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In this paper, we derive L1 −L1 long time estimates for the strongly damped plate 
equation

utt + Δ2u + Δ2ut = 0 x ∈ Rn, t ∈ R+, u(0, x) = u0(x), ut(0, x) = u1(x).

In particular, we prove that

‖u(t, ·)‖L1 ≤ C (1 + t)
n
4
(
‖u0‖L1 + (1 + t)

1
2 ‖u1‖L1

)
,

for any t ≥ 0, in space dimension n ≥ 5.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the forward Cauchy problem for the following linear strongly damped plate 
equation

⎧⎪⎪⎨
⎪⎪⎩
utt + Δ2u + Δ2ut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x).

(1)

Fourth-order evolution partial differential equations as in (1) arise in problems of solid mechanics as, for 
example, in the theory of thin plates and beams. Also, in particular formulations of problems related with the 
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Navier-Stokes equations (see [29]) appear elliptic equations of fourth-order. Models to study the vibrations of 
thin plates (n = 2) given by the full von Kármán system have been studied by several authors, in particular, 
see [2,15,26].

The action of damping dissipates the energy of problem (1), due to

E ′(t) = −‖Δut(t, ·)‖2
L2 , E(t) = 1

2‖ut(t, ·)‖2
L2 + 1

2‖Δu(t, ·)‖2
L2 ,

and, more precisely, one can easily show that

E(t) ≤ C (1 + t)−n
4
(
E(0) + ‖u0‖2

L1 + ‖u1‖2
L1

)
,

for any t ≥ 0, for a constant C > 0, independent of the initial data, in any space dimension n ≥ 2, provided 
that the initial data are in the energy space H2 × L2 and in L1. However, the action of the damping also 
influences the Lp − Lq long time estimates for the solution to (1), where 1 ≤ p ≤ q ≤ ∞. The purpose of 
this paper is to investigate this influence, in particular in the more difficult setting of L1 − L1 estimates.

The dissipation of the energy, as a consequence of the damping, comes into play for more general evolution 
equations. The first example of dissipative evolution equation is the wave equation with weak damping⎧⎪⎪⎨

⎪⎪⎩
utt − Δu + ut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x).

(2)

Long time decay estimates and energy estimates for the solution to (2), with initial data in the energy space 
and in L1, have been obtained by A. Matsumura [17]. In particular,

‖∂k
t ∂

α
x u(t, ·)‖L2 ≤ C (1 + t)−n

4 −k− |α|
2
(
‖u0‖Hk+|α| + ‖u1‖Hk+|α|−1 + ‖u0‖L1 + ‖u1‖L1

)
,

for k + |α| ≥ 0. The asymptotic profile of the solution to (2) is described by the solution to the problem for 
a heat equation

{
vt − Δv = 0, x ∈ Rn, t ∈ R+,

v(0, x) = v0(x),
(3)

with initial data v0 = u0 + u1, see [16,21,31]. Namely,

‖u(t, ·) − v(t, ·)‖L2 = o(‖v(t, ·)‖L2),

under the moment condition
∫
Rn v0(x)dx �= 0. This phenomenon, sometimes called diffusion phenomenon,

clarifies how the dissipative action of the damping in (2) influences the long time Lp − Lq decay estimates. 
Indeed,

‖v(t, ·)‖Lp ≈ t
−n

2

(
1− 1

p

)
‖v(1, ·)‖Lp , 1 ≤ p ≤ ∞,

where v is the solution to (3). The dissipative action of the damping remains valid for more general evolution 
equations [14], say

⎧⎪⎪⎨
⎪⎪⎩
utt + (−Δ)σu + ut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
u (0, x) = u (x),

(4)
t 1
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for instance, for the damped plate equation, obtained for σ = 2. The long time decay estimates allow to 
study several types of nonlinear problems related to a damped evolution equation. In particular, the critical 
exponent for global small data solution of the damped wave equation with power nonlinearity |u|p is the 
same critical exponent of the corresponding semilinear heat equation, as proved in space dimension n = 1, 2
in [17] and in space dimension n ≥ 3 by G. Todorova and B. Yordanov [30].

The main difficulty in the study of nonlinear problems associated to the linear equation in (2), or in (4), 
is related to the regularity of the solution. Indeed, the solution operator for (2) has a regularity similar to 
regularity of the solution operator for the wave equation, as one can see from the study of Lp−Lq estimates, 
1 ≤ p ≤ q ≤ 2, for (2) (see [19]).

In particular, if u0 = 0 and u1 ∈ L1, the solution u(t, ·) to (2), or to the wave equation without damping, 
is not in L1, in space dimension n ≥ 4, for any t > 0. Namely, the fundamental solution to (2) is not a 
L1-bounded operator.

Going back to the plate equation,

⎧⎪⎪⎨
⎪⎪⎩
utt + Δ2u = 0, x ∈ Rn, t ∈ R+,

u(0, x) = 0,
ut(0, x) = u1(x),

(5)

with u1 ∈ Lp, we have that the solution u is in Lp if n|1/p − 1/2| < 1, and is not in Lp if n|1/p − 1/2| > 1, 
see [22]. A similar regularity issue appears for the plate equation with weak damping and for the solution 
to (4), with σ �= 1. For the wave equation, the regularity restriction is relaxed to (n − 1)|1/p − 1/2| ≤ 1.

In order to guarantee that the solution u(t, ·) to (4) is in Lp, for some p ∈ [1, 2), it is possible to 
assume that the initial data are in suitable Sobolev spaces Wm,p, where m = m(n, p, σ) ≥ 0 represents a 
loss of regularity. Incidentally, we remark that it is easier to guarantee that the solution remains in Lp, 
when p ∈ (2, ∞], since it is possible to use higher order energies (the Cauchy problem is well-posed in Hk) 
together with Sobolev embeddings Hk ↪→ Lp, with p(n − 2k) ≤ 2n (see [17] for (2)).

The situation is completely different in the case of a strong damping, as showed by Y. Shibata [27] for 
the wave equation with viscoelastic damping

⎧⎪⎪⎨
⎪⎪⎩
utt − Δu− Δut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x).

(6)

Assuming initial data in L1, the solution u(t, ·) to (6) remains in L1, for any t > 0. The motivation behind 
this phenomenon is that now the diffusive structure of the equation cancels the influence of oscillations on 
the regularity of the fundamental solution. On the other hand the diffusive structure created by the strong 
damping interacts with the wave structure of the problem, in the description of the asymptotic profile of 
the fundamental solution to (6). This latter is now given by the convolution of the Gauss kernel and the 
fundamental solution of the wave equation. The precise asymptotic profile to (6) has been first obtained 
in [10].

It turns out that the interaction between oscillations and damping, create a loss of decay rate for the 
solution to (6) in Lp − Lq estimates, with 1 ≤ p ≤ q < 2 (we always use the wording loss of decay rate
even if a decay only appears if p < q and/or if derivatives of the solution are considered). This loss is 
completely analogous to the loss of regularity created by the interaction between oscillations and damping 
for the solution to (2). In particular [27, Theorem 2.1,4], the solution to (6) verifies the estimate

‖u(t, ·)‖L1 ≤ C (1 + t)n
4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
, (7)
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in space dimension n ≥ 2, even, and the better estimate

‖u(t, ·)‖L1 ≤ C (1 + t)
n−1

4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
, (8)

in space dimension n ≥ 3, odd. We stress out that the quantity (1 + t)n
4 appearing in (7) is increasing in 

time, so it represents a loss with respect to the corresponding L2 − L2 estimate:

‖u(t, ·)‖L2 ≤ C
(
‖u0‖L2 + (1 + t) 1

2 ‖u1‖L2
)
,

where no loss appears. The fact that in odd space dimension, i.e. in (8), the loss is reduced, can be explained 
by the Huygens’ principle for waves, which is more effective in odd space dimension.

The main purpose of this paper is to prove the following.

