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In this article we give an elementary method to investigate linear stability of 
equilibria of finite dimensional dynamical systems. In particular, under general 
hypotheses, the equilibria can be organised in an ordered chain along which the 
determinant of the associated Jacobian matrix has alternating sign. We develop 
the idea in two and three-dimensional cases, and then give a result for general 
n-dimensional systems. We also apply the technique to some particular, well known 
dynamical systems.
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1. Introduction

The stability of the equilibria of a given dynamical system is a fundamental information on that system. 
Typically, a dynamical system models a natural phenomenon and depends on a number of parameters, 
and hence the determination of the regions in the parameter space in which a particular equilibrium is 
stable or unstable is a fundamental question. For example, in epidemiology, the function of parameters that 
discriminates the stability of the disease free equilibrium is the basic reproduction number. In this article we 
try to give a method to deduce information about the stability of an equilibrium only having information 
on the stability of some other equilibria. In particular we show that, under very general hypotheses, the 
equilibria of a dynamical system can be ordered to form a chain of equilibria E1 < E2 < · · · < Em. When 
such a chain of ordered equilibria is determined, we can show that whenever one of them, say Eī, is stable, 
than the neighbouring equilibria Eī−1, Eī+1 must necessarily be unstable. This is a generalisation of the 
elementary fact that the equilibria of a 1-dimensional system ẋ = f(x), x ∈ R, must necessarily be of 
alternating type stable/unstable (if the given function f changes sign in a neighbourhood of a zero).

The construction relies on very elementary arguments but, as far as we know, this result is not explicitly 
described in the literature. Moreover, as we will show, this result makes it very simple to determine the sta-
bility of equilibria without analysing the positivity of some functions, e.g. those used in the Routh–Hurwitz 
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criterion [6]. This result is very useful in particular when the dynamical system has high dimension or it 
involves many parameters.

We prove our results first in dimension two (Section 2) and three (Section 4). Then, we give the general 
n-dimensional result (Section 6). We apply the method to well known two (Section 3) and three dimensional 
dynamical systems (Section 4). We also give a 4-dimensional example at the end of Section 6. In Section 7
we give some concluding remarks, emphasising in particular the strengths and weaknesses of the proposed 
method.

2. The two-dimensional case

Let us consider a 2-dimensional ordinary differential system

ẋ = X(x) (1)

with x = (x, y)T in Ω, a domain of R2, and X = (X, Y )T a function defined in Ω with values in R2. The 
above system, in components, may be written

{
ẋ = X(x, y)
ẏ = Y (x, y).

(2)

Assume that X, Y : Ω → R are differentiable functions, and let

γ : (a, b) ⊂ R → Ω ⊂ R
2

be the parametrisation of a regular differentiable curve in Ω with γ′(s) �= 0 for every s ∈ (a, b), γ(a) �= γ(b)
and such that

X(γ(s)) = 0, ∇X(γ(s)) �= 0,

for every s ∈ (a, b). These conditions imply that γ is a regular parametrization of a null-cline of X, i.e. is a 
curve in the set {(x, y) | X(x, y) = 0}.

Definition 1. A chain of ordered equilibria is an ordered list of points

E1 = γ(s1) < · · · < Em = γ(sm)

where s1 < · · · < sm are all the s ∈ (a, b) such that Y (γ(si)) = 0.

Let J(x) be the Jacobian matrix of the vector field X, and J(x) its determinant (the Jacobian determi-
nant). By hypothesis, the function X(γ(s)) is identically zero, while the function

h(s) = Y (γ(s)) (3)

not only is not identically zero, but it plays an important role in the determination of the stability of the 
equilibria. The equilibria correspond in fact to the values s1, ..., sm such that h(si) = 0, and the derivative 
of h at such points is related to the Jacobian determinant.

Lemma 1. Let X be a vector field on the plane, γ(s) be a parametrization of a null-cline of the first component 
of X, and let h(s) = Y (γ(s)) be the composition of γ with the other component of X. If the curve γ(s)
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is a regular parametrization and if ∇X(γ(s)) is a non-vanishing vector, then there exists a non-vanishing 
function k(s) such that

J(γ(s)) = k(s)h′(s). (4)

Proof. The equilibria of the chain correspond to the values of s such that h(s) = 0. Since X(γ(s)) ≡ 0
it follows that ∇X is orthogonal to the vector γ(s). Being ∇X never zero, it follows that there exists a 
nonvanishing function k(s) such that

