, 0] → R is decreasing so that min

x∈[−l,0]
ũ1(x) = ũ1(0) = ṽi(0) = max

x∈[0,∞)
ṽi(x), i = 1, 2.

(iii) J(ũ, G) � J(u, G), and the equality holds only if u1 is decreasing on [−l, 0] and min
x∈[−l,0]

u1(x) =

max
x∈[0,∞)

vi(x) for i = 1, 2.

(iv) For t > 0, t̃u = tũ.

Proof. The proof of (i)–(iii) is the same as the one of [5, Lemma 6.1], and only (iv) needs to be proved. Let 
ũ be defined as [5, Lemma 6.1]. Then according to the definition of ũ, (2.16), and the fact that (su)∗ = su∗, 
the conclusion (iv) holds. �

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. 1. First we prove that E(S1,2) < E0. Then from Lemma 3.3, a positive ground state 
exists. We define a function u = (u1, v1, v2) ∈ H1(S1,2) as follows:

v1(x) = v2(x) = u0(x + l/2), x ∈ [0,∞), u1(x) = u0(x + l/2), x ∈ [−l, 0].

Then u = (u1, v1, v2) ∈ H1(S1,2) and J(u, S1,2) = J(u0, R) = E0. We can also compute that u ∈ N(S1,2). 
Moreover, u > 0 and meas({u = t}) = 0 for every t > 0. Then by Lemma 3.4, we have ũ ∈ H1(S1,2). 
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From Lemma 3.4 (iii), we have J(ũ, S1,2) < J(u, S1,2) = E0, and there exists a constant t > 0 such that 
tũ ∈ N(G). Therefore from Lemma 3.4, we have

E(S1,2) � J(tũ,S1,2) < J(tu,S1,2) < J(u,S1,2) = E0.

Then from Lemma 3.3, the infimum E(S1,2) is attained.
2. We prove that E(S2,2) can be attained. From Lemma 2.6, we know that E(S2,2) � E0. If E(S2,2) = E0, 

then we define

v1(x) = v2(x) = u0(x + l), x ∈ [0,∞), u1(x) = u2(x) = u0(x + l), x ∈ [−l, 0].

Therefore, u = (u1, u2, v1, v2) ∈ H1(G), u is a critical point of J(·, G) and J(u, G) = J(u0, R) = E0. If 
E(S2,2) < E0, then it follows from Lemma 3.3 that E(S2,2) is achieved by some u ∈ H1(S2,2). �
4. Symmetric solutions

In this section we prove the existence of a positive solution of (1.3) for a symmetric star graph Sk,m with 
k � 1 and m � 1, which also implies the existence of a ground state solution for S1,m with a sufficiently 
long finite edge.

Recall that u0 is the unique positive solution of (1.7). Multiplying (1.7) by u′
0 and integrating on [0, ∞), 

we obtain that

0 =
∞∫
0

(u′′
0 − u0 + up−1

0 )u′
0dx = −1

2u
2
0(0) + 1

p
up

0(0).

Hence

u0(0) = (p/2)1/(p−2) = θ > 1.

We recall some basic facts about the solutions of the second order nonlinear ODE u′′ − u + up−1 = 0. 
Suppose that u is the solution of initial value problem{

u′′ − u + up−1 = 0,
u(0) = u0, u′(0) = w0.

(4.1)

Let w(x) = u′(x). Then (u(x), w(x)) is the solution of⎧⎪⎪⎨⎪⎪⎩
u′ = w,

w′ = u− up−1,

u(0) = u0, w(0) = w0.

(4.2)

Note that (4.2) is a first order Hamiltonian ODE system with a Hamiltonian

H(u,w) = 1
2w

2 − 1
2u

2 + 1
p
up. (4.3)

Hence for a solution (u, w) of (4.2),

d

dx
H(u(x), w(x)) = ∂H

∂u
u′ + ∂H

∂w
w′ = 0.

In particular, H(u(x), w(x)) ≡ H(u(0), w(0)) for all x > 0.
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Now we consider a solution of (4.1) or (4.2) with w0 = 0. Multiplying (4.1) by u′ and integrating on 
[0, x], we obtain that

0 =
x∫

0

[u′′u′ + (−u + up−1)u′]dy = 1
2[u′(x)]2 + g(u(x)) − g(u(0)), (4.4)

where g(u) = −1
2u

2 + 1
p
up =

u∫
0

(−v + vp−1)dv.

