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1. Introduction

This paper is a continuation of our previous study [13] on the long time behavior of solution to the
nonlinear Schrédinger equation with higher order anisotropic dispersion:

1 1
i0ru + §Au - Z@ilu = AMuP~ u, t>0,x R (1.1)

where u : R x R? — C is an unknown function, A € R\{0} and p > 1 are constants. Equation (1.1) arises
in nonlinear optics to model the propagation of ultrashort laser pulses in a medium with anomalous time-
dispersion in the presence of fourth-order time-dispersion (see [3,6,16] and the references therein). It also
arises in models of propagation in fiber arrays (see [1,5]). The readers can consult [4] for the well-posedness
of (1.1), and existence/non-existence and qualitative properties results of solitary wave solutions for (1.1).

In this paper, we consider the scattering problem for (1.1). Since the solution to the linearized equation
of (1.1) decays like O(t~%?) in L>°(R%) as t — oo (see Ben-Artzi, Koch and Saut [2]), we expect that if
p > 14 2/d, then the (small) solution to (1.1) will scatter to the solution to the linearized equation and if
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p < 142/d, then the solution to (1.1) will not scatter. The homogeneous fourth order nonlinear Schrédinger
type equation

1
i0pu + §A2u = MulP~tu, t>0,2 €R? (1.2)

has been studied by many authors from the point of view of the scattering. See [13] for a review of the
known results on the scattering and blow-up problem for (1.2). Compared to the homogeneous equation
(1.2), there are few results on the long time behavior of solution for (1.1). For the one dimensional cubic
case, the second author [14] proved that for a given asymptotic profile, there exists a solution u to (1.1)
which converges to the given asymptotic profile as ¢t — oo, where the asymptotic profile is given by the
leading term of the solution to the linearized equation with a logarithmic phase correction. Furthermore,
Hayashi and Naumkin [10] proved that for any small initial data, there exists a global solution to (1.1) with
d = 1,p = 3 which behaves like a solution to the linearized equation with a logarithmic phase correction.
Recently, the authors [13] have shown the unique existence of solution w to (1.1) which scatters to the free
solution for 2 < p < 3 if d =2 and 9/5 < p < 7/3 if d = 3. In this paper, refining the asymptotic formula
[13, Proposition 2.1] as t — oo for the solution to the linearized equation of (1.1), we prove the long range
scattering for (1.1) with the quadratic nonlinearity in two dimensions.
Let us consider the final state problem:

1 1
10 + §Au - Zaﬁlu = Aulu, t>0,2 € R?

. . 2 2 (13)
Jim (u(t) — () =0, in L(R?),

where v : R x R? = C is an unknown function and u4 : R x R2 — C is a “modified” asymptotic profile

given by
-1 ~ 30,4, 1,; 2 s
up(t, @) = —————=1py (p)e itz +is (hn =iz
3uf +1 1.4
[+ (9] '
Sy(t, &) =—A logt,
+(t,6) 355 I g

where p = (p1,p2) € R x R is a stationary point for the oscillatory integral (2.2) associated with the
linearized equation of (1.3), i.e.,

1 T r1\2 4 e T r1\2 4 e
e {(F )y A
M2 =

Our main result in this paper is as follows:

Theorem 1.1 (Long range scattering). There exists € > 0 with the following properties: for any ¥4 €
H%2(R?) with ||[¢4|goz < e (see (1.9) for the definition of H*?), there exists a unique global solution
u € O(R; L2(R?)) N {9y, ) ~V4LE (R; LE(R?)) to (1.3) satisfying

[u(t) —up ()2 <O

fort >3, where 1/2 < a < 3/4 and uy 1is given by (1.4).
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We give an outline of the proof of Theorem 1.1. To prove Theorem 1.1, we employ the argument by
Ozawa [12], Hayashi and Naumkin [8,9]. We first construct a solution u to the final state problem

1 1
i&tu+§Au— Zailu:)\\um, t >0,z € R?,

: - . (1.6)
tl}?oo(u(t) — W(t)F tw) =0, in L*(R?),

where w(t,€) = ¢4 (£)e’S+ ("8 and {W(t)},er is a unitary group generated by the operator (1/2)iA —
(1/4)i0;, . To prove this, we first rewrite (1.6) as the integral equation

u(t) — W(t)F tw

Y / W(t — 7)[Julu — |[W () F~ tw|W () F~tw](r)dr

+oo
—i / W (t — 7)R(7)dr, (1.7)
where
_ —1 A1 Sy (8| _ w U)
R=W()F lWIWIM( Je AW () F W () F .

