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1. Introduction

The interplay between Symbolic Dynamics and C∗-algebras started with the work of Cuntz and Krieger 
[16]. They associated a C∗-algebra, known as a Cuntz-Krieger algebra, to a finite square matrix of 0’s 
and 1’s representing what is known as a subshift of finite type. These subshifts can also be described 
using finite graphs [31]. Cuntz-Krieger algebras were generalized to a general subshift by Matsumoto and 
Carlsen [32,14,12], to graph C∗-algebras by considering infinite graphs in [29], and to Exel-Laca algebras 
by considering infinite matrices in [22]. In [41] Tomforde introduces ultragraphs and their C∗-algebras as a 
common framework for Exel-Laca algebras and graph C∗-algebras.

From the point of view of Symbolic Dynamics, a broader class of subshifts, called sofic subshifts, can be 
defined by using labelled graphs [31]. With labelled graphs and Tomforde’s definition of an ultragraph in 
mind, Bates and Pask defined the notion of a labelled space and associated a C∗-algebra to it [4]. The class 
of labelled space C∗-algebras generalizes all the classes of algebras mentioned above, including C∗-algebras 
associated to general subshifts, not necessarily sofic. There were some problems with Bates and Pask’s 
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original definition of a labelled space C∗-algebra, and a new one was proposed, independently, in [3] and by 
the first named author together with Boava and Mortari in [7].

In some instances there is more than one model for an associated C∗-algebra. For example, it is well 
known that a directed graph has a groupoid model such the associated C∗-algebras are isomorphic [29,33]. 
In [13] it is shown that a directed graph also has a partial dynamical system associated with it such that 
the graph C∗-algebra and the crossed product C∗-algebra are isomorphic. In [8], the first named author in 
collaboration with Boava and Mortari gave a groupoid model to labelled space C∗-algebras.

In this paper we give a new description of a labelled space C∗-algebra by associating a partial action 
with a labelled space. We prove that the labelled space C∗-algebra is isomorphic to the partial crossed 
product of this partial action by giving an explicit isomorphism. In addition, we show that the partial 
action groupoid (as in [1]) is isomorphic to the labelled space groupoid as given in [8], which generalizes 
the various models for graphs described above to labelled spaces. Unlike graphs, the case of labelled spaces 
brings new technical difficulties that need to be dealt with. Specifically, our partial action is defined on the 
tight spectrum, which is a set of filters in an inverse semigroup associated with the labelled space [6]. And, 
each tight filter is characterized by a pair consisting of a path and family of filters in the underlying vertex 
set. Therefore, unlike graphs where one only considers paths, here we also need to consider these families 
of filters in conjunction with paths.

A particular property of C∗-algebras associated to some underlying object that has been well studied is 
simplicity. Simplicity of graph C∗-algebras is characterized in [29,38,33,18], for partial actions associated to 
graphs in [24] and for étale groupoids in [9]. Simplicity of ultragraphs C∗-algebras is studied in [40].

We use our new description of labelled space C∗-algebras as partial crossed product as well as description 
as a groupoid C∗-algebra to characterize simplicity of labelled space C∗-algebras in terms of the tight 
spectrum of the labelled space and in terms of the labelled space itself. Sufficient conditions for simplicity 
of labelled space C∗-algebras are given in [5], and a converse is given in [26,28]. However, in both instances 
it is assumed that the labelled space is set-finite and receiver set-finite, the underlying graph has no sinks 
and no sources, and that the accommodating family of the labelled space is the smallest such family. We 
do not make any of these assumptions in this paper. In [15] Boolean dynamical systems are studied, which 
generalize labelled spaces. A characterization of simplicity for a C∗-algebra associated with a Boolean 
dynamical system is also given in [15]. In this instance, though, the Boolean dynamical system is assumed 
to be countable with a certain domain condition. We do not assume countability or any domain conditions 
in our simplicity characterization.In particular, we remove the domain condition in [28, Theorem 3.7]. In 
the process we recover some of the simplicity results of [15].

In order to describe our results on the simplicity of labelled spaces C∗-algebras, we recall three conditions 
found to describe the simplicity of C∗-algebras associated to an arbitrary graph [18, Corollary 2.15]. The 
first condition is called condition (L), which says that every cycle on the graph has an exit. The second 
one, called cofinality, says that every infinite path on the graph can be reached in a sense from finite paths, 
and the third condition deals with singular vertices. Also, in [18], the authors study the ideal structure of 
graph C∗-algebras using the concept of hereditary and saturated sets of vertices. In broad terms, hereditary 
means if a vertex is in the set then all vertices that can be reached by this one are also in the set, and 
saturated means all vertexes that reaches a certain vertex are in the set, then the reached vertex is in the 
set as well. There are versions of condition (L), called condition (LB), and hereditary saturated subsets 
for labelled spaces as well (Definitions 6.12 and 6.14 respectively). We prove, under some mild hypothesis, 
that a labelled space C∗-algebra is simple if and only if the labelled space satisfies condition (LB) and the 
only hereditary saturated sets are trivial (Theorem 6.16). We also point out that, in some cases, hereditary 
saturated sets can be used to describe ideals in labelled spaces C∗-algebras [27,19,2].

In [15], the simplicity characterization for the C∗-algebra of a Boolean dynamical system is applied to the 
Cuntz-Pimsner algebra of a one-sided subshift. It is stated that the C∗-algebra of the subshift is simple if and 
only if there is no cyclic point isolated in past equivalence and the subshift is cofinal in past equivalence, [15, 
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Example 11.4]. However, a different simplicity characterization of these algebras is given in [17]. We apply 
our results to C∗-algebras of one-sided subshifts and recover the results in [17]. Then we give an example 
where the subshift has no cyclic points isolated in past equivalence and is cofinal in past equivalence, but the 
associated algebra is not simple, which shows that a stronger condition than cofinality in past equivalence 
is needed in [15, Example 11.4].

This paper is structured as follows. Section 2 contains some preliminaries and notation on labelled spaces 
and their C∗-algebras which are used throughout this paper. In Section 3 we define a partial action on the 
tight spectrum of a labelled space. Section 4 contains our first main result, Theorem 4.8. Here we show that 
the partial crossed product, obtained from the partial action of the previous section, is isomorphic to the 
labelled space C∗ -algebra. In section 5 we show that the groupoid associated with a labelled space (as in 
[8]) is the same groupoid that is obtained from the partial action (as in [1]). In Section 6 we apply our results 
on the partial action and its associated groupoid to characterize simplicity of labelled space C∗-algebras 
in terms of the tight spectrum (Theorems 6.7 and 6.16). Finally, in Section 7, by applying our results to 
subshifts, we characterize simplicity of certain C∗-algebras associated with subshifts, and recover some of 
the results in [17]. We also give an example to show that a stronger condition is needed for simplicity of 
C∗-algebras associated with subshifts than that given in [15, Example 11.4].

Acknowledgments: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de 
Nível Superior - Brasil (CAPES) - Finance Code 001. The majority of this paper was completed while the 
second author worked at Universidade Federal de Santa Catarina under the guidance of the first author. 
He thanks him for his guidance and warm hospitality. The authors would also like to thank the referee for 
several suggestions that helped improve the clarity of the exposition.

2. Preliminaries

2.1. Filters and characters

A filter in a partially ordered set P with least element 0 is a subset ξ of P such that

(i) 0 /∈ ξ;
(ii) if x ∈ ξ and x ≤ y, then y ∈ ξ;
(iii) if x, y ∈ ξ, there exists z ∈ ξ such that z ≤ x and z ≤ y.

If P is a (meet) semilattice, condition (iii) may be replaced by x ∧ y ∈ ξ if x, y ∈ ξ. An ultrafilter is a filter 
which is not properly contained in any filter.

For x ∈ P , we define

↑x = {y ∈ P | x ≤ y} , ↓x = {y ∈ P | y ≤ x},

and for subsets X, Y of P define

↑X =
⋃
x∈X

↑x = {y ∈ P | x ≤ y for some x ∈ X},

and ↑YX = Y ∩ ↑X; the sets ↑Y x, ↓Y x, ↓X and ↓YX are defined analogously.

Lemma 2.1. Let P be a partially ordered set P with least element 0. Then, for all x ∈ P \ {0}, there exists 
an ultrafilter ξ such that x ∈ ξ.

Proof. It follows from Zorn’s lemma observing that ↑x is a filter containing x. �
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A lattice L is a partially ordered set such that every finite subset {x1, . . . , xn} has an least upper bound, 
denoted by x1 ∨ · · · ∨ xn, and a greatest lower bound, denoted by x1 ∧ · · · ∧ xn. If ξ is a filter in a lattice L
with least element 0, we say that ξ is prime if for every x, y ∈ L, if x ∨ y ∈ ξ, then x ∈ ξ or y ∈ ξ.

The following result is well known in order theory.

Proposition 2.2. Let ξ be a filter in a Boolean algebra B. Then, ξ is an ultrafilter if and only if ξ is a prime 
filter.

2.2. Labelled spaces

A (directed) graph E = (E0, E1, r, s) consists of non-empty sets E0 (of vertices), E1 (of edges), and range
and source functions r, s : E1 → E0. A vertex v such that s−1(v) = ∅ is called a sink, and the set of all sinks 
is denoted by E0

sink. The graph is countable if both E0 and E1 are countable.
A path of length n on a graph E is a sequence λ = λ1λ2 . . . λn of edges such that r(λi) = s(λi+1) for all 

i = 1, . . . , n − 1. We write |λ| = n for the length of λ and regard vertices as paths of length 0. En stands 
for the set of all paths of length n and E∗ = ∪n≥0E

n. Similarly, we define a path of infinite length (or an 
infinite path) as an infinite sequence λ = λ1λ2 . . . of edges such that r(λi) = s(λi+1) for all i ≥ 1; for such 
a path, we write |λ| = ∞ and we let E∞ denote the set of all infinite paths.

A labelled graph consists of a graph E together with a surjective labelling map L : E1 → A, where A is 
a fixed non-empty set, called an alphabet, and whose elements are called letters. A∗ stands for the set of 
all finite words over A, together with the empty word ω, and A∞ is the set of all infinite words over A. 
We consider A∗ as a monoid with operation given by concatenation. In particular, given α ∈ A∗ \ {ω} and 
n ∈ N∗, αn represents α concatenated n times and α∞ ∈ A∞ is α concatenated infinitely many times.

The labelling map L extends in the obvious way to L : En → A∗ and L : E∞ → A∞. Ln = L(En) is the 
set of labelled paths α of length |α| = n, and L∞ = L(E∞) is the set of infinite labelled paths. We consider 
ω as a labelled path with |ω| = 0, and set L≥1 = ∪n≥1L

n, L∗ = {ω} ∪ L≥1, and L≤∞ = L∗ ∪ L∞. We say 
that α is a circuit if α∞ = αα · · · ∈ L∞.

For α ∈ L∗ and A ∈ P(E0) (the power set of E0), the relative range of α with respect to A is the set

r(A,α) =
{
{r(λ) | λ ∈ E∗, L(λ) = α, s(λ) ∈ A}, if α ∈ L≥1

A, if α = ω.

The range of α, denoted by r(α), is the set

r(α) = r(E0, α),

so that r(ω) = E0 and, if α ∈ L≥1, then r(α) = {r(λ) ∈ E0 | L(λ) = α}.
We also define

L(AE1) = {L(e) | e ∈ E1 and s(e) ∈ A} = {a ∈ A | r(A, a) �= ∅}.

A labelled path α is a beginning of a labelled path β if β = αβ′ for some labelled path β′. Labelled paths 
α and β are comparable if either one is a beginning of the other. If 1 ≤ i ≤ j ≤ |α|, let αi,j = αiαi+1 . . . αj

if j < ∞ and αi,j = αiαi+1 . . . if j = ∞. If j < i set αi,j = ω. Define L∞ = L(E∞) = {α ∈ A∞ | α1,n ∈
L∗, ∀n ∈ N}, that is, it is the set of all infinite words such that all beginnings are finite labelled paths. 
Clearly L∞ ⊆ L∞, however the inclusion may be proper (see for instance the example below [28, Definition 
2.10]). Also we write L≤∞ = L∗ ∪ L∞.