We consider a solution u of (4.1) satisfying u′(0) = 0, u′(x) < 0 for x > 0. Then (4.4) implies that

du

dx
= u′(x) = −

√
2 ·

√
g(u0) − g(u(x)), x > 0

or

du√
2 ·

√
g(u0) − g(u)

= −dx, x > 0. (4.5)

Integrating (4.5) for x ∈ [0, x1], we have

x1 = 1√
2

u0∫
u(x1)

1√
g(u0) − g(u)

du := G(u0). (4.6)

Here we assume that for x ∈ [0, x1], g(u0) > g(u(x)). The quantity x1 can be viewed as the “time” needed 
for a solution of (4.2) moving from (u(0), w(0)) = (u0, 0) to (u(x1), w(x1)) = (u(x1), u′(x1)). Hence G(u0)
is often called the time-mapping [31,37]. Note that here (x1, u(x1)) is arbitrary.

The following lemma of ODE shooting argument is a key in establishing our existence result of a symmetric 
solution of (1.3) on a symmetric star graph.

Lemma 4.1. Suppose x2 > 0 and u0 is the unique positive solution of (1.7). Let (P, Q) = (u0(x2), u′
0(x2)), 

and k > 0. Then

1. there exists a unique ũ = ũ(x2) > 0 and l = l(x2) > 0 such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′ = w,

w′ = u− up−1,

u(0) = ũ, w(0) = 0,
u(l) = P, w(l) = kQ,

(4.7)

has a solution (u, w) such that u(x) > 0 and w(x) < 0 for x ∈ (0, l).
2. ũ and l are continuous in x2 ∈ (0, ∞), and they satisfy

lim
x2→0+

ũ(x2) = θ, lim
x2→0+

l(x2) = 0,

lim
x2→∞

ũ(x2) = θ, lim
x2→∞

l(x2) = ∞.
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Proof. 1. Fix x2 > 0 and let (P, Q) = (u0(x2), u′
0(x2)). Then the solution orbit of (4.7) with (u(0), w(0)) =

(P, kQ) is on the curve

H(u,w) = H(P, kQ) = k2

2 Q2 − 1
2P

2 + 1
p
P p. (4.8)

We claim that the curve H(u, w) = H(P, kQ) intersects with w = 0. Indeed, g(P ) = −1
2P

2 + 1
p
P p <

H(P, kQ) and lim
u→∞

g(u) = ∞ > H(P, kQ). From the intermediate-value Theorem, there exists ũ ∈ (P, ∞)
such that g(ũ) = H(P, kQ), which implies that H(ũ, 0) = H(P, kQ). From the phase portrait of (4.7), such 
a ũ ∈ (P, ∞) is unique. Hence ũ is uniquely determined by x2, and the time l is also uniquely determined 
by x2.

2. The continuity of ũ(x2) and l(x2) easily follows from the continuous differentiability of u0 on x2. When 
x2 → 0+, (P, kQ) = (u0(x2), ku′

0(x2)) → (θ, 0). From H(ũ(x2), 0) = H(P, kQ), we have

g(ũ(x2)) = k2

2 Q2 + g(P ) → g(θ) = 0, x2 → 0+.

Since ũ(x2) > P > 1, then ũ(x2) → θ as x2 → 0+. On the other hand, when x2 → ∞, (P, kQ) =
(u0(x2), ku′

0(x2)) → (0, 0). Hence,

g(ũ(x2)) → g(0) = 0, x2 → ∞.

From the phase portrait of (4.2), ũ(x2) > 1, hence ũ(x2) → θ as x2 → ∞. Next we determine the asymptotic 
behavior of l(x2). From (4.6), we have

l(x2) = 1√
2

ũ(x2)∫
u0(x2)

1√
g(ũ(x2)) − g(u)

du. (4.9)

Since u0(x2) → θ and ũ(x2) → θ as x2 → 0+, then for any ε > 0, there exists δ > 0 such that when 
0 < x2 < δ, we have

|u0(x2) − θ| < ε, |ũ(x2) − θ| < ε.