Next, we apply the contraction mapping principle to the integral equation (1.7) in a suitable function space.
In this step the large time asymptotic formula (Proposition 2.1) and the Strichartz estimate (Lemma 2.2)
for solution to the linear equation (2.1) play an important role. Finally, we show that the solutions of (1.6)
converge to uy in L? as t — oo.

Remark 1.2. The proof of the large time asymptotic formula for solution to the linear equation (2.1) (Propo-
sition 2.1) depends heavily on the fact that the fourth-order dispersion is one dimensional. So far, we do
not know whether the our arguments are applicable for the scattering problem of the isotropic fourth order
nonlinear Schrédinger equation (1.2) for d > 2.

By using the argument by Glassey [7] we can prove the non-existence of asymptotically free solution for
(1.1) with p < 1+ 2/d.

Theorem 1.3 (Nonezistence of asymptotically free solution). Let d > 2 and 1 < p < 1+ 2/d. Let u €
C(R, L*>(R%)) be a solution to (1.1) with u(0,x) = ug € L?*(R?). Assume that there exists a function
Yy € H% N (0,,)P~ L/P with s > (4 —d)/2 + (d — 1)p/2 such that

Ju(t) = Wty llzz — 0, (1.8)
as t — oo, where {W(t)}ier is a unitary group generated by the operator (1/2)iA — (1/4)id; . Then u = 0.

Remark 1.4. The assumption for the regularity of the final state 1), stems from the asymptotic formula for
the linear fourth order Schrodinger equation (2.1) which is proved by our previous paper [13, Proposition 2.1].

We introduce several notations and function spaces which are used throughout this paper. For v €

~

S'(RY), (&) = F[](€) denote the Fourier transform of 1. Let (¢) = /|£|2 + 1. The differential operator
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V)’

= (1-
For 1 < ¢, < oo, Li(t,00; L7 (R%)) is defined as follows:

L9(t, 00; I (RY)) = {u € ' (R™): [ull oo oonrs) < 00},
1/q
T / lu(r

We will use the Sobolev spaces

Lr

H*RY) = {¢ € S'RY);|gll - = [{V)°¢ll 2 < o0}

and the weighted Sobolev spaces

HP(RY) = {6 € SR |1 = [(2)*(9)" 6|12 < o0}

A)*/? denotes the Bessel potential of order —s. We define (9,,)* = F~1(&)°*F~! for s € R.

(1.9)

We denote various constants by C' and so forth. They may differ from line to line, when this does not cause

any confusion.

The plan of the present paper is as follows. In Section 2, we prove several linear estimates for the fourth

order Schréodinger type equation (2.1). In Section 3, we prove Theorem 1.1 by applying the contraction

mapping principle to the integral equation (1.7). Finally in Section 4, we give the proof of Theorem 1.3.

2. Linear estimates

In this section, we derive several linear estimates that will be crucial for the proof of Theorem 1.1, for

the fourth order Schrodinger type equation

1 1
zﬁtu—i—ﬁAu—Zf)ﬁlu:Q t>0,.’L’€R27
u(0, z) = ¢ (z), r € R%

The solution to (2.1) can be rewritten as

ulta) = IV @l) = o [ < ietieyae

R2

The following proposition is a refinement of [13, Proposition 2.1] for d = 2 and p = 2.