A labelled space is a triple (E, L, B) where (E, L) is a labelled graph and B is a family of subsets of E0

which is closed under finite intersections and finite unions, contains all r(α) for α ∈ L≥1, and is closed under 
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relative ranges, that is, r(A, α) ∈ B for all A ∈ B and all α ∈ L∗. A labelled space (E, L, B) is weakly left-
resolving if for all A, B ∈ B and all α ∈ L≥1 we have r(A ∩B, α) = r(A, α) ∩r(B, α). A weakly left-resolving 
labelled space such that B is closed under relative complements will be called normal.2 A non-empty set 
A ∈ B is called regular if for all ∅ �= B ⊆ A, we have that 0 < |L(BE1)| < ∞. The subset of all regular 
element of B together with the empty set is denoted by Breg.

For α ∈ L∗, define

Bα = B ∩ P(r(α)) = {A ∈ B | A ⊆ r(α)}.

If a labelled space is normal, then Bα is a Boolean algebra for each α ∈ L≥1, and Bω = B is a generalized 
Boolean algebra as in [37]. By the Stone duality, every with Bα, α ∈ L∗, is associated with a topological 
space Xα, which consists of the set of ultrafilters in Bα. A basis for Xα is given by the family {UA}A∈Bα

, 
where UA = {F ∈ Xα|A ∈ F}.

2.3. The inverse semigroup of a labelled space

Let (E, L, B) be normal labelled space and consider the set

S = {(α,A, β) | α, β ∈ L∗ and A ∈ Bα ∩Bβ with A �= ∅} ∪ {0}.

Define a binary operation on S as follows: s · 0 = 0 · s = 0 for all s ∈ S and, if s = (α, A, β) and t = (γ, B, δ)
are in S, then

s · t =

⎧⎪⎨
⎪⎩

(αγ′, r(A, γ′) ∩B, δ), if γ = βγ′ and r(A, γ′) ∩B �= ∅,
(α,A ∩ r(B, β′), δβ′), if β = γβ′ and A ∩ r(B, β′) �= ∅,
0, otherwise.

If s = (α, A, β) ∈ S, we define s∗ = (β, A, α). Then S endowed with the operations above is an inverse 
semigroup with zero element 0 ([6], Proposition 3.4), whose semilattice of idempotents is

E(S) = {(α,A, α) | α ∈ L∗ and A ∈ Bα} ∪ {0}.

The natural order in the semilattice E(S) is described in the next proposition.

Proposition 2.3. [6, Proposition 4.1] Let p = (α, A, α) and q = (β, B, β) be non-zero elements in E(S). 
Then p ≤ q if and only if α = βα′ and A ⊆ r(B, α′).

2.4. Filters in E(S)

For a (meet) semilattice E with 0, there is a bijection between the set of filters in E (upper sets that are 
closed under meets and that do not contain 0) and the set Ê0 of characters of E (zero and meet-preserving 
non-zero maps from E to the Boolean algebra {0, 1}). With the topology of pointwise convergence on Ê0, 
the closure of the subset Ê∞ of characters that correspond to ultrafilters in E is denoted by Êtight, and 
is called the tight spectrum of E. Elements of Êtight are the tight characters of E, and their corresponding 
filters are tight filters. The set of all filters will be denoted by F and the set of tight filters will be denoted 

2 Note this definition differs from [3]. However since all labelled spaces considered in this paper are weakly left-resolving, we 
include ‘weakly-left resolving’ in the definition of a normal labelled space.
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by T, which we also call tight spectrum. In particular, we may view T as a closed subspace of F. See [20, 
Section 12] for details.

Let (E, L, B) be weakly-left resolving labelled space. We recall the description of the tight spectrum of 
E(S), as given in [6].3 Let α ∈ L≤∞ and {Fn}0≤n≤|α| (understanding that 0 ≤ n ≤ |α| means 0 ≤ n < ∞
when α ∈ L∞) be a family such that Fn is a filter in Bα1,n for every n > 0 and F0 is either a filter in B or 
F0 = ∅. The family {Fn}0≤n≤|α| is a complete family for α if

Fn = {A ∈ Bα1,n | r(A,αn+1) ∈ Fn+1}

for all n ≥ 0.

Theorem 2.4. [6, Theorem 4.13] Let (E, L, B) be a weakly left-resolving labelled space and S its associated in-
verse semigroup. Then there is a bijective correspondence between filters in E(S) and pairs (α, {Fn}0≤n≤|α|), 
where α ∈ L≤∞ and {Fn}0≤n≤|α| is a complete family for α.

Filters are of finite type if they are associated with pairs (α, {Fn}0≤n≤|α|) for which |α| < ∞, and of 
infinite type otherwise.

A filter ξ in E(S) with associated labelled path α ∈ L≤∞ is sometimes denoted by ξα to stress the word 
α; in addition, the filters in the complete family associated with ξα will be denoted by ξαn (or simply ξn). 
Specifically,

ξαn = {A ∈ B | (α1,n, A, α1,n) ∈ ξα}. (2.5)

Remark 2.6. It follows from [6, Propositions 4.4 and 4.8] that for a filter ξα in E(S) and an element 
(β, A, β) ∈ E(S) we have that (β, A, β) ∈ ξα if and only if β is a beginning of α and A ∈ ξα|β|.

Theorem 2.7 ([6], Theorems 5.10 and 6.7). Let (E, L, B) be a normal labelled space and S its associated 
inverse semigroup. Then the tight filters in E(S) are:

(i) The filters of infinite type for which the non-empty elements of their associated complete families are 
ultrafilters.

(ii) The filters of finite type ξα such that ξ|α| is an ultrafilter in Bα and for each A ∈ ξ|α| at least one of 
the following conditions hold:

(a) L(AE1) is infinite.
(b) There exists B ∈ Bα such that ∅ �= B ⊆ A ∩ E0

sink.

For α ∈ L∗, we denote by Tα the set of all tight filters in E(S) for which the associated word is α.

2.5. Filter surgery in E(S)

Fix a labelled space (E, L, B). Let Xα be the topological space associated with the Boolean algebra Bα

via Stone’s duality. We give an outline of glueing and cutting of filters, and refer the reader to [7, Section 
4] for more details and the proofs.

3 The results in [6] are stated in terms of L≤∞. This leads to an error in the proof of [6, Proposition 4.18], where it is assumed 
that if an infinite word has all beginnings belonging to L∗, then this word is a labelled path. That is, L≤∞ = L≤∞, which is not 
always the case (see Subsection 2.2). By exchanging L≤∞ for L≤∞ we get the correct descriptions of the filters in [6], and the same 
proofs given in [6] hold.
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If α, β ∈ L≥1 such that αβ ∈ L≥1, the relative range map r( · , β) : Bα −→ Bαβ is a morphism of Boolean 
algebras and, therefore, we have its dual morphism

fα[β] : Xαβ −→ Xα

given by

fα[β](F) = {A ∈ Bα | r(A, β) ∈ F}. (2.8)

If α = ω and F ∈ Bβ , then fω[β](F) = {A ∈ B | r(A, β) ∈ F} is either an ultrafilter in B = Bω or is the 
empty set, and we can therefore consider fω[β] : Xβ −→ Xω ∪ {∅}. The functions fα[β] are continuous and 
fα[βγ] = fα[β] ◦ fαβ[γ].

We now review functions described in [7] that are used throughout this paper.
We begin with the “gluing map”: for composable labelled paths α ∈ L≥1 and β ∈ L∗ (that is, such that 

αβ ∈ L≥1), consider the subspace X(α)β of Xβ given by

X(α)β = {F ∈ Xβ | r(αβ) ∈ F}.

Then there is a continuous map

g(α)β : X(α)β −→ Xαβ

on ultrafilters induced by gluing α at the beginning of the labelled path β given by

g(α)β(F) = {C ∩ r(αβ) | C ∈ F}. (2.9)

For labelled paths α ∈ L≥1 and β ∈ L≤∞, let T(α)β be the subspace of Tβ given by

T(α)β = {ξ ∈ Tβ | ξ0 ∈ X(α)ω}.

Then we define a gluing map [7, Theorem 4.12]

G(α)β : T(α)β −→ Tαβ ,

taking a tight filter ξ ∈ T(α)β to the tight filter η ∈ Tαβ , whose complete family of (ultra) filters is obtained 
by gluing and cutting labelled paths as follows:

• If β = ω,

η|α| = g(α)ω(ξ0) = {C ∩ r(α) | C ∈ ξ0}

and, for 0 ≤ i < |α|,

ηi = fα1,i[αi+1,|α|](η|α|) = {D ∈ Bα1,i | r(D,αi+1,|α|) ∈ η|α|};

• If β �= ω, for 1 ≤ n ≤ |β| (or n < |β| if β is infinite)

η|α|+n = g(α)β1,n(ξn) = {C ∩ r(αβ1,n) | C ∈ ξn}

and, for 0 ≤ i ≤ |α|,

ηi = fα1,i[α β1](η|α|+1) = {D ∈ Bα1,i | r(D,αi+1,|α|β1) ∈ η|α|+1}.
i+1,|α|



8 G.G. de Castro, D.W. van Wyk / J. Math. Anal. Appl. 491 (2020) 124290
Finally, for α = ω set T(ω)β = Tβ and let G(ω)β be the identity function on Tβ .

Remark 2.10. In [7], it is asked that α and β are composable in order for G(α)β to make sense when β �= ω. 
However, if ξ ∈ T(α)β , then α and β are indeed composable. To see this, suppose that ξβ ∈ T(α)β . Then, by 
the definition of complete family, for 1 ≤ n ≤ |β| (or n < |β| if β is infinite), r(αβ1,n) = r(r(α), β1,n) ∈ ξn. 
Since ξn is a filter, then r(αβ1,n) �= ∅, and hence αβ1,n must be a labelled path. Since n was arbitrary, we 
have that αβ ∈ L≤∞.

Next, we describe the “cutting map”: for composable labelled paths α ∈ L≥1 and β ∈ L∗, there is a 
continuous map

h[α]β : Xαβ −→ X(α)β

induced on ultrafilters by cutting α from the beginning of αβ given by

h[α]β(F) =↑Bβ
F = {C ∈ Bβ | D ⊆ C for some D ∈ F}. (2.11)

For composable labelled paths α ∈ L≥1 and β ∈ L≤∞, this map gives rise to a cutting map [7, Theorem 
4.15]

H[α]β : Tαβ −→ T(α)β

that takes a tight filter ξ ∈ Tαβ to the tight filter η ∈ T(α)β such that, for all n with 0 ≤ n ≤ |β|,

ηn = h[α]β1,n(ξn+|α|).

For α = ω define H[ω]β to be the identity function on Tβ .

Theorem 2.12. [7, Theorem 4.17] Let (E, L, B) be a normal labelled space, and let α ∈ L≥1 and β ∈ L≤∞ be 
such that αβ ∈ L≤∞. Then H[α]β = (G(α)β)−1.

Theorem 2.13. [7, Lemmas 4.13 and 4.16] Let (E, L, B) be a normal labelled space, and let α, β ∈ L≥1 and 
γ ∈ L≤∞ be such that αβγ ∈ L≤∞. Then G(αβ)γ = G(α)βγ ◦G(β)γ and H[β]γ ◦H[α]βγ = H[αβ]γ.

2.6. The C∗-algebra of a labelled space

Let (E, L, B) be a normal labelled space. The C*-algebra associated with (E, L, B), denoted by C∗(E, L, B), 
is the universal C∗-algebra generated by projections {pA | A ∈ B} and partial isometries {sa | a ∈ A} subject 
to the relations

(i) pA∩B = pApB, pA∪B = pA + pB − pA∩B and p∅ = 0, for every A, B ∈ B;
(ii) pAsa = sapr(A,a), for every A ∈ B and a ∈ A;
(iii) s∗asa = pr(a) and s∗bsa = 0 if b �= a, for every a, b ∈ A;
(iv) For every A ∈ B for which 0 < #L(AE1) < ∞ and there does not exist B ∈ B such that ∅ �= B ⊆

A ∩ E0
sink,

pA =
∑

a∈L(AE1)

sapr(A,a)s
∗
a.

For each word α = a1a2 · · · an ∈ L≥1, define sα = sa1sa2 · · · san
.
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Proposition 2.14. Let (E, L, B) be a normal labelled space. Then

C∗(E,L,B) = span{sαpAs∗β | α, β ∈ L∗ and A ∈ Bα ∩Bβ}.

Remark 2.15. In Proposition 2.14, we can have an element sαpAs∗β with α = ω or β = ω. For computational 
purposes it is helpful to interpret sω as being 1, even though sω is not in the C*-algebra, because after 
simplifying the expression, we get an element of C∗(E, L, B). For example, sωpAs∗ω means pA.

For details, see [3] and [7].

