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We consider the construction of insurance premiums that are monotonically 
increasing with respect to a loading parameter. By introducing weight functions 
that are totally positive of higher order, we derive higher monotonicity properties 
of generalized weighted premiums; in particular, we deduce for weight functions 
that are totally positive of order three a monotonicity property of the variance-
to-mean ratio, or index of dispersion, of the loss variable. We derive the higher 
order total positivity properties of some ratios that arise in actuarial and insurance 
analysis of combined risks. Further, we examine seven classes of weight functions 
that have appeared in the literature and we ascertain the higher order total positivity 
properties of those functions.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Consider the problem of estimating the premiums that an insurance operation is to charge its clients in 
order to underwrite their risks. On the one hand, the insurer is limited by competition as to how much it 
may charge to underwrite a given risk. On the other hand the insurer, so as to remain solvent, necessarily 
must charge premiums that are suitably large in order to cover its insured risks and its operating expenses.

To formulate this problem probabilistically, suppose that we have a probability triplet (Ω, A, P), con-
sisting of a sample space Ω, a sigma-algebra A of subsets of Ω, and a probability measure P(·) on A. We 
suppose that there corresponds to P(·) a random variable X : Ω → R+, called the loss variable, that arises 
when the insurer underwrites a randomly chosen risk. We assume that X is nonnegative and refer to its 
mean, E[X] =

´
Ω X(ω)P( dω), as the net premium. Noting that the net premium E[X] will cover only the 

average insured risk, the insurer, in order to remain profitable, necessarily must charge an amount H[X]
that is loaded, meaning that H[X] ≥ E[X].
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We refer to Furman and Zitikis [5] for an extensive review of the construction of loaded premiums, and 
to Sendov, Wang, and Zitikis [17] for further results on the same topic. We also cite [6–8,11] for motivating 
accounts and related analyses of actuarial and insurance problems that involve loading parameters.

A method for constructing weighted premiums begins with the insurer choosing a nonnegative weight 
function w(λ, x) that depends on a loading parameter λ > 0. We are especially interested in the weighted 
premium,

H[λ,X] = E[X w(λ,X)]
E[w(λ,X)] ,

where it is assumed that, for each λ > 0, the function x �→ w(λ, x) is Borel-measurable. Suppose that the 
weight function (λ, x) �→ w(λ, x) is totally positive of order 2, i.e.,

w(λ1, x1)w(λ2, x2) ≥ w(λ1, x2)w(λ2, x1),

whenever λ1 > λ2 and x1 > x2; then Sendov et al. [17, Theorem 2.1] proved that H[λ, X] is non-decreasing 
in λ, thereby relating the study of weighted premiums with the theory of total positivity. The implication for 
insurance pricing is that if w(λ, x) is totally positive of order two then a riskier venture, with risk represented 
by the parameter λ, will not be assigned a lower weighted net premium. We refer to Furman and Zitikis [5]
who introduced the concept of a weighted premium in research on the construction of insurance premiums.

Noting the general theory of total positivity (Karlin [12]), we wish to determine the behavior of the 
weighted premium H[λ, X] for weights w(λ, x) that are totally positive of order higher than two. In this 
paper, we study H[λ, X], and some of its generalizations, when the weight function w(λ, x) is totally positive 
of any given order.

Our results may be described as follows. In Section 2, we introduce the theory of total positivity, providing 
a self-contained introduction to results needed in the sequel.

We consider in Section 3 classes of generalized weighted premiums, as defined in [8], extending H[λ, X]. 
We establish monotonicity properties of the generalized weighted premiums, recovering as a special case 
the previously cited result of Sendov et al. [17, Theorem 2.1], and we deduce for weight functions that are 
totally positive of order three a monotonicity property of the variance-to-mean ratio (or index of dispersion) 
of the loss variable X. In Section 4, we derive some total positivity properties of Rc and Cc, two actuarial 
ratios that were defined and studied in [6,7] in the analysis of combined risks.

In Section 5, we consider seven classes of weight functions treated previously by [17]. We ascertain the 
higher order total positivity properties of these weight functions, proving that five of them are strictly 
totally positive of order infinity, one is totally positive of order infinity, and one is not totally positive of 
order three.

Finally, in Section 6, we summarize with concluding remarks on the implications of working with weighted 
premiums that are totally positive of higher order.

2. Total positivity

We begin by recalling from [12] the concepts of total positivity, strict total positivity, and sign regularity.
For k ∈ N, a weight function w : R2 → R is totally positive of order k, denoted TPk, if for all λ1 > · · · > λk, 

x1 > · · · > xk, and for all r = 1, . . . , k, the r × r determinant,

det
(
w(λi, xj)

)
:=

∣∣∣∣∣∣
w(λ1, x1) · · · w(λ1, xr)

... · · ·
...

∣∣∣∣∣∣ ≥ 0.

w(λr, x1) · · · w(λr, xr)
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The function w(λ, x) is totally positive of order infinity, denoted TP∞, if w(x, λ) is TPk for all k ≥ 1. 
Similarly, w(λ, x) is strictly totally positive of order k, denoted STPk if the r×r determinant det

(
w(λi, xj)

)
is strictly positive for all λ1 > · · · > λk, x1 > · · · > xk, and all r = 1, . . . , k. Further, w(λ, x) is strictly 
totally positive of order infinity, denoted STP∞, if w(λ, x) is STPk for all k ≥ 1.

The function w(λ, x) is said to be reverse-rule of order k, denoted RRk, if for all λ1 > · · · > λk and 
x1 > · · · > xk, (−1)r(r−1)/2 det

(
w(λi, xj)

)
is nonnegative for all r = 1, . . . , k; if this holds for all k ≥ 1

then w(λ, x) is called reverse-rule of order infinity, denoted RR∞. If (−1)r(r−1)/2 det
(
w(λi, xj)

)
is strictly 

positive for all λ1 > · · · > λk, x1 > · · · > xk, r = 1, . . . , k then w(λ, x) is said to be strictly reverse-rule 
of order k (SRRk); and w(λ, x) is called strictly reverse-rule of order infinity (SRR∞) if it is SRRk for all 
k ≥ 1.

Throughout the remainder of the paper, we will assume that all integrals or sums converge absolutely. 
Whenever it is necessary to provide explicit conditions under which such convergence holds then we will 
provide the details.

The Binet-Cauchy formula often is stated in terms of calculating the minors of a matrix product, AB, 
from the minors of A and B [12, p. 1]. We will need a continuous and a discrete generalization of this formula: 
Let ν be a Borel-finite measure on a totally ordered measure space X. Also, for r ∈ N, let φ1, . . . , φr and 
ψ1, . . . , ψr be complex-valued functions on X. The Binet-Cauchy formula is that the r× r determinant with 
(i, j)th entry 

´
X
φi(x)ψj(x) dν(x) satisfies the identity

det
(ˆ

X

φi(x)ψj(x) dν(x)
)

=
ˆ

· · ·
ˆ

x1>···>xr

det
(
φi(xj)

)
det

(
ψi(xj)

) r∏
j=1

dν(xj). (2.1)

For the case in which X = N0, the set of nonnegative integers, and ν is a discrete measure on N0 with 
weights ν(m), m = 0, 1, 2, . . ., the Binet-Cauchy formula is the statement that

det
( ∞∑

m=0
φi(m)ψj(m)ν(m)

)
=

∑
m1>···>mr≥0

det
(
φi(mj)

)
det

(
ψi(mj)

) r∏
j=1

ν(mj). (2.2)