Proposition 2.1. We have

W (t)y](z) = 3’:1 Z/}( )e%it/ff+%it|u\2—i% + R(t, )
1

fort =2, where p = (u1, p2) is given by (1.5) and R satisfies
IR®) L2 < CtP ] o2,

for 0 < g < 3/4.
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Proof of Proposition 2.1. We easily see

W (0)g)(x) = / Ktz — y)i(y)dy,
R2

where
1)? 12 gk
K(t,z) = (—) /e”g_%tlfl —atfige,
2
T s

By the Fresnel integral formula

1 iz igg2 1 23 .
—— [ etbrmathage, =2 i
R

we have

3

3 2 ) . )

K(t,2) = (_2l7r> f%ez—fﬂ%/emélf%tsfﬁtﬁdfl.
R

Therefore, we find

1 i - . i i iy2
u(t,x) = Et—%eatuﬁ—w /ezwlﬁl—atff—ztéi‘ﬂe%@/;](51,MZ)dgl.
R

We split u into the following two pieces:

u(t, x)
1 1 i 2_ -1 . 1 2 i 4
= _t—aeﬂﬂr%”/ewlﬁl—atfl—ztﬁl}'[w(ghM2)d§1

V2
" R

bt dedninitn e vel 5 e e
2 ’

R
=: L(t,x) + R(t, ). (2.3)

To evaluate L, we split L into

Lit.o) = <=t bestd=tinply)() [ emei-titgg
R

1 1 i 2 21 . i 2 7 4

bt b Ryl [ oot 6 - pa
2w

R

I g S Sl LT R T S
V2T
R

X (F[)(&r, p2) — FY)(pa, p2) — O F[Y) (1) (&1 — pa))dé
=: Ll(t, Z‘) + Lo (t, JJ) + L3(t, a:) (24)
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We rewrite L; as follows:

1 . . )
Ll(t,x) = \/—z?t_%e%ltlt%"‘itlﬂlz—z%ﬂ]_-[w](M) /e—lts(ul,gl)dé-l’
R

where S(p1,&1) is defined by

3 1
S(p1,61) = 51 + 51 (13 + )& + ZM% + 5#%-

Let

& — ,Ul)\/ff +2u1€1 + 3p2 + 2.

1 1
=t s e——(
V2313 +1

Then, Ly can be rewritten as follows:

Ll(t7 iL’)
1

=

Fli](u)editni$tnl—itn

/e_z‘tS(mEl)(gl — ,ul)dfl

§1=p1 R

f
d’lh d2771
~ e~ itS(p,60) 21 4
R/ 6™ g

dmp | d?
+ /6 ztS(/L1§1) ﬂ + n (61 - /’Ll))dfl

2
] G

1

Fle)()edii+ sl =m (L, (4 2) + Ly o(t,2) + Ly 5(t, 7). (2.5)

m\»—‘

=1

For L; i, changing the variable & +— 71, we have

1 )
Lia(t) = —= /e—%zt(?)ml)(m—unzdm,

In addition, changing the variable ¢; = (1/v/2)t'/?\/3u? +1(m — p1) (m ~ ¢1) and using the Fresnel
integral formula, we obtain

t 1/2 t71/2 .
Li1(t,x) _Zczdc = 726_11 (2.6)
Ty 3#1 3pp +1
Next we evaluate L; . Integrating by parts via the identity
TSI (6 — ) = it G, &) D e IS (2.7)

with

1
E+m& +pi+1

(,Ul,fl)

we have
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/efits(m,&)(fl — y)déy = fifl/efitS(m,&l)aflg(m,gl)dgl_
R R

Furthermore, integrating by parts via the identity

eiitS(ul’gl) = H(t, M1, 51)851 {(51 - ul)eiitS(uhgl)} (28)
with
H(t, i1, 1) = ;
LS it(& — p1)2(EF + b +pf + 1)
we obtain

e—itS(thl)(é'l — p1)dé;

%\

=it~ /e*“s““*fl)(& — 11) 0, {H (¢, p1,61) 0, G(pa, §1) } d&a

R
=it~} /e_its(m’&)(fl — pa)H(t, p1, £1)0Z G, &)déy
R
it [ e MSE (& — )0, H(t, pu1, €1) 0, G (11, €1)dE.