∇X(γ(s)) = k(s)(γ′
2(s),−γ′

1(s)),

with γ1, γ2 the components of γ(s). Hence

detJ(γ(s)) = J(γ(s)) = Xx(γ(s))Yy(γ(s)) −Xy(γ(s))Yx(γ(s)) =

= k(s)
(
γ′
2(s)Yy(γ(s)) + γ′

1(s)Yx(γ(s))
)

= k(s) d

ds
(Y (γ(s))) = k(s)h′(s). �

Observation 1. In many cases, the parametrisation γ of the null-cline can be chosen in such a way that 
k(s) �= 0 is a constant. Moreover, the role of X and Y can be exchanged.

Example 1. 1-degree of freedom conservative mechanical systems.

We are dealing with vector fields of the form (y, −V ′(x)), were V (x) is the potential energy of the 
mechanical system. In this case γ(s) = (s, 0) is a parametrization of the null-cline of the first component of 
the vector field. Moreover,

∇X(γ(s)) ≡
(

0
1

)
, h(s) = Y (γ(s)) = −V ′(s).

The Jacobian determinant along the curve parametrized by γ is the function V ′′(s), the derivative of h is 
−V ′′(s). They correspond with a coefficient of proportionality k(s) = −1.

Example 2. Vector fields of the form

X =
(
α(x)y − ϕ(x)

Y (x, y)

)

where α(x), ϕ(x) ∈ C1(a, b), and α(x) �= 0, ∀x ∈ (a, b).

A possible choice of a parametrisation of a null-cline for one component of X is

γ(s) =
(
s,

ϕ(s)
α(s)

)
.

The curve γ is regular and

∇X(γ) =

⎛
⎝α′(s)ϕ(s)

α(s) − ϕ′(s)
⎞
⎠

α(s)
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is never zero. In this case h(s) = Y

(
s,

ϕ(s)
α(s)

)
, and hence

h′(s) = Yx

(
s,

ϕ(s)
α(s)

)
+ Yy

(
s,

ϕ(s)
α(s)

)
ϕ′(s)α(s) − ϕ(s)α′(s)

α2(s) =

= 1
α(s)

(
α(s)Yx

(
s,

ϕ(s)
α(s)

)
− Yy

(
s,

ϕ(s)
α(s)

)(
−ϕ′(s) + α′(s)ϕ(s)

α(s)

))
=

= − 1
α(s)J(γ(s)).

In this case k(s) = −1/α(s). �
The main result of this paper rests on the trivial observation that if a function h(s) has only simple zeroes

(i.e. h(si) = 0 , h′(si) �= 0), then its derivative h′(s) along the zeroes must have alternating sign. It follows 
that if the function h(s) has simple zeroes then the Jacobian determinant of the vector field must have sign 
that alternates from positive to negative along the chain of equilibria. We summarise this argument in the 
following theorem.

Theorem 1. Assume that the function h(s) given in (3) has simple zeroes in the points si. Given the chain 
of ordered equilibria E1 < ... < Em, two consecutive equilibria cannot be both stable.

One can immediately deduce the type of linear stability of the equilibria in the two previous examples. 
In the first example the trace of the Jacobian matrix is always zero, it follows that the equilibria must 
alternate between saddles and centres. In the second example the trace of the Jacobian evaluated at the 
equilibria γ(si) is

trJ(γ(s)) = Xx(γ(s)) + Yy(γ(s)) = α′(s)ϕ(s)
α(s) − ϕ′(s) + Yy

(
s,

ϕ(s)
α(s)

)

Nothing can be said in such a generality, but one infers without computations that if a stable equilibrium 
exists, the immediately surrounding equilibria (the adjacent equilibria) in the chain must be unstable. This 
will be extremely useful in all cases in which one equilibrium is particularly simple (the origin, for example) 
while the other equilibria have complicate expressions [5,9,10].

3. Applications to two-dimensional systems

There are a number of two dimensional systems to which the theorem above can be applied. A non-
exhaustive list of them is

Example 3. The FitzHugh–Nagumo model [2], [9, p. 241], [11] arises in neurobiology. In this model the 
variables v and w are related to a potential of a membrane and a ‘leakage’ current. The equations are

{
v̇ = v(a− v)(v − 1) − w + I

ẇ = bv − γw,
(5)

where 0 < a < 1, 0 < b << 1, γ > 0, and I is a non-negative constant.