The continuous version of the Basic Composition Formula is that if the weight functions w1(λ, x) and 
w2(λ, x) are TPk on R2, and if ν is a sigma-finite measure on R, then the weight function

w(λ, x) =
ˆ

R

w1(λ, t)w2(t, x) dν(t) (2.3)

also is TPk on R2.
The discrete version of the Basic Composition Formula, analogous to (2.2), is that if w1(λ, x) and w2(λ, x)

are TPk on N0 × N0, and ν is a discrete measure on N0 with nonnegative weights ν(m), m = 0, 1, 2, . . ., 
then the function

w(λ, x) =
∞∑

m=0
w1(λ,m)w2(m,x)ν(m) (2.4)

also is TPk on N0 × N0.
We remark that a crucial difference between total positivity of order two and total positivity of higher 

orders is that if a positive function w(λ, x) is TP2 then the function 1/w(λ, x) is RR2. However this result 
does not generally extend to TPk functions for k > 2. This explains why some of the weight functions 
considered in Section 5 have relatively straightforward TP2 or RR2 properties, while their higher-order 
total positivity properties are more difficult to establish. We refer to Carlson and Gustafson [2, Eq. (1.5)]
for further remarks on this point.
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3. Monotonicity properties of generalized weighted premiums

Let X be a nonnegative random variable with probability density function g. Sendov et al. [17] derived 
a monotonicity property of the weighted premium function,

H[λ,X] = E[w(λ,X)X]
E[w(λ,X)] ,

where the expectations are taken with respect to the distribution of X; it was proved in [17, Theorem 2.1]
that if w(λ, x) is TP2 then the function λ �→ H[λ, X] is non-decreasing. We shall generalize this property in 
two ways. Following [8], we consider for a utility function f : R+ → R+, the generalized weighted premium,

H[λ, f(X)] = E[w(λ,X)f(X)]
E[w(λ,X)] ,

whenever these expectations exist. Let Y be the random variable that has the weighted probability density 
function,

w(λ, y)
E[w(λ,X)] g(y) (3.1)

y ≥ 0, where, as defined earlier, g is the density function of X. Then H[λ, f(X)] can also be viewed as the 
expectation EY f(Y ), where the expectation is with respect to the distribution of Y . We will establish the 
monotonicity of H[λ, f(X)] for the case in which f is monotonically increasing.

Second, for the case in which the weight function w(λ, x) is TPk or STPk, we obtain generalizations of 
the monotonicity property arising from the case in which k = 2.

Theorem 3.1. Suppose that the weight function w(λ, x) is TPk, f : R+ → R+ is a non-decreasing function, 
and λ1 > · · · > λk. Then, all minors of the k × k determinant

det
(
H
[
λi,

(
f(X)

)k−j ]) (3.2)

are nonnegative. Further, if w(λ, x) is STPk and the set of points of increase of f contains an open set then 
all minors of the matrix (3.2) are positive.

Proof. Consider the m ×m minor of (3.2) corresponding to rows r1, . . . , rm and columns c1, . . . , cm, where 
r1 < · · · < rm and c1 < · · · < cm. Applying the Binet-Cauchy formula (2.1) with X = R, φi(x) = w(λci , x)
and ψi(x) =

(
f(x)

)k−ri , i = 1, . . . , m, and dν(x) = g(x) dx, we obtain

det
(
E[w(λci , X)

(
f(X)

)k−rj ]
)

=
ˆ

· · ·
ˆ

x1>···>xm

det
(
w(λci , xj)

)
det

((
f(xj)

)k−ri
) m∏

j=1
g(xj) dxj . (3.3)

Since w(λ, x) is TPr and λc1 > · · · > λcm then det
(
w(λci , xj)

)
is nonnegative on the orthant {(x1, . . . , xm) :

x1 > · · · > xm}.
As for the second determinant in the integrand in (3.3), let θi = k − ri − m + i, i = 1, . . . , m, and set 

θ = (θ1, . . . , θm). Since 1 ≤ r1 < · · · < rm ≤ k then k −m ≥ θ1 ≥ · · · ≥ θm ≥ 0. The determinant

det
(
tk−ri
j

)
≡ det

(
tθi+m−i
j

)
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is well-known; see Macdonald [13, p. 40]. In particular, this determinant is divisible by the product ∏
1≤i<j≤m(ti − tj), and the ratio of these two polynomials defines the Schur function,

χθ(t1, . . . , tm) =
det

(
tθi+m−i
j

)∏
1≤i<j≤m(ti − tj)

. (3.4)

It is straightforward to verify that χθ(t1, . . . , tm) is a homogeneous polynomial of degree θ1+· · ·+θm. It is 
also well-known that the coefficients appearing in the monomial expansion of χθ(t1, . . . , tm) are nonnegative 
integers [13, p. 75]. Therefore, χθ(t1, . . . , tm) > 0 for t1, . . . , tm > 0. Writing (3.4) in the form

det
(
tk−ri
j

)
=

∏
1≤i<j≤m

(ti − tj) · χθ(t1, . . . , tm),

it follows that det
(
tk−ri
j

)
> 0 for all t1, . . . , tm > 0. Consequently, by substituting ti = f(xi), we obtain

det
((

f(xj)
)k−ri

)
=

∏
1≤i<j≤m

(
f(xi) − f(xj)

)
· χθ

(
f(x1), . . . , f(xm)

)
, (3.5)

and since f is increasing then it follows that the determinant in (3.5) is nonnegative for x1 > · · · > xm.
Therefore, the integrand in (3.3) is nonnegative for λc1 > · · · > λcm and x1 > · · · > xm, so it follows 

that det
(
E
[
w(λci , X)

(
f(X)

)k−rj ]) ≥ 0. Since m, r1, . . . , rm and c1, . . . , cm were chosen arbitrarily then we 

deduce that all minors of the k × k determinant det
(
E
[
w(λi, X)

(
f(X)

)k−j]) are nonnegative.
If w(λ, x) is STPk then det

(
w(λci , xj)

)
> 0 for all λc1 > · · · > λcm and x1 > · · · > xm. If also the set 

of points of increase of f contains an open set then the determinant (3.5) is positive on an open set in the 
orthant {(x1, . . . , xm) : x1 > · · · > xm}. Then, the integrand in (3.3) is positive on an open set, so it follows 
that det

(
E
[
w(λci , X)

(
f(X)

)k−rj ])
> 0.

For j = 1, . . . , r, we divide by E
[
w(λci , X)

]
the jth column of the determinant det

(
E
[
w(λci , X) ·(

f(X)
)k−rj ]). Since

E
[
w(λci , X)

(
f(X)

)k−rj ]
E[w(λci , X)] = H[λci ,

(
f(X)

)k−rj ]

then we find that det
(
H[λci , 

(
f(X)

)k−rj ]
)
≥ 0 for all λc1 > · · · > λcm . As before, it follows that all minors 

of det
(
H[λi, 

(
f(X)

)k−j ]
)

are nonnegative.
Finally, for the case in which w(λ, x) is STPk and f is strictly increasing on an open set, we de-

duce analogously that det
(
H[λci , 

(
f(X)

)k−rj ]
)
> 0 for all λc1 > · · · > λcm . Therefore, all minors of 

det
(
H[λi, 

(
f(X)

)k−j ]
)

are positive. �
Remark 3.2. (1) Consider the case in which k = 2. As H[λ, 1] ≡ 1, Theorem 3.1 provides that if f is 
increasing, w(λ, x) is TP2, and if λ1 > λ2 then∣∣∣∣H[λ1, f(X)] H[λ1, 1]

H[λ2, f(X)] H[λ2, 1]

∣∣∣∣ = H[λ1, f(X)] −H[λ2, f(X)] ≥ 0;

that is, the function λ �→ H[λ, f(X)] is non-decreasing. For the case in which f(x) = x, we recover the 
result of Sendov et al. [17, Theorem 2.1].