AN

Using the inequalities

01, G, )] < Clur) 572, (2.9)

|61 — pa] ™7
L+ t(& — p1)2(& + mé + 43 +1)

04 H(t, .| < © (2.10)

for 7 =0,1,2, we have

/e—itS(lﬂ)fl)(fl — p1)dé

R

. ol + )
< Ot~ () ﬂ(/lth(flu1)2(§%+ﬂ1§1+l@+1)d51.

By using the inequalities

1 .
—(m)?, if [§1 — pa| < (),
E 4 mb+p2+1>

1(51 — )%, if [§1 — pa| = (),

we see

/e_its(m,&)(gl — p1)d&

R
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. 1
< t71 -3 d
crm) / 1+ t(u1)?(& — pa)? &
[€1—p1|<(p1)

-1 —4 |fl - H1|
O m) / L+ t(& — )t t

[€1—p1|>(p1)

SOt (pug) 7 / &1 — pa| 72V dEy

[€1—p1|<(p1)

L Ot i) / & — | 8de,
[€1—p1]>(p1)
<O () 2 4 72 (p) )
<Ot ()3,

where 0 < v < 1/2. Hence

d2771
dg?

|Lia(t,2)| < Ct7177

§1=p1

For L, 3, integrating by parts via the identity (2.8), we have

Ll,g(t,ﬁﬁ') - _ e~ S (p1,61)

1
N (&1 — 1)
R

dm  dP*m
_l’_
de; ' de?

X O, {H(tam,fl)(

§1=p1

Furthermore, integrating by parts via the identity (2.7), we have

L1 3(t ZL’
_ it / —itS(ur,61)
]R
d d?
g, | G(p1, )0, {H(t,ul,&)(l— d—g+ df”;
1
= Z.t_l —sz(/u,fl)Fl(Ml 51) 3 d£
vor J e
d277 d2'r]
_ztS(thfl)F U ,€ 1 1 dg
\/27r/ 5 (1, 61) <—d§% d{f _— 1

U dnp | d®m
b [ eSS By, ) (1 - S5+
27_[_]1(/ 3(”1 51) d§1 dg%

§1=p1

where

(p) ™2 <t (pg) TR

(61— Ml))} dg;.

(&1 — Ml))H déy
§1=p1

(61— M1)> gy,

(2.11)

(2.12)

(2.13)
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Fi(p,61) = =G (p, §0) H (L, p11,61),

Fy(p,61) = —2G(p1,€1)0¢, H(t, piy, 1) — 0, G (1, §1) H (E, pa, €1),
F3(p1,&1) = Gpa, &1)0F H(t, p1,&1) + 0, G (1, €1)0e, H (¢, i1, €1).

Since dgf’l < C(u1) ™2, we see that
d2771 d2771
- == < sup €1 — | < Clu)%Jé1 — gl
d{% d&% &1=p1 &1€R d£1
dﬂl d2’171
1——=+ §1—p
‘ A&y df% §1=p1 « 2
U T/} R
déy 1= 3 dg% S1=m
1 2 -2 2
< 5 sup & —ml|” < CQ) "6 —ml™
2 ¢er d§1 | wl )™l |

Combining (2.9) and (2.10) with the above three inequalities, we have

—p1)2(E + & +p2+1)

|L173(t,l‘)| < Ct_1<M1>_5/ T t(gl |§1 - .ul| + <M1> dfl
R

Hence, by an argument similar to (2.11), we have
|Lis(ta)] < O ) =72,

where 0 < v < 1/2. By (2.5), (2.6), (2.12) and (2.14), we have
t71 34t 4+it| ‘2,'1
Li(t,2) = —===F[Yl(p)er™ 727 + Ry (t, x),
3u? +1

where R, satisfies

[Ry(t,2)| < Ot 277 (ug) =72 | Fly] ()]

with 0 < v < 1/2. Hence the Plancherel identity yield

1

IR (D)2 < Ct™= Y [[{u) =2 F () 22

1

<O | F 9 () ez
= Ot ¢ -

Next we evaluate Lo. By (2.11), we obtain

|La(t,2)| < Ct 377 (1) ~172(0¢, FIu] (1))

By an argument similar to that in (2.16), we have

(2.14)

(2.15)

(2.16)
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_1_
[L2(t)[r2 < Ct™277|[¢)][ ot (2.17)
Next, we evaluate Ls. We write
Ls(t,z) = t-zeditmitatll’—iam (¢ 7).