3. A partial action on the tight filters of E(S)

In this section we define a partial action of the free group generated by A on the tight spectrum T of a 
labelled space. Our construction is in the same spirit as that of graphs [13]. However, as opposed to graphs 
where we only need to consider paths, filters in T are in one-to-one correspondence with pairs consisting 
of a labelled path and a family of filters (see Theorem 2.4), which adds an extra layer of complexity that 
needs to dealt with.

We recall the definition of a topological semi-saturated orthogonal partial action:

Definition 3.1. [22, Section 2] A partial action of a group G on a topological space X is pair

Φ = ({Vt}t∈G, {φt}t∈G)

consisting of open sets {Vt}t∈G and homeomorphisms φt : Vt−1 → Vt such that

(1) Ve = Ve−1 = X and φe is the identity on X,
(2) φs(Vs−1 ∩ Vt) = Vs ∩ Vst, and
(3) φs(φt(x)) = φst(x) for every x ∈ Vt−1 ∩ V(st)−1 .

If the partial action is given by the free group F on a set of generators, then the partial action is semi-
saturated if

φs ◦ φt = φst

for every s, t ∈ F such that |st| = |s| + |t|, and orthogonal if Va ∩ Vb = ∅ for a, b in the set of generator with 
a �= b.

Fix a weakly-left resolving labelled space (E, L, B). We begin by describing the topology on T. For 
e ∈ E(S) define

Ue = {ξ ∈ F | e ∈ ξ}.

If {e1, . . . , en} is a finite (possibly empty) set in E(S), define

Ue:e1,...,en = Ue ∩ U c
e1 ∩ · · · ∩ U c

en .

Proposition 3.2. [30, Lemma 2.22 and Lemma 2.23] The sets Ue:e1,...,en form a basis of compact-open sets 
for a Hausdorff topology on F.
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Corollary 3.3. For e ∈ E(S) and a finite (possibly empty) set {e1, . . . , en} ⊂ E(S), the sets

Ve:e1,...,en := Ue:e1,...,en ∩ T

form a basis of compact-open sets for a Hausdorff topology on T.

Proof. The result follows from the fact that T is a closed subset of F. �
In particular, we denote Ve = Ue ∩ T.
We next describe the open domains and codomains for the partial action on T. Let α ∈ L∗. Then

⋃
{T(α)β | β ∈ L≤∞ and αβ ∈ L≤∞}

is the set of all filters in E(S) whose associated labelled path can be glued to α, and
⋃

{Tαβ | β ∈ L≤∞ and αβ ∈ L≤∞}

is the set of all filters in E(S) whose associated word begins with α. Note that if β, γ ∈ L≤∞ and β �= γ, 
then Tαβ ∩ Tαγ = ∅ and T(α)β ∩ T(α)γ = ∅ for all α ∈ L∗. Hence, the unions above are disjoint unions for 
a fixed α. To simplify notation we write �β T(α)β where it is understood that the union is taken over all 
β ∈ L≤∞ such that αβ ∈ L≤∞. Note that �β Tωβ = �β T(ω)β = T.

Lemma 3.4. Fix α ∈ L≥1. Then

(i) V(α,r(α),α) = �β Tαβ, and
(ii) V(ω,r(α),ω) = �β T(α)β.

Proof. (i) Assume ξ ∈ �β Tαβ and |α| = n. Then there is a β ∈ L≤∞ such that αβ ∈ L≤∞ and ξ = ξαβ

with associated with a pair (αβ, {ξαβi }i≥0). Since r(α1,n) is contained in any filter Fn ⊂ Bα1,n , it follows 
from Remark 2.6 that

(α, r(α), α) = (α1,n, r(α1,n), α1,n) ∈ ξαβ .

Hence ξ = ξαβ ∈ V(α,r(α),α).
Now suppose that ξ ∈ V(α,r(α),α) and ξ = ξγ for some γ ∈ L≤∞. Then

(α, r(α), α) = (α1,n, r(α1,n), α1,n) ∈ ξγ ,

and it follows from Remark 2.6 that γ = αβ for some β ∈ L≤∞. Thus ξ ∈ �β Tαβ .
(ii) Suppose ξβ ∈ V(ω,r(α),ω) and let {ξβn}n≥0 be the complete family of filters for β associated with ξβ . 

Then

(ω, r(α), ω) = (β1,0, r(α), β1,0) ∈ ξβ ,

which implies that

r(α) ∈ ξβ0 = {A ∈ Bβ1,0 | r(A, β1,m) ∈ ξβm},

for all m > 0. Therefore r(r(α), βm) ∈ ξβm for all m > 0. Since ξm is a filter it is non-empty. Thus 
r(r(α), βm) �= ∅, which shows that αβ ∈ L≤∞. Hence, if r(α) ∈ ξβ0 then ξβ0 ∈ X(α)ω, and thus ξβ ∈ T(α)β . 
Hence V(ω,r(α),ω) ⊆ �β T(α)β .



G.G. de Castro, D.W. van Wyk / J. Math. Anal. Appl. 491 (2020) 124290 11
To see that �β T(α)β ⊆ V(ω,r(α),ω), suppose that ξβ ∈ T(α)β for some β ∈ L≤∞. Then ξβ0 ∈ X(α)ω, which 
implies that r(α) ∈ ξβ0 . Therefore (β1,0, r(α), β1,0) ∈ ξβ , and thus ξβ ∈ V(ω,r(α),ω), completing the proof. �

Next we define a partial action of the free group F generated by A (identifying the identity of F with ω) 
on T. Let a ∈ A. Put

Vω = T,

Va := V(a,r(a),a), and

Va−1 := V(w,r(a),w).

Define φa : Va−1 → Va by

φa|T(a)β = G(a)β, (3.5)

and φ−1
a : Va → Va−1 by

φ−1
a |Taβ

= H[a]β, (3.6)

where G and H are the gluing and cutting maps defined in Section 2.5. For the empty word we define φw

to be the identity map idT on T. Let t ∈ F and suppose that t = an · · · a1 is the reduced form of t, with 
each ai ∈ A ∪A−1 and n ≥ 2. We extend the definitions above to φt inductively as follows: let

Vt−1 = V(an···a1)−1 = φ−1
an−1···a1

(Va−1
n

), and

φt(ξ) = φan···a1(ξ) = φan
(φan−1···a1(ξ)),

(3.7)

for ξ ∈ V(an···a1)−1 .

Remark 3.8. Since G(a)β and H[a]β are inverses of each other (Theorem 2.12), if a ∈ A then φa and φa−1

are bijections and φ−1
a = φa−1 . Suppose αβ ∈ F is in reduced form and α = a1 · · · am and β = b1 · · · bn with 

each ai, bj ∈ A ∪A−1. Then by Equation (3.7) we have that

φαβ = φa1 ◦ · · · ◦ φam
◦ φb1 ◦ · · · ◦ φbn = φα ◦ φβ

on the appropriate domain V(αβ)−1 . Moreover, note that V(αβ)−1 = φ−1
β (Vα−1) ⊆ Vβ−1 .

In Proposition 3.12, we show that the maps defined in (3.5), (3.6) and (3.7) give a partial action of F on 
T. For this we need the following lemmas.

Lemma 3.9. If α ∈ L≥1, then Vα−1 = V(ω,r(α),ω), Vα = V(α,r(α),α) and φα(ξβ) = G(α)β(ξβ) for every 
ξβ ∈ Vα−1 .

Proof. If α ∈ L≥1, then α = an · · · a1 with ai ∈ A and 1 ≤ n < ∞. By Lemma 3.4, to show that 
Vα−1 = V(ω,r(α),ω) it would suffice to show that Vα−1 = �β T(α)β for all 1 ≤ n < ∞. We show this by 
induction. If n = 1, then α = a1 is a letter in A, and Va−1

1
= V(ω,r(a1),ω) by definition. Suppose the 

statement is true for n = k, that is,

V(ak···a1)−1 =�
γ

T(ak···a1)γ .

We show that the statement holds for n = k + 1:
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V(ak+1···a1)−1 = φ−1
ak···a1

(Va−1
k+1

)

= φa−1
1

(
φ−1
ak···a2

(Va−1
k+1

)
)

= φa−1
1

(
V(ak+1···a2)−1

)
= φa−1

1

(
�
γ

T(ak+1···a2)γ

)

= φa−1
1

(
�
γ

H[ak+1···a2]γ
(
Tak+1···a2γ

))

=�
β

H[a1]β ◦H[ak+1···a2]a1β

(
Tak+1···a2a1β

)
=�

β

H[ak+1···a1]β
(
Tak+1···a1β

)
=�

β

T(ak+1···a1)β ,

where the fourth and sixth equalities follow from the induction hypothesis and Theorem 2.13, respectively. 
Hence Vα−1 = V(ω,r(α),ω) for all 1 ≤ n < ∞. A similar induction argument as above together with Theo-
rem 2.13 shows that Vα = �β Tαβ , and thus by Lemma 3.4, we have that Vα = V(α,r(α),α).

Let ξβ ∈ Vα−1 = �β T(α)β. Then, by Theorem 2.13 and Remark 3.8, φα(ξβ) = G(α)β(ξβ), completing 
the proof. �
Lemma 3.10. Let α, β ∈ L≥1 and suppose that αβ−1 ∈ F is in reduced form. Then the following are equiva-
lent:

(i) r(α) ∩ r(β) �= ∅,
(ii) Vα−1 ∩ Vβ−1 �= ∅, and
(iii) V(αβ−1)−1 �= ∅.

Proof. We first show the equivalence of (i) and (ii), and then that (ii) is equivalent to (iii) by using the 
description of Vα−1 given in Lemma 3.9.

(i)⇒(ii): Assume r(α) ∩ r(β) �= ∅. Then (ω, r(α) ∩ r(β), ω) ∈ E(S). By Zorn’s lemma there is an ultra 
filter ξ ∈ T such that (ω, r(α) ∩ r(β), ω) ∈ ξ. If F ⊂ Bα ∩ Bβ is any filter such that r(α) ∩ r(β) ∈ F , 
then r(α) ∈ F and r(β) ∈ F , since r(α) ∩ r(β) ⊂ r(α) and r(α) ∩ r(β) ⊂ r(β). Hence (ω, r(α), ω) ∈ ξ and 
(ω, r(β), ω) ∈ ξ, implying that ξ ∈ Vα−1 ∩ Vβ−1 .

(ii)⇒(i): Conversely assume that Vα−1 ∩ Vβ−1 �= ∅. Then there is a filter ξ ∈ T such that (ω, r(α), ω) ∈ ξ

and (ω, r(β), ω) ∈ ξ. Since E(S) is a semilattice, it follows that (ω, r(α) ∩r(β), ω) ∈ ξ, and that r(α) ∩r(β) �=
∅.

(ii)⇒(iii): By Remark 3.8, V(αβ−1)−1 = φ−1
β−1(Vα−1). If ξ ∈ Vα−1 ∩ Vβ−1 , then φβ(ξ) is such that 

φβ−1(φβ(ξ)) = ξ ∈ Vα−1 , that is, φβ(ξ) ∈ V(αβ−1)−1 .
(iii)⇒(ii): For ξ ∈ V(αβ−1)−1 , we have that φβ−1 ∈ Vα−1 ∩ Vβ−1 . �

Lemma 3.11. Let t ∈ F be in reduced form. Then Vt and φt as defined in (3.7) satisfy the following:

(i) If α = a1 · · · an, β = b1 · · · bm ∈ L≥1 such that α, β �= ω, an �= bm and r(α) ∩ r(β) �= ∅, then 
∅ �= Vβα−1 ⊆ Vβ, and φαβ−1(ξβγ) = G(α)γ ◦H[β]γ(ξβγ) for every ξβγ ∈ Vβα−1 .

(ii) If t /∈ {ω} ∪{α | α ∈ L≥1} ∪{α−1 | α ∈ L≥1} ∪{βα−1 | β, α ∈ L≥1, r(α) ∩r(β) �= ∅}, then Vt = Vt−1 = ∅.
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Proof. (i) If r(α) ∩ r(β) �= ∅, then ∅ �= Vβα−1 ⊆ Vβ by Lemma 3.10. We show that φαβ−1(ξβγ) = G(α)γ ◦
H[β]γ(ξβγ). Note that φαβ−1 : Vβα−1 → V(βα−1)−1 . Since ∅ �= Vβα−1 , there exists a ξ ∈ Vβα−1 . Moreover, 
since V(αβ−1)−1 = φβ(Vα−1) it follows that ξ = ξβγ with γ such that H[β]γ(ξβγ) ∈ Vα−1 (that is, αγL≤∞). It 
follows from Remark 3.8 that

φαβ−1(ξβγ) = φα(φβ−1(ξβγ))

= G(α)γ(H[β]γ(ξβγ)).