Let μλ denote H[λ, f(X)]; equivalently, μλ is the mean of f(Y ) with respect to the weighted distribution 
(3.1). Then the hypothesis that w(λ, x) is TP2 leads to the conclusion that μλ is increasing in λ.
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(2) Suppose that k = 3; then Theorem 3.1 provides that if f is increasing, w(λ, x) is TP3, and if 
λ1 > λ2 > λ3 then all minors of the determinant∣∣∣∣∣∣

H[λ1, (f(X))2] H[λ1, f(X)] 1
H[λ2, (f(X))2] H[λ2, f(X)] 1
H[λ3, (f(X))2] H[λ3, f(X)] 1

∣∣∣∣∣∣
are nonnegative. In particular, the 2 × 2 minor,∣∣∣∣H[λ1, (f(X))2] H[λ1, f(X)]

H[λ2, (f(X))2] H[λ2, f(X)]

∣∣∣∣ = H[λ1, (f(X))2]H[λ2, f(X)] −H[λ1, f(X)]H[λ2, (f(X))2] (3.6)

is nonnegative.
Suppose that the weight function w(λ, x) is differentiable in λ. Also, suppose that its partial derivative, 

∂w(λ, x)/∂λ, is integrable and that

H1[λ, f(X)] := ∂

∂λ
H[λ, f(X)]

exists. Dividing (3.6) by λ1 − λ2 and then letting λ1, λ2 → λ, we obtain

0 ≤ lim
λ1,λ2→λ

H[λ1, (f(X))2]H[λ, f(X)] −H[λ1, f(X)]H[λ, (f(X))2]
λ1 − λ2

= H1[λ, (f(X))2]H[λ, f(X)] −H1[λ, f(X)]H[λ, (f(X))2]

= H[λ, f(X)]H[λ, (f(X))2] ∂

∂λ
log H[λ, (f(X))2]

H[λ, f(X)] ;

equivalently,

∂

∂λ
log H[λ, (f(X))2]

H[λ, f(X)] ≥ 0.

Hence, if f : R+ → R+ is increasing and w(λ, x) is TP3 then the function λ �→ H[λ, (f(X))2]/H[λ, f(X)] is 
increasing.

To interpret this result within a statistical context, define

σ2
λ := H[λ, (f(X))2] − (H[λ, f(X)])2,

representing the variance of f(Y ) with respect to the weighted distribution (3.1). Then,

H[λ, (f(X))2]
H[λ, f(X)] = σ2

λ + μ2
λ

μλ
= σ2

λ

μλ
+ μλ.

The ratio σ2
λ/μλ is known classically as the variance-to-mean ratio or index of dispersion [4, p. 72], and we 

denote it by VMRλ. The variance-to-mean ratio is a normalized measure of the extent to which the possible 
values of X are dispersed, so that smaller values of VMRλ correspond to more concentrated clustering of 
the possible values of X. Thus, the assumption that w(λ, x) is TP3 leads to the conclusions that μλ and 
VMRλ + μλ are increasing functions of λ. In the context of premium calculations, the variance-to-mean 
ratio was studied earlier by [10].

We now see that as k, the order of total positivity of the weight function w(λ, x), increases, we are able 
to deduce correspondingly more intricate aspects of the monotonicity properties of H[λ, f(X)] as a function 
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of λ. An implication of the above remark is that if an insurer expects greater variance-to-mean ratios for 
increasing values of the loading parameter λ then it would be advisable to calculate premiums using weight 
functions that are STPk with k ≥ 3.

For k = 2, a consequence of the proof of Theorem 3.1 is that it provides in (3.3) an explicit representation 
for the difference H[λ1, f(X)] −H[λ2, f(X)] as the integral of a nonnegative function, viz.,

E[w(λ1, X)]E[w(λ2, X)]
(
H[λ1, f(X)] −H[λ2, f(X)]

)
=

ˆ ˆ

x1>x2

(
f(x1) − f(x2)

) ∣∣∣∣w(λ1, x1) w(λ1, x2)
w(λ2, x1) w(λ2, x2)

∣∣∣∣ g(x1)g(x2) dx1 dx2. (3.7)

Hence, the nonnegativity of the difference, H[λ1, f(X)] −H[λ2, f(X)], is obtained immediately. Further, as 
the following result shows, the integral representation (3.7) combined with an estimate on the variation of 
f(x) leads to an upper bound on H[λ1, f(X)] −H[λ2, f(X)].

Corollary 3.3. Suppose that (λ, x) �→ w(λ, x) is TP2 and f : R+ → R+ is a non-decreasing function that 
satisfies a uniform Lipschitz condition of order 1, viz.,

|f(x1) − f(x2)| ≤ |x1 − x2|

for all x1 and x2. Then, for all λ1 > λ2,

H[λ1, f(X)] −H[λ2, f(X)] ≤ H[λ1, X] −H[λ2, X]. (3.8)

Proof. Applying to (3.7) the Lipschitz condition on f , we obtain

E[w(λ1, X)]E[w(λ2, X)]
(
H[λ1, f(X)] −H[λ2, f(X)]

)
(3.9)

≤
ˆ ˆ

x1>x2

(x1 − x2)
∣∣∣∣w(λ1, x1) w(λ1, x2)
w(λ2, x1) w(λ2, x2)

∣∣∣∣ g(x1)g(x2) dx1 dx2

≡
ˆ ˆ

x1>x2

det
(
x2−j
i

)
· det

(
w(λi, xj)

)
g(x1)g(x2) dx1 dx2. (3.10)

Applying the Binet-Cauchy formula (2.1), we deduce that (3.10) equals

det
(
E[w(λi, X)X2−j ]

)
= det

(
E[w(λi, X)]H[λi, X

2−j ]
)

= E[w(λ1, X)]E[w(λ2, X)]
(
H[λ1, X] −H[λ2, X]

)
. (3.11)

On comparing (3.9) and (3.11), and clearing the common terms on each side of that inequality, we obtain 
(3.8). �
Remark 3.4. Furman and Zitikis [5, Section 4] provide examples of utility functions that are of the form 
f(x) =

´ x

0 h(x) dx, where h(x) ≥ 0 for all x. Suppose that h is uniformly bounded with h(x) ≤ 1 for all 
x; examples of such h are the cumulative distribution functions of nonnegative random variables. Then for 
x1, x2 ∈ R, it follows from the triangle inequality that

|f(x1) − f(x2)| =

∣∣∣∣∣∣
x1ˆ
h(x) dx

∣∣∣∣∣∣ ≤ |x1 − x2|,

x2



D. Richards, C. Uhler / J. Math. Anal. Appl. 475 (2019) 532–553 539
so f satisfies a uniform Lipschitz condition of order 1. Hence, the class of utility functions that satisfy the 
Lipschitz condition is at least as large as the class of cumulative distribution functions.

In general, the bound in Corollary 3.3 provides under a specified degree-of-variation on f an upper limit 
on the increase in the premium H[λ, f(X)] resulting from an increase in λ, the loading parameter. This 
enables an insurer to assess the extent to which it is charging suitable additional amounts for perceived 
increases in risk as measured by higher values of the loading parameter.

4. Total positivity properties of some actuarial ratios

Concepts of total positivity of higher order are germane to other insurance-related problems. For u > 0
and v ≥ 0, the well-known upper incomplete gamma function is defined as

Γ(u, v) =
∞̂

v

xu−1 e−x dx.

Further, for c > 0, define the ratio,

Rc(u, v) = Γ(c + u, v)
Γ(u, v) ;

this function was shown by Furman and Zitikis [6,7] to arise in the study of losses from collections of 
insurable risks, and their Proposition 2.1 proved that Rc(u, v) is strictly increasing in u for each fixed v
and c. Extending this observation, we obtain the following total positivity properties of the function Rc.