The same argument as that in (2.13) yields that Ls is equal to the right hand side of (2.13) by replacing
2 .
1- Z—Zi + ddg]gl . (&1 — p1) by Flb](&1, p2) — Flp)(pr, p2) — Oy Fb) (1) (€1 — pa ). Since

1=H1

|0, F[Y] (&1, pi2) — O, FIY)(p)] < ||6§1]:W]('7M2)HL§1 ISER
| F) (&1, p2) — Fl](pa, po) — O, F] (1) (€1 — pa)|

2 3
< §||8§1f[1/1]('7112)“L§1 |61 — a2,
we have

|Ls(t, )]
< Ct |02, FIYIC, 2) e,

1
—2
q R/ {1+t(& —N1)2(5%+M1§1+/~L%+1)}2d£1

&

_3 € — |2 + (a)l€ — |73
) R/ L4 t(& — p1)?(& 4 by + p3 +1)

By an argument similar to that in (2.11), we obtain

|La(t, )| < O () 77202, FIYICo o)z,

where 0 < v < 1/4. Hence

_3_ —4Ny—3
ILs() 22, < O 27| (ua) ™ 2, 102, FIL1(s m2)l 2,
—1— gy — L
<O ) T2 ez, 102, FIIC, p2)lle,
< Ct |08, FI G z) g,
Combining the above inequality and the Plancherel identity, we have
IZs ()22 < Ot 0Z, FILIC, m2)llzz, lre,

< Ct™ 277 ||¢h|| po.2. (2.18)

Finally let us evaluate R. R can be rewritten as

NN

iy

& = 1)Y)(w1, p2),

)

R= tiéG%tl'uQ‘27i%7TW4LS(t)-F£2'—>§2[(e

where {Wyps(t)}1er is a unitary group generated by the linear operator (i/2)02, — (i/4)0%,:
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1 X P62 igc4
Wirs(t)é = \/%/emalzt&ml]:mﬁ& [6](61)de .
R

Then, we obtain

iy3
IRz, =2 | Fassesl(e 2 = D](@1, p2) 22,

Combining the above identity and the Plancherel identity, we have

IRz =t 2 [[[[Framea (e — 1)9)(21, o)l 22, 22,

Yy

= Dl(wy, p2)llz ez,

)
NN

_1 i
=177 ||| Farme [(e

iy3

= 1o (€28 = Del(21, po) 2z, Iz,

iz
= ll(e= — D)¢||z2
< Ol o (2.19)

Collecting (2.3), (2.4), (2.15), (2.16), (2.17), (2.18) and (2.19), we obtain the desired result. O

To prove Theorem 1.1, we employ the decay estimate and the Strichartz estimate for the linear fourth
order Schrédinger equation (2.1).

Lemma 2.2. Let W(t) be given by (2.2).
(i) Let 2 < p < oo. Then, the inequality

1(02)' = # W () lly < O 1= g

holds.
(i1) Let (gj,7;) (7 =1,2) satisfy 1/q; +1/r; =1/2 and 2 < 1; < co. Then, the inequality

“+o00
@) [ Wit )P <Cl@.) E
t

L (t,00;L51)

q/ 7,/
t2 (t700§L12)

holds.

Proof of Lemma 2.2. See [11, Theorem 3.1, Theorem 3.2] for instance. O
3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To this end, we show the following lemma for the asymptotic
profile.