Theorem 1. Let n ≥ 1. Assume that u0, u1 ∈ L1. Then the solution to (1) verifies estimate

‖u(t, ·)‖L1 ≤ C (1 + t)n
4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
,

provided that n ≥ 5 or u1 = 0, and estimate

‖u(t, ·)‖L1 ≤ C (1 + t)
(
‖u0‖L1 + (1 + t) 1

2 log(e + t)‖u1‖L1
)
,

if n = 4, for any t ≥ 0 and for some C > 0, independent of the data.

We remark that, in space dimension n ≥ 5, the estimate in Theorem 1 is the same estimate obtained for the 
wave equation with viscoelastic damping by Y. Shibata, i.e., (7). However, we cannot expect improvements 
in odd space dimension for the plate equation, due to the lack of Huygens’ principle for the plate.

The technique employed in [27] to prove (7) and (8) for (6) heavily relies on the very special structure 
of the fundamental solution to the wave equation. For this reason, in this paper we employ a different 
technique to estimate the Fourier multiplier associated to problem (1) at low frequencies, where oscillations 
interact with the damping (see later, Section 2). On the other hand, at high frequencies, where oscillations 
are neglected, the L1 well-posedness of the problem may be easily derived, with straightforward calculations.

To complete the picture and clarify the roles played by the damping, we mention a few other results.
T. Narazaki and M. Reissig [20] derived L1−L1 estimates for the wave equation with structural damping

⎧⎪⎪⎨
⎪⎪⎩
utt + Δu + (−Δ)θut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x),

(9)

with θ ∈ (0, 1). In particular, for θ ∈ (1/2, 1) they found estimates analogous to the limit case θ = 1
described in (6), including the reduction of the loss in odd space dimension:

‖u(t, ·)‖L1 ≤ C (1 + t)
[
n
2
](

1− 1
2θ

)(
‖u0‖L1 + (1 + t) 1

2σ ‖u1‖L1
)
. (10)

On the other hand, Lp −Lq estimates for (9) in the case θ ∈ (0, 1/2) are analogous to the estimates for the 
limit case θ = 0 described in (2). In particular a loss of regularity appears [5]. The diffusion phenomenon 
for this case has been investigated in [4].

Not surprisingly, under the simultaneous action of a weak and a strong damping, there is no loss of decay, 
neither a loss of regularity. For the wave equation with double damping [11]
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⎧⎪⎪⎨
⎪⎪⎩
utt + Δu + (1 − Δ)ut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x),

(11)

L1 − L1 estimates

‖u(t, ·)‖L1 ≤ C
(
‖u0‖L1 + ‖u1‖L1

)
,

have been derived and applied to semilinear problems in [3]. The reasoning for this result is that oscillations 
are completely canceled by the simultaneous action of the two damping terms. An interesting model for 
which oscillations are not canceled, but their influence can be neglected is the limit case θ = 1/2 in (9), for 
which (10) remains valid:

‖u(t, ·)‖L1 ≤ C
(
‖u0‖L1 + (1 + t)‖u1‖L1

)
.

We address the interested reader to [12,13,18,24] for additional long time estimates on σ-evolution models 
with strong or structural damping, and to [1,8,9] for more general equations with damping.

2. Decomposition of the solution at low and high frequencies

Applying the Fourier transform with respect to the space variable, we see that

û(t, ξ) = F [u(t, ·)](ξ) =
∫
Rn

e−ixξ u(t, x) dx

solves the Cauchy problem for the damped harmonic oscillator
⎧⎪⎪⎨
⎪⎪⎩
ûtt + |ξ|4û + |ξ|4ût = 0, t ∈ R+,

û(0, ξ) = û0(ξ),
ût(0, ξ) = û1(ξ),

(12)

for any ξ ∈ Rn. The overdamping region, where oscillations are neglected by the action of the damping, 
corresponds to |ξ| ≥

√
2, whereas we have damped oscillations for |ξ| <

√
2.

In particular, damped oscillations appear in the low frequencies region (the region containing small values 
of |ξ|), and oscillations are neglected in the high frequencies region (the region containing large values of |ξ|). 
The same property appears, more in general, for σ-evolution equations with strong damping:

⎧⎪⎪⎨
⎪⎪⎩
utt + (−Δ)σu + (−Δ)σut = 0, x ∈ Rn, t ∈ R+,

u(0, x) = u0(x),
ut(0, x) = u1(x).

(13)

On the other hand, in the case of a weak damping for σ-evolution equations, the situation is the oppo-
site: damped oscillations appear in the high frequencies region, and oscillations are neglected in the low 
frequencies region.

Since the regularity of the solution is determined by its high frequencies part and its asymptotic profile 
is determined by its low frequencies part, this phenomenon explains the different properties of the solution 
in the two cases. A classification between these two cases has been discussed and provided for evolution 
equations with time-dependent coefficients and structural damping in [6].
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Due to the different behavior of the solution to (1) at low and high frequencies, it is more convenient 
to give independent results for the solution localized at low frequencies, and for the solution localized at 
high frequencies. We notice that, due to the fact that problem (1) is linear, the localization of the solution 
is equivalent to study problem (1) with localized data. To localize the solution to (1) at low and high 
frequencies, we fix ϕ0 ∈ C∞

c (Rn) with ϕ0(ξ) = 1 in a neighborhood of the origin, we set ϕ∞ = 1 − ϕ0, and 
we put

E0(t)(u0, u1)(x) = F−1[ϕ0û(t, ·)](x), (14)

E∞(t)(u0, u1)(x) = F−1[ϕ∞û(t, ·)](x), (15)

where F−1 denotes the inverse Fourier transform with respect to the space variable, and u is the solution 
to (1).

The Fourier multipliers associated with the solution to (1) are smooth in Rn\{0}. Therefore, our analysis 
will focus on the singularities of the multipliers as ξ → 0 and on their behavior as |ξ| → ∞. The characteristic 
equation to (12) is

λ2 + |ξ|4λ + |ξ|4 = 0. (16)

If |ξ| >
√

2, equation (16) has real-valued, non positive, roots:

λ±(ξ) =
−|ξ|4 ± |ξ|2

√
|ξ|4 − 4

2 . (17)

If |ξ| <
√

2, the roots of (16) are complex-valued with negative real part:

λ±(ξ) =
−|ξ|4 ± i|ξ|2

√
4 − |ξ|4

2 . (18)

If we fix ϕ0, and ϕ∞ in C∞(Rn) such that

ϕ0(ξ) =
{

1 if |ξ| ≤ 3
4 ,

0 if |ξ| ≥ 1,
ϕ∞(ξ) =

{
1 if |ξ| ≥ 4,
0 if |ξ| ≤ 3,

(19)

and we define ϕ1 ∈ C∞(Rn) by

ϕ1(ξ) = 1 − (ϕ0(ξ) + ϕ∞(ξ)),

then the solution to (1) at “intermediate” frequencies

E1(t)(u0, u1) = F−1[ϕ1û(t, ·)](x)

trivially verifies the estimate

‖∂α
x ∂

k
t E1(t)(u0, u1)‖Lq ≤ C e−ct ‖(u0, u1)‖Lp ,

for any 1 ≤ p ≤ q ≤ ∞, k + |α| ≥ 0, and t ≥ 0, for some C, c > 0, independent of the data. Indeed, ϕ1 is 
compactly supported in Rn \ {0} and the real parts of the roots λ±(ξ) are negative in Rn \ {0}.

Therefore, it is not restrictive to assume that ϕ0, ϕ∞ are as in (19), in the definition of E0 and E∞, when 
we prove our statements for (14) and (15).

We first present our estimates for the solution to (1) at low frequencies E0(t)(u0, u1).
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Theorem 2. Let n ≥ 5. Assume that u0, u1 ∈ L1. Then the solution to (1) at low frequencies E0(t)(u0, u1)
verifies the following L1 − L1 estimate

‖E0(t)(u0, u1)‖L1 ≤ C (1 + t)n
4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
, (20)

for any t ≥ 0, for some C > 0, independent of the data. In space dimension n = 4, estimate (20) remains 
valid with a log-loss, namely,

‖E0(t)(u0, u1)‖L1 ≤ C (1 + t)
(
‖u0‖L1 + (1 + t) 1

2 log(e + t)‖u1‖L1
)
. (21)

In space dimension n = 1, 2, 3, estimate (20) remains valid if u1 = 0.