Proposition 4.1. (i) For fixed v ≥ 0, the function (c, u) �→ Rc(u, v), c > 0, u > 0, is STP∞.
(ii) For fixed u > 0, the function (c, v) �→ Rc(u, v), c > 0, v ≥ 0, is STP∞.
(iii) For fixed c > 0, the function (u, v) �→ Rc(u, v), u > 0, v ≥ 0, is SRR2.

Proof. For r ∈ N, and for c1 > · · · > cr > 0 and u1 > · · · > ur > 0, consider the r × r determinant,

det
(
Γ(uj , v)Rci(uj , v)

)
= det

(
Γ(ci + uj , v)

)
= det

⎛⎝ ∞̂

v

xci+uj−1 e−x dx

⎞⎠ .

Applying the continuous version of the Binet-Cauchy formula, (2.1), with φi(x) = xci , ψj(x) = xuj , and 
dν(x) = x−1e−x dx, we find that

det
(
Γ(uj , v)Rci(uj , v)

)
=

ˆ
· · ·

ˆ

x1>···>xr>v

det
(
x
cj
i

)
det

(
x
uj

i

) r∏
j=1

x−1
j e−xj dxj . (4.1)

As shown below in (5.1), the determinant det
(
x
kj

i

)
is positive for x1 > · · · > xr > 0 and k1 > · · · > kr ≥ 0. 

Therefore the integrand on the right-hand side of (4.1) is positive on an open subset of Rr, and so the 
integral is positive. Hence the determinant on the left-hand side of (4.1) is positive, and by extracting the 
factors Γ(uj , v) from that determinant, we obtain

det
(
Rci(uj , v)

)
> 0. (4.2)
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Since r was chosen arbitrarily then it follows that the function (c, u) �→ Rc(u, v), c > 0, u > 0, is STP∞. 
This completes the proof of (i).

To prove (ii), let 1(x > v) denote the indicator function of the interval (v, ∞); then,

Γ(u, v)Rc(u, v) =
∞̂

0

xc 1(x > v)xu−1e−x dx.

For c1 > · · · > cr > 0 and v1 > · · · > vr ≥ 0, it follows from the Binet-Cauchy formula (2.1) that

det
(
Γ(u, vj)Rci(u, vj)

)
=

ˆ
· · ·

ˆ

x1>···>xr>0

det
(
x
cj
i

)
det

(
1(xi > vj)

) r∏
j=1

xu−1
j e−xj dxj . (4.3)

As noted before, det
(
x
cj
i

)
> 0 for x1 > · · · > xr > 0 and c1 > · · · > cr > 0. Further, we note in (5.2) that 

for v1 > · · · > vr ≥ 0, det
(
1(xi > vj)

)
≥ 0 for all x1 > · · · > xr > 0 and also is strictly positive on an open 

set in Rr. Therefore, the integrand in (4.3) is positive on an open set in Rr, so we deduce that the function 
(c, v) �→ Rc(u, v), c > 0, v ≥ 0, is STP∞.

To establish (iii), we apply the “2m-function theorem” of Rinott and Saks [15]. For x > 0, define the 
eight functions,

f1(x) = xc+u1 1(x > v1), g1(x) = xc+u1 1(x > v2)

f2(x) = xc+u2 1(x > v2), g2(x) = xc+u2 1(x > v1)

f3(x) = xu1 1(x > v2), g3(x) = xu1 1(x > v1)

f4(x) = xu2 1(x > v1), g4(x) = xu2 1(x > v2)

and, as before, let dν(x) = x−1e−x dx.
We now verify that these functions satisfy the hypotheses of Theorem 1.1 of [15], viz., for x1 > x2 >

x3 > x4,

4∏
j=1

fj(xj) ≤
4∏

j=1
gj(xj). (4.4)

By (5.2),

1(z1 > w2)1(z2 > w1) ≤ 1(z1 > w1)1(z2 > w2)

whenever z1 > z2 and w1 > w2. Applying this result repeatedly, and noting that v1 > v2, we obtain

1(x1 > v1)1(x2 > v2)1(x3 > v2)1(x4 > v1) ≤ 1(x1 > v1)1(x2 > v2)1(x3 > v1)1(x4 > v2)

≤ 1(x1 > v1)1(x2 > v1)1(x3 > v2)1(x4 > v2)

≤ 1(x1 > v2)1(x2 > v1)1(x3 > v1)1(x4 > v2).

Multiplying each side of this inequality by xc+u1
1 xc+u2

2 xu1
3 xu2

4 , we obtain (4.4); moreover, the inequality is 
strict on an open set in (0, ∞)4. It is also trivial that the measure dν(x) is an FKG measure [15, p. 270], 
so we obtain
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Γ(c + u1, v1)Γ(c + u2, v2)Γ(u1, v2)Γ(u2, v1) =
4∏

j=1

∞̂

0

fj(x) dν(x)

<
4∏

j=1

∞̂

0

gj(x) dν(x)

= Γ(c + u1, v2)Γ(c + u2, v1)Γ(u1, v1)Γ(u2, v2).

Dividing both sides of this inequality by Γ(u1, v1)Γ(u2, v2)Γ(u1, v2)Γ(u2, v1), we obtain det
(
Rc(ui, vj)

)
< 0

for u1 > u2 and v1 > v2. Hence, Rc(u, v) is SRR2 in (u, v). �
Remark 4.2. (i) As a special case of (4.2), suppose that r = 2, c1 = c, and c2 = 0; since R0(u, v) = 1 then 
(4.2) reduces to the monotonicity result of Furman and Zitikis [6]. More generally, Proposition 4.1 can be 
applied to obtain inequalities for the higher moments of sums of risks similar to the way in which higher 
moment inequalities are described in Remark 3.2.

(ii) We remark that the function (u, v) �→ Rc(u, v), u > 0, v ≥ 0 is not RR3. For c = 3.5, (u1, u2, u3) =
(4, 3, 2), and (v1, v2, v3) = (6, 5, 4), we calculate that det

(
Rc(ui, vj)

)
= 7.04 which, since it is positive, 

violates the RR3 condition. Here and throughout, all numerical computations were carried out in high 
precision, with accuracy to over 100 significant digits.

We will also provide some results on a more complex ratio defined by Furman and Zitikis [7]. Define, for 
u > 0 and v ≥ 0 the function

Q(u, v) = Γ(u, v)
Γ(u) =

∞̂

v

1
Γ(u) x

u−1e−x dx. (4.5)

For fixed u > 0, the function v �→ Q(u, v), v ≥ 0, is strictly decreasing, so we denote by v �→ Q−1(u, v), 
0 ≤ v ≤ 1, the corresponding inverse function. Furman and Zitikis [7] defined the function,

Cc(u, v) = Q
(
c + u,Q−1(u, v)

)
=

Γ
(
c + u,Q−1(u, v)

)
Γ(c + u) ,

c > 0, u > 0, 0 ≤ v ≤ 1; further, they proved that, for fixed c and v, the function u �→ Cc(u, v) is decreasing. 
In light of Proposition 4.1 we will investigate the total positivity properties of Cc(u, v), obtaining the following 
result.

Proposition 4.3. (i) For fixed v ∈ [0, 1], the function (c, u) �→ Γ(c + u) Cc(u, v), c > 0, u > 0, is STP2.
(ii) For fixed u > 0, the function (c, v) �→ Cc(u, v), c > 0, 0 ≤ v ≤ 1, is SRR∞.