Lemma 3.1. Let S1 be given by (1./). Then we have fort > 3,

[4e"+ 08 g2 < (log ) P(| 4 || o),
1

V3 +1

where P(||1p4] go.2) s a polynomial in ||t || go.2 without constant term.

|¢+|¢+6i5+(t’f)”f1§ < (log t)*P(|[vo || r0.2),
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Proof of Lemma 3.1. Since the proof follows from a direct calculations, we omit the detail. O

Let us start the proof of Theorem 1.1. We first rewrite (1.6) as the integral equation. Let £ = id; +
(1/2)A — (1/4)03, and let

w(t, €) = 1y (£)e"+ 4O, (3.1)

where S is given by (1.4). From (1.6) and (3.1), we obtain

10 (FW (=t)u) = FW(=t)Lu = A\FW (—t)|u|u, (3.2)
-1 . .
0w = A [ (O[4(£)eS 1) (3.3)
3& +

Subtracting (3.3) from (3.2), we have

10 (FW(—t)u —w)

t 1

WIM( o (€)e™ “)H (3-4)

= A\FW (—t) lu|u —W(t)F! l

Proposition 2.1 and Lemma 3.1 yield

t— 1

V3E +

where u, is given by (1.4) and R; satisfies

w(t)F!

|¢+( )|$+(€)€is+(t’g)1 = [ug|us + Ra(?),

1 N N )
[R1(t)]lz2 < Ct_l_ﬂ||f_1[@WNQWNS)@ZSNLO]HHS*"‘

=Ct P e

1
V3 +1

< Ot (log t)2P([|¢0+4 || o), (3.5)
where 0 < 8 < 3/4. Furthermore, by Proposition 2.1 and Lemma 3.1,

-1
V/3EE +

= W) F  w|W(t)F w+ Ry(t) + Rat), (3.6)

w(t)F |1/)+( o (€)et5+ 09

where

| Ra(®)llz2 = W (OF W (O F " w — fusfu 2
< (W OF M wllzz + lu o)W OF " w - w2
< Ot P (log ) P(|[bs | 02). (3.7)

Substituting (3.6) into (3.4), we obtain
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10 (FW (—=t)u — w)
= MW (=) [|uju — |W @) Fw|W () Fw] — A\FW (—t)(Ry + Ry).
Integrating the above equation with respect to ¢ variable on (¢, 00), we have

u(t) — W(t)F tw
+oo
—in / Wt — ) [Julu — [W (&) F~ | W (6)F ) (r)dr
+oo

in / W(t — 7)(R1 + Ro)(7)dr (3.9)

To show the existence of u satisfying (3.8), we shall prove that if |11 | go.2 is sufficiently small, then the
map ¢ given by

Ou](t) = iA / Wt —7)[|ulu — |W(t).7:71w|W(t)]:71w](T)dT

—iA / W(t—71)(R1+ Re)(7)dr

is a contraction on

Xy = {u € C(IT,00); L (R%)) 1 (9a,) ™+ Lo (T, 005 L* (R?));
o~ W () F wlx, < p),
a 1
[ollcs = s1p £ (ol o= min) + 14052) F0lromizsy)

=

for some T' > 3 and p > 0.
Let v(t) = u(t) — W(t)F 'w and v € X, 7. Then the Strichartz estimate (Lemma 2.2) implies

1[u] — W(t)f’lwl\mo(t sosr2) + [1(9) T (Blu] = W(H)F ~ w) | pa1,00112)

Clllolol 5, 5, + W OF  wlolla o)
TRl L1 (t,00522)) + 1Rl L1 (2,00522))- (3.9)
By the Hélder inequality,
ot g, g, < Cllolzzloleel g
< ol lollzal, g .,

< Opllt™ | L2 (t,00) 101l L4 (2,005 24
< Cp2t72oz+%’

W () F ~ wloll ot 0022y < W EF  w]| e 0]l 2 [l 1 1,00)
< CpP([[ 9+l o) 1t 21 1,009
< CpP ([l go=)t™
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Substituting the above two inequalities, (3.5), and (3.7) into (3.9), we have
1@[u] = W () F "wllx, < C(P°T™*2 + pP(|[to4 || o) + T (log T)*).

Choosing 1/2 < o < 8 < 3/4, T' large enough, and ||t || yo.2 sufficiently small, we find that ® is a map onto
X, 7. In a similar way we can conclude that ® is a contraction map on X, 7. Therefore, by the Banach
fixed point theorem we find that ® has a unique fixed point in X, 7 which is the solution to the final state
problem (1.6).