If we consider estimates at the “energy level”, i.e., at least one time derivative or two spatial derivatives, 
the restriction on the space dimension disappears, as it happens in Theorem 2 for u1 = 0. More in general, 
we have the following.

Theorem 3. Let n ≥ 1, α ∈ Nn and j ∈ N. Assume that u0, u1 ∈ L1, and that |α| ≥ 2 or j ≥ 1. Then the 
solution to (1) at low frequencies E0(t)(u0, u1) verifies the estimate

‖∂j
t ∂

α
xE0(t)(u0, u1)‖L1 ≤ C (1 + t)n

4 − j
2−

|α|
4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
, (22)

for any t ≥ 0, for some C > 0, independent of the data.

Our estimates are supplemented by the following regularity result for the solution to (1) at high frequen-
cies E∞(t)(u0, u1).

Theorem 4. Let n ≥ 1, α ∈ Nn and j, k ∈ N with 0 ≤ k ≤ j. Then the solution to (1) at high frequen-
cies E∞(t)(u0, u1) verifies the estimate

‖∂j
t ∂

α
xE∞(t)(u0, u1)‖Lp

≤ C e−ct
(
‖u0‖W |α|

p
+ ‖u1‖W (|α|−3)+

p
+ t−(j−k)‖(u0, u1)‖W 4k+(|α|−3)+

p

)
, (23)

for p = 1, ∞, for any t > 0, for some constant C, c > 0, independent of the data.

In Theorem 4 and in the following, we denote

Wm
p = {u ∈ Lp : ∂α

xu ∈ Lp, |α| ≤ m},

the usual Sobolev space on Rn.

Remark 2.1. We notice that estimate (23) is singular at t = 0 if one takes k < j. However, taking k < j, it 
is possible to estimate the Lp norm of time derivatives of the solution to (1) for any t > 0, assuming less 
regular initial data. That is, after some time, the time derivatives of the solution gain additional regularity. 
This phenomenon of smoothing effect is related to the presence of the strong damping, but it also appears 
in presence of structural damping for evolution models, effective or not, see [4,5,7] and when a strong and 
a weak damping are considered at the same time [3].

We immediately obtain that the proof of Theorem 1 follows as a consequence of Theorems 2 and 4. 
Similarly, combining Theorem 3 and 4, one may derive estimates for the derivatives of the solution to (1). 
For instance, one has the following.
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Corollary 2.1. Let n ≥ 1 and α ∈ Nn, j ∈ N. Moreover, let |α| ≥ 2 if j = 0 and u1 be not trivial. Assume 

that u0 ∈ W
|α|
1 and u1 ∈ W

(|α|−3)+
1 . Then the solution to (1) verifies the following L1 − L1 estimate

‖∂j
t ∂

α
x u(t, ·)‖L1 ≤ C(1 + t)n

4 − j
2−

|α|
4
(
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
+Ce−ct

(
‖u0‖W |α|

1
+ t−j ‖(u0, u1)‖W (|α|−3)+

1

)
,

for any t > 0, for some C, c > 0, independent of the data.

Remark 2.2. Let us consider problem (13) for the strongly damped σ-evolution equation, with σ ∈ N \ {0}, 
or even σ ∈ (0, ∞). One may easily follow the proof of Theorem 2 and 3 and show that the solution at low 
frequencies verifies estimate (20) in space dimension n > 2σ, estimate (21) if n = 2σ, and estimate (22) in 
space dimension n ≥ 1, provided that j ≥ 1 or |α| ≥ σ. If the space dimension n is even, estimates (20)
and (21) for σ = 1 have been obtained in [27] with a different technique, which cannot be used for σ �= 1. 
In fact, the technique employed in [27] allowed to improve the estimates in odd space dimension n ≥ 3, as 
a consequence of (strong) Huygen’s principle, namely, the factor (1 + t)n

4 could be replaced by (1 + t)n−1
4 . 

However, in general we cannot expect an improvement in odd space dimension, if σ �= 1, due to the lack of 
the classical Huygens’ principle.

2.1. Additional Lp − Lq estimates for the solution

In this section, we collect some additional Lp − Lq estimates for the solution to (1).
We may derive Lp−Lp estimates for E0, with p ∈ (1, 2), as a consequence of Theorem 2 and the following 

result, which easily follows from Plancherel’s theorem.

Lemma 2.1. Let n ≥ 1. Assume that u0, u1 ∈ L2. Then the solution to (1) at low frequencies E0(t)(u0, u1)
verifies the following estimate

‖E0(t)(u0, u1)‖L2 ≤ C
(
‖u0‖L2 + (1 + t)‖u1‖L2

)
, (24)

for any t ≥ 0, for some C > 0, independent of the data.

As a corollary of Theorem 2 and Lemma 2.1, we immediately obtain the following.

Corollary 2.2. Let n ≥ 5 and assume that u0, u1 ∈ Lp for some p ∈ (1, 2). Then the solution to (1) at low 
frequencies E0(t)(u0, u1) verifies the following Lp − Lp estimate

‖E0(t)(u0, u1)‖Lp ≤ C (1 + t)
n
2

(
1
p− 1

2

)(
‖u0‖Lp + (1 + t)1−

1
2

(
1
p− 1

2

)
‖u1‖Lp

)
, (25)

for any t ≥ 0, for some C > 0, independent of the data. In space dimension n = 4, estimate (25) remains 
valid with a log-loss. In space dimension n = 1, 2, 3, estimate (25) remains valid if u1 = 0.

At low frequencies, it is possible to derive additional decay rate for Lp − Lq estimates, where 1 ≤ p <
q ≤ ∞. For the sake of brevity we restrict to the easier case 1 ≤ p ≤ 2 ≤ q ≤ ∞ (studied for (6) in [25]). 
Indeed, in this case, the estimate may be easily obtained by using the Hausdorff-Young inequality.

Lemma 2.2. Let n ≥ 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞, with p �= q, be such that n(1/p − 1/q) > 2. Assume 
that u0, u1 ∈ Lp. Then the solution to (1) at low frequencies E0(t)(u0, u1) verifies the following decay 
estimate

‖E0(t)(u0, u1)‖Lq ≤ C (1 + t)−
n
4

(
1
p− 1

q

) (
‖u0‖Lp + (1 + t) 1

2 ‖u1‖Lp

)
, (26)
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for any t ≥ 0, for some C > 0, independent of the data. If n(1/p − 1/q) = 2, estimate (26) remains valid 
with a log-loss, namely,

‖E0(t)(u0, u1)‖Lq ≤ C (1 + t)− 1
2 ‖u0‖Lp + C log(e + t) ‖u1‖Lp . (27)

If n(1/p − 1/q) < 2, the solution to (1) at low frequencies E0(t)(u0, u1) verifies the following estimate

‖E0(t)(u0, u1)‖Lq ≤ C (1 + t)−
n
4

(
1
p− 1

q

)
‖u0‖Lp + C (1 + t)1−

n
2

(
1
p− 1

q

)
‖u1‖Lp , (28)

for any t ≥ 0, for some C > 0, independent of the data.

In particular, as a consequence of Theorem 2 and Lemma 2.2 with p = 1, we obtain, by interpolation, 
the following corollary, for q ∈ (1, 2).

Corollary 2.3. Let n ≥ 5 and q ∈ (1, 2). Assume that u0, u1 ∈ L1. Then the solution to (1) at low frequen-
cies E0(t)(u0, u1) verifies the following estimate

‖E0(t)(u0, u1)‖Lq ≤ C (1 + t)
n
4

(
3
q−2

) (
‖u0‖L1 + (1 + t) 1

2 ‖u1‖L1
)
, (29)

for any t ≥ 0, for some C > 0, independent of the data. If n = 4, estimate (29) remains valid with a log-loss. 
In space dimension n = 1, 2, 3, estimate (29) remains valid if u1 = 0.