(ii) If t /∈ {ω} ∪{α | α ∈ L≥1} ∪{α−1 | α ∈ L≥1} ∪{βα−1 | β, α ∈ L≥1, r(α) ∩ r(β) �= ∅}, then t either: (1) 
contains a factor of form ab with a, b ∈ A and r(a) ∩ s(b) = ∅, (2) contains a factor of the form b−1a−1 with 
a, b ∈ A and r(a) ∩ s(b) = ∅, (3) contains a factor of the form b−1a with a, b ∈ A and a �= b, or (4) contains 
a factor of the form β2α

−1
2 with t = β1β2(α1α2)−1 (in reduced form), α2, β2 ∈ L≥1 and r(α2) ∩ r(β2) = ∅. 

In cases (1) and (2) we have Vab = φa(Vb) and Vb−1a−1 = φa−1(Vb−1) are empty because r(a) ∩ s(b) �= ∅ if 
and only if ab ∈ L≥1. In case (3) we have that V(a−1b)−1 = φ−1

b (Va) �= ∅ if and only if Va ∩ Vb �= ∅. However, 
if a �= b then Va ∩ Vb = ∅, and thus V(a−1b)−1 = ∅. In case (4), since r(α2) ∩ r(β2) = ∅, it follows from 
Lemma 3.10 that Vβ2α

−1
2

= V(α2β
−1
2 )−1 = ∅. Hence Vt = ∅ in each of the four case. �

We now show that the maps defined in (3.5), (3.6) and (3.7) define a partial action of F on T. The proof 
is inspired by [13].

Proposition 3.12. Let (E, L, B) be a weakly left-resolving labelled space. Then

Φ = ({Vt}t∈F , {φt}t∈F )

is a semi-saturated orthogonal partial action of F on T.

Proof. Fix t ∈ F . If t = ω, then

Vω = T and φω = idT.

If t �= ω is in reduced form, then, by Lemma 3.11(ii), we may assume that t = αβ−1 with α, β ∈ L∗. Then 
Equation (3.7) and Lemma 3.9 show that Vt is open in T. To see that φt is a homeomorphism, note that if 
α = a1 · · · an and β = b1 · · · bm, then by Equation (3.7)

φt = φa1 ◦ · · ·φan
◦ φ−1

bn
· · · ◦ φ−1

b1
.

By [8, Proposition 4.8] the maps φa|T(a)γ = G(a)γ and φ−1
a |Taγ = H[a]γ are homeomorphisms for every 

a ∈ A. Therefore, since Va = �Taγ is a disjoint union, it follows that φa is a homeomorphism for every 
a ∈ A. Hence Equations (3.7) now show that φt is a homeomorphism.

Next we show that φs(Vs−1 ∩Vt) = Vs∩Vst and φs(φt(ξ)) = φst(ξ) for every ξ ∈ Vt−1 ∩V(st)−1 . Let st ∈ F

be in reduced form (that is, each factor is a finite product of elements from A and their inverses, or the 
empty word). Then using (3.7) we see that

Vst = φst(V(st)−1) = φst(φt−1(Vs−1))

= φs(Vs−1 ∩ Vt). (3.13)

Now suppose that s, t ∈ F are in reduced form. Let r, s1, t1 ∈ F such that s = s1r, t = r−1t1 and s1t1 is the 
reduced form of st, where s1 = ω if s = r and t1 = ω if t = r−1. Then
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Vs−1 ∩ Vt = V(r−1s−1
1 ) ∩ Vr−1t1

= φr−1(Vr ∩ Vs−1
1

) ∩ φr−1(Vr ∩ Vt1) (by Equation (3.13))

= φr−1(Vr ∩ Vs−1
1

∩ Vt1). (3.14)

Applying φs to the left and right hand sides of Equation (3.14) we have that

φs(Vs−1 ∩ Vt) = φs1r(φr−1(Vr ∩ Vs−1
1

∩ Vt1))

= φs1(Vs−1
1

∩ Vr) ∩ φs1(Vs−1
1

∩ Vt1)

= V(r−1s−1
1 )−1 ∩ Vs1t1 (by Equations (3.7) and (3.13))

= Vs ∩ Vst.

Hence

φs(Vs−1 ∩ Vt) = Vs ∩ Vst.

To show that φs ◦ φt = φst on Vt−1 ∩ V(st)−1 , first note that Vt−1 ∩ V(st)−1 = φt−1(Vt) ∩ φt−1(Vs−1 ∩ Vt) =
φt−1(Vs−1). Hence, φs ◦ φt and φst have the same domains. That

φs(φt(ξ)) = φst(ξ)

for every ξ ∈ Vt−1 ∩ V(st)−1 now follows from (3.7). This completes the proof that Φ is a partial action of F
on T.

It remains to show that the action is semi-saturated and orthogonal. Let s = a1 · · · an and t = b1 · · · bm
be elements of F in reduced form such that | st |=| s | + | t |. Then the element st is in reduced form and 
by Equation (3.13) we have that

Vst = φs(Vs−1 ∩ Vt) ⊆ Vs.

Hence the action is semi-saturated by [23, Proposition 4.1]. For a, b ∈ A, if a �= b, then Va ∩ Vb = ∅, since 
Va is the set of tight filters whose associated word starts with a and similarly for Vb. Hence the action is 
orthogonal, completing the proof. �
4. Labelled space C∗-algebra as a crossed product

In this section we show that the partial crossed product C∗-algebra obtained from the partial action in 
Section 3 is isomorphic to the labelled space C∗-algebra C∗(E, L, B).

We begin by describing the partial crossed product C∗-algebra C0(T) �φ̂ F . Let (E, L, B) be a weakly 
left-resolving labelled space and let Φ = ({Vt}t∈F , {φt}t∈F ) be the partial action associated with (E, L, B)
in Proposition 3.12. For every α ∈ L∗ and A ∈ Bα, the subset V(α,A,α) ⊂ T is compact and open, with the 
exception of Vω = T which might not be compact. Hence any f ∈ C0(V(α,A,α)) can and will be viewed as a 
function in C0(T) by declaring that f(ξ) = 0 if ξ /∈ V(α,A,α). In fact, C0(V(α,A,α)) is a closed two-sided ideal 
in C0(T) and thus a C∗-subalgebra. In particular, this applies to the sets {Vt}t∈F\{ω}, by Lemma 3.11. Put

Dt = C0(Vt) and Dt−1 = C0(Vt−1).

Define φ̂t : Dt−1 → Dt by

φ̂t(f) = f ◦ φt−1 ,



G.G. de Castro, D.W. van Wyk / J. Math. Anal. Appl. 491 (2020) 124290 15
and define φ̂t−1 : Dt → Dt−1 analogously. Then ({Dt}t∈F , {φ̂t}t∈F ) is a C∗-algebraic partial dynamical 
system [23]. Hence we may consider the partial crossed product

C0(T) �φ̂ F = span
{∑

t∈F
ftδt : ft ∈ Dt and ft �= 0 for finite many t ∈ F

}
, (4.1)

where the closure is with respect to the universal norm (see for example [21, Definition 11.11]). Note that 
δt has no meaning in itself and merely serves as a place holder.4 Recall that multiplication and involution 
in C0(T) �φ̂ F are given by

(aδs)(bδt) = φ̂s(φ̂s−1(a)b)δst, and

(aδs)∗ = φ̂s−1(a)δs−1 .
(4.2)

The labelled space C∗-algebra C∗(E, L, B) is generated by a set of projections {pA | A ∈ B} and a set 
of partial isometries {sa | a ∈ A} subject to certain relations (see Section 2.6). If A ∈ B and α ∈ L∗, then 
we let 1V(α,A,α) denote the characteristic function on V(α,A,α). We show that C0(T) is generated by these 
characteristic functions.

Lemma 4.3. The C∗-algebra C0(T) is generated by the set

{1V(α,A,α) | α ∈ L∗, A ∈ Bα}.

Proof. We employ the Stone-Weierstrass Theorem. Let ξ ∈ T. Since ξ is filter it is non-empty. Suppose 
p ∈ ξ, with p = (γ, A, γ) and 0 ≤| γ |≤ ∞. Then 1V(γ,A,γ)(ξ) = 1. Hence the set {1V(α,A,α) | α ∈ L∗, A ∈ Bα}
vanishes nowhere.

Let ξ, η ∈ T. We show that {1V(α,A,α) | α ∈ L∗, A ∈ Bα} separates points. Assume ξ �= η. Since 
ξ �= η, we may assume without loss of generality that there exists (γ, A, γ) such that (γ, A, γ) ∈ ξ and 
(γ, A, γ) /∈ η. Then ξ ∈ V(γ,A,γ) and η /∈ V(γ,A,γ). Hence 1V(γ,A,γ)(ξ) �= 1V(γ,A,γ)(η), which shows that the 
set {1V(α,A,α) | α ∈ L∗, A ∈ Bα} separates points. The lemma now follows from the Stone-Weierstrass 
Theorem. �

Let 1A denote the characteristic function on V(w,A,w) and 1α the characteristic function on V(α,r(α),α). In 
Proposition 4.6 we show that the C∗-subalgebra generated by {1Aδw, 1aδa | a ∈ A, A ∈ B} and the crossed 
product C∗-algebra C0(T) �φ̂ F are the same. This requires some computations with elements of the form 
1Aδw and 1αδα. The purpose of the following lemma is to de-clutter the proofs that follow, by providing a 
reference to some of these computations, and so making the proofs easier to parse.

Lemma 4.4. Let C∗({1Aδw, 1aδa}) ⊂ C0(T) �φ̂ F denote the C∗-subalgebra generated by {1Aδw, 1aδa | a ∈
A, A ∈ B}. Then

(i) φ̂α−1(1V(α,A,α)) = 1V(ω,A,ω) and φ̂α(1V(ω,A,ω)) = 1V(α,A,α) for every α ∈ L≥1 and A ∈ Bα,
(ii) 1αδα = (1a1δa1) · · · (1an

δan
) for all α ∈ L≥1 where α = a1a2 · · · an,

(iii) (1αδα)(1Aδω)(1αδα)∗ = 1V(α,A,α)δω for all α ∈ L≥1 and A ∈ Bα,
(iv) (1αδα)∗ = 1r(α)δα−1 = 1α−1δα−1 for every α ∈ L≥1,
(v) 1αβ−1δαβ−1 = (1αδα)(1β−1δβ−1) for every α, β ∈ L≥1 such that αβ−1 ∈ F is in reduced form.

4 Alternatively if one views ftδt as a function from G into C0(T), then ftδt can be viewed as ft-valued with support equal to 
{t}.
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(vi) (1Aδω)(1aδa) = (1aδa)(1r(A,a)δω) for all α ∈ L≥1 and A ∈ B.

Proof. (i) Let α ∈ L≥1 and A ∈ Bα. We first show that

φ̂α−1(1V(α,A,α)) = 1V(ω,A,ω) . (4.5)

Note that φ̂α−1(1V(α,A,α)) = 1V(α,A,α) ◦ φα = 1φα−1 (V(α,A,α)). Hence to show Equation (4.5) we need to show 
that φα−1(V(α,A,α)) = V(ω,A,ω). Note that

ξαβ ∈ V(α,A,α) ⇔ (α,A, α) ∈ ξαβ

⇔ A ∈ ξαβ|α| .

Put η = φα−1(ξαβ). Then

A ∈ ξαβ|α| ⇔ A ∈ η0

⇔ (ω,A, ω) ∈ η

⇔ η = φα−1(ξαβ) ∈ V(ω,A,ω).

Hence φα−1(V(α,A,α)) = V(ω,A,ω), which shows that φ̂α−1(1V(α,A,α)) = 1V(ω,A,ω) . Since, φ̂α and φ̂α−1 are 

inverses of each other, it follows that φ̂α(1V(ω,A,ω)) = 1V(α,A,α) , completing the proof of (i).
(ii) First let a ∈ A and β ∈ L∗. Then

(1aδa)(1βδβ) = φ̂a(φ̂a−1(1a)1β)δaβ = φ̂a(1r(a)1β)δaβ ,

where the last equality follows from (i). Note that φ̂a(1r(a)1β) ∈ Daβ = C0(Vaβ) by (2) of Definition 3.1. 
Let ξ ∈ Vaβ = φa(Vβ). Then ξ = ξaβγ for some γ ∈ L≤∞. Thus φa−1(ξaβγ) ∈ Vβ ∩ Va−1 and

φ̂a(1r(a)1β)(ξaβγ) = 1r(a)1β(φa−1(ξaβγ))

= 1r(a)1β
(
H[α](ξαβγ)

)
= 1.