Let us begin considering I = 0. Equating to zero the second component of the vector field we can choose 

the curve γ(v) = (v, b v)T . By substituting in the first component of the vector field, we obtain the function

γ
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h(v) = v

(
(a− v)(v − 1) − b

γ

)
.

The equation h(v) = 0 gives the equilibrium E0 = (0, 0), and, if 4b/γ < (a − 1)2, other two equilibria 
E− = (v−, bv−/γ) and E+ = (v+, bv+/γ), where

v± =
1 + a±

√
(a− 1)2 − 4b

γ

2 .

We may order the equilibria E0 < E− < E+. The Jacobian matrix at the generic equilibrium E = (v̂, ŵ) is

J(v̂, ŵ) =
(−3v̂2 + 2(1 + a)v̂ − a −1

b −γ

)
.

At the equilibrium E0 one has

J(0, 0) =
(−a −1

b −γ

)
.

From this it immediately follows that E0 is stable. In fact, J(0, 0) = aγ+b > 0 and tr(J(0, 0)) = −a −γ <

0. From Theorem 1 it follows that E− is unstable (the determinant of the Jacobian is negative). Moreover, 
in this case, one can see that E+ is stable (the determinant of the Jacobian, by Theorem 1, is positive and 
the trace tr(J(E+)) = h′(v+) + b/γ − γ is negative).

When I �= 0 one can proceed in the same manner and obtain the alternating sign of the Jacobian 
determinant at the equilibria.

Example 4. The two-dimensional Hindmarsh–Rose system [4] for neuronal activity, where x and y represent 
the membrane potential of a neuron and the neuronal signal (spiking variable). In this system the equations 
are

{
ẋ = 3x2 − x3 + y + I

ẏ = −5x2 + 1 − y,
(6)

where I ≥ 0.

Solving the equation ẏ = 0 with respect to y and substituting y in the RHS of the first equation, we 
obtain h(x) = X(x, y(x)) = −x3 − 2x2 + 1 + I, moreover h′(x) = − detJ(x, y(x)) = −3x2 − 4x. If we 
choose I = 0, then we have the equilibria with x-component equal to x0 = −1 or x± = (−1 ±

√
5)/2, that 

correspond to the equilibria E0 = (−1, −4) and

E± =
(
−1 ±

√
5

2 ,
−13 ± 5

√
5

2

)
.

One has that E− < E0 < E+. Since h′(x−) < 0 (and the trace is negative) the equilibrium E− is stable. 
It follows that E0 is unstable. Moreover it is easy to prove that E+ is also unstable (the trace is positive). 
The case I �= 0 can be studied in a similar way.

Example 5. A system that models drinking with an information function is given in [3]. It models a pop-
ulation of non-drinkers S, binge drinkers B and subject to an influence information M . The equations 
are
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⎧⎪⎪⎨
⎪⎪⎩
Ṡ = μN − μS − γ(M)

N BS + ηB

Ḃ = −μB + γ(M)
N BS − ηB

Ṁ = −αM + ψB2 ,

with γ(M) is suitable function depending on the information M .

Since the total population is constant in this model, the system can be reduced to a two-dimensional 
system which, in non-dimensional form, can be written

{
ḃ = (T0 − 1 + T1m)b− (T0 + T1m)b2 ,
ṁ = ζ(b2 −m) ,

(7)

where T0, T1 and ζ are positive parameters.
The equilibria are the points (b̂, m̂) such that m̂ = b̂2 and

(T0 − 1 + T1m̂)b̂− (T0 + T1m̂)b̂2 = 0 .

Substituting m̂ = b̂2 one obtains the equation

b̂
(
T1b̂

3 − T1b̂
2 + T0b̂ + 1 − T0

)
= 0 .

Here γ = (b, b2) and h(b) = −b(T1b
3 − T1b

2 + T0b + 1 − T0).
The solutions to this equation are b̂ = 0 and the three solutions to the cubic polynomial

p = T1b
3 − T1b

2 + T0b + 1 − T0 (8)

under the condition that they are real and in [0, 1].
It can be proved that the system has the disease-free equilibrium E0 = (0, 0, 0) and at most three 

equilibria depending on the parameters T0, T1. Applying Lemma 1, we have ζh′(b̂) = J(b̂, ̂b2), where (b̂, ̂b2)
is the generic equilibrium. The Jacobian matrix of the vector field X is

J(b,m) =
(
T0 − 1 + T1m− 2b(T0 + T1m) T1b(1 − b)

2ζb −ζ

)
.