As we did for E0 in Corollaries 2.2 and 2.3, we may derive Lp − Lp and L1 − Lp estimates for the 
derivatives of E0, with p ∈ (1, 2), as a consequence of Theorem 3 and the following result, which easily 
follows from the Hausdorff-Young inequality.

Lemma 2.3. Let n ≥ 1, α ∈ Nn and j ∈ N. Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Assume that u0, u1 ∈ Lp. Then the 
solution to (1) at low frequencies E0(t)(u0, u1) verifies the estimate

‖∂j
t ∂

α
xE0(t)(u0, u1)‖Lq ≤ C (1 + t)−

n
4

(
1
p− 1

q

)
− j

2−
|α|
4
(
‖u0‖Lp + (1 + t) 1

2 ‖u1‖Lp

)
, (30)

for any t ≥ 0, for some C > 0, independent of the data.

Finally, we may derive Lp − Lp estimates at high frequencies for the solution to (1), with p ∈ (1, ∞), by 
relying on the Mikhlin-Hörmander multiplier theorem.

Proposition 2.1. Let n ≥ 1, α ∈ Nn and j ∈ N. Let N ∈ N be such that N ≤ 4j, and p ∈ (1, ∞). Then the 
solution to (1) at high frequencies E∞(t)(u0, u1) verifies the estimate

‖∂j
t ∂

α
xE∞(t)(u0, u1)‖Lp

≤ C e−ct
(
‖u0‖W |α|

p
+ ‖u1‖W (|α|−4)+

p
+ t−N/4‖(u0, u1)‖W (4j+|α|−4−N)+

p

)
, (31)

for any t > 0, for some constant C, c > 0, independent of the data.

3. Proof of Theorems 2 and 3 and other low frequencies estimates

Let

K(t, x) = F−1
[
eλ+(ξ)t − eλ−(ξ)t

ϕ0(ξ)
]

(x). (32)

λ+(ξ) − λ−(ξ)
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Then it holds

E0(t, ·)(u0, u1) = (∂t + Δ2)K(t, ·) ∗ u0 + K(t, ·) ∗ u1, (33)

where ∗ denotes the convolution with respect to the space variable x. In view of (33), to prove our results 
it is sufficient to obtain estimates for K(t, ·) ∗ u1 and its derivatives.

First of all, we give a straight-forward regularity result.

Proposition 3.1. Let T ≥ 1. Then, for any t ∈ [0, T ] and 1 ≤ p ≤ q ≤ ∞, it holds

‖∂�
t∂

α
xK(t, ·) ∗ u1‖Lq(Rn) ≤ C(T )‖u1‖Lp(Rn),

for some C(T ), independent of u1.

Proof. To prove Proposition 3.1, it is sufficient to notice that K̂ ∈ C∞([0, T ], S), so that K ∈ C∞([0, T ], S)
as well. Here S denotes the Schwartz space. Indeed, K̂ ∈ C∞([0, T ], C∞

c ), and this concludes the proof.

In view of Proposition 3.1, we may assume t ≥ 1 with no loss of generality, in this section.
For the sake of brevity, we use the following notation.

Notation 1. We write f � g when there exists a constant C > 0 such that f ≤ Cg, and f ≈ g when 
g � f � g.

3.1. Proofs of Lemmas 2.1, 2.2, 2.3

For the ease of reading, before proving Theorems 2 and 3, we will first give the easier proofs of Lemmas 2.1, 
2.2, 2.3, which follows as a consequence of Plancherel’s theorem and the Hausdorff-Young inequality. Indeed, 
for any 1 ≤ p ≤ 2 ≤ q ≤ ∞, by Hölder inequality, it holds

‖∂�
t∂

α
xK(t, ·) ∗ u1‖Lq � ‖(iξ)α∂�

t K̂(t, ·)û1‖Lq′ � ‖(iξ)α∂�
t K̂(t, ·)‖Lr ‖û1‖Lp′ � ‖(iξ)α∂�

t K̂(t, ·)‖Lr ‖u1‖Lp ,

where q′ = q/(q − 1) and r verifies 1/r = 1/q′ − 1/p′ = 1/p − 1/q.
By formula (32) and (18), we get that

|(iξ)α∂�
t K̂(t, ξ)| � |ξ||α|+2�

e−|ξ|4t sin(|ξ|2t)
|ξ|2

ϕ0(ξ).

We notice that we may estimate

sin(|ξ|2t)
|ξ|2

≤ tθ |ξ|2θ−2
, (34)

for any θ ∈ [0, 1], and

|ξ|ae−|ξ|4t � t−
a
4 ,

for any a > 0. If r = ∞, that is, p = q, then

sup
ξ

|(iξ)α∂�
t K̂(t, ξ)| �

{
t−

|α|+2�−2
4 if 
 ≥ 1 or |α| ≥ 2,

t1−
|α|
2 if 
 = 0 and |α| = 0, 1.
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Namely, we set θ = 0 in the first case, and θ = 1 − |α|/2 in the second one.
If r ∈ [1, ∞), that is, p < q, then we may use the change of variable η = t

1
4 ξ to estimate

‖(i·)α∂�
t K̂(t, ·)‖Lr � t−

n
4r−

|α|+2�−2
4

(∫
Rn

|η|r(|α|+2�−2) e−r|η|/2 dη
) 1

r

.

The integral in the right-hand side is finite if |α| +2
 > 2 −n/r. Assume that this latter does not hold, that 
is, 
 = 0 and |α| + n/r ≤ 2. We split the integral into two parts, {t|ξ|2 ≤ 1} and {|ξ|2 ≤ 1 ≤ t|ξ|2}, and we 
employ (34) with θ = 1 in the first one and with θ = 0 in the second one, obtaining:

‖(i·)αK̂(t, ·)‖Lr � t
( ∫
|ξ|≤t−

1
2

|ξ|r|α|dξ
) 1

r +
( ∫
t−

1
2 ≤|ξ|≤1

|ξ|r(|α|−2)
dξ

) 1
r �

{
t1−

n
2r−

|α|
2 if |α| + n/r < 2,

log(e + t) if |α| + n/r = 2.

This concludes the proof of Lemmas 2.1, 2.2, 2.3.

3.2. Preliminary results

In the following, for any p ∈ [1, 2] we denote by Mp = Mp(Rn) the set of Fourier multipliers on Lp =
Lp(Rn). That is, the set of tempered distributions â, such that

‖â‖Mp
= sup

‖f‖Lp=1
‖F−1(âf̂)‖Lp < ∞.

In particular, it holds M2 = L∞ and, by Young inequality, F (L1) ↪→ Mp, with

‖â‖Mp
≤ ‖F−1(â)‖L1 .

On the other hand, by Riesz-Thorin interpolation theorem, we know that

‖â‖Mp
� ‖â‖1−θ

M1
‖â‖θM2

, θ = 2
(

1 − 1
p

)
,

for any p ∈ (1, 2). We already know that K(t, ·) ∈ S, so that K̂(t, ·) ∈ M1. To estimate ‖K̂(t, ·)‖M1 with 
respect to t, we will use the following.

Theorem 5 (Bernstein, see [23,28]). Let n ≥ 1 and N > n
2 . Assume that â ∈ HN . Then F−1(â) ∈ L1 and 

there exists a constant C > 0, such that

‖F−1(â)‖L1 ≤ C‖â‖1− n
2N

L2
‖DN â‖

n
2N
L2 ,

where

‖DN â‖L2 =
∑

|β|=N

‖∂β
ξ â‖L2 .

For the sake of completeness, we give the proof of the previous result.

