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A complete general solution of the unsteady Brinkman
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1 School of Mathematics and Statistics, University of Hyderabad, Hyderabad, India

Abstract

In this paper, we present a complete general solution of the unsteady Brinkman
equations. To this end, we introduce a representation for velocity and pressure
in terms of two scalar functions. One of these scalar functions satisfies a second
order partial differential equation (PDE) while the other satisfies a fourth order
PDE which can be factorized into a pair of second order PDEs. We show that
the solution of this fourth order PDE is indeed the sum of the solutions of
the two second order PDEs. We also use these solutions to obtain a complete
general solution of the unsteady Brinkman equations.

Keywords: Stokes flows, Brinkman equations, heat operator, factorization of
operators.
2008 MSC: 35Q35, 76D07.

1. Introduction

Consider a homogeneous porous medium characterized by a permeability
parameter κ/L2, where κ is the Darcy permeability of the medium and L is
the particle length scale of a cloud of spherical particles in the medium. This
kind of a medium is said to be a Brinkman medium. Moreover, in a Brinkman
medium the size of the particles is smaller than the characteristic length scale
of the flow. Therefore, they occupy a negligible volume (see [5]). Flows through
porous media are governed by either the Darcy model or the Brinkman model.
The latter is found to be more suitable when the permeability of the medium
is high. Consider an incompressible flow of a viscous fluid through a Brinkman
medium with a permeability κ which is modeled by the Brinkman equations,

ρ
∂q

∂t
(x, t) = −∇p(x, t) + μ

(
Δ− 1

κ

)
q(x, t), x ∈ R

3, t > 0, (1)

div (q(x, t)) = 0, x ∈ R
3, t > 0. (2)
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where q, p, μ and ρ are the average fluid velocity, average pressure, coefficient
of dynamic viscosity and density of the fluid respectively. It is assumed that
the averages that we have considered occur over many realizations of particle
arrangements which satisfy the volume fraction constraint, permeability of the
medium and size of the particles in the Brinkman medium (see [5], [12]). Notice
that (1)–(2) reduce to the unsteady Stokes equations if the drag term μq/κ is
neglected. On the other hand, the Brinkman equations reduce to the unsteady
Darcy equations if the diffusion term μΔq is neglected.

Flow past an aggregate with radially varying solid fraction and permeability has
been studied in [25] using the Brinkman equations for the internal flow and the
Stokes equations for the external flow. In [7], the author has used the Brinkman
equations to model flows through an array of fixed cylindrical fibers. Many bio-
logical phenomena are modeled using the Brinkman equations (see, for instance
[6], [19]).

Transmission problems for Brinkman and Stokes equations have attracted at-
tention of many mathematicians in recent times (see [8], [9], [10], [13], [14]).
In particular, methods of potential theory which are used to study the elliptic
boundary value problems are employed to obtain the existence and uniqueness
of a solution of the models under consideration. The authors in [8] have studied
the existence and uniqueness results for the transmission problems with Lips-
chitz interface for the Darcy-Forchheimer-Brinkman and Stokes systems using
the layer potential method for the linear Stokes and Brinkman system, and fixed
point theory. In [9], the integral layer potentials of the Stokes and Brinkman
systems along with Leray-Schauder degree theory is used to establish the ex-
istence result for a nonlinear Neumann transmission problem for the Stokes
and Brinkman systems in two adjacent bounded Lipschitz domains. In [14] the
author has obtained existence and uniqueness results for Robin-transmission
problem and Dirichlet-transmission problem for the Brinkman system using in-
tegral equation method.

Most of the work on Brinkman flows are restricted to the steady case, i.e.,
time independent flows. Moreover, most of the unsteady cases considered in
the literature are of oscillatory type (see [1], [16], [17], [24]). The advantage of
considering oscillatory flow is that the governing equations reduce to the steady
Brinkman equations. Many problems which are solved in either Stokes’ flows or
Brinkman flows use some form of complete general solutions of these equations.
For instance, complete general solutions of the steady Stokes equations are due
to Lamb (see [11]) and Padmavati et al (see [20]) have been extensively used to
discuss flows at low Reynolds number (see [2], [3], [4], [15], [21]).

In general, in order to derive a complete general solution, the velocity vector is
expressed in terms of two scalar functions in a particular form in such a way
that the equation of continuity holds for every choice of the scalar functions.
Then one needs to find the suitable equations which are satisfied by these scalar
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functions such that every solution of the equations of motion can be expressed
in that particular form (see [18], [20], [22], [26]).