Proof. We have

Γ(c + u) Cc(u, v) = Γ
(
c + u,Q−1(u, v)

)
=

∞̂

Q−1(u,v)

xc+u−1 e−x dx

=
∞̂

0

xc+u−1 1
(
x > Q−1(u, v)

)
e−x dx.
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For c1 > c2 > 0 and u1 > u2 > 0, it follows from the Binet-Cauchy formula that

det
(
Γ(ci + uj) Cci+uj

(uj , v)
)

=
ˆ

· · ·
ˆ

x1>x2>0

det(xcj
i ) det

(
x
uj

i 1
(
xi > Q−1(uj , v)

)) 2∏
j=1

x−1
j e−x dxj . (4.6)

For 2 × 2 matrices A = (aij) and B = (bij), there holds the identity,

det(aijbij) = b11b22 det(A) + a12a21 det(B). (4.7)

We set aij = x
uj

i ; then det(A) = det(xcj
i ) > 0 and a12a21 > 0 for x1 > x2 > 0 and c1 > c2 > 0. Also, let 

bij = 1
(
xi > Q−1(uj , v)

)
; then we need to determine the sign of

det(B) = det
(
1
(
xi > Q−1(uj , v)

))
(4.8)

for x1 > x2 > 0 and u1 > u2 > 0.
We claim that if u1 > u2 > 0 then Q−1(u1, v) > Q−1(u2, v) for all v > 0. By applying Q(u1, ·) to both 

sides of this inequality, and noting that v �→ Q(u1, v) is decreasing, we see that the claim is equivalent to 
v < Q

(
u1, Q−1(u2, v)

)
; and by replacing v further by Q(u2, v), the claim is now seen to be equivalent to 

Q(u2, v) < Q(u1, v), v > 0. So, consider

Γ(u1)Γ(u2)
[
Q(u1, v) −Q(u2, v)

]
= Γ(u2)Γ(u1, v) − Γ(u1)Γ(u2, v)

=
∞̂

x2=0

∞̂

x1=v

(xu1
1 xu2

2 − xu2
1 xu1

2 )
2∏

j=1
x−1
j e−xj dxj

=
∞̂

x2=0

∞̂

x1=v

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj .

Decomposing the interval (0, ∞) into (0, v) ∪ [v, ∞), we obtain

Γ(u1)Γ(u2)
[
Q(u1, v) −Q(u2, v)

]
=

∞̂

v

∞̂

v

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj +

vˆ

0

∞̂

v

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj .

By anti-symmetry,

∞̂

v

∞̂

v

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj = 0,

therefore

Γ(u1)Γ(u2)
[
Q(u1, v) −Q(u2, v)

]
=

vˆ

0

∞̂

v

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj

≡
ˆ ˆ

x1>v>x2>0

det(xuj

i )
2∏

j=1
x−1
j e−xj dxj .
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Since det(xuj

i ) > 0 for x1 > x2 > 0 and u1 > u2 > 0 then we obtain Q(u1, v) > Q(u2, v), equivalently, 
Q−1(u1, v) > Q−1(u2, v).

Since u1 > u2 implies Q−1(u1, v) > Q−1(u2, v) then it follows from (4.8) and (5.2) that for x1 > x2 and 
u1 > u2,

det(B) =
{

1, x1 > Q−1(u1, v) > x2 > Q−1(u2, v)
0, otherwise

.

Therefore for u1 > u2 > 0, det(B), b11, and b22, as functions of (x1, x2), are nonnegative everywhere and 
are positive on an open subset of the orthant {x1 > x2 > 0}. Applying (4.7), we find that

det
(
x
uj

i 1
(
xi > Q−1(uj , v)

))
> 0

on an open subset of the orthant {x1 > x2 > 0}, consequently, the same applies to the integrand in (4.6), 
so the integral is positive. Therefore, the function (c, u) �→ Γ

(
c + u, Q−1(u, v)

)
, c > 0, u > 0, is STP2. The 

proof of (i) now is complete.
To prove (ii), let r ∈ N, c1 > · · · > cr > 0, and v1 > · · · > vr ≥ 0; then,

[ r∏
i=1

Γ(ci + u)
]
det

(
Cci(u, vj)

)
= det

(
Γ(ci + u) Cci(u, vj)

)
= det

(
Γ
(
ci + u,Q−1(u, vj)

))
= det

( ∞̂

Q−1(u,vj)

xci+u−1 e−x dx
)
.

Applying the Binet-Cauchy formula, we obtain

[ r∏
i=1

Γ(ci + u)
]
det

(
Cci(u, vj)

)
=

ˆ
· · ·

ˆ

x1>···>xr>0

det(xcj
i ) det

(
1
(
xi > Q−1(u, vj)

)) r∏
j=1

xu−1
j e−x dxj . (4.9)

As before, det(xcj
i ) > 0 for x1 > · · · > xr > 0. To derive the sign of the remaining determinant, note 

that Q−1(u, vr) > Q−1(u, vr−1) > · · · > Q−1(u, vr) for v1 > · · · > vr. Therefore, for x1 > · · · > xr and 
v1 > · · · > vr,

det
(
1
(
xi > Q−1(u, vj)

))
= (−1)r(r−1)/2 det

(
1
(
xi > Q−1(u, vr−j+1)

))
=

{
(−1)r(r−1)/2, x1 > Q−1(u, vr) > x2 > Q−1(u, vr−1) > · · · > xr > Q−1(u, v1)
0, otherwise

.

It now follows that the sign of (4.9) is (−1)r(r−1)/2. Since r was chosen arbitrarily, it follows that the function 
Cc(u, v) is SRR∞ in (c, v). �
Remark 4.4. As we noted before, Furman and Zitikis [7] proved that the function u �→ Cc(u, v) is decreasing, 
a result which raises the issue of whether the function (c, u) �→ Cc(u, v), c > 0, u > 0 is RR2.
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Let Fu denote the cumulative distribution function of a gamma-distributed random variable having 
index parameter u, i.e., a random variable whose probability density function is the integrand in (4.5). 
Then, Cc(u, v) = 1 −Fc+u

(
Q−1(u, v)

)
. Since Q(u, v) = 1 −Fu(v) then Q−1(u, v) = F−1

u (1 − v), so we obtain

Cc(u, v) = 1 − Fc+u

(
F−1
u (1 − v)

)
.

We performed extensive calculations using this identity and determined that the function (c, u) �→ Cc(u, v) is 
not RR2 as many of its 2 ×2 determinants are positive. Further, this function is not TP2, although it seems 
to fail barely to be so; for v = 0.211, (c1, c2) = (4.047, 1.210), and (u1, u2) = (3.203, 0.189), we obtained 
det

(
Cci(uj , v)

)
= −0.026, and this negative value of the determinant was similar in magnitude to all other 

negative values that we found.
We also carried out calculations regarding the total positivity properties of the function (u, v) �→ Cc(u, v)

and found substantial evidence that this function is both STP2 and STP3. As we have not been able to 
establish such results analytically, we pose them as open problems.

5. Seven classes of weight functions

In this section, we determine the total positivity properties of some classes of weight functions treated 
by Sendov et al. [17, Section 3].

Example 5.1. Let w1(λ, x) = eλx. The corresponding weighted premium, H[λ, X], is called the Esscher 
premium; see [17] and references given therein. It is well-known that the weight function w1 is STP∞ [12, 
p. 15].