Proof. Let a = F−1â. If a = 0, the statement is trivial. Otherwise, let

r = ‖â‖−
1
N
2 ‖DN â‖

1
N
2 .
L L
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Then, by Hölder inequality,

‖a‖L1 =
∫

|x|≤r

|a(x)| dx +
∫

|x|≥r

|x|−N |x|N |a(x)| dx � rn/2 ‖a‖L2 + r−N+n/2 ‖| · |Na‖L2

≈ rn/2 ‖â‖L2 + r−N+n/2 ‖DN â‖L2 ,

so that the proof follows.

To apply Theorem 5, we need to estimate the derivatives of K̂(t, ξ) with respect to ξ, whereas in Section 3.1
no derivative with respect to ξ was involved. Therefore, we will investigate the asymptotic profile of K̂(t, ξ)
as ξ → 0.

First of all, we notice that the solutions to (16) verify

�λ± = −|ξ|4, 
λ± = ±|ξ|2(1 + |ξ|4 g(|ξ|4)),

where g = O(1); explicitly,

g(s) =
√

4 − s− 2
s

= −1
2

1∫
0

1√
4 − θs

dθ.

We also put f(ξ) =
√

4 − |ξ|4. By Taylor’s formula we have the following asymptotic expansion.

Lemma 3.1. Let K(t, x) be as in (32). Then it holds

K̂(t, ξ) =
Q∑

j=0
âj(ξ, t) + e−|ξ|4t/2RQ(ξ, t), (35)

where

âj(ξ, t) = Aj(ξ)tj [∂j
t e

−|ξ|4t/2]
[
∂j
t

sin|ξ|2t
|ξ|2

]
,

Aj(ξ) = 1
j! [−g(|ξ|4)]j 2ϕ0(ξ)

f(ξ) ∈ C∞
c (Rn),

RQ(ξ, t) =
1∫

0

(1 − θ)Q[ei|ξ|
2t(2+θ|ξ|4g(|ξ|4))/2 − (−1)Q+1e−i|ξ|2t(2+θ|ξ|4g(|ξ|4))/2]dθ

× 1
Q!

[
ig(|ξ|4)

2

]Q+1

|ξ|6Q+4tQ+1ϕ0(ξ)
if(ξ) .

Proof. We may write

eλ±(ξ)t = e−|ξ|4t/2e±i|ξ|2f(ξ)t/2 = e−|ξ|4t/2e±i(2|ξ|2+|ξ|6g(|ξ|4))t/2.

By Taylor expansion formula, we have

e±i|ξ|6g(|ξ|4)t/2 =
Q∑

j=0

1
j!

(
±i|ξ|6g(|ξ|4)t

2

)j

+ 1
Q!

(±i|ξ|6g(|ξ|4)t
2

)Q+1
1∫
(1 − θ)Qe±iθ|ξ|6g(|ξ|4)t/2dθ.
0
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Due to

(
ei|ξ|

2t − (−1)je−i|ξ|2t)( i|ξ|6g(|ξ|4)t
2

)j

= 2i[∂j
t sin(|ξ|2t)]

(
|ξ|4g(|ξ|4)t

2

)j

,

noticing that λ+(ξ) − λ−(ξ) = i|ξ|2f(ξ), we conclude the proof of (35).

Taking advantage of the expansion in Lemma 3.1, it is sufficient to estimate derivatives with respect to ξ

of the two terms e−t|ξ|4 and |ξ|−2 sin(t|ξ|2). This latter term creates the oscillations which influence the L1

estimate of K(t, ·).
For the ease of reading, we will prepare a series of straight-forward estimates for the derivatives 

of |ξ|−2 sin(t|ξ|2).

Lemma 3.2. It holds

|ξ|−2| sin(t|ξ|2)| � t(1 + t|ξ|2)−1. (36)

The proof is trivial, but we present it to clarify the scheme used in the following results.

Proof. Having in mind (34), it is clear that estimate (36) follows by the estimate | sin ρ| ≤ C|ρ|(1 + |ρ|)−1, 
that is, | sin ρ| ≤ |ρ| is used for small values of |ρ| and | sin ρ| ≤ 1 for large ones.

Lemma 3.3. For any |β| = N ≥ 1, it holds

|∂β
ξ cos(t|ξ|2)| � t2|ξ|4(1 + t|ξ|2)N−2 |ξ|−N

. (37)

Proof. First we prove (37) for N = 1. Due to

∂ξj cos(t|ξ|2) = 2tξj sin(t|ξ|2),

then estimate (37) follows by the estimate | sin ρ| ≤ C|ρ|(1 + |ρ|)−1, that is, | sin ρ| ≤ |ρ| is used for small 
values of |ρ| and | sin ρ| ≤ 1 for large ones. Now let N ≥ 2. Setting 
 = �N/2�, the smallest integer number 
which verifies 
 ≥ N/2, we may estimate

|∂β
ξ cos(t|ξ|2)| ≤

∑
k≥�

tk |ξ|2k−N | cos(k)(t|ξ|2)| ≤ Ct2|ξ|4−N
N−2∑
k=0

tk|ξ|2k ≤ C1 t
2|ξ|4−N (1 + t|ξ|2)N−2,

where it has been sufficient to use 
 ≥ 1, together with | cos(k) ρ| ≤ C|ρ|(1 + |ρ|)−1 only for k = 1
and | cos(k) ρ| ≤ 1 for k ≥ 2 (independently if k is even or odd). This concludes the proof of (37).

Lemma 3.4. For any β �= 0, it holds

|∂β
ξ |ξ|

−2 sin(t|ξ|2)| � t3|ξ|4(1 + t|ξ|2)N−3 |ξ|−N
, |β| = N ≥ 1. (38)

Proof. The proof follows from straightforward calculations. In particular, we notice that

∂β
ξ |ξ|

−2 sin(t|ξ|2) = t ∂β
ξ sinc (t|ξ|2),

where sinc ρ = ρ−1 sin ρ, and that | sinc (k)(ρ)| ≤ C min{|ρ|, |ρ|−1} if k is odd, and | sinc (k)ρ| ≤
C min{1, |ρ|−1} if k is even. In particular,
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| sinc ′(ρ)| � |ρ|(1 + |ρ|)−2,

| sinc ′′(ρ)| � (1 + |ρ|)−1

whereas it is sufficient to use | sinc (k)(ρ)| ≤ |ρ|−1, for any k ≥ 3. If N = 1, 2, we immediately derive (38)
from the previous estimates, and

∂ξj sinc (t|ξ|2) = 2tξj sinc ′(t|ξ|2),
∂ξj∂ξk sinc (t|ξ|2) = 4t2ξjξk sinc ′′(t|ξ|2) + δjk2t sinc (t|ξ|2).

Now let N ≥ 3. Setting 
 = �N/2�, the smallest integer number which verifies 
 ≥ N/2, we get

|∂β
ξ sinc (t|ξ|2)| ≤

∑
k≥�

tk |ξ|2k−N | sinc (k)(t|ξ|2)| ≤ Ct2|ξ|4−N
N−3∑
k=0

tk|ξ|2k ≤ C1 t
2|ξ|4−N (1 + t|ξ|2)N−3,

where it has been sufficient to use 
 ≥ 1, together with the previous estimates for the derivatives of sinc .

Having in mind that ∂t|ξ|−2 sin(t|ξ|2) = cos(t|ξ|2), we need only to estimate ∂β
ξ ∂

�
t cos(t|ξ|2) for |β| ≥ 1

and 
 ≥ 1.

Lemma 3.5. For any 
 ≥ 1 and β �= 0, it holds:

|∂β
ξ ∂

�
t cos(t|ξ|2)| � |ξ|2�(1 + t|ξ|2)N |ξ|−N

, |β| = N ≥ 1. (39)

Moreover, if 
 is odd, it also holds

|∂β
ξ ∂

�
t cos(t|ξ|2)| � t|ξ|2+2� (1 + t|ξ|2)N−1 |ξ|−N

, |β| = N ≥ 1. (40)

Proof. To prove (39) and (40), we first notice that

∂�
t cos(t|ξ|2) =

{
(−1) �+1

2 t|ξ|2�+2 sinc (t|ξ|2) if 
 is odd,
(−1) �

2 |ξ|2� cos(t|ξ|2) if 
 is even,

and then we apply (36), (37) and (38).