One of the main difficulties faced in this method is to solve the equations satis-
fied by the scalar functions. This is because one of the scalar functions satisfies
a higher order PDE (fourth order in most cases). In order to overcome this diffi-
culty we employ the technique of factorizing the operator. Recently the authors
of [23] have shown that by factorizing the operator, of course under suitable
hypotheses on the operators involved, any solution of the higher order equation
can be split into a sum of two functions which satisfy the PDEs of lower order.

In this paper, we consider the unsteady Brinkman equations and express the
velocity vector in terms of two scalar functions. One of the functions satisfies a
sixth order PDE and the other one a fourth order PDE. The sixth and fourth
order operators involved are factorized into second order operators. Further, we
show that any solution of these sixth and fourth order PDEs can be split into
sum of functions each satisfying a second order PDE. We exploit the structure
of the solutions of these second order operators involved to obtain a complete
general solution of the unsteady Brinkman equations.

2. Method of Solution

Let L denote the two dimensional Laplace operator ∂2

∂x2 +
∂2

∂y2 . Let î, ĵ, and

k̂ be the unit vectors of along x, y, and z axes respectively, in R
3. It has been

proved in [26], that any divergence free vector field q can be written as

q(x, y, z, t) = CurlCurl
(
A(x, y, z, t)k̂

)
+ Curl

(
B(x, y, z, t)k̂

)
(3)

where A and B are smooth functions defined on R
3 × (0,∞) satisfy, for every

fixed z, t,

LA = −k̂.q, (4)

LB = −k̂.Curl(q). (5)

So far we have dealt with only a divergence free vector field to obtain equations
(4) and (5). If the divergence free q given in (3) is also a solution of (1) then A
and B have to solve some more equations apart from (4)–(5). This is given in
the following Lemma.

Lemma 1. Assume that (q, p), where q is given in (3), solves system (1)–(2).
Then the functions A and B given in (3) solve

LΔ

(
μΔ− μ

κ
− ρ

∂

∂t

)
A = 0, (6)

and

L

(
μΔ− μ

κ
− ρ

∂

∂t

)
B = 0, (7)
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respectively.

Proof. We begin with the following observations regarding q and p. We take
divergence of (1) and use the equation of continuity, i.e., (2) to establish that
the pressure p is harmonic. Moreover, it is straightforward to observe that

Δ

(
μΔ− μ

κ
− ρ

∂

∂t

)
q = 0, (8)

(
μΔ− μ

κ
− ρ

∂

∂t

)
Curl(q) = 0. (9)

The required result immediately follows from equations (4)–(5) and (8)–(9).

Substituting (3) into (1), we obtain

∇
(
p− ∂

∂z

(
μΔ− μ

κ
− ρ

∂

∂t

)
A
)

= î
∂

∂y

(
μΔ− μ

κ
− ρ

∂

∂t

)
B

−ĵ
∂

∂x

(
μΔ− μ

κ
− ρ

∂

∂t

)
B

−k̂Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
A. (10)

If we have to find a complete general solution of (1)–(2), then we should write
the pressure p in terms of A in (10). This can be done easily if the right hand
side of (10) is zero. Therefore one of our main objectives is to choose the
scalar functions A and B in (3) such that (i) they satisfy (4)–(7), (ii) all the
components on the right hand side of (10) vanish. To this end, we present the
following factorization theorem which plays a vital role. Let L1, L2 and L3 be
linear operators on a normed linear space X such that L2 is invertible.

Theorem 1. Assume that L−1
2 commutes with both L1 and L3, i.e., L1L

−1
2 =

L−1
2 L1 and L3L

−1
2 = L−1

2 L3. Then for any given u such that L1(L3L1+L2)u =
0, there exists u1, u2 ∈ X such that u = u1+u2 and L1u1 = 0, (L3L1+L2)u2 =
0.

Proof. In order to prove the theorem, we use the similar technique introduced
in [23]. First, define u1 = L−1

2 (L3L1 + L2)u. Since L−1
2 commutes with L1, we

obtain L1u1 = 0. On the other hand, consider

(L3L1 + L2)(u− u1) = (L3L1 + L2)u− (L3L1 + L2)L
−1
2 (L3L1 + L2)u

= (L3L1 + L2)u− L3L1L
−1
2 (L3L1 + L2)u− (L3L1 + L2)u

= −L−1
2 L3L1(L3L1 + L2)u = 0.

Therefore, if u2 = u− u1 then we have (L3L1 + L2)u2 = 0. This completes the
proof.