Hence φ̂a(1r(a)1β) = 1aβ , and thus (1aδa)(1βδβ) = 1aβδaβ . For α = a1 · · · an, applying the preceding 
argument pairwise from right to left yields (1a1δa1) · · · (1an

δan
) = 1a1···an

δa1···an
= 1αδα.

(iii) Let α ∈ L≥1 and A ∈ Bα. Then applying Equations (4.2) and (i) we have that

(1αδα)(1Aδω)(1αδα)∗ =
(
φ̂α

(
φ̂α−1(1α)1A

)
δα

)(
φ̂α−1(1α)δα−1

)
=

(
φ̂α

(
1r(α)1A

)
δα

) (
1r(α)δα−1

)
= φ̂α(1r(α)1A1r(α))δω
= φ̂α(1A)δω
= 1V(α,A,α)δω.

(iv) Let α ∈ L≥1. By definition (1αδα)∗ = φ̂α−1(1α)δα−1 . Since φ̂α−1 is a *-isomorphism from C0(Vα) onto 
C0(Vα−1), it follows that φ̂α−1(1α) = 1α−1 . On the other hand φ̂α−1(C0(Vα)) = C0(φα−1(Vα)) = C0(Vα−1) =
C0(V(ω,r(α),ω)). Hence φ̂α−1(1α) = 1α−1 = 1r(α).
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(v) By (iv) above we have that

(1αδα)(1β−1δβ−1) = (1αδα)(1r(β)δβ−1) = φ̂α(1r(α)∩r(β))δαβ−1 = (1r(α)∩r(β) ◦ φα−1)δαβ−1 .

Hence it suffices to show that 1αβ−1 = 1r(α)∩r(β) ◦ φα−1 . By Equations (3.7) we have that

Vαβ−1 = φα(Vβ−1) = φα(Vα−1 ∩ Vβ−1).

Thus, for ξ ∈ T, we have that

1αβ−1(ξ) �= 0 ⇔ ξ ∈ φα(Vα−1 ∩ Vβ−1)

⇔ φα−1(ξ) ∈ Vα−1 ∩ Vβ−1

⇔ (ω, r(α), ω), (ω, r(β), ω) ∈ φα−1(ξ)

⇔ (ω, r(α) ∩ r(β), ω) ∈ φα−1(ξ)

⇔ 1r(α)∩r(β) ◦ φα−1(ξ) �= 0.

Hence 1αβ−1 = 1r(α)∩r(β) ◦ φα−1 , completing the proof of (v).
(vi) Note that

(1Aδω)(1aδa) = (1A1a)δa.

We claim that 1A1a = φ̂a(1r(a)1r(A,a)). For ξ ∈ T we have

1A1a(ξ) �= 0 ⇔ ξ ∈ V(ω,A,ω) ∩ V(a,r(a),a)

⇔ r(A, a) ∩ r(a) ∈ ξ1 and ξ = ξaβ ,

for some β ∈ T. On the other hand

φ̂a(1r(a)1r(A,a))(ξ) = 1r(a)∩r(A,a)(φa−1(ξ)) �= 0 ⇔ φa−1(ξ) ∈ Vr(a)∩r(A,a)

⇔ ξ ∈ φa(Vr(a)∩r(A,a))

⇔ ξ ∈ Va and A ∈ ξ0

⇔ ξ = ξaβ and A ∈ ξ0

⇔ r(A, a) ∩ r(a) ∈ ξ1 and ξ = ξaβ ,

for some β ∈ T, which proves the claim that 1A1a = φ̂a(1r(a)1r(A,a)). Then

(1Aδω)(1aδa) = 1A1aδa
= φ̂a(1r(a)1r(A,a))δa
= φ̂a(φ̂a−1(1a)1r(A,a))δa
= (1aδa)(1r(A,a)δω),

completing the proof. �
The labelled space C∗-algebra C∗(E, L, B) is generated by a set of projections and a set of partial 

isometries indexed by sets A ∈ B and letters a ∈ A, respectively (subject to certain relations (Section 2.6)). 
In the following proposition we show that C0(T) �φ̂ F also has generators indexed by the sets A ∈ B and 
letters a ∈ A. This will help to define the isomorphism between these C∗-algebras.
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Proposition 4.6. Let C∗({1Aδw, 1aδa}) ⊆ C0(T) �φ̂ F denote the C∗-subalgebra generated by {1Aδw, 1aδa |
a ∈ A, A ∈ B}. Then

C0(T) �φ̂ F = C∗({1Aδw, 1aδa}).

Proof. Let C0(T)δω denote the canonical image of C0(T) in C0(T) �φ̂ F . We claim that C0(T)δω ⊂
C∗({1Aδw, 1aδa}). To prove this claim, note that by Lemma 4.3 it will suffice to see that 1V(α,A,α)δω ∈
C∗({1Aδω, 1aδa}) for every α ∈ L∗ and A ∈ B. Hence to prove this claim let α = a1 · · · an. Then by
Lemma 4.4 we have that

(1a1δa1) · · · (1an
δan

) = 1a1···an
δa1···an

,

and also

(1αδα)(1Aδω)(1αδα)∗ = 1V(α,A,α)δω.

Hence

1V(α,A,α)δω = (1a1δa1 · · · 1an
δan

)1Aδω(1a1δa1 · · · 1an
δan

)∗

proving our claim.
Next we show that C0(T) �φ̂ F = C∗({1Aδw, 1aδa}). It is clear that C∗({1Aδw, 1aδa}) ⊆ C0(T) �φ̂ F . To 

see the reverse inclusion, let ftδt ∈ C0(T) �φ̂ F with ft ∈ C0(T) and let t ∈ F . Then ft ∈ Dt = C0(Vt). If 
t = ω then fωδω ∈ C0(T)δω ⊂ C∗({1Aδw, 1aδa}). If t �= ω, then by Lemma 3.11(ii) we may assume that 
t = αβ−1 with α, β ∈ L∗. We consider three cases. First assume that |α|, |β| ≥ 1. Then by Lemma 4.4 we 
have that

fαβ−1δαβ−1 = (fαβ−11αβ−1)δαβ−1

= (fαβ−1δω)(1αδα)(1β−1δβ−1)

= (fαβ−1δω)(1αδα)(1βδβ)∗,

which shows that fαβ−1δαβ−1 ∈ C∗({1Aδw, 1aδa}). Secondly, assume that β = ω and α �= ω. Then

fαδα = (fα1α)δα
= (fαδω)(1αδα),

which shows that fαδα ∈ C∗({1Aδw, 1aδa}). Lastly, assume that α = ω and β �= ω. Then by Lemma 4.4(iv) 
we have that

fβ−1δβ−1 = (fβ−11β−1)δβ−1

= (fβ−1δω)(1β−1δβ−1)

= (fβ−1δω)(1βδβ)∗,

which shows that fβ−1δβ−1 ∈ C∗({1Aδw, 1aδa}). Hence, a set that densely spans C0(T) �φ̂ F (see (4.1)) 
is contained in C∗({1Aδw, 1aδa}), which shows that C0(T) �φ̂ F ⊆ C∗({1Aδw, 1aδa}), and completes the 
proof. �
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By [23, Theorem 4.3], if N : A → (0, ∞) is any function, then there exists a unique strongly continuous 
one-parameter group σ of automorphisms of C0(T) �φ̂ F such that

σt(fδa) = N(a)itfδa and σt(gδw) = gδw,

for all t ∈ R, a ∈ A, f ∈ Dg and g ∈ Dw. If we let N(a) = exp(1) for every a ∈ A, then we obtain a strongly 
continuous action (using the same notation) σ : T → Aut(C0(T) �φ̂ F) such that

σz(fδa) = zfδa, and

σz(gδw) = fδw,
(4.7)

for all t ∈ R, a ∈ A, f ∈ Dg and g ∈ Dw.
We now prove our main result of this section.

Theorem 4.8. There is a *-isomorphism ψ from C∗(E, L, B) onto C0(T) �φ̂ F such that

ψ(pA) = 1Aδω and ψ(sa) = 1aδa.

Proof. By Proposition 4.6, C0(T) �φ̂ F is densely spanned by the set

{1Aδw, 1aδa | A ∈ B, a ∈ A}.

We show this set satisfies the relations of C∗(E, L, B) as in Section 2.6. Fix a, b ∈ A, A, B ∈ B and let ξ ∈ T
with complete family {ξn}.

For relation (i), note that (1Aδω)(1Bδω) = (1A1B)δω and 1A1B(ξ) �= 0 if and only if ξ ∈ V(ω,A,ω)∩V(ω,B,ω). 
That is, A ∩B ∈ ξ0, which implies that ξ ∈ V(ω,A∩B,ω). On the other hand if ξ ∈ V(ω,A∩B,ω) then A ∩B ∈ ξ0. 
Since ξ0 is a filter and since A ∩ B ⊂ A and A ∩ B ⊂ B it follows that A ∈ ξ0 and B ∈ ξ0. Hence 
ξ ∈ V(ω,A,ω) ∩ V(ω,B,ω), and thus (1Aδω)(1Bδω) = 1A∩Bδω. If A = ∅, then (ω, A, ω) /∈ E(S) and thus 
V(ω,A,ω) = {ξ ∈ T | (ω, A, ω) ∈ ξ} = ∅. Hence 1Aδω = 0. The equation

1A∪Bδω = 1Aδω + 1Bδω − 1A∩Bδω

follows from the fact that ξ0 is a prime filter. Therefore A ∪B ∈ ξ0 if and only if A ∈ ξ0 or B ∈ ξ0, proving 
relation (i).

Relation (ii) follows directly from Lemma 4.4(vi).
Next we show that relation (iii) is satisfied. Firstly, we have that

(1aδa)∗(1aδa) = (1r(a)δ
−1
a )(1aδa) = 1r(a)δω.

Secondly, if a �= b then Va−1b = ∅ by Lemma 3.11(ii), and thus

(1aδa)∗(1bδb) = 0.

To see that relation (iv) is satisfied, we need to show, for every A ∈ B for which 0 < #L(AE1) < ∞ and 
there does not exist B ∈ B such that ∅ �= B ⊆ A ∩ E0

sink, that

1Aδω =
∑

a∈L(AE1)

(1aδa)(1r(A,a)δω)(1∗aδa)

=
∑

1

φ̂a(1r(A,a))δω

a∈L(AE )
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=
∑

a∈L(AE1)

(1V (ω,r(A,a),ω) ◦ φ−1
a )δω

=
∑

a∈L(AE1)

(1φa(V(ω,r(A,a),ω)))δω. (4.9)

Note that if a, b ∈ L(AE1), then φa(V(ω,r(A,a),ω)) ⊂ Va and φb(V(ω,r(A,b),ω)) ⊂ Vb. Hence, since Va ∩ Vb = ∅
if a �= b, it follows that φa(V(ω,r(A,a),ω)) ∩ φb(V(ω,r(A,b),ω)) = ∅. Therefore to show that Equation (4.9) holds 
it will suffice to show that

V(ω,A,ω) =
⋃

a∈L(AE1)

φa(V(ω,r(A,a),ω)). (4.10)

Let ξα ∈ V(ω,A,ω) with α = a1a2 · · · (possibly the empty word). Then A ∈ ξα0 . Since 0 < #L(AE1) < ∞
and there does not exist B ∈ B such that ∅ �= B ⊆ A ∩ E0

sink, it follows from [6, Theorem 6.7] that α �= ω, 
a1 ∈ L(AE1) and r(A, a1) �= ∅. Hence r(A, a1) ∈ ξα1 . Thus

φa1(ξα) ∈ V(ω,r(A,a1),ω),

and since ξα = φa−1
1

(φa1(ξα)) it follows that

V(ω,A,ω) ⊆
⋃

a∈L(AE1)

φa(V(ω,r(A,a),ω)).

For the reverse inclusion let ξβ ∈ V(ω,r(A,a),ω) for some a ∈ L(AE1) and let η = φa(ξβ). Then r(A, a) ∈ ξβ0 . 
Hence r(A, a) ∩ r(a) = r(A, a) ∈ η1, which implies that A ∈ η0 and thus η ∈ V (ω, A, ω), giving the reverse 
inclusion. Hence Equation (4.9) is satisfied.

Since C∗(E, L, B) is universal for these relations, there is a surjective *-homomorphism ψ : C∗(E, L, B) →
C0(T) �φ̂ F such that

ψ(pA) = 1Aδω and ψ(sa) = 1aδa.