By computing the Jacobian matrix at E0 we obtain the matrix

J(E0) =
(
T0 − 1 0

0 −ζ

)
.

It follows that E0 is stable if and only if T0 < 1. The other equilibria Ei (i = 1, 2, 3, when they exist) have 
the form Ei = (b̂i, ̂b2i ) with b̂i positive real solutions of the cubic polynomial (8). Since they are equilibria, 
they satisfy the equation (T0 − 1 + T1b̂

2) = (T0 + T1b̂
2)b̂. Hence the Jacobian in such points is given by

J(Ei) =
(
−b̂i(T0 + T1b̂

2
i ) T1b̂i(1 − b̂i)

2ζb̂i −ζ

)
,

and it has negative trace. Thus, by Theorem 1, ordering the equilibria as above one has that E0 is stable 
while the other are unstable, stable, unstable according to their order.
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4. The three-dimensional case

Consider the 3 × 3 dynamical system ẋ = X(x) which in components is
⎧⎪⎪⎨
⎪⎪⎩
ẋ = X(x, y, z)
ẏ = Y (x, y, z)
ż = Z(x, y, z) ,

(9)

with X, Y , Z differentiable real functions defined in a domain Ω of R3. Let γ : (a, b) ⊂ R → Ω be C1(a, b)
with γ′(s) �= 0 for every s ∈ (a, b), γ(a) �= γ(b).

Assume that γ = (γ1, γ2, γ3)T is a regular parametrization of a null-cline of two components of 
the vector field X, for instance of the first and the third components, i.e. X(γ1(s), γ2(s), γ3(s)) = 0, 
Z(γ1(s), γ2(s), γ3(s)) = 0. Let

h(s) = Y (γ1(s), γ2(s), γ3(s)).

The equilibria of the vector field correspond to isolated values s1 < s2 < · · · < sm such that h(si) = 0. 
Consider the Jacobian matrix

J(X,Y, Z) =

⎛
⎝Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

⎞
⎠ ,

and assume that its submatrix obtained by deleting the second line has rank 2. We denote A, B and C the 
cofactors of Yx, Yy and Yz,

A = −(XyZz −XzZy), B = (XxZz −XzZx), C = −(XxZy −XyZx).

We observe that the rank 2 condition implies (A, B, C) �= (0, 0, 0). Moreover, from X(γ1(s), γ2(s), γ3(s)) = 0, 
Z(γ1(s), γ2(s), γ3(s)) = 0, it follows that ∇X and ∇Z are orthogonal to γ′(s). From the definition of 
J(X, Y, Z) and the previous identities, we have that there exists a nonvanishing function k(s) such that

γ′
1(s) = k(s)A(γ(s)), γ′

2(s) = k(s)B(γ(s)), γ′
3(s) = k(s)C(γ(s)).

Therefore, as in the planar case, we have

Lemma 2. Let X = (X, Y, Z) be a vector field on the 3-space, γ(s) be a null-cline of two components of X, 
for instance the first and the third components X and Z. Let h(s) = Y (γ(s)) be the composition of γ with 
the last component of X. If the curve γ(s) is a regular curve and if the rank of the Jacobian of (X, Z) along 
γ is always two, then there exists a non-vanishing function k(s) such that

J(γ(s)) = k(s)h′(s).

Proof. The proof is an easy application of the chain rule to the derivative of the function h(s) and the 
definition of the Jacobian determinant of the vector field X(x, y, z). �

Also in the three-dimensional case the following theorem holds:

Theorem 2. Under the hypothesis that the function h has simple zeroes, then whenever an equilibrium Ei =
γ(si) of system (9) is stable then the adjacent equilibria Ei−1 and Ei+1 must be unstable.
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5. Applications to three-dimensional systems

In this section we give two three-dimensional examples.

Example 6. Consider the system ẋ = X(x) with

X(x, y, z) =

⎛
⎝ X(x, y, z)
αx + ϕ(y, z)
ψ(y) + βz

⎞
⎠ ,

where α and β are nonzero real numbers.

Here

h(y) = X(x(y), y, z(y)), x(y) = −ϕ(y,−ψ(y)/β)
α

, z(y) = −ψ(y)/β

and

detJ(x̂, ŷ, ẑ) = −αβh′(ŷ).