In Lemma 1, we have proved that the scalar functions A and B which give the
velocity field via (3) satisfy the sixth order and fourth order equations given in
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(6) and (7) respectively. Now we use the factorization given in Theorem 1 to
write A and B as the sum of the functions which satisfy lower order equations
that help to make the right hand side of (10) vanish. This is given in the next
result.

Theorem 2. Assume that A and B solve (6) and (7) respectively. Then there
exist A1, A2, B1 and B2 such that:

(i) A = A1 +A2, with LA1 = 0 and Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
A2 = 0.

(ii) B = B1 +B2, with LB1 = 0 and
(
μΔ− μ

κ
− ρ

∂

∂t

)
B2 = 0.

Proof. We begin with the proof of (i). First, we rewrite (6) as

L
(
L+

∂2

∂z2
)(

μL+ μ
∂2

∂z2
− μ

κ
− ρ

∂

∂t

)
A = 0.

This is same as

L

[(
μΔ+ μ

∂2

∂z2
− μ

κ
− ρ

∂

∂t

)
L+

∂2

∂z2

(
μ
∂2

∂z2
− μ

κ
− ρ

∂

∂t

)]
A = 0. (11)

It is easy to observe that the operator acting on A in (11) satisfies the hypotheses
of Theorem 1. Therefore we get by Theorem 1, that there exist A1 and A2 such

that LA1 = 0 and Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
A2 = 0.

By using similar arguments one can easily prove (ii). Therefore we omit the
details.

From the representation of the solution given in (3) and Theorem 2, we get

q(x, y, z, t) = CurlCurl
(
A1k̂

)
+ CurlCurl

(
A2k̂

)
+Curl

(
B1k̂

)
+ Curl

(
B2k̂

)
, (12)

where A1, A2, B1 and B2 are as in Theorem 2. Now in the next two results we
are going demonstrate that, it is possible to find two functions A3 and B3 such
that

q(x, y, z, t) = CurlCurl
(
A3k̂

)
+ Curl

(
B3k̂

)
,

where A3 and B3 solve the same equations that A2 and B2 solve respectively.

Theorem 3. Let v = CurlCurl(uk̂), with Lu = 0 be such that (v, p) solves

(1)–(2). Then there exists U such that CurlCurl(Uk̂) = 0 and

Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
(u+ U) = 0. (13)

Proof. We substitute CurlCurl(uk̂) = (uxz, uyz, 0) into (1) to get

ρuxzt − μuxzzz +
μ

κ
uxz + px = 0, (14a)
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ρuyzt − μuyzzz +
μ

κ
uyz + py = 0, (14b)

pz = 0. (14c)

Differentiate (14a) and (14b) with respect to z and use (14c) to obtain

∂3

∂x∂z2
Ht,zu = 0,

∂3

∂y∂z2
Ht,zu = 0,

where Ht,zu := ρut − μuzz + μ
κu. It is easy to observe that there exists three

functions F (z, t), g(x, y, t), and h(x, y, t) such that

Ht,zu = F (z, t) + g(x, y, t)z + h(x, y, t).

Since Lu = 0, we get Ht,zLu = 0. This immediately implies that Lg = 0 and
Lh = 0.
On the other hand, let U(z, t) be a solution of Ht,zU(z, t) = −F (z, t). Since U
does not depend on x and y, we have,

LU = 0, and CurlCurl(Uk̂) = 0.
It is straightforward to compute

Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
(u+ U) = − ∂2

∂z2
Ht,z

(
u+ U

)

= − ∂2

∂z2
F (z, t) +

∂2

∂z2
F (z, t) = 0.

This completes the proof the theorem.

An immediate consequence of Theorem 3 is that the first term on the right hand
side of (12) can be absorbed into the second term of the same. In other words,
there exists, U such that

q = CurlCurl(A1k̂) = CurlCurl
(
(A1 + U)k̂)

)
where A1 + U solves (13) whenever (q, p) solves (1)–(2). Therefore, we have

q = CurlCurl(A3k̂) for some A3 which solves (13) provided (q, p) is a solution
of (1)–(2).
Now, we turn our attention towards the third term in the representation given
in (12). In this context, we have the following theorem.

Theorem 4. Let v = Curl(wk̂), with Lw = 0. If (v, p) solves (1)–(2), then
there exist V and W1 such that

v = CurlCurl(V k̂) + Curl(W1k̂),
and

Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
V = 0, (μΔ− μ

κ
− ρ

∂

∂t
)W1 = 0.