From (1.6), we obtain

u(t) =Wi(t— M/W )ulu(T)dr. (3.10)

Since u(T) € L2(R?), combining the argument by [15] with the Strichartz estimate (Lemma 2.2) and
L? conservation law for (3.10), we can prove that (3.10) has a unique global solution in C(R;L2(R?)) N
(00,)"YALE (R; LA(R?)). Therefore the solution u of (1.6) can be extended to all times.

Finally we show that the solution to (1.6) converges to uy in L? as t — oo. Since u— W () F tw € X, 1,
Proposition 2.1 and Lemma 3.1 yield

l[u(t) = up(t)]| 2

< lu() = WEHF  wlipz + [WEOF o — 2
< Ct= + Ct P (logt)?
<Cte,

where 1/2 < a < 8 < 3/4. This completes the proof of Theorem 1.1. O
4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 via the argument by Glassey [7]. To prove Theorem 1.3, we employ
the asymptotic formula [13, Proposition 2.1] as t — oo for the solution to

1 1
i@tu—|—§Au—16§1u=O, t>0,zeR?
u(0,x) = (), r € RY.

Lemma 4.1. Let W (t)y be a solution to (4.1). Then we have

\n.

t 2 N

\/S,ul-i-

fort =2, where p = (pu1,p1) is given by

1/3 1/3
_ 1 a4 g e + A
m=q g (T tyeit g A Gl ’

H1L = 7

W (1)) = (et 2T 4 R )

and R satisfies
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1

d(l_1y_
IRl < 77 gl g.e,

for2<p<oo,1/(4p) < B <1/2 ands>d/2—(d—1)/p+ 1.

Proof of Lemma 4.1. See [13, Proposition 2.1]. O

Proof of Theorem 1.3. Let 0 < ¢; < t3 and let u be a solution to (1.1) satisfying (1.8). We denote (
J u(x)v(z)dx. Then a direct calculation shows

(W(=t)u(t) = W(—t2)ulta),+)r2

to

— i / (W (=)l V() ) pa dr

t1

= =i [ (P ) () W)y

ta

B *M/<(IU+I” Q) () (1) sz dr

to

~in / (P~ a0) (), W (g — (7)) 2 dr

to

—M/<(IUIP_1U)(T) = (W P~ ) (1), ul (7)) L2 dr

t1
=: Il(tl,tg) + Ig(tl,tg) —+ Ig(tl,tg),

where u{ is defined by

Ul (t,) = —mmmthy (et B

By the definition of ugr, we easily see

to
p+1
I (t1, ta) = —iA / W+ ) ————du /T_%(p_l)dT
1+3u7)"%

t1

By Lemma 4.1 and the conservation law for L? norm of u, we have

[Ia(t1,t2)| < C [ Hu(D) 7 IW (T)ey —ul(T)l| L2 dr
x Lf P

to

d
< CH“0||1£§||1/J+||H35/T_E(p—l)—5d7-7

ty

where (2 —p)/8 << 1/2and s > (4 —d)/2+ (d — 1)p/2.

15

u,v) =

(4.2)
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By Lemma 4.1 and the conservation law for L? norm of u, we have

pdT

2
-1 -1
[I3(t1, t2)] < C/(IIU(T)IIig + g (P17 ) lulr) —u(iIILgllu?rHLzz

Cllluolz" + 1+ 123" 1(0ar) =D | 4
to

x [ utr) = Wiz + 7 sl 20 e, (15

t1

where 1/8 < 8 < 1/2 and s > 3/2. By (4.2), (4.3), (4.4) and (4.5), we have

- (—t2)u(t2), ¥+ ) 2|

to
1
(m/ |17/1+3 \PJF e /T_g(p_ndT
_|_

t1

—c / ~4e-0-hgr _ ¢ / () = W) | par— 40 Ddr,

t1

Hence by the assumption (1.8) on u, we see that there exists T' > 0 such that for to > t; > T,

_ (—t2)ultz), ¥i)r2 |

ta
|>\| / W)+ |p+1 d,U, /ng(Pfl)dT
(1+3u}) "=

t1

Hence we have u = 0. This completes the proof. 0O
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