From the mean-value theorem, there exists ξ ∈ (u, ̃u(x2)) such that

g(ũ(x2)) − g(u) = g′(ξ)(ũ(x2) − u).

Hence when 0 < x2 < δ,

0 < l(x2) � 1√
2

1
min|ξ−θ|<ε

√
g′(ξ)

ũ(x2)∫
u0(x2)

1√
ũ(x2) − u

du

�
√

2 1
min|ξ−θ|<ε

√
g′(ξ)

√
ũ(x2) − u0(x2) → 0, as x2 → 0.

On the other hand, when x2 → ∞,

u0(x2) → 0, ũ(x2) → θ.
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Thus (4.9) implies that

lim
x2→∞

l(x2) = 1√
2

θ∫
0

1√
g(θ) − g(u)

du = ∞,

since the solution of (4.2) with u(0) = θ and w(0) = 0 is a homoclinic orbit. �
Now we prove the existence of a symmetric positive solution of (1.3) on the star graph Sk,m with k finite 

edges with equal length l and m half-lines.

Proof of Theorem 1.6. To construct a symmetric positive solution of (1.3), from the proof of Lemma 3.1, 
we must have v(x) = u0(x + x2) or v(x) = u0(x − x2) for some x2 > 0. Here we take v(x) = u0(x + x2). 
Then u satisfies ⎧⎨⎩u′′ − u + up−1 = 0, −l < x < 0,

u′(−l) = 0, u(0) = u0(x2), u′(0) = m

k
u′

0(x2).
(4.10)

From Lemma 4.1, for any l > 0, (4.10) has a positive solution u(x) such that u′(x) < 0 in (−l, 0). Hence 
(u1, u2, · · · , uk, v1, v2, · · · , vm) satisfying u1 = u2 = · · · = uk = u and v1 = v2 = · · · vm = v is a symmetric 
positive solution of (1.3), and u′(x) < 0 for −l < x < 0, v′(x) < 0 for x > 0. For the uniqueness of positive 
decreasing solution of (1.10), first v(x) must be some u0(x + x2) for x2 > 0, thus u(x) must satisfy (4.10). 
For fixed x2, l, k, m, the decreasing solution of (4.10) is unique from the part 1 of Lemma 4.1. Hence (u, v)
is uniquely determined by (l, k, m). �

Note that the positive solution of (1.10) in Theorem 1.6 is strictly decreasing in (−l, ∞). It is possible to 
have solutions of (1.10) which are not decreasing in (−l, ∞). Such a solution may be periodic in (−l, 0) and 
may have a unique maximal point in (0, ∞). Also a positive solution of (1.3) on Sk,m may be not symmetric. 
Hence the uniqueness of positive solution of (1.3) holds only in the decreasing functions. Finally we use the 
result of Theorem 1.6 to prove Corollary 1.7.

Proof of Corollary 1.7. Suppose that k = 1, m � 2, and let z = (u, v) be the solution obtained in Theo-
rem 1.6 for G = S1,m. From the proof of Lemma 4.1, u(x) satisfies (4.10). When l → ∞, then from part 2 
of Lemma 4.1 the corresponding x2 also tends to ∞. Indeed if x2 is bounded, then l(x2) is also bounded. 
From part 2 of Lemma 4.1, the corresponding ũ(x2) = u(−l(x2)) → θ. Let ul(x) be the unique positive 
solution of (4.10) for a given l > 0. Then the above argument shows that ul(−l) → θ as l → ∞. Define 
wl(y) = ul(y− l) for y ∈ [0, l]. Since wl(y) satisfies the equation w′′

l −wl +wp−1
l = 0 on y ∈ (0, l), w′

l(0) = 0
and wl(0) = ul(−l). Then for any fixed L > 0, wl converges to u0 uniformly on [0, L] as l → ∞. In particular, 
ul(0) → 0 and u′

l(0) → 0 as l → ∞. Since vl(0) = ul(0) and v′l(l) = (1/m)u′(l), and v′l < 0 for x > 0, then 
J(vl, (0, ∞)) → 0 as l → ∞. According to the construction of u in Theorem 1.6, u = wl. Hence when l > 0
is sufficiently large, J((u, v), G) = 1

2E0 + o(1) < E0. Now Lemma 3.3 shows that (1.3) has a ground state 
for S1,m with l large. �
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