Proof. We begin the proof with the same argument that is used in Theorem 3.
On substituting v = (wy,−wx, 0) into (1), we obtain

ρwyt − μwyzz +
μ

κ
wy + px = 0, (15a)
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ρwxt − μwxzz +
μ

κ
wx − py = 0, (15b)

pz = 0. (15c)

Recall the operator Ht,z that was introduced in Theorem 3. Differentiate (15a)
and (15b) with respect to z and use (15c) to obtain

∂2

∂x∂z
Ht,zw = 0,

∂2

∂y∂z
Ht,zw = 0.

Therefore we have,
Ht,zw = f(z, t) + η(x, y, t)

for some smooth functions f and η. Since Lw = 0, we get Ht,zLw = 0. This
implies Lη = 0.
Now define W = w − u1 where u1(z, t) solves Ht,zu1(z, t) = f(z, t).
It is easy to observe that

Curl(Wk̂) = Curl(wk̂), LW = 0, Ht,zW = η(x, y, t). (16)

This W can be written as the sum W1 +W2 where Ht,zW1 = 0 and

W2(x, y, t) :=
1

ρ
exp

(−μt

ρκ

) ∫ t

exp
(μs
ρκ

)
η(x, y, s)ds,

because Ht,zW2 = η. Further, observe that LW2 = 0. This immediately gives
us, LW1 = 0 and therefore

(μΔ− μ

κ
− ρ

∂

∂t
)W1 = 0. (17)

With this decomposition of W , we have

Curl(Wk̂) = Curl(W1k̂) + Curl(W2k̂) (18)

withW1 satisfying (17). It remains to find V such that Curl(W2k̂) = CurlCurl(V k̂).
In other words, we need V (x, y, z, t) that satisfies

(W2)y = Vxz, −(W2)x = Vyz, LV = 0.

Notice that one can take V as a 2-D harmonic conjugate, (with respect to x and
y) for a fixed z, of zW2. Therefore we get LV = 0. In particular, we can take

V (x, y, z, t) =

∫ x

z(W2)ydx−
∫ y

z(W2)xdy −
∫ x ∫ y

z(W2)yydxdy.

This in turn gives us

Curl(W2k̂) = CurlCurl(V k̂). (19)

Since LV = 0, we have

Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
V = − ∂2

∂z2
Ht,zV = 0. (20)

The announced result follows from (16)–(20).
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This proves that any given solution (q, p) of (1)–(2) can be written as

q(x, y, z, t) = CurlCurl
(
A3k̂

)
+ Curl

(
B3k̂

)
, (21)

where

Δ
(
μΔ− μ

κ
− ρ

∂

∂t

)
A3 = 0, (22)

and (
μΔ− μ

κ
− ρ

∂

∂t

)
B3 = 0. (23)

Therefore, equation (10) reduces to

∇
(
p− ∂

∂z

(
μΔ− μ

κ
− ρ

∂

∂t

)
A3

)
= 0.

Hence the given pressure has a representation

p = p0 +
∂

∂z

(
μΔ− μ

κ
− ρ

∂

∂t

)
A3 (24)

where p0 is a nonnegative constant.
Moreover, using the factorization result, i.e., Theorem 1, we can show that any
solution A3 of (22) can be written as A3 = A4+A5 where A4 is harmonic and A5

solves (23). Therefore one can write A3 as the sum of two terms which solve two
standard second order equations. Notice that after multiplication with exp

(
μt
ρκ

)
(23) reduces to the heat equation.
Hence a complete general solution of (1)–(2) is given by

q(x, y, z, t) = CurlCurl
(
A4k̂

)
+ CurlCurl(A5k̂) + Curl

(
B3k̂

)
, (25)

where A4 is harmonic, A5 solves the same equation as B3 which is (23) and p
is given by (24).

3. Conclusions

One of the key ingredients which are used to establish that (21)–(24) give a
complete general solution of the Brinkman equations is the factorization of the
sixth and fourth order operators in (6)–(7). We have shown in Theorem 2 that
any solution of (6) can be written as the sum of the solutions of 2-D Laplace
equation and (22). Similarly any solution of (7) is the sum of a function which
is harmonic in x, y and a solution of (23). Another important technique used
to prove the completeness of the representation (21) is presented in Theorems 3
and 4. In particular, we have shown that the first and third terms on the right
hand side of (12) can be absorbed into the remaining terms of the same. There-
fore we have established that any solution of (1)–(2) is expressed, in terms of
two scalar functions, as in (21)–(24). Further, if we use the factorization result
(see [23]) for the operator in (22) we can write any solution of (22) as the sum of
solutions of Laplace equation and (23). This enables us to express any solution
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of the Brinkman equations as given in (25) in terms of three scalar functions
which satisfy Laplace equation and (23) whose general solutions are well known.
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