All that is left to prove is that the ψ is injective. By [3, Crollary 3.10] ψ is injective if and only if 1A �= 0
for A �= ∅, and for each z ∈ T there exists a *-homomorphism σz : C∗({1A, 1a}) → C∗({1A, 1a}) such that

σz(1aδα) = z1aδα, and

σz(1Aδw) = 1Aδw,
(4.11)

for all A ∈ B and a ∈ A. Since the partial action is semi-saturated and orthogonal, it follows from [23, 
Theorem 4.3] and the discussion preceding this theorem that such a *-homomorphism σz satisfying Equations 
(4.11) exists. Hence ψ is an isomorphism and the proof is complete. �
5. Partial action and labelled space groupoids are isomorphic

Let (E, L, B) be a normal labelled space. In this section we show that the groupoid associated with a 
partial action (as defined in [1]) is isomorphic to the groupoid associated with a labelled space (as defined 
in [8]).

For the definition of a groupoid we refer the reader to [34]. A topological groupoid is a groupoid with a 
topology such that multiplication and involution are continuous. A locally compact groupoid is étale if the 
range and source maps are local homeomorphisms. An open set in a groupoid is a bisection if the range and 
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source maps are bijections when restricted to this open set. An ample groupoid is an étale groupoid that 
has a base of compact open bisections.

We first describe the groupoid of (E, L, B) as in [8]. The set

Γ = {(ξαγ , |α| − |β|, ηβγ) ∈ T × Z× T | H[α]γ(ξαγ) = H[β]γ(ηβγ)} (5.1)

is a groupoid with products and inverses given by

(ξ,m, η)(η, n, ρ) = (ξ,m + n, ρ) and (ξ,m, η)−1 = (η,−m, ξ),

respectively ([8, Proposition 3.5]). We denote by Γ(2) the set of composible pairs. If s = (α, A, β) ∈ S(E, L, B)
and e1, . . . , en ∈ E(S) then the sets

Zs,e:e1,...,en = {(ηαγ , |α| − |β|, ξβγ) ∈ Γ | ξ ∈ Ve:e1,...,en and H[α]γ(η) = H[β]γ(ξ)}

form a basis of compact open sets for a locally compact Hausdorff topology on Γ [8, Proposition 4.4]. It 
follows from [8, Corollary 4.14] that Γ is an étale groupoid. Moreover, Γ is an ample groupoid since the 
topology has a basis of compact open sets. Note that the unit space Γ0 of Γ is identified with T. Let rΓ and 
sΓ denote the range and source maps, respectively, of Γ.

Next we describe the groupoid of a partial action as in [1]. Let Φ = ({Vt}t∈F , {φt}t∈F ) be the partial 
action on T as in Proposition 3.12. Then

G = {(ξ, t, η) ∈ T × F × T | η ∈ Vt−1 , and ξ = φt(η)} (5.2)

is a groupoid with products and inverses given by

(ξ, s, η)(η, t, ρ) = (ξ, st, ρ) and (ξ, t, η)−1 = (η, t−1, ξ),

respectively [1]. We give G the topology inherited from the product topology on T× F ×T. The unit space 
G0 is also identified with T. Let rG and sG denote the range and source maps, respectively, of G.

Our main goal is to show that the groupoids Γ and G are isomorphic (Theorem 5.5). To this end we first 
show that G is an ample groupoid. The following identification of elements in G is used throughout this 
section without reference.

Lemma 5.3. We have that (ξ, t, η) ∈ G if and only if (ξ, t, η) = (ξαγ , αβ−1, ηβγ) for some α, β ∈ L∗, and 
φβ−1(ηβγ) = φα−1(ξαγ).

Proof. Let (ξαγ , αβ−1, ηβγ) with α, β ∈ L∗, and such that φβ−1(ηβγ) = φα−1(ξαγ). Then η ∈ Vαβ−1 ⊆ Vβ

(Remark 3.8) and ξ = φαβ−1(η) (since φα−1 is homeomorphism). Hence (ξαγ , αβ−1, ηβγ) ∈ G.
If (ξ, t, η) ∈ G, then η ∈ Vt−1 and thus Vt �= ∅. Hence t = αβ−1 for some α, β ∈ L∗ by Lemma 3.11(ii), 

and Vt−1 ⊆ Vβ by Remark 3.8. That is, η = ηβγ for some γ ∈ L≤∞. Since (ξ, t, η) ∈ G, by Lemma 3.11(i), 
we have that ξ = φαβ−1(ηβγ) = G(α)γ ◦H[β]γ(ξβγ) = ξαγ , and in particular, to find the associated word of 
ξ we cut β from the word of η and glue α in front of it. Thus, φβ−1(ηβγ) = φα−1(ξαγ). �
Lemma 5.4. The groupoid G is an ample groupoid.

Proof. Since F is discrete and T has a basis of compact open subsets, it follows that G has a basis of 
compact open sets. Hence we only need to show that G is étale. Fix any (ξαγ , αβ−1, ηβγ) ∈ G. To show that 
G is an étale groupoid, we need to find a neighbourhood U of (ξαγ , αβ−1, ηβγ) such that the range map 
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rG of G restricted to U is a homeomorphism. Let W = φα−1(Vα) ∩ (φβ−1(Vβ)), and put Wα = φα(W ) and 
Wβ = φβ(W ). Then

U = (Wα × {αβ−1} ×Wβ) ∩ G

is an open neighbourhood of (ξαγ , αβ−1, ηβγ) such that rG |U is just the projection onto the first coordinate, 
and is thus a homeomorphism. Hence G is étale and thus also an ample groupoid. �

We now prove our main result of this section.

Theorem 5.5. The map Θ : G → Γ defined by

Θ((ξαγ , αβ−1, ηβγ)) = (ξαγ , |α| − |β|, ηβγ)

is a groupoid isomorphism.

Proof. We begin by showing that Θ is well-defined. Suppose t ∈ F and t = αβ where α = α′γ and β = γ−1β′

such that t = α′β′ is in reduced form. Then |α| − |β| = |α′γ| − |γ−1β′| = |α′| − |β′|. Therefore, since Θ only 
changes the second coordinate, it follows that Θ is well-defined.

We show that Θ is a bijection. It is clear that Θ is onto. Let (ξαγ , αβ−1, ηβγ) and (ζμδ, μν−1, χνδ) be in 
G. Note that if Θ((ξαγ , αβ−1, ηβγ)) = Θ((ζμδ, μν−1, χνδ)), then ξαγ = ζμδ and ηβγ = χνδ. Hence αγ = μδ

and βγ = νδ by Theorem 2.4. We may assume α = μα′ (if not, then μ = αμ′ and the same argument holds). 
Hence αγ = μα′γ = μδ, implying that α′γ = δ. Then βγ = να′γ, which implies that β = να′. Then we 
compute in F :

αβ−1 = μα′(να′)−1 = μν−1.

Hence Θ is a bijection.
It is straightforward to show that Θ preserves multiplication and inverses.
It remains to show that Θ is also a homeomorphism. However, since both Γ and G are ample groupoids, 

it suffices to show that their unit spaces are homeomorphic. However this follows from the fact that both 
Γ(0) and G(0) are homeomorphic to T, completing the proof. �
Remark 5.6. The referee kindly pointed out to us that the existence the groupoid isomorphism in Theo-
rem 5.5 also follows from [10, Corollary 6.5]. However, in Section 6 we use the explicit isomorphism described 
in Theorem 5.5.

6. Simplicity of labelled spaces C*-algebras

In this section we characterize simplicity of C∗(E, L, B) in terms of the tight spectrum T. We do this by 
using known simplicity results for groupoid C∗-algebras and partial crossed product C*-algebras.

Definition 6.1. Let G be a locally compact, Hausdorff groupoid. A unit u ∈ G(0) has trivial isotropy if the 
set Gu

u = {γ ∈ G | s(γ) = r(γ) = u} contains only u. A subset D ⊆ G(0) is invariant if for all γ ∈ G, when 
s(γ) ∈ D then r(γ) ∈ D. We say that G is topologically principal if the set of units with trivial isotropy is 
dense in G(0), and minimal if G(0) and ∅ are the only open invariant subsets of G(0).

If a locally compact Hausdorff groupoid G is minimal and has a unit with trivial isotropy, then G is 
topologically principal [9, Remark 2.2].



G.G. de Castro, D.W. van Wyk / J. Math. Anal. Appl. 491 (2020) 124290 23
Definition 6.2. Let Φ = ({Ut}t∈G, {φt}t∈G) be a partial action of a discrete group G on a locally com-
pact Hausdorff space X. Then Φ is topologically free if the set of fixed points Fix(t) = {x ∈ X | x ∈
Ut−1 and φt(x) = x} has empty interior, for all t ∈ G \ {e}. A subset V ⊆ X is invariant under the partial 
action if φt(V ∩Ut−1) ⊆ V for all t ∈ G. The partial action is minimal if ∅ and X are the only open invariant 
subsets of X.

It is not hard to see that if Φ = ({Ut}t∈G, {φt}t∈G) is a partial action on X, then the following are 
equivalent:

(1) Φ is minimal,
(2) for every x ∈ X the orbit of x, Orb(x) := {φt(x) | t ∈ G, x ∈ Ut−1}, is dense in X,
(3) for every non-empty subset V of X the orbit of V , Orb(V ) :=

⋃
t∈G φt(V ∩ Ut−1), is equal to X.

By comparing the above definitions, one arrives at:

Proposition 6.3. Let Φ = ({Ut}t∈G, {φt}t∈G) be a partial action of a discrete group G on X and let GΦ be 
its associated groupoid. Then:

(1) GΦ is topologically principal if and only if Φ is topologically free, and
(2) GΦ is minimal if and only if Φ is minimal.

In following two theorems we state known simplicity characterizations for groupoid C*-algebras and 
partial crossed products.

Theorem 6.4. [9, Theorem 5.1] Let G be a second-countable, locally compact and Hausdorff étale groupoid. 
Then the groupoid C*-algebra C∗(G) is simple if and only if the following conditions are satisfied:

(1) C∗(G) = C∗
r (G),

(2) G is topologically principal,
(3) G is minimal.

Theorem 6.5. [24, Corollary 2.9] Let Φ = ({Ut}t∈G, {φt}t∈G) be a partial action of a discrete group G on a 
locally compact Hausdorff space X. If Φ is topologically free and minimal, then the associated partial crossed 
product is simple.

Note that, since G is a discrete group, the groupoid GΦ associated with the partial action in Theorem 6.5
is an étale groupoid (see for example the proof of Lemma 5.4). Hence, if GΦ is second-countable and 
C∗(GΦ) = C∗

r (GΦ), then the converse of Theorem 6.5 also holds (by Theorem 6.4). For a normal labelled 
spaces and its associated partial action Φ̂, it is always the case that C∗(GΦ̂) = C∗

r (GΦ̂), [8, Corollary 4.12]. 
However, since we do not assume that the underlying graph is countable, GΦ̂ may not be second-countable 
(although it is in many examples). By analysing the proof of [9, Theorem 5.1], we see that we can remove 
the hypothesis of the groupoid being second countable, as long as we replace (2) with G being effective 
(see [9, Definition 2.1]). However, being effective is not necessarily equivalent to the partial action being 
topologically free. Since our proofs for this section are based on the partial action, we only study when GΦ
is topologically principal.

With the relationship between a partial action Φ and its associated groupoid GΦ given in Proposition 6.3, 
we can describe being topologically principle and minimal in terms of a family of open sets in X that satisfy 
a certain property. Specifically, suppose that F is a family of open sets of G(0) = X with the property that 
Φ
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for every non-empty open subset U of X there exists a non-empty set V ∈ F such that V ⊆ U . Then, to 
check that G is topologically principal, it is sufficient to show that for every V ∈ F, there exists u ∈ V such 
that u has trivial isotropy. To check that GΦ is minimal, it is sufficient to show that for all x ∈ X and all 
V ∈ F, we have that Orb(x) ∩ V �= ∅.

We show that a normal labelled space has such a family F with which we can characterize simplicity of 
a labelled space C∗-algebra solely in terms of the tight spectrum of the labelled space. For the remainder 
of this section fix a labelled space (E, L, B) with tight spectrum T. Let F = {Ve ⊂ T | e ∈ E(S)}. Then, 
even though F is not necessarily a basis for T, the following lemma shows that it does satisfy the property 
described in the previous paragraph.

Lemma 6.6. Let U be a non-empty open subset of T. Then there exists e ∈ E(S) such that ∅ �= Ve ⊆ U .