Indeed, by a result of Gross and Richards [9, p. 233], for each r ≥ 2, the r×r determinant, det
(
w1(λi, xj)

)
has an integral representation,

det
(
w1(λi, xj)

)∏
1≤i<j≤r(λi − λj)(xi − xj)

=
ˆ

U

Φ(Λ, X, u) dν(u),

where U is a certain set of r×r matrices, Λ = (λ1, . . . , λr), X = (x1, . . . , xr), Φ(Λ, X, u) is a strictly positive 
function, and ν is a probability measure on U . This integral formula yields immediately the positivity of the 
determinant det

(
w1(λi, xj)

)
for λ1 > · · · > λr and x1 > · · · > xr. Hence w1 is STPr for all r and therefore 

also STP∞.
More generally, if F : R → R is strictly increasing then the weight function w̃1(λ, x) = exp

(
λF (x)

)
is 

STP∞, and the corresponding premium is known as the Aumann-Shapley premium [8]. With regard to the 
closing comments in Remark 3.2, we would advise an insurer to base its premium calculations on an STP∞
weight function if the possible values of the loss variable X are greatly dispersed, i.e., if X has an extremely 
large variance-to-mean ratio.

A consequence of the STP∞ property of w1 is that the weight function w1(log λ, x) = λx, (λ, x) ∈ R+×R, 
is STP∞. That is, for any r ∈ N, the r × r determinant,

det
(
λ
xj

i

)
> 0 (5.1)

for λ1 > · · · > λr > 0 and x1 > · · · > xr. This result holds because the transformation λ → log λ is strictly 
increasing and therefore preserves the total positivity properties of w1(λ, x). In the actuarial literature, the 
weight function (λ, x) �→ λx, λ, x > 0, gives rise to a weighted premium known as the size-biased premium
[8].
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Example 5.2. Let w2(λ, x) = 1(x > λ), the weight function corresponding to the conditional tail expectation
(CTE) premium, H[λ, X] = E(X|X > λ). It is well-known that the weight function w2 is TP∞ [12, p. 16]. 
Indeed, for any r = 1, 2, . . ., and for λ1 > · · · > λr and x1 > · · · > xr,

det
(
w2(λi, xj)

)
=

{
1, if x1 > λ1 > x2 > λ2 > · · · > xr > λr

0, otherwise
(5.2)

which proves that the determinant is nonnegative.

Example 5.3. Let w3(λ, x) = 1 − e−x/λ. The corresponding weighted premium H[λ, X] is called the Kamps 
premium (see [17] and the references therein). The weight function w3 is STP∞, as we now prove.

It is straightforward to verify that

w3(λ, x) =
xˆ

0

λ−1e−t/λ dt

≡
∞̂

0

w(λ, t)w2(t, x) dt,

where w(λ, t) = λ−1e−t/λ, and w2(t, x) = 1(x > t) is the weight function given in Example 5.2. Applying 
the Binet-Cauchy formula (2.1), we obtain for each r ≥ 2,

det
(
w3(λi, xj)

)
=
ˆ

· · ·
ˆ

t1>···>tr

det
(
w(λi, tj)

)
det

(
w2(ti, xj)

)
dt1 · · · dtr. (5.3)

Suppose that λ1 > · · · > λr and x1 > · · · > xr. By Example 5.1, the function w(λ, t) is STP∞, so 
det

(
w(ti, xj)

)
is positive on the orthant {(t1, . . . , tr) : t1 > · · · > tr}. Also, by (5.2), the determinant 

det
(
w2(ti, xj)

)
is positive on an open neighborhood in the same orthant. Therefore, the integrand in (5.3)

is positive on an open set, hence the integral is positive for any choice of (λ1, . . . , λr) and (x1, . . . , xr). 
Therefore, w3(λ, x) is STPr for all r, hence it is STP∞.

These results for w3(λ, x) also extend to a more general class of weight functions. For each nonnegative 
integer k, define the weight function

w3,k(λ, x) = k!
[
1 − e−x/λ

k∑
j=0

(x/λ)j

j!

]
.

For k = 0, w3,k(λ, x) reduces to w3(λ, x), the weight function corresponding to Kamps’ premium. By 
repeated integration-by-parts, we obtain

w3,k(λ, x) = λ−(k+1)
xˆ

0

tke−t/λ dt

=
∞̂

0

w(λ, t)w2(t, x) dt,

where w(λ, t) = λ−(k+1)e−t/λ and w2(t, x) is the weight function in Example 5.2. Finally, we proceed 
using arguments similar to the case of w3: Since w(λ, t) and w2(λ, t) are TP∞ then, by applying the Basic 
Composition Formula (2.3) and the Binet-Cauchy formula (2.1), we deduce that w3,k(λ, x) is STP∞.
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Example 5.4. The fourth weight function considered in [17, Section 3] is

w̃4(λ, x) = exp
(

(1 + x)λ − 1
λ

)
− x,

λ, x > 0. We replace x by ex − 1, a transformation that is strictly increasing and therefore preserves any 
total positivity properties of w̃4(λ, x). Then we are to determine the total positivity properties of

w4(λ, x) := w̃4(λ, ex − 1) = exp
(
f(λ, x)

)
− ex + 1,

λ, x > 0, where

f(λ, x) = eλx − 1
λ

.

We also define f(0, x) by right-continuity:

f(0, x) := lim
λ→0+

f(λ, x) = x.

Then,

w4(λ, x) = exp
(
f(λ, x)

)
− exp

(
f(0, x)

)
+ 1. (5.4)

For r ∈ N, let λ1 > · · · > λr > 0, x1 > · · · > xr > 0, and consider the r × r determinant,

det
(
w4(λi, xj)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

w4(λ1, x1) · · · w4(λ1, xr)
w4(λ2, x1) · · · w4(λ2, xr)

...
...

...
w4(λr−1, x1) · · · w4(λr−1, xr)
w4(λr, x1) · · · w4(λr, xr)

∣∣∣∣∣∣∣∣∣∣∣∣
.

For i = 1, . . . , r − 1, we subtract row i + 1 from row i, obtaining

det
(
w4(λi, xj)

)
= D1 + D2,

where

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣

w4(λ1, x1) − w4(λ2, x1) · · · w4(λ1, xr) − w4(λ2, xr)
w4(λ2, x1) − w4(λ3, x1) · · · w4(λ2, xr) − w4(λ3, x1)

...
...

...
w4(λr−1, x1) − w4(λr, x1) · · · w4(λr−1, xr) − w4(λr, x1)
w4(λr, x1) − w4(0, x1) · · · w4(λr, xr) − w4(0, x1)

∣∣∣∣∣∣∣∣∣∣∣∣
and

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣

w4(λ1, x1) − w4(λ2, x1) · · · w4(λ1, xr) − w4(λ2, xr)
w4(λ2, x1) − w4(λ3, x1) · · · w4(λ2, xr) − w4(λ3, x1)

...
...

...
w4(λr−1, x1) − w4(λr, x1) · · · w4(λr−1, xr) − w4(λr, x1)

w (0, x ) · · · w (0, x )

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.5)
4 1 4 1
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Define

w41(λ, x) = ∂

∂λ
ω4(λ, x) ≡ ∂

∂λ
exp

(
f(λ, x)

)
,

and set λr+1 ≡ 0. By Taylor’s theorem, there exists ρi ∈ (λi+1, λi) such that

w4(λi, x) − w4(λi+1, x) = (λi − λi+1)w41(ρi, x), (5.6)

i = 1, . . . , r. Therefore,

D1 = det
(
(λi − λi+1)w41(ρi, xj)

)
≡

r∏
i=1

(λi − λi+1) · det
(
w41(ρi, xj)

)
,

where λ1 > ρ1 > λ2 > ρ2 > · · · > λr > ρr > 0. So, to prove that D1 is positive, it suffices to show that w41
is STPr, and we begin by observing from (5.4) that

det
(
w41(λi, xj)

)
= det

( ∂

∂λi
exp

(
f(λi, xj)

))
= ∂r

∂λ1 · · · ∂λr
det

(
exp

(
f(λi, xj)

))
. (5.7)

We now recall the Bell (or exponential) polynomials Bk, k = 0, 1, 2, . . ., defined through the generating 
function,

exp
(
u(et − 1)

)
=

∞∑
k=0

Bk(u) t
k

k! . (5.8)

We refer to Comtet [3, p. 133 ff.] and Roman [16, pp. 63-67] for further details on these polynomials. For 
k ≥ 1, Bk(u) is monic and of degree k; moreover,

Bk(u) =
k∑

m=1
S(k,m)um, (5.9)

where the coefficients S(k, m) are the Stirling numbers of the second kind, viz., the number of partitions of 
a set of size k into m non-empty subsets [3, p. 50]. In particular, S(k, 1) = S(k, k) = 1, and S(k, m) = 0 if 
m > k.