An application can easily be done to the system studied in Mulone and Straughan [8], to model binge 
drinking:

⎧⎪⎨
⎪⎩

ȧ1 = −β(a1 + a2)2 − βr(a1 + a2) + (β − γ − μ)a1 + βa2
ȧ2 = γa1 − (ζ + μ)a2 + ρr

ṙ = ζa2 − (ρ + μ)r.
(10)

The system has two equilibria: the disease-free, and an endemic that is stable if the reproduction number

R0 = μ(γ + μ)(ρ + ζ + μ)
β[μ(ζ + ρ + μ) + γ(ρ + μ)]

is bigger than 1. By ordering the equilibria according to the second component a2, we have E0 < E+. It 
can be verified that, since E+ is stable, then Theorem 2 implies that E0 is unstable.

The same method can be applied in the case of the anorexia and bulimia model studied in [1].

Example 7. The well known Lorenz system [7] is given by the equations
⎧⎪⎪⎨
⎪⎪⎩
ẋ = σ(y − x)
ẏ = −xz + rx− y

ż = xy − bz,

(11)

where the Prandtl number σ, the Rayleigh number r and the aspect ratio b are positive numbers.

Following the scheme of the above example, there exists a curve γ(y) = (y, y, y2/b)T , that annihilates 
first and third equations. The equilibria of this system are E0 = (0, 0, 0) for any r, b and σ, and

E± = (±
√

b(r − 1),±
√
b(r − 1), r − 1)

for r > 1. They form an ordered chain E− < E0 < E+. It is easy to see that J(x̂, ŷ, ̂z) = b σ h′(ŷ), where
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h(y) = −y3

b
+ ry − y.

If r < 1 the sole equilibrium is E0 and it is stable. When r > 1 then J(E0) > 0, and E0 is unstable. 
Hence the equilibria E± have negative Jacobian determinant, and they can be stable or unstable according 
to the sign of other minors. By choosing r = 2, b = 4, σ = 1, it is easy to prove, that the equilibria E− and 
E+ are stable. In this case we have a chain of equilibria with an alternating stability behaviour.

6. The n-dimensional case

Consider the n × n dynamical system

ẋ = X(x),

with

X(x) =

⎛
⎜⎜⎝

X1(x1, x2, . . . , xn)
X2(x1, x2, . . . , xn)

. . .

Xn(x1, x2, . . . , xn)

⎞
⎟⎟⎠ .

The system can be written in components in the following way:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = X1(x1, x2, . . . , xn)
ẋ2 = X2(x1, x2, . . . , xn)
. . .

ẋn = Xn(x1, x2, . . . , xn) ,

(12)

with X1, X2, . . . , Xn sufficiently smooth real functions defined in a domain Ω of Rn.
Let γ : (a, b) ⊂ R → Ω be C1(a, b) with γ′(s) �= 0 for every s ∈ (a, b), γ(a) �= γ(b). Assume that 

γ = (γ1, γ2, . . . γn) is a regular parametrization of the null-cline of n − 1 components of the vector field X, 
for instance of X1, . . . , Xj−1, Xj+1, . . . , Xn, i.e.,

X1(γ) = 0, · · · , Xj−1(γ) = 0, Xj+1(γ) = 0, · · · , Xn(γ) = 0,

with j a fixed integer in {1, ..., n}. Defining

h(s) = Xj(γ1(s), γ2(s), . . . , γn(s)),

we assume that equilibria of the vector field correspond to isolated values s1 < · · · < sm, such that h(si) = 0
for every i = 1, ..., m. The equilibria can be ordered E1 = γ(s1) < · · · < Em = γ(sm). Let us consider the 
Jacobian matrix J(x) and its (n − 1) × n submatrix K(x) obtained by deleting from J the line of index j. 
Assume that the matrix K has rank n − 1 along the curve γ(s), and denote by K1, ..., Ki, ..., Kn the 
cofactors of the elements of line j of the Jacobian matrix.

Since we have assumed that K has rank n − 1, it follows that K2
1 + · · · + K2

n > 0. By the definition of 
determinant, one obtains that

J(γ(s)) = ∇Xj(γ(s)) · γ′(s) = k(s)h′(s),

where k(s) �= 0 for every s ∈ (a, b). Choosing therefore for simplicity j = n, we have



JID:YJMAA AID:22052 /FLA Doctopic: Real Analysis [m3L; v1.231; Prn:22/02/2018; 16:29] P.10 (1-11)
10 A. Giacobbe, G. Mulone / J. Math. Anal. Appl. ••• (••••) •••–•••
Lemma 3. Let X = (X1, ..., Xn) be a vector field, γ(s) be a null-cline of the first n − 1 components of X, 
and let h(s) = Xn(γ(s)) be the composition of γ with the last component of X. If the curve γ(s) is a 
regular curve and if the rank of the Jacobian of (X1, ..., Xn−1) along γ is always n − 1, then there exists a 
nonvanishing function k(s) such that

J(X(γ(s)) = k(s)h′(s) .