Proof. Since the set of ultrafilters is dense in T, there exists an ultrafilter ξ ∈ U . By [25, Proposition 2.5], the 
family {Ve | e ∈ ξ} is a neighbourhood basis for ξ, and therefore there exists e ∈ ξ such that ∅ �= Ve ⊆ U . �

Applying Lemma 6.6 and using Theorem 6.4 and Theorem 6.5, we state a simplicity characterization for 
labelled space C∗-algebras:

Theorem 6.7. Let (E, L, B) be a normal labelled space, T the tight spectrum of the associated inverse semi-
group, Φ the partial action given in Section 3, and G the groupoid given in Section 5. If

• there exists ξ ∈ T with trivial isotropy and,
• for all e ∈ E(S) and all ξ ∈ T, there exists α, β ∈ L∗ such that ξ ∈ Vαβ−1 and φβα−1(ξ) ∈ Ve,

then C∗(E, L, B) is simple. Under the extra hypothesis that G is second-countable, the converse is also true, 
and moreover, for every non-empty open set U ⊆ T, there exists ξ with trivial isotropy such that ξ ∈ U .

We want to find conditions for simplicity solely on terms of the labelled space. We begin by characterizing 
when an element of T has non-trivial isotropy. As is shown in Section 5, we have two (isomorphic) groupoid 
models for C∗(E, L, B); one in terms of the partial action (Equation (5.2)) and the other in terms the cutting 
map H (Equation (5.1)). By [8, Proposition 4.8] the cutting map may also be seen as a shift σ, analogous 
to the case of directed graphs. We use these descriptions interchangeably without much fuss, if no confusion 
is likely. We need the following technical lemmas.

Lemma 6.8. Let (E, L, B) be a normal labelled space. Suppose that F ∈ Xβγ for some β, γ ∈ L∗. If A ∩
r(A, γ) �= ∅ for all A ∈ F , then A ∩ r(A, γ) ∈ F for all A ∈ F .

Proof. Given A ∈ F , since A ∈ Bβγ , it follows that A ∩ r(A, γ) ∈ Bβγ . To prove that A ∩ r(A, γ) ∈ F , it is 
sufficient to show that A ∩ r(A, γ) ∩B �= ∅ for all B ∈ F . Since relative ranges preserve inclusion, if B ∈ F , 
then

A ∩ r(A, γ) ∩B ⊇ (A ∩B) ∩ r(A ∩B, γ),

which is non empty by hypothesis since A ∩B ∈ F . �
For α, β ∈ L≥1 such that αβ ∈ L≥1, let fα[β] and h(α)β be the maps defined in Equation (2.8) and 

Equation (2.11), respectively (see Section 2.5).

Lemma 6.9. Let (E, L, B) be a normal labelled space. Suppose that F ∈ Xβγn+1 for some β ∈ L∗ and γ ∈ L≥1

and n ∈ N∗. Then h[β]γn(fβγn[γ](F)) = h[βγ]γn(F) if and only if A ∩ r(A, γ) �= ∅ for all A ∈ F .
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Proof. By the definition of f and h, and by [7, Lemma 4.7], we have that h[βγ]γn(F) =↑BγnF and

h[β]γn(fβγn[γ](F)) = fγn[γ](h[β]γn+1(F)) = {D ∈ Bγn | r(D, γ) ∈↑B
γn+1F}.

Suppose first that h[β]γn(fβγn[γ](F)) = h[βγ]γn(F). Noticing that F ⊆ h[βγ]γn(F), for A ∈ F , we have 
that A ∈ h[β]γn(fβγn[γ](F)). In this case, r(A, γ) ∈↑B

γn+1F , which implies that A ∩ r(A, γ) �= ∅.
Suppose now that A ∩ r(A, γ) �= ∅ for all A ∈ F and let D ∈ h[βγ]γn(F). Then, D ∈ Bγn and there exists 

C ∈ F such that C ⊆ D. By Lemma 6.8, C ′ := C ∩ r(C, γ) ∈ F , so that C ′ ⊆ r(C, γ) ⊆ r(D, γ). This 
implies that D ∈ h[β]γn(fβγn[γ](F)) and therefore h[βγ]γn(F) ⊆ h[β]γn(fβγn[γ](F)). However, since we are 
dealing with ultrafilters, these sets must be equal. �

For α, β ∈ L≥1 such that αβ ∈ L≥1, let σ be the shift map given by σ|α| = Hα[β] (see [8, Proposition 
4.8]).

Proposition 6.10. Let (E, L, B) be a normal labelled space. A tight filter ξα has non-trivial isotropy in G if 
and only if there exist β, γ ∈ L≥1 such that α = βγ∞ and for all n ∈ N∗ and all A ∈ ξ|βγn| we have that 
A ∩ r(A, γ) �= ∅.

Proof. Suppose first that ξα has non trivial isotropy. This means that there exist k, l ∈ N with k > l such 
that σl(ξ) = σk(ξ) =: η. By looking at the labelled path of η, we conclude that there exists γ ∈ L≥1 with 
|γ| = k − l, and such that the labelled path of η is γ∞. Then there exists β ∈ L∗ such that |β| = l and 
α = βγ∞.

Let n ∈ N and A ∈ ξ|βγn+1|. Then

h[βγ]γn(ξ|βγn+1|) = η|γn| = h[β]γn(ξ|βγn|) = h[β]γn(fβγn[γ](ξ|βγn+1|)).

By Lemma 6.9, A ∩ r(A, γ) �= ∅.
Suppose now that there exist β, γ ∈ L≥1 such that α = βγ∞ and for all n ∈ N∗ and all A ∈ ξ|βγn| we 

have that A ∩ r(A, γ) �= ∅. Define η = σ|β|(ξ) and ρ = σ|βγ|(ξ). In order to prove that ξ has non trivial 
isotropy, it is sufficient to show that η = ρ. Since a filter ηm for m ∈ N∗ determines all filters ηn for n < m, 
we can reduce the proof to showing that ηm = ρm infinitely many times. Fix an arbitrary n ∈ N∗. Applying 
Lemma 6.9, we see that

η|γn| = h[β]γn(ξ|βγn|) = h[β]γn(fβγn[γ](ξ|βγn+1|)) = h[βγ]γn(ξ|βγn+1|) = ρ|γn|.

The result now follows. �
Remark 6.11. An alternative approach to finding points with non trivial isotropy is to look for fixed points 
of the partial action Φ of Section 3. Suppose ξα ∈ Fix(t) for some t ∈ F \{ω}. By the definition of the partial 
action, we must have t = μν−1 for some μ, ν ∈ L∗ such that |μ| �= |ν|, and in this case σ|μ|(ξ) = σ|ν|(ξ). 
For β and γ as in Proposition 6.10, we conclude from the proof of Proposition 6.10 that μ = β and ν = βγ

if |μ| < |ν|, and μ = βγ and ν = β if |μ| > |ν|. Here too we have that α = βγ∞.

Definition 6.12. [15, Definition 9.5] Let (E, L, B) be a normal labelled space.

(1) A pair (α, A) with α ∈ L≥1 and A ∈ Bα is a cycle if for every B ∈ Bα with B ⊆ A, we have that 
r(B, α) = B.

(2) A cycle (α, A) has an exit if there exists 0 ≤ k ≤ |α| and ∅ �= B ∈ B such that B ⊆ r(A, α1,k) and 
L(BE1) �= {αk+1} (where α|α|+1 := α1).
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(3) The labelled space (E, L, B) satisfies condition (LB) if every cycle has an exit.

Theorem 6.13. Let (E, L, B) be a normal labelled space and G the groupoid given in Section 5. Then G is 
topologically principal if and only if (E, L, B) satisfies condition (LB).

Proof. First suppose that G is topologically principal and let (α, A) be a cycle. Consider the set Ve, where 
e = (α, A, α), which is non-empty by Lemma 2.1, and take ξ = ξβ ∈ Ve with trivial isotropy. We have a few 
cases to consider.

If β = αnα1,kγ for some n ∈ N, 0 ≤ k < |α| and γ ∈ L≤∞ \ {ω} such that γ1 �= αk+1, then 
L(r(A, α1,k)E1) ⊇ {αk+1, γ1} �= {αk+1}, and hence (α, A) has an exit.

If β = αnα1,k for some n ∈ N and 0 ≤ k < |α|, then ξ is a tight filter of finite type, and by Theorem 2.7, 
either L(r(A, α1,k)E1) is infinite (and therefore different from {αt+1}), or there exists ∅ �= B ∈ B such that 
B ⊆ r(A, α1,k) ∩ E0

sink, and for this B we have that L(BE1) = ∅ �= {αk+1}. In both cases, (α, A) has an 
exit.

If β = α∞, by Proposition 6.10, there exist n ∈ N∗ and B ∈ ξ|αn| such that B ∩ r(B, α) = ∅. Since 
(α, A, α) ∈ ξ, we have that A ∈ ξ|α|, and since A = r(A, α), we have that A = r(A, αn−1) ∈ ξ|αn|. If we 
take C = A ∩ B ∈ ξ|αn| ⊆ B, then ∅ �= C ⊆ A and C ∩ r(C, α) = ∅. This would imply that C �= r(C, α), 
contradicting the fact that (α, A) is a cycle.

For the converse, we prove the contra positive. Hence, assume that G is not topologically principal, or 
equivalently, that the partial action Φ given in Section 3 is not topologically free. Let t ∈ F \ {ω} be such 
that Fix(t) has non-empty interior. By Remark 6.11, there exists β, γ ∈ L∗ such that t = βγ±1β−1. Now, 
by Lemma 6.6, there exists e = (δ, D, δ) ∈ E(S) such that ∅ �= Ve ⊆ Fix(t). We may assume without loss 
of generality that β = δβ′ for some β′ ∈ L∗, since t = βγnγ±1(βγn)−1 for any n ∈ N. For A := r(D, β′γ), 
we have that A ⊆ r(γ). We claim that (γ, A) is a cycle that has no exits, so that (E, L, B) does not satisfy 
condition (LB).

Since Ve is non-empty, there exists ξα ∈ Ve ⊆ Fix(t). By Remark 6.11, α = βγ∞ so that A ∈ ξ|βγ|. By 
Proposition 6.10, A ∩ r(A, γ) �= ∅. If (γ, A) is not a cycle, then either A \ r(A, γ) �= ∅ or r(A, α) \ A �= ∅. 
Supposing that B := A \ r(A, γ) �= ∅, then

B ∩ r(B, γ) = (A \ r(A, γ)) ∩ (r(A, γ) \ r(A, γ2)) = ∅.

For f = (βγ, B, βγ) and η ∈ T such that f ∈ η, we have that η ∈ Ve ⊆ Fix(t) since f ≤ e. As with ξ, the 
associated labelled path of η must be βγ∞. By Proposition 6.10, η has trivial isotropy. But, this implies that 
η /∈ Fix(t), which is a contradiction. Analogously, if B := r(A, γ) \A �= ∅, we can make the same argument 
with f ′ = (βγ2, B, βγ2) to get a contradiction. This implies that (γ, A) is a cycle.

Assume now that (γ, A) has an exit, that is there exists 0 ≤ k ≤ |γ| and ∅ �= B ∈ B such that 
B ⊆ r(A, γ1,k) and L(BE1) �= {αk+1}. If L(BE1) = ∅, then a tight filter containing (βγγ1,k, B, βγγ1,k)
would be a filter of finite type belonging to Fix(t). If a ∈ L(BE1) \ {γk+1} we would get a tight filter whose 
associated labelled path begins with βγγ1,ka belonging to Fix(t). Both cases are contradictions because the 
labelled path of every tight filter in Fix(t) is βγ∞. We conclude that (γ, A) is a cycle with no exits, showing 
that (E, L, B) does not satisfy condition (LB). �

For a condition equivalent to minimality, but in terms of the labelled space, we need the notion of 
hereditary and saturated subsets of B.

Definition 6.14. Let (E, L, B) be a normal labelled space. A subset H of B is hereditary if the following 
conditions hold:

(i) r(A, α) ∈ H for all A ∈ H and all α ∈ L∗,
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(ii) A ∪B ∈ H for all A, B ∈ H,
(iii) if B ∈ B is such that B ⊆ A for some A ∈ H, then B ∈ H.

A hereditary set H is saturated if given A ∈ Breg such that r(A, a) ∈ H for all a ∈ A, then A ∈ H.