An alternative representation for the Bell polynomials arises from the observation that the left-hand side 
of (5.8) is, for u > 0, the moment-generating function of U , a Poisson-distributed random variable with 
mean parameter u; therefore,

Bk(u) = E(Uk) =
∞∑

m=0

e−uum

m! mk. (5.10)

We now apply to (5.10) the discrete Binet-Cauchy formula (2.2) with φi(m) = e−uium
i and ψk(m) = mk, 

each of which is STP∞ by (5.1), and weights ν(m) = 1/m!. Written explicitly, we have, for k1 > · · · > kr ≥ 0
and u1 > · · · > ur > 0,

det
(
Bki

(uj)
)

= e−(u1+···+ur)
∑ 1

m1! · · ·mr!
det(umj

i ) det(mkj

i ).

m1>···>mr≥0
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Then the positivity of det
(
Bki

(uj)
)

follows from the positivity of each determinant inside the summation. 
Since r was chosen arbitrarily then it follows that Bk(u) is STP∞ in (k, u).

Define

B̃k(λ) := λkBk(λ−1) =
k−1∑
m=0

S(k, k −m)λm. (5.11)

Then, by (5.8) and (5.9),

exp
(
f(λ, x)

)
=

∞∑
k=0

Bk(λ−1) (λx)k

k! =
∞∑
k=0

B̃k(λ)x
k

k! . (5.12)

Applying to (5.12) the Binet-Cauchy formula (2.1), we obtain for λ1 > · · · > λr > 0 and x1 > · · · > xr > 0,

det
(

exp
(
f(λi, xj)

))
= det

( ∞∑
k=0

1
k! B̃k(λi)xk

j

)

=
∑

k1>···>kr≥0

1
k1! · · · kr!

det
(
B̃kj

(λi)
)

det
(
x
kj

i

)
. (5.13)

By (5.1), det
(
x
kj

i

)
> 0 for x1 > · · · > xr and k1 > · · · > kr.

We note two consequences of (5.11). First, since S(k, 1) = 1 then the polynomial B̃k is monic and of degree 
k − 1. Second, since S(k, m) = 0 for m > k and S(k, k) = 1 then the polynomials {B̃k(λ) : k = 0, 1, 2, . . .}
satisfy a linear system of equations in terms of {λm : m = 0, 1, 2, . . .}, with a triangular matrix of coefficients 
having the (k, m)th entry equal to S(k, m), 1 ≤ m ≤ k. Writing out these equations for rows kr, kr−1, . . . , k1, 
in that order, and for columns 1, 2, . . . , r results in a matrix equation,

B̃ = SΛ, (5.14)

where the r × r matrix B̃ has (i, j)th entry B̃kr−i+1(λj), i, j = 1, . . . , r; S is r × k1 with (i, j)th entry 
S(kr−i+1, kr−i+1 − j + 1), i = 1, . . . , r, j = 1, . . . , k1; and Λ is k1 × r with (i, j)th entry λi−1

j , i = 1, . . . , k1, 
j = 1, . . . , r.

Each r × r minor of Λ, being of the form det
(
λli
j

)
with λ1 > · · · > λr and l1 < · · · < lr, is non-zero and 

has sign (−1)r(r−1)/2 as r(r − 1)/2 row interchanges are needed to order the λi and li similarly.
To determine the sign of the minors of S, we apply the results of Brenti [1, Section 5] (cf., Mongelli 

[14]). According to those results, the infinite matrix S(k, m) is totally positive, i.e., all minors of the matrix 
S(k, m), where k and m are similarly ordered, are nonnegative. In the ith row of S, the columns are indexed 
by the decreasing sequence kr−i+1− j+1, j = 1, . . . , k1; and in the jth column, the rows are indexed by the 
increasing sequence kr−i+1, i = 1, . . . , r; therefore, it follows that each non-zero r × r minor of S also has 
sign (−1)r(r−1)/2. Further, if k1, . . . , kr are consecutive integers then the resulting matrix is lower triangular 
with non-zero diagonal entries, so the corresponding minor of S is non-zero.

By the classical Binet-Cauchy formula, det(B̃) equals a sum of products of r× r minors of S and Λ [12, 
p. 1]. By the preceding discussion, each such product is nonnegative; this establishes the positivity of each 
r× r minor of B̃, proving that it is at least TPr. Further, the sum of all such products of minors is positive 
since some minors of S, and all minors of Λ, are non-zero. Therefore, B̃ is STPr; and since r is arbitrary 
then it is STP∞.

To complete the proof that w41(λ, x) is STPr, we need to show that (5.7) is positive. By the same 
argument as at (5.14), infra, we find that
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∂r

∂λ1 · · · ∂λr
det

(
B̃kj

(λi)
)

(5.15)

is a sum of products of minors of S with derivatives of minors of Λ. However, the derivatives of the minors 
of Λ are the form

∂r

∂λ1 · · · ∂λr
det

(
λli
j

)
≡ det

( ∂

∂λi
λli
j

)
= l1 · · · lr

λ1 · · ·λr
det

(
λli
j

)
, (5.16)

which is of the same sign, viz., (−1)r(r−1)/2, as each r× r minor of Λ. Therefore, the derivatives (5.15) are 
nonnegative, and some are positive. By differentiating the series (5.13), it follows that w41(λ, x) is STPr, 
and hence is STP∞.

For future reference, we note that in addition to (5.7) being positive for λ1 > · · · > λr and x1 > · · · > xr, 
there also holds

det
( ∂2

∂xj∂λi
exp

(
f(λi, xj)

))
> 0 (5.17)

under the same conditions. To prove this, we observe that the above determinant equals

∂r

∂x1 · · · ∂xr

∂r

∂λ1 · · · ∂λr
det

(
exp

(
f(λi, xj)

))
,

so we can expand this determinant using (5.13). As shown before, the resulting terms in (λ1, . . . , λr) are 
nonnegative. Also, the resulting terms in (x1, . . . , xr) are of the form (5.16) (with each λi replaced by xi), 
and hence also are nonnegative. Moreover, it is straightforward to see that some of these terms are non-zero. 
Therefore, (5.17) is positive for λ1 > · · · > λr and x1 > · · · > xr.

Turning to the determinant D2 in (5.5), we note first that

w4(0, x) := lim
λ→0+

w4(0, x) = 1.

Therefore,

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣

w4(λ1, x1) − w4(λ2, x1) · · · w4(λ1, xr) − w4(λ2, xr)
w4(λ2, x1) − w4(λ3, x1) · · · w4(λ2, xr) − w4(λ3, x1)

...
...

...
w4(λr−1, x1) − w4(λr, x1) · · · w4(λr−1, xr) − w4(λr, x1)

1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

We again apply Taylor’s theorem, as in (5.6), to each entry in rows 1, . . . , r − 1, obtaining

D2 =
r−1∏
i=1

(λi − λi+1) ·D3

where

D3 =

∣∣∣∣∣∣∣∣∣∣∣∣

w41(ρ1, x1) · · · w41(ρ1, xr)
w41(ρ2, x1) · · · w41(ρ2, xr)

...
...

