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In this paper we characterize those exponents p(·) for which corresponding variable 
exponent Lebesgue space Lp(·)([0; 1]) has in common with L∞ the property that 
the space of continuous functions is a closed linear subspace in it. In particular, we 
obtain necessary and sufficient condition on decreasing rearrangement of exponent 
p(·) for which exists equimeasurable exponent of p(·) which corresponding variable 
exponent Lebesgue space have the above mentioned property.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Recently Edmunds, Gogatishvili and Kopaliani [5] show that there is a variable exponent space 
Lp(·)([0; 1]), with 1 < p(x) < ∞ a.e., which has in common with L∞([0; 1]) the property that the space 
C([0; 1]) of continuous functions on [0; 1] is a closed linear subspace in it. Moreover, both the Kolmogorov 
and the Marcinkiewicz examples of functions with a.e. divergence Fourier series belong to Lp′(·)([0; 1]), where 
p′(·) conjugate function of p(·).

It is interesting to some ways characterize such exponents for which the space of continuous functions 
is closed in corresponding variable Lebesgue space. We give a necessary and sufficient condition on the 
decreasing rearrangement p∗(·) of exponent p(·) for existence of equimeasurable exponent function of p(·)
whose corresponding variable Lebesgue space has the property that the space of continuous functions is 
closed in it.

Let W (p) denote set of all functions equimeasurable with p(·). Below we will find the conditions on 
the function p(·) for which exists p̄(·) ∈ W (p) such that the space C([0; 1]) continuous functions is closed 
subspace in Lp(·)([0; 1]). Particularly we prove the following

✩ This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) FR17_589.
* Corresponding author.

E-mail addresses: tengizkopaliani@gmail.com (T. Kopaliani), sh.zviadadze@gmail.com (Sh. Zviadadze).
https://doi.org/10.1016/j.jmaa.2019.02.029
0022-247X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2019.02.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:tengizkopaliani@gmail.com
mailto:sh.zviadadze@gmail.com
https://doi.org/10.1016/j.jmaa.2019.02.029


JID:YJMAA AID:22962 /FLA Doctopic: Real Analysis [m3L; v1.252; Prn:14/02/2019; 17:34] P.2 (1-7)
2 T. Kopaliani, Sh. Zviadadze / J. Math. Anal. Appl. ••• (••••) •••–•••
Theorem 1.1. For the existence of p̄(·) ∈ W (p) for which C([0; 1]) is closed subspace in Lp̄(·)([0; 1]) it is 
necessary and sufficient that

lim sup
t→0+

p∗(t)
ln(e/t) > 0. (1.1)

2. Definitions and auxiliary results

Let Ω ⊂ Rn and let M be the space of all equivalence classes of Lebesgue measurable real-valued functions 
endowed with the topology of convergence in measure relative to each set of finite measure.

Definition 2.1. A Banach subspace X of M is called a Banach function space (BFS) on Ω if

1) the norm ‖f‖X is defined for every measurable function f and f ∈ X if and only if ‖f‖X < ∞. ‖f‖X = 0
if and only if f = 0 a.e.;

2) ‖|f |‖X = ‖f‖X for all f ∈ X;
3) if 0 ≤ f ≤ g a.e., then ‖f‖X ≤ ‖g‖X ;
4) if 0 ≤ fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X ;
5) if E is measurable subset of Ω such that |E| < ∞, (below we denote the Lebesgue measure of E by |E|) 

then ‖χE‖X < ∞;
6) for every measurable set E, |E| < ∞, there is a constant CE < ∞ such that 

∫
E
f(t)dt ≤ CE‖f‖X .

We now introduce various interesting subspaces of a BFS X. A function f in X is said to have absolutely 
continuous norm in X if ||fχEn

||X → 0 whenever {En} is a sequence of measurable subsets of Ω such that 
χEn

↓ 0 a.e. The set of all such functions is denoted by XA.
By XB is meant the closure of the set of all bounded functions in X. Following Lai and Pick [10], a function 

f ∈ X is said to have continuous norm in X if for every x ∈ Ω, lim
ε→0

||fχB(x,ε)||X = 0, where B(x, ε) is a 

ball centred in x and radius ε; the set of all these functions is written as XC . The connection between this 
notion and the compactness of Hardy operators from a weighted BFS (X, w) to L∞ is explored in [10]; for 
a connection with unconditional bases in BFSs see [7,8]. In general, the relation between the subspaces XA, 
XB and XC is complicated: for example (see [11]), there is a BFS X for which {0} = XA � XC = X.