Lemma 3.6. For any 
 ≥ 1 and β �= 0, it holds:

|∂β
ξ ∂

�
te

−t|ξ|4/2| � |ξ|4�(1 + t|ξ|4)N |ξ|−N
e−t|ξ|4/2, |β| = N ≥ 1. (41)

Moreover, if 
 = 0, then it holds

|∂β
ξ e

−t|ξ|4/2| � t|ξ|4(1 + t|ξ|4)N−1 |ξ|−N
e−t|ξ|4/2, |β| = N ≥ 1. (42)

We first apply Theorem 5 to âj , with j = 1, . . . , Q.

Lemma 3.7. Let n ≥ 1 and j ≥ 1. Then

‖(i·)α ∂�
t âj(t, ·)‖M1 � t

n
4 − |α|

4 − �
2 , (43)

uniformly with respect to j ≥ 1, for any t ≥ 1.
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Proof. Due to Aj ∈ C∞
c ⊂ M1 with ‖Aj‖M1 independent of t, it is sufficient to estimate

∂β
ξ ((iξ)α∂�

t (tj(∂
j
t e

−t|ξ|4/2)(∂j−1
t cos(t|ξ|2)))).

Thanks to (37) and (39), we may estimate

|∂β
ξ ∂

j+k−1
t cos(t|ξ|2)| � |ξ|2(j+k−1)−|β| (1 + t|ξ|2)|β|,

for any j ≥ 1, k ≥ 0 and |β| ≥ 0. Therefore, for |β| = N , recalling that |ξ|4 ≤ |ξ|2 in suppϕ0 (due to |ξ| ≤ 1), 
and using (41), we may estimate

|∂β
ξ ((iξ)α∂�

t (tj (∂j
t e

−t|ξ|4/2)(∂j−1
t cos(t|ξ|2))))| � tj |ξ|6j+|α|−2−N (t−1 + |ξ|2)� (1 + t|ξ|2)N e−t|ξ|4/2,

= tj−� |ξ|6j+|α|−2−N (1 + t|ξ|2)N+� e−t|ξ|4/2,

� t1−� |ξ|4+|α|−N (1 + t|ξ|2)N+� e−t|ξ|4/3,

uniformly with respect to j ≥ 1, where we used (t|ξ|6)j−1e−t|ξ|4/6 � |ξ|2(j−1) ≤ 1. We remark that the term

(t−1 + |ξ|2)� = t−�(1 + t|ξ|2)�

in the previous estimate takes into account of the possibility that each time derivative of ∂�
t is applied, in 

Leibniz’s rule, either to tj or to (∂j
t e

−t|ξ|4)(∂j−1
t cos(t|ξ|2)).

Setting first N = 0, and then N = (n + 1)/2 if n is odd and N = (n + 2)/2 if n is even, and using the 
change of variables η = t

1
4 ξ as in Section 3.1, we derive

‖∂β
ξ ((iξ)α∂�

t (tj (∂j
t e

−t|ξ|4/2)(∂j−1
t cos(t|ξ|2))))‖L2

� t1−�
(∫
Rn

|ξ|2(4+|α|−N) (1 + t|ξ|2)2(N+�) e−2t|ξ|4/3 dξ
) 1

2

= t−
n
8 +N

4 − |α|
4 −�

(∫
Rn

|η|2(4+|α|−N) (1 +
√
t|η|2)2(N+�) e−2|η|4/3 dη

) 1
2

� t−
n
8 + 3N

4 − |α|
4 − �

2

(∫
Rn

|η|2(4+|α|−N) (1 + |η|2)2(N+�) e−2|η|4/3 dη
) 1

2

≈ t−
n
8 + 3N

4 − |α|
4 − �

2 .

In the last estimate we used 2(4 + |α| −N) ≥ 8 − 2N > −n to have a convergent integral.
Applying Theorem 5, we derive (43), uniformly, with respect to j ≥ 1.

In a completely similar way, we may estimate the Fourier multiplier b̂Q+1(t, ξ) = e−|ξ|4t/2RQ(ξ, t).

Lemma 3.8. Let n ≥ 1 and Q ≥ 0. Then

‖(i·)α ∂�
te

−|·|4t/2RQ(t, ·)‖M1 � t
n
4 − |α|

4 − �
2 , (44)

uniformly with respect to Q ≥ 0, for any t ≥ 1.

To apply Theorem 5 to â0, we shall refine the proof of Lemma 3.7, since this multiplier is more singular 
at ξ = 0 than âj for j ≥ 1. Some differences appear in the proof of Theorems 2 and 3, due to the difficulties 
to deal with the singularity of â0.
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3.3. Proof of Theorem 3

We will first prove Theorem 3.

Proof of Theorem 3. In view of Proposition 3.1, Theorem 5 and Lemmas 3.1, 3.7 and 3.8, the proof of 
Theorem 3 follows if we prove that

‖(i·)α ∂�
t â0(t, ·)‖M1 � t

n
4 + 1

2−
|α|
4 − �

2 , (45)

provided that 
 ≥ 1 or |α| ≥ 2, for t ≥ 1.
Due to A0 ∈ C∞

c ⊂ M1 with ‖A0‖M1 independent of t, it is sufficient to estimate

∂β
ξ ((iξ)α ∂�

t (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))).

First, we set β = 0. Then we may easily estimate

|(iξ)α∂�
t (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))| � |ξ|2�+|α|−2

e−t|ξ|4/2

so that, by the change of variable η = t
1
4 ξ, we derive

‖(iξ)α∂�
t (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 �

(∫
Rn

|ξ|2(2�+|α|−2)
e−t|ξ|4 dξ

) 1
2

= t−
n
8 + 1

2−
|α|
4 − �

2

(∫
Rn

|η|2(2�+|α|−2) e−|η|4 dη
) 1

2

≈ t−
n
8 + 1

2−
|α|
4 − �

2 .

Indeed, the integral is convergent as a consequence of 2
 + |α| ≥ 2. Now, let |β| = N , with N = (n + 1)/2
if n is odd and N = (n + 2)/2 if n is even.

Assume first that 
 = 0. For |β| = N , recalling that |ξ|4 ≤ |ξ|2 in suppϕ0 (due to |ξ| ≤ 1), by (36)
and (38), we may estimate

|∂β
ξ ((iξ)αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))| � t|ξ||α|−N (1 + t|ξ|2)N−1 e−t|ξ|4/2,

so that, by the change of variable η = t
1
4 ξ, we derive

‖∂β
ξ ((iξ)αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2

� t
(∫
Rn

|ξ|2(|α|−N) (1 + t|ξ|2)2(N−1) e−t|ξ|4 dξ
) 1

2

= t1−
n
8 +N

4 − |α|
4

(∫
Rn

|η|2(|α|−N) (1 +
√
t|η|2)2(N−1) e−|η|4 dη

) 1
2

≈ t
1
2−n

8 + 3N
4 − |α|

4 .

Indeed, the integral is convergent as a consequence of 2|α| − 2N ≥ 4 − 2N > −n. Now, let 
 ≥ 1. Noticing 
that
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∂�
t (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)) = sin(t|ξ|2)

|ξ|2
∂�
te

−t|ξ|4/2 +
�∑

k=1

(



k

)
(∂�−k

t e−t|ξ|4/2)(∂k−1
t cos(t|ξ|2)),

we may apply (36) and (38) to estimate the first term, and we may apply (39) and (41) to estimate the 
second one. Therefore, we get

|∂β
ξ ((iξ)α∂�

t (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)))|

�
(
t |ξ|4�+|α|−N (1 + t|ξ|2)N−1 + |ξ|2(�−1)+|α|−N (1 + t|ξ|2)N

)
e−t|ξ|4/2

� |ξ|2�+|α|−2−N (1 + t|ξ|2)N e−t|ξ|4/2, (46)

so that, by the change of variable η = t
1
4 ξ, we derive

‖∂β
ξ ∂

�
t ((iξ)αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 �

(∫
Rn

|ξ|2(2�+|α|−2−N) (1 + t|ξ|2)2N e−t|ξ|4 dξ
) 1

2

= t
1
2−n

8 +N
4 − �

2−
|α|
4

(∫
Rn

|η|2(2�+|α|−2−N) (1 +
√
t|η|2)2N e−|η|4 dη

) 1
2

≈ t
1
2−n

8 + 3N
4 − �

2−
|α|
4 ,

provided that the latter integral is convergent, that is,

2(2
 + |α| − 2 −N) > −n.