From this lemma, by assuming that h(s) has simple zeroes at si, as in the two and three dimensional 
cases, the alternating stability of equilibria can be proved: if an equilibrium Ei is stable then the adjacent 
equilibria Ei−1 and Ei+1 (if they exist) are unstable. This is a very useful tool in some applications because, 
for high dimensions, may be very difficult to apply the Routh–Hurwitz criteria for stability/instability.

Example 8. The dynamical system investigated in [12], related to a drinking epidemic model in R4:
⎛
⎜⎜⎝

Ṫ
Ṙ
Ṡ
Ḋ

⎞
⎟⎟⎠ =

⎛
⎜⎝

−β1DS + Λ + ηR− μS
−D (γ + δ1 + μ) + β1DS + β2DT
γD − β2DT − (δ2 + μ + σ)T

σT −R(η + μ)

⎞
⎟⎠ .

The zeroes of this system can determined by equating to zero the components of the vector field. From 
the third component one has that

T = T (D) = γD

β2D + δ2 + μ + σ
.

Substituting this equation in the remaining three components and equating to zero the fourth component 
one obtains

R = R(D) = σ

η + μ

γ D

β2D + δ2 + μ + σ
= σ

η + μ
T (D).

Substituting in the remaining two components and equating to zero the first component one obtains

S = S(D) = Λ(η + μ)(δ2 + μ + σ) + D(β2Λ(η + μ) + γησ)
(η + μ)(β1D + μ)(β2D + δ2 + μ + σ) .

It follows that there exists a curve on which all but the second component of the vector field vanish. 
Such component, composed with the curve D → (T (D), R(D), S(D), D), gives a function h(D) which is a 
rational expression whose numerator is a cubic polynomial whose factors are D and a quadratic polynomial. 
It follows that this system has three equilibria which create a chain of equilibria that can be labelled E0
(corresponding to D = 0) and E± corresponding to the two choices of solutions of the above quadratic 
polynomial in D. The stability of E0 is easily investigated, and there are two possibilities: when E0 is stable 
it is between the other two equilibria E± which are necessarily both unstable; when E0 is unstable it is at 
one end of the chain of equilibria, hence the neighbouring is unstable.

With the particular choice

Λ = 0.5, β1 = 0.04, β2 = 0.99, μ = 0.025, σ = 0.01, η = 0.1,
γ = 0.9, δ1 = 0.035, δ2 = 0.03

one has that the solutions of the equation h(D) = 0 are

D = 0, 0.0161807, 6.76286.
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The equilibrium with D = 0 can be easily shown to be stable (the parameters are chosen so that the 
reproduction number R0 < 1, and hence the equilibrium with D = 0.0161807 is necessarily unstable. In 
fact, the eigenvalues of the Jacobian matrix are respectively −0.16, −0.125, −0.065, −0.025 in the equilibrium 
with D = 0, −0.154704, −0.124207, −0.0237624, 0.0710075 in the equilibrium with D = 0.0161807 and 
−6.76879, −0.211032, −0.125083, −0.0758437 in the equilibrium with D = 6.76286.

7. Conclusions

In this article we give a method to order the equilibria to obtain their alternating stability behaviour. 
The equilibria are ordered by making the hypothesis that they belong to a curve γ along which all but one 
of the components of the vector field (for example the component Xj) vanish. Observe that the curve γ
may not be a solution of the system.

By assuming that the function h(s) = Xj(γ(s)) has only simple zeroes, the best result we can obtain 
with minimal hypotheses is the alternance of the sign of the Jacobian determinant. This is enough to prove 
that the equilibria neighbouring a stable equilibrium must be unstable. This result allows us to determine 
the instability of equilibria without computing cumbersome Routh–Hurwitz conditions on them.

We have not been able to give analogous conditions when the equilibrium is unstable, and it can be 
shown with examples that almost anything can happen. It is nonetheless possible that stronger, but natural 
conditions along the curve γ can allow to prove some stronger type of alternance which typically takes place 
e.g. in epidemiological models.
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