Theorem 2.2 (Edmunds, Gogatishvili, Kopaliani). Let X be a BFS on [0; 1]. The space C([0; 1]) of continuous 
functions is a closed linear subspace of X if and only if there exists a positive constant c satisfying

c ≤ ||χ(a;b)||X , whenever 0 ≤ a < b ≤ 1. (2.1)

Let P through whole paper denotes the family of all measurable functions p(·) : [0; 1] → [1; +∞). When 
p(·) ∈ P we denote by Lp(·)([0; 1]) the set of all measurable functions f on [0; 1] such that for some λ > 0

∫
[0;1]

(
|f(x)|
λ

)p(x)

dx < ∞.

This set becomes a BFS when equipped with the norm

‖f‖p(·) = inf

⎧⎪⎨
⎪⎩λ > 0 :

∫ (
|f(x)|
λ

)p(x)

dx ≤ 1

⎫⎪⎬
⎪⎭ .
[0;1]
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The variable exponent Lebesgue spaces Lp(·)(Ω) and the corresponding variable exponent Sobolev spaces 
W k,p(·) are of interest for their applications to the problems in fluid dynamics, partial differential equations 
with non-standard growth conditions, calculus of variations, image processing and etc. (see [2,3]).

For the particular BFS X = Lp(·)([0; 1]) the relation between it and its subspaces XA, XB and XC was 
investigated in [6]: we give some of the results of that paper next.

Proposition 2.3 (Edmunds, Lang, Nekvinda). Let p(·) ∈ P and set X = Lp(·)([0; 1]). Then

(i) XA = XC ;
(ii) XB = X if and only if p(·) ∈ L∞([0; 1]);
(iii) XA = XB if and only if

1∫
0

cp
∗(t)dt < ∞, for all c > 1,

where p∗ is the decreasing rearrangement of p(·).

The decreasing rearrangement of the measurable function f is defined by

f∗(x) = inf{λ ≥ 0 : |{|f | > λ}| ≤ x}.

By construction of f∗, it is a decreasing right-continuous function. More over functions |f | and f∗ are 
equimeasurable.

Recall that a nonnegative function ϕ defined on [0; +∞) is called quasiconcave if ϕ(0) = 0, ϕ(t) increases 
and ϕ(t)/t decreases.

The Marcinkiewicz space Mϕ is the set of all f ∈ M([0; 1]) such that

||f ||Mϕ
= sup

0<t≤1

1
ϕ(t)

t∫
0

f∗(u)du < +∞.

Note that (Mϕ)A = (Mϕ)B and (Mϕ)A can be characterized as the set of functions f ∈ M([0; 1]) such 
that (see [9])

lim
t→0+

1
ϕ(t)

t∫
0

f∗(u)du = 0. (2.2)

If ψ is an increasing convex function on [0; +∞), ψ(0) = 0, then the Orlicz space Lψ consist of all 
f ∈ M([0; 1]) such that

||f ||Lψ
= inf

⎧⎨
⎩λ > 0 :

1∫
0

ψ

(
|f(t)|
λ

)
dt ≤ 1

⎫⎬
⎭ < +∞.

Note that when ψ(t) = et − 1 and ϕ(t) = t ln(e/t) the corresponding Orlicz and Marcinkiewicz spaces 
coincide (see [1]) and in the sequel we denote the corresponding spaces by eL and Mln. Also note that (see 
[4, Corollary 3.4.28])

||f ||eL � ||f ||Mln � sup
0<t≤1

f∗(t)
ln(e/t) . (2.3)
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3. Poof of Theorem 1.1

Necessity. Since the space C([0; 1]) is closed in Lp(·)([0; 1]), then by Theorem 2.2 there exists positive 
constant d such that d ≤ ||χ(a;b)||p(·) for all intervals (a; b). This implies XA �= XB . Then by Proposition 2.3
there exists c > 1 such that

1∫
0

cp
∗(t)dt = +∞. (3.1)

Consider two cases:
Case 1) p∗(·) ∈ eL. Since (3.1) holds then function p∗(·) does not have absolute continuous norm that is 

p∗(·) ∈ eL\ 
(
eL

)
A
. Then by (2.3) we get that p∗(·) ∈ Mln\(Mln)A then by (2.2) we obtain

lim sup
t→0+

1
t ln(e/t) ·

t∫
0

p∗(u)du > 0.

From the last estimation we get (1.1). Indeed, suppose opposite

lim sup
t→0+

p∗(t)
ln(e/t) = 0.

Then by (2.3) we get

sup
t∈(0;ε)

p∗(t)
ln(e/t) � ||p∗(·) · χ(0;ε)||Mln → 0, ε → 0 + .