The previous inequality fails if, and only if, 
 = 1, and either α = 0, or |α| = 1 with n even. In these cases, 
we shall refine our approach. We notice that, as a consequence of α = 0 if n = 1, and |α| ≤ 1 otherwise, it 
holds |β| = N ≥ |α| + 1. That is, when we consider

∂β
ξ ∂t((iξ)

α e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))

= ∂β
ξ

(
(iξ)α sin(t|ξ|2)

|ξ|2
∂te

−t|ξ|4/2 + (iξ)α e−t|ξ|4/2 cos(t|ξ|2)
)

= −1
2∂

β
ξ

(
(iξ)α |ξ|4 sin(t|ξ|2)

|ξ|2
e−t|ξ|4/2

)
+ ∂β

ξ

(
(iξ)α e−t|ξ|4/2 cos(t|ξ|2)

)

at least one derivative of the derivation ∂β
ξ is not applied to (iξ)α in Leibniz’s rule for product derivation 

of the second term in the sum, as a consequence of |β| ≥ |α| + 1. Namely,

∂β
ξ

(
(iξ)α e−t|ξ|4/2 cos(t|ξ|2)

)
=

∑
β1+β2=β

β2 �=0

(
β

β2

)
(∂β1

ξ (iξ)α) ∂β2
ξ (e−t|ξ|4/2 cos(t|ξ|2)),

since we may assume |β1| ≤ |α|. Due to the fact that we may apply (42) and (37) to ∂β2
ξ (e−t|ξ|4/2 cos(t|ξ|2)), 

we may refine 46 with the following:

|∂β
ξ ((iξ)α∂t(e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)))|

�
(
t |ξ|4+|α|−N (1 + t|ξ|2)N−1 + t|ξ|2+|α|−N (1 + t|ξ|2)N−1) e−t|ξ|4/2

� t|ξ|2+|α|−N (1 + t|ξ|2)N−1 e−t|ξ|4/2. (47)
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Comparing the estimate in (46) for 
 = 1, with the estimate in (47), we see that (1 + t|ξ|2)N has been 
replaced by t|ξ|2(1 + t|ξ|2)N−1, and this additional power |ξ|2 allow us to weaken enough the singularity of 
the multiplier at ξ = 0. Indeed, after the change of variable η = t

1
4 ξ, now we get

‖∂β
ξ ∂t((iξ)

αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 � t
(∫
Rn

|ξ|2(2+|α|−N) (1 + t|ξ|2)2(N−1) e−t|ξ|4 dξ
) 1

2

= t
1
2−n

8 +N
4 − |α|

4

(∫
Rn

|η|2(2+|α|−N) (1 +
√
t|η|2)2(N−1) e−|η|4 dη

) 1
2

≈ t−
n
8 + 3N

4 − |α|
4 ,

since integral is convergent, due to

2(2 + |α| −N) > −n.

We are now ready to apply Theorem 5. Thanks to

‖(i·)α ∂�
t ((iξ)αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 � t−

n
8 + 1

2−
|α|
4 − �

2 ,

‖∂β
ξ ∂

�
t ((iξ)αe−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 � t−

n
8 + 1

2+ 3N
4 − |α|

4 − �
2 , |β| = N,

we obtain (45). This concludes the proof of Theorem 3.

3.4. Proof of Theorem 2

We will now prove Theorem 2.

Proof of Theorem 2. By virtue of (33), the proof of Theorem 2 with u1 = 0 is a consequence of Theorem 3
with (
, |α|) = (1, 0), (0, 2). Therefore, it remains to prove the statement for u0 = 0.

In view of Proposition 3.1, Theorem 5 and Lemmas 3.1, 3.7 and 3.8, the proof of Theorem 2 follows if 
we prove that (45) holds, that is,

‖â0(t, ·)‖M1 � t
n+2

4 , (48)

if n ≥ 5, and

‖â0(t, ·)‖M1 � t
3
2 log(e + t), (49)

if n = 4, for t ≥ 1. Due to A0 ∈ C∞
c ⊂ M1 with ‖A0‖M1 independent of t, it is sufficient to estimate

∂β
ξ (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)).

First, let β = 0. If n ≥ 5, by the change of variable η = t
1
4 ξ, we derive

‖e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)‖L2 �
(∫
Rn

|ξ|−4
e−t|ξ|4 dξ

) 1
2

= t−
n
8 + 1

2

(∫
Rn

|η|−4 e−|η|4 dη
) 1

2 ≈ t−
n
8 + 1

2 .
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If n = 4, we split the integral into two parts, {t|ξ|2 ≤ 1} and {|ξ|2 ≤ 1 ≤ t|ξ|2}, and we employ (34)
with θ = 1 in the first one and with θ = 0 in the second one, obtaining:

‖e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)‖L2 � t
( ∫
|ξ|≤t−

1
2

1 dξ
) 1

2 +
( ∫
t−

1
2 ≤|ξ|≤1

|ξ|−4
dξ

) 1
2 � log(e + t).

Now let |β| = N with N = (n + 1)/2 if n is odd and N = (n + 2)/2 if n is even. Noticing that

∂β
ξ (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2)) =

∑
β1+β2=β

(
β

β1

)
(∂β1

ξ e−t|ξ|4/2) (∂β2
ξ |ξ|−2 sin(t|ξ|2))

= (∂β
ξ e

−t|ξ|4/2) |ξ|−2 sin(t|ξ|2) +
∑

β1+β2=β

β2 �=0

(
β

β1

)
(∂β1

ξ e−t|ξ|4/2) (∂β2
ξ |ξ|−2 sin(t|ξ|2)),

we may employ (42) and (36) to estimate the first term, and (42) and (38) to estimate the other ones. We 
derive:

|∂β
ξ (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))| � t2|ξ|4−N (1 + t|ξ|4)N−1(1 + t|ξ|2)−1 + t3|ξ|4−N (1 + t|ξ|2)N−3

� t2|ξ|2−N (1 + t|ξ|2)N−2,

where we used that |ξ|4 ≤ |ξ|2 in suppϕ0 (due to |ξ| ≤ 1). Therefore (after the change of variable η = t
1
4 ξ), 

we obtain

‖∂β
ξ (e−t|ξ|4/2|ξ|−2 sin(t|ξ|2))‖L2 � t

3
2−n

8 +N
4

(∫
Rn

|η|2(2−N) (1 +
√
t|η|2)2(N−2) e−|η|4 dη

) 1
2 ≈ t−

n
8 + 3N

4 + 1
2 .

The integral is convergent, due to 4 − 2N > −n. Applying Theorem 5, we obtain (45) if n ≥ 5, and (49)
if n = 4. This concludes the proof of Theorem 2.