...
w41(ρr−1, x1) · · · w41(ρr−1, xr)

1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Carrying out elementary column operations, subtracting column j + 1 from column j, for j = 1, . . . , r − 1, 
we obtain

D3 =

∣∣∣∣∣∣∣∣∣∣
w41(ρ1, x1) − w41(ρ1, x2) · · · w41(ρ1, xr−1) − w41(ρ1, xr) w41(ρ1, xr)

...
...

...
...

w41(ρr−1, x1) − w41(ρr−1, x2) · · · w41(ρr−1, xr−1) − w41(ρr−1, xr) w41(ρr−1, xr)
0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
w41(ρ1, x1) − w41(ρ1, x2) · · · w41(ρ1, xr−1) − w41(ρ1, xr)

...
...

...
w41(ρr−1, x1) − w41(ρr−1, x2) · · · w41(ρr−1, xr−1) − w41(ρr−1, xr)

∣∣∣∣∣∣∣ .
Define

w411(λ, x) := ∂

∂x
w41(λ, x) = ∂2

∂λ∂x
exp

(
f(λ, x)

)
.

Applying Taylor’s theorem again, we find that there exists yj ∈ (xj+1, xj) such that

w41(ρi, xj) − w41(ρi, xj+1) = (xj − xj+1)w411(ρi, yj),

i, j = 1, . . . , r − 1; therefore,

D3 = det
(
(xj − xj+1)w411(ρi, yj)

)
=

r−1∏
j=1

(xj − xj+1) · det
(
w411(ρi, yj)

)
.

Noting that

det
(
w411(ρi, yj)

)
= det

(
∂2

∂ρi∂yj
exp

(
f(ρi, yj)

))
is of the form (5.17), it follows that D3, and therefore D2 is a product of terms, each of which is positive for 
x1 > · · · > xr, y1 > · · · > yr−1, and ρ1 > · · · > ρr−1; therefore D2 > 0. Consequently, w4(λ, x), and hence 
w̃4(λ, x), are STPr, and since r was chosen arbitrarily then they both are STP∞.

Example 5.5. Let

w5(λ, x) = (1 + λ)x − 1
λx

,

λ, x > 0. We show that w5(λ, x) is STP∞.
We observe that

w5(λ, x) = λ−1
λˆ

0

(1 + t)x−1 dt

= λ−1
∞̂

0

1(λ > t( (1 + t)x−1 dt.
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Recall that the function w2(λ, t) = 1(λ > t) is TP∞; moreover, the corresponding r × r determinants are 
positive on an open set in Rr

+. Also, the function w(t, x) = (1 + t)x−1 is STP∞. Therefore, by the Basic 
Composition Formula (2.3), w5(λ, x) is STP∞.

Example 5.6. Let

w6(λ, x) = λx

log(1 + λx) ,

λ, x > 0. We shall prove that w6 is STP∞ on the region {(λ, x) : λ > 0, x > 0, λx < 1}.
First, we note that for all λ, x > 0,

w6(λ, x) =
1ˆ

0

(1 + λx)t dt. (5.18)

For λx < 1, we expand the integrand, obtaining

(1 + λx)t =
∞∑
k=0

(−1)k

k! (−t)k λk xk,

where (a)k = a(a + 1)(a + 2) · · · (a + k − 1) is the classical rising factorial. Substituting this series into the 
integral at (5.18) and integrating term-by-term, we obtain

w6(λ, x) =
∞∑
k=0

θk λ
k xk, (5.19)

where

θk = (−1)k

k!

1ˆ

0

(−t)k dt

= 1
k!

1ˆ

0

t(1 − t)(2 − t) · · · (k − 1 − t) dt.

This representation shows immediately that θk > 0 for all k ≥ 0.
By applying to (5.19) the discrete version (2.4) of the Basic Composition Formula, with w1(λ, k) = λk, 

w2(k, x) = xk, and ν(k) = θk, we deduce that w6 is STPr for all r; hence, w6(λ, x) is STP∞ on the 
region {(λ, x) : λ > 0, x > 0, λx < 1}. By the discrete Binet-Cauchy formula (2.2), we also obtain the 
representation,

det
(
w6(λ, x)

)
=

∑
k1>···>kr≥0

θk1 · · · θkr
det(λkj

i ) det(xkj

i ).

As regards the total positivity properties of w6(λ, x) on R2
+, we calculated that for (x1, x2, x3) =

(20000, 0.3, 0.1) and (λ1, λ2, λ3) = (3, 0.4, 0.1),

det
(
w6(λi, xj)

)
3×3 = −5.17488 . . . < 0.

Therefore, w6(λ, x) is not TP3 on R2
+.
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Example 5.7. Let

w7(λ, x) = log(1 + λ + x)
λ + x

x

log(1 + x) ,

λ, x > 0. It is straightforward to verify that

log(1 + λ + x)
λ + x

=
∞̂

0

(1 + t)−1(1 + λ + x + t)−1 dt. (5.20)

We remark that this integral representation arose in work of Carlson and Gustafson [2] on the total positivity 
properties of mean value kernels; in the notation of Carlson and Gustafson, the function in (5.20) is denoted 
by R−1(1, 1; 1 + λ + x, 1). Writing

(1 + λ + x + t)−1 =
∞̂

0

e−(1+λ+x+t)u du,

substituting this formula into (5.20), and applying Fubini’s theorem to justify an interchange of the order 
of integration, we obtain

log(1 + λ + x)
λ + x

=
∞̂

0

(1 + t)−1
∞̂

0

e−(1+λ+x+t)u du dt

=
∞̂

0

e−λue−ux dν(u),

where the positive measure ν is given explicitly by

dν(u) =
[ ∞̂

0

e−tu(1 + t)−1 dt
]
e−u du,

u > 0. Consequently, we have obtained an integral representation,

w7(λ, x) = x

log(1 + x)

∞̂

0

e−λue−ux dν(u).

Applying the Binet-Cauchy formula (2.1), we obtain

det
(
w7(λi, xj)

)
=

[ r∏
j=1

xj

log(1 + xj)

] ˆ
· · ·

ˆ

u1>···>ur

det
(
e−λiuj

)
det

(
e−uixj

)
dμ(u1) · · · dν(ur)

for λ1 > · · · > λr and x1 > · · · > xr. Since the sign of each determinant in the integrand equals (−1)r(r−1)/2

then their product is positive everywhere on the range of integration. Therefore, w7(λ, x) is STPr for all 
r ≥ 1, hence it is STP∞.



D. Richards, C. Uhler / J. Math. Anal. Appl. 475 (2019) 532–553 553
6. Conclusions

In this paper, we have explored the implications for the loading monotonicity problem of the use of 
higher-order totally positive weight functions for constructing weighted premiums. In doing this, we applied 
results from the areas of total positivity [12] and symmetric functions [13]. As a consequence, we obtained 
monotonicity properties of generalized weighted premiums and an upper bound under a Lipschitz hypothesis 
for the increase in the weighted premium in response to an increase in the loading parameter. Further, we 
obtain the total positivity properties of two actuarial ratios that arise in research on combined insurance 
risks.

We also examined the higher order total positivity properties of a class of kernels that have appeared in 
the actuarial literature. We established the highest order of total positivity of each of these kernels, thereby 
adding to the collection of examples of strictly totally positive kernels.

We related the use of weight functions that are totally positive of higher order to the degree of randomness 
of insured risks, and we advise insurers to relate the order of total positivity of the chosen weight function 
to the index of dispersion of the loss variable. These results indicate that a broad list of TP∞, and even 
STP∞, weight functions is needed to develop weighted premiums for the purpose of underwriting insurable 
risks of any degree of randomness.
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