Thus we get that p∗(·) has absolute continuous norm in Mln (and also eL) space, which is contradiction.
Case 2) p∗(·) /∈ eL. Then by (2.3)

sup
0<t≤1

p∗(t)
ln(e/t) = +∞,

consequently (1.1) holds. The necessity part of the theorem proved.
Sufficiency. Let (1.1) hold. For all t ∈ [0; 1] define function h(t) = min{p∗(t), ln(e/t)}. It is obvious that 

in this case holds

lim sup
t→0+

h(t)
ln(e/t) > 0,

then there exists a sequence tk ↓ 0, such that

h(tk)
ln(e/tk)

≥ d, k ∈ N, (3.2)

for some positive number d. Now choose subsequence (tkn
) such that 2tkn+1 < tkn

, for all natural n. Since 
tk ↓ 0, we can always choose such subsequence, so without loss of generality we can assume that sequence 
(tk) is already such.

Let given function f defined by

f(t) = d · ln(e/tk), t ∈ (tk+1; tk], k ∈ N and f(t) = 1, t ∈ (t1; 1].
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Since function h is decreasing it is clear that h(t) ≥ f(t) for all t ∈ [0; 1]. Now choose positive number c
such that c > e1/d then we get

1∫
0

ch(t)dt = +∞. (3.3)

Indeed,

1∫
0

ch(t)dt ≥
1∫

0

cf(t)dt >

tk∫
tk+1

cd·ln(e/tk)dt =

= (tk − tk+1) · ed·ln c·ln(e/tk) >
tk
2 ·

(
e

tk

)d·ln c

→ +∞, k → +∞.

Choose decreasing sequence {ak}k∈N, such that

ak∫
ak+1

ch(t)dt = 1.

By (3.3) such sequence always can be chosen. Now let Δk = [ak+1; ak], and {rk : k ∈ N} is a countable dense 
set in [0; 1]. Define bk = −ak+1 + rk. Now let Ak := Δk + bk = [rk; rk + ak − ak+1]. Let gk(t) = h(t) ·χΔk

(t), 
k ∈ N. Define functions pk(t) by the induction:

p1(t) = g1(t− b1)χ[0;1](t),

pk(t) = (pk−1(t)(1 − χΔk
(t− bk)) + gk(t− bk)) · χ[0;1](t), k > 1.

It is clear that h(t) is decreasing and therefore pk(t) ≤ pk+1(t), for all t ∈ [0; 1] and all k ∈ N. Also for all 
k ∈ N we have

1∫
0

pk(t)dt ≤
1∫

0

h(t)dt ≤
1∫

0

ln(e/t)dt = 2. (3.4)

Now define q(·) function by

q(t) = lim
k→+∞

pk(t), t ∈ [0; 1].

By (3.4) we get that the function q(·) is almost everywhere finite. By the construction it is clear that 
q∗(t) ≤ h(t) ≤ p∗(t). Now by the well known result (see [1, Chapter 2, Theorem 7.5]) there exists measure 
preserving transformation ω : [0; 1] → [0; 1] such that q(t) = q∗(ω(t)). Now define p̄(·) by p̄(t) = p∗(ω(t)). 
Since q∗(t) ≤ p∗(t) it is obvious that q∗(ω(t)) ≤ p∗(ω(t)), then for all t ∈ (0; 1) we get the following inequality

q(t) ≤ p̄(t). (3.5)

Given I := (a; b) ⊂ (0; 1) let estimate ||χI ||p̄(·). Since c > 1 by (3.5) the following inequality is obvious

∫
cp̄(t)dt ≥

∫
cq(t)dt.
I I
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By the construction of q(·) there exists number k0 such that Ak0 ⊂ I. We have
∫
I

cq(t)dt ≥
∫

Ak0

cq(t)dt ≥
∫

Ak0

cpk0 (t)dt =
∫

Ak0

cgk0 (t−bk0 )dt =

=

rk0+ak0−ak0+1∫
rk0

c
h(t−bk0 )·χΔk0

(t−bk0 )
dt =

=

ak0∫
ak0+1

ch(t)dt = 1.

Now by the definition of the norm in variable Lebesgue space and by the above estimations we get that 
for all intervals (a; b) we have ||χ(a;b)||p̄(·) ≥ 1/c. By the Theorem 2.2 we get the proof of sufficiency of the 
Theorem 1.1.

Note that method of construction of the function p̄(·) is different than the method of construction of the 
function with analogous property from [5]. Particularly in [5] the corresponding exponent p(·) is defined as

p(x) = 2 +
∞∑
k=1

ln
(

1
x− rk

)
χ[rk,rk+δk)(x), (3.6)

where {rk} any dense sequence in [0; 1], and δk ↓ 0 sequence is such that

+∞∑
k=1

δk∫
0

ln(1/t)dt < +∞.

Note that

p(x) ≥ ln
(

1
x− r1

)
χ[r1;r1+δ1)(x),

and consequently

p∗(t) ≥ ln(1/t), t ∈ (0; δ1).
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