4. Proof of Theorem 4 and Proposition 2.1

In this section, we follow the proof given in [27] with minor modifications, to prove Theorem 4.
Recalling that the roots λ± to (16) are given by (17), we define

(
L±v

)
(x) = F−1

[
eλ±(ξ)tλ∓(ξ)
λ+(ξ) − λ−(ξ)ϕ∞(ξ)v̂(ξ)

]
(x),

(
M±v

)
(x) = F−1

[
eλ±(ξ)t

λ+(ξ) − λ−(ξ)ϕ∞(ξ)v̂(ξ)
]

(x),

so that

E∞(t, ·)(u0, u1) = (L+ + L−)u0 + (M+ + M−)u1. (50)

In the following we will assume |ξ| ≥ 3 and we will study the behavior of λ± and their derivatives, as |ξ| → ∞.
By using Taylor’s formula in (17), we get

λ+(ξ) = −|ξ|4 + 1 + μ(ξ), λ−(ξ) = −1 − μ(ξ),
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where

μ(ξ) = 2
|ξ|4 g

(
4
|ξ|4

)
, g(s) =

1∫
0

(1 − θs)−3/2(1 − θ)dθ. (51)

In particular,

|∂β
ξ λ+(ξ)| � |ξ|4−|β|

, |∂β
ξ λ−(ξ)| � |ξ|−|β|

, |λ+(ξ) − λ−(ξ)| ≈ |ξ|4. (52)

We are now ready to prove Theorem 4.

Proof of Theorem 4. We will prove the following estimates:

‖∂j
t ∂

α
xL+(t)v‖Lp(Rn) � e−tt−(j−k)‖v‖

W
4k+(|α|−3)+
p

, (53)

‖∂j
t ∂

α
xM+(t)v‖Lp(Rn) � e−tt−(j−k)‖v‖

W
4k+(|α|−3)+
p

, (54)

‖∂j
t ∂

α
x (L−(t)v − e−tv)‖Lp(Rn) � e−t/4‖v‖

W
(|α|−3)+
p

, (55)

‖∂j
t ∂

α
xM−(t)v‖Lp(Rn) � e−t/4‖v‖

W
(|α|−3)+
p

, (56)

for p = 1, ∞ and k ∈ N with k ≤ j. The proof of Theorem 4 will immediately follow by combining the 
previous estimates, taking into account that we may estimate

‖∂j
t ∂

α
x (e−tv)‖Lp(Rn) � e−t‖v‖

W
|α|
p

,

in (55). We fix j ≥ k ≥ 0 and α1 ≤ α, then we consider the multiplier

â�(t, ξ) = eλ+(ξ)tλ−(ξ)�λ+(ξ)j(iξ)α1

(λ+(ξ) − λ−(ξ))(1 + |ξ|2)2k ϕ∞(ξ),

with 
 = 0, 1, so that

∂j
t ∂

α
xL+(t)v = a0(t, ·) ∗ ∂α−α1

x (1 − Δ)2kv, (57)

∂j
t ∂

α
xM+(t)v = a1(t, ·) ∗ ∂α−α1

x (1 − Δ)2kv, (58)

where a� = F−1(â�). We choose α1 = α, if |α| ≤ 3, whereas we choose some α1 ≤ α with |α1| = 3, if |α| ≥ 4. 
We now want to prove that

‖a�(t, ·)‖L1 ≤ e−t/2t−(j−k), 
 = 0, 1.

First, assume that |x| < 1/3. By using the identity

n∑
j=1

xj

i|x|2
∂

∂ξj
eix·ξ = eix·ξ, (59)

we may integrate by part n − 1 times, and get a�(t, x) = I1 + I2, where
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I1 = 1
(2π)n

∑
|β|=n−1

( ix

|x|2
)β

∫
3≤|ξ|≤ 1

|x|

eix·ξ∂β
ξ â�(t, ξ)dξ (60)

I2 = 1
(2π)n

∑
|β|=n−1

( ix

|x|2
)β

∫
|ξ|≥ 1

|x|

eix·ξ∂β
ξ â�(t, ξ)dξ. (61)

By using (52) and

|ξ|4(j−k)
eλ+t � t−(j−k) e−t,

for any k ≤ j (and |ξ| ≥ 3), we immediately obtain

|I1| � e−tt−(j−k)|x|−(n−1)
∫

3≤|ξ|≤ 1
|x|

|ξ||α1|−n−3dξ

≈ e−tt−(j−k)

{
|x|−(n−1) ln(|x|−1), if |α1| = 3
|x|−(n−1), otherwise.

(62)

For I2, integrating one more time, we obtain

I2 = 1
(2π)n

∑
|β|=n−1

( ix

|x|2
)β n∑

j=1

−ixj

|x|2
∫

|ξ|= 1
|x|

eix·ξ∂β
ξ â�(t, ξ)dS

+ 1
(2π)n

∑
|β|=n−1

( ix

|x|2
)β n∑

j=1

ixj

|x|2
∫

|ξ|≥ 1
|x|

eix·ξ∂ξj∂
β
ξ â�(t, ξ)dξ,

so that

|I2| � e−tt−(j−k)|x|−n
( ∫
|ξ|= 1

|x|

|ξ||α1|−n−3dS +
∫

|ξ|≥ 1
|x|

|ξ||α1|−4−ndξ
)

� e−tt−(j−k)|x|−n+4−|α1|

≤ e−tt−(j−k)|x|−(n−1), (63)

as a consequence of |x| < 1/3 and |α1| ≤ 3.
Now let |x| ≥ 1/3. Using (59) and the integration by parts n + 1 times, we get

|a�(t, x)| � e−tt−(j−k)|x|−(n+1)
∫

|ξ|≥3

|ξ||α1|−n−5dξ ≈ e−tt−(j−k)|x|−(n+1). (64)

This concludes the proof of (53) and (54). To prove (56), we proceed as before, but we set

â2(t, ξ) = eλ−(ξ)tλ−(ξ)j(iξ)α1

(λ+(ξ) − λ−(ξ)) ϕ∞(ξ).

By using (52) and eλ−(ξ)t ≤ e−t/4, we now derive ‖a2(t, ·)‖L1 ≤ e−t/4. This concludes the proof of (56). Let 
us notice that

L−(t)v = L(t, ·)v + ∂tM−(t)v,
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where

(
L−(t)v

)
(x) = F−1

[
eλ−(ξ)t ϕ∞(ξ)v̂(ξ)

]
(x).

We now take advantage of the asymptotic expansion of λ−(ξ) to gain some regularity from the cancelations 
of L−(t)v − e−tv. Due to the fact that ϕ∞ − 1 is a C∞

c (Rn) function, we trivially obtain

‖∂j
t ∂

α1
x (e−tF−1[ϕ∞(ξ) − 1])‖L1(Rn) � e−t,

so that, by using (51), it remains to estimate

â3(t, ξ) = (iξ)α1ϕ∞(ξ)∂j
t

(
e−t(e−μ(ξ)t − 1)

)
= (iξ)α1ϕ∞(ξ)μ(ξ)∂j

t

(
−te−t

1∫
0

e−θtμ(ξ)dθ
)

in M1. Due to

∣∣∂β
ξ

(
μ(ξ)j+1(iξ)α1

1∫
0

e−θtμ(ξ)θjdθ
)∣∣ � |ξ|−4(j+1)+|α1|−|β| � |ξ|−4+|α1|−|β|,

uniformly with respect to j, we may proceed as we did for a0, a1, a2, obtaining ‖a3(t, ·)‖L1 ≤ e−t/4.
This concludes the proof of (55).

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. The proof of Proposition 2.1 follows by a straight-forward application of the 
Mikhlin-Hörmander multiplier theorem to L±v, M±v, which we omit. Namely, it follows once we prove that

‖∂j
t ∂

α
xL+(t)v‖Lp(Rn) � e−t/2t−N/4‖v‖

W
(4j+|α|−4−N)+
p (Rn)

, ∀N ≥ 0,

‖∂j
t ∂

α
xM+(t)v‖Lp(Rn) � e−t/2t−N/4‖v‖

W
(4j+|α|−4−N)+
p (Rn)

, ∀N ≥ 0,

‖∂j
t ∂

α
xL−(t)v‖Lp(Rn) � e−t/2‖v‖

W
|α|
p (Rn),

‖∂j
t ∂

α
xM−(t)v‖Lp(Rn) � e−t/2‖v‖

W
(|α|−4)+
p (Rn)

,

for p ∈ (1, ∞).
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