Given a subset I of B, it is easy to see there is a smallest hereditary saturated set containing I. In order 
to describe this set more concretely, we define

H(I) := {B ∈ B | B ⊆
m⋃
i=1

r(Ai, αi) for some m ∈ N, Ai ∈ I and αi ∈ L∗, i = 1, . . . ,m},

and

S(H(I)) =
∞⋃

n=0
S [n](H(I)),

where S [n](H(I)) is defined inductively by

(i) S [0](H(I)) = H(I),
(ii) for n > 0, S [n](H(I)) = {B ∈ Breg | r(B, a) ∈ S [n−1](H(I)) for all a ∈ A}.

The set S(H(I)) is then the smallest hereditary saturated set containing I. In particular, if I = {A} for 
some A ∈ B, then we write S(H(A)) for S(H(I)).

We now adapt a part of the proof from [15, Theorem 9.15] to our context.

Theorem 6.15. Let (E, L, B) be a normal labelled space and G the groupoid given in Section 5. Then G is 
minimal if and only if {∅} and B are the only hereditary saturated subsets of B.

Proof. First suppose that G is minimal and take A ∈ B \ {∅} arbitrary. It is sufficient to show that 
S(H(A)) = B and for that take B ∈ B. Since ∅ ∈ S(H(A)) holds for any A, we can suppose without 
loss of generality that B �= ∅. Since A �= ∅, for e = (ω, A, ω), Ve �= ∅ and therefore the orbit of Ve, 
namely, Orb(Ve) =

⋃
α,β∈L∗ φαβ−1(Ve ∩ Vβα−1) is equal to T. Since B �= ∅, it follows that V(ω,B,ω) is a 

non-empty compact subset of T and therefore there exist α1, . . . , αm, β1, . . . , βm ∈ L∗ such that V(ω,B,ω) ⊆⋃m
i=1 φαi(βi)−1(Ve ∩ Vβi(αi)−1). We use an induction argument on N := max{|αi| : i = 1, . . . , m} to prove 

that B ∈ S(H(A)). More precisely, we prove that for all N ∈ N, if B ∈ B is such that there exist 
α1, . . . , αm, β1, . . . , βm ∈ L∗ with V(ω,B,ω) ⊆

⋃m
i=1 φαi(βi)−1(Ve ∩ Vβi(αi)−1) and max{|αi| : i = 1, . . . , m} =

N , then B ∈ S(H(A)).
If N = 0, then the condition on B is V(ω,B,ω) ⊆

⋃m
i=1 φ(βi)−1(Ve ∩ Vβi). In this case, if ξ ∈ V(ω,B,ω), 

then there exists i0 ∈ {1, . . . , m} such that ξ ∈ φ(βi0 )−1(Ve ∩ Vβi0 ). Thus, there exists η = ηβ
i0γ such that 

A ∈ η0 and ξ = H[βi0 ]γ(η). By the definition of H[βi0 ]γ , this implies that r(A, βi0) ∈ ξ0. We claim that 
B ⊆

⋃m
i=1 r(A, βi) so that B ∈ H(A). If not, then C := B \ (

⋃m
i=1 r(A, βi)) ∈ B and C �= ∅. If ξ ∈ T such 

that (ω, C, ω) ∈ ξ (which exists by Lemma 2.1), then ξ ∈ V(ω,B,ω) but r(A, βi) ∩ C = ∅, implying that 
r(A, βi) /∈ ξ0 for all i = 1, . . . , m, which is a contradiction.

Fix N ∈ N and suppose that V(ω,B,ω) ⊆
⋃m

i=1 φαi(βi)−1(Ve ∩ Vβi(αi)−1) is such that max{|αi| : i =
1, . . . , m} = N + 1. Define C := B \

(⋃
i:αi=ω r(A, βi)

)
. We prove that C ∈ Breg. If there exists D ∈ B

such that ∅ �= D ⊆ C ∩ E0
sink, then, by Theorem 2.7, an ultrafilter F in B containing D would be such that 

ξ = {(ω, E, ω) | E ∈ F} is a tight filter in V(ω,B,ω) but not in 
⋃m

i=1 φαi(βi)−1(Ve ∩ Vβi(αi)−1), which is a 
contradiction. If L(CE1) is infinite, then there exists a ∈ L(CE1) such that a �= αi

1 for all i such that |αi| ≥ 1. 
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If ξ is a tight filter containing (a, r(C, a), a), then ξ ∈ V(ω,B,ω), but with ξ /∈
⋃m

i=1 φαi(βi)−1(Ve ∩ Vβi(αi)−1), 
which again is a contradiction. We conclude that C ∈ Breg and hence V(ω,C,ω) =

⋃
a∈L(CE1) V(a,r(C,a),a). 

For each a ∈ L(CE1), we have that (a, r(C, a), a) ≤ (ω, B, ω), implying that

V(a,r(C,a),a) ⊆
⋃

i:αi
1=a

φαi(βi)−1(Ve ∩ Vβi(αi)−1).

By applying φa−1 to the inclusion above, we get V(ω,r(C,a),ω) ⊆
⋃

i:αi
1=a φαi

2,|αi|(β
i)−1(Ve ∩ Vβi(αi

2,|αi|)
−1). 

Using the induction hypothesis r(C, a) ∈ S(H(A)) for all a ∈ L(CE1). Since S(H(A)) is saturated and 
C ∈ Breg, we conclude that C ∈ S(H(A)) and the same is true for B ∩ C. Finally, notice that B \ C ⊆⋃

i:αi=ω r(A, βi) so that B \ C ∈ S(H(A)). Using that S(H(A)) is closed under finite unions, we get that 
B = (B \ C) ∪ (B ∩ C) ∈ S(H(A)). Hence {∅} and B are the only hereditary saturated subsets of B.

For the converse, assume that the only hereditary saturated subsets of B are {∅} and B. We want to 
prove that for any e = (γ, C, γ) ∈ E(S) and any ξ = ξα ∈ T, there is an element in the orbit of ξ and in Ve. 
Note that since C �= ∅, it follows that S(H(C)) = B. Consider first the case where α is infinite and let A ∈ ξ1
be arbitrary. Then there exists n ∈ N such that A ∈ S [n](H(C)), and therefore there exist β1, . . . , βn ∈ L∗

such that

r(A,α2,n+1) ⊆
m⋃
i=1

r(C, βi).

By taking intersections and using that ξn+1 is a prime filter, we see that there exists i0 ∈ {1, . . . , m}
such that r(A, α2,n+1) ∩ r(C, βi0) ∈ ξn+1. To simplify notation, we write β for βi0 . Since C ⊆
r(γ), it follows that r(A, α2,n+1) ∩ r(C, β) ⊆ r(γβ). Hence r(γβ) ∈ h[α1,n+1](ξn+1), implying that 
H[α1,n+1]αn+2,∞(ξ) ∈ T(γβ)αn+2,∞ . Also, observe that r(C, β) ∈ H[α1,n+1]αn+2,∞(ξ)0, which implies that 
(γ, C, γ) ∈ G(γβ)αn+2,∞(H[α1,n+1]αn+2,∞(ξ)) = φγβα−1

1,n+1
(ξ), and this element is in the orbit of ξ and in 

Ve. In the case where α is finite, we take an arbitrary A ∈ ξ|α|, which is not an element of Breg, and there-
fore A ∈ H(C). Repeating the same argument as in the infinite case with A in the place of r(A, α2,n+1), we 
see that there exists β ∈ L∗ such that φγβα−1(ξ) ∈ Ve, which completes the proof. �

Combining the results of this section we get the following characterization for the simplicity of C∗(E, L, B)
solely in terms of T.

Theorem 6.16. Let (E, L, B) be a normal labelled space. If the labelled space satisfies condition (LB), and 
{∅} and B are the only hereditary saturated subsets of B, then C∗(E, L, B) is simple. If, in addition, the 
groupoid G is second countable, then the converse is also true.

7. Cuntz-Pimsner algebras associated to subshifts

In [12] (see also [11]) a C∗-algebra is associated with a one-sided subshift. These algebras were studied 
as a groupoid C*-algebras and as partial crossed products in [11,17,36,39]. There is a topological space that 
serves both as the unit space of the groupoid and the space on which the free group acts. In [3, Example 4] it 
is shown that the C∗-algebra of a one-sided subshift may be realized as the C∗-algebra of a normal labelled 
space. In this section we describe how the topological space referred to above, arises as the spectrum of a 
commutative unital C*-algebra, and use this to study the C∗-algebra of a one-sided subshift in the language 
of labelled spaces by applying the theory developed in [8] and in this paper.

We recall the necessary definitions (see also [31]). Given a finite set A viewed as a discrete topological 
space, the one-sided full shift space is AN with the product topology. The map σ : AN → AN given by 
σ(x0, x1, x2 . . .) = (x1, x2, . . .) is called the shift map. A subshift, also called a shift space, is a non-empty 
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subset X ⊆ AN that is closed and invariant by the shift map in the sense that σ(X) ⊆ X. The language of 
X is the set LX = {α ∈ A∗ | αy ∈ X for some y ∈ X}. We consider the empty word ω as an element of LX. 
Since X is closed in AN , if x ∈ AN is such that x0 · · ·xn ∈ LX for all n ∈ N, then x ∈ X. Also, without 
loss of generality, we may assume that A ⊆ LX. A common way of defining a subshift is to specify a set of 
forbidden words F ⊆ A and setting XF to be the subset of AN of all elements x ∈ AN such that xi,j /∈ F
for all i, j ∈ N. It can be shown that XF is indeed a subshift.

Given α, β ∈ LX, we define the set C(α, β) = {βx ∈ X | αx ∈ X}. In particular, Zβ := C(ω, β) is called 
a cylinder set, Fα := C(α, ω) is called a follower set and X = C(ω, ω). It is well known that {Zβ}β∈LX

is a basis of compact open sets for the product topology on X and that Fα is closed with respect to this 
topology. It follows immediately that C(α, β) = σ−|β|(Fα) ∩Zβ is closed in X. The commutative C∗-algebra 
mentioned in the first paragraph of this section, denoted by DX, is defined as the C*-subalgebra of �∞(X)
generated by the characteristic functions 1C(α,β) for all α, β ∈ LX.

As in [3], we define the labelled space (EX, LX, BX) associated with a subshift X as follows: The graph EX
is given by E0

X = X, E1
X = {(x, a, y) ∈ X × A × X | x = ay}, s(x, a, y) = x and r(x, a, y) = y. The labelling 

map is given by LX(x, a, y) = a and the accommodating family BX is the Boolean algebra generated by 
the sets C(α, β) for α, β ∈ LX. Then the triple (EX, LX, BX) is a normal labelled space [3, Lemma 5.5]. By 
[3, Proposition 5.7], the Cuntz-Pimsner algebra C∗(X) associated to X, as defined in [12], is isomorphic to 
C∗(EX, LX, BX) in such way that DX ∼= span{pA | A ∈ BX}.

For the remainder we fix a finite set A and a subshift X ⊆ AN . In order to simplify the notation, we will 
omit the sub-index X in (EX, LX, BX). Observe that given x ∈ X, we have that x = s(x, x0, σ(x)) so that 
the graph has no sinks. Also, since A is finite, for all A ∈ B the set L(AE1) is finite, which implies that the 
elements of the corresponding tight spectrum T are only of infinite type (Theorem 2.7). Our first goal is to 
show that T is homeomorphic to the Stone dual of B.

Observe that the finite and infinite paths on the graph E must be of the form

(x, x0, σ(x))(σ(x), x1, σ
2(x)) · · · (σn(x), xn, σ

n+1(x))(· · · ),

for some x ∈ X. Hence, L∗ = LX and L∞ = X. Also, for α ∈ L∗, we have that r(α) = C(α, ω) = Fα.
We recall how to evaluate the relative range in this example, [3, Equation (6)]. For α, β ∈ LX such that 

β �= ω and a ∈ A,

r(C(α, β), a) =
{
C(a, ω) ∩ C(α, β2 . . . β|β|) if β = aβ2, . . . , β|β|,

∅ otherwise.

Also,

r(C(α, ω), a) =
{
C(αa, ω) if αa ∈ LX,

∅ if αa /∈ LX.

More generally, r(A, α) = {x ∈ X | αx ∈ A}.
Also, recall that Bα is the set of elements from B which are contained in r(α) (Section 2.2), and Xα is its 

Stone dual. The topology on Xα is given by the basic open sets UA = {F ∈ Xα | A ∈ F}, where A ∈ Bα. 
In particular, for the empty word Bω = B. In Proposition 7.6 below, we prove that T is homeomorphic to 
Xω. To this end, we need the following lemmas.

Lemma 7.1. Let α, β ∈ LX be such that αβ ∈ LX. Then the map r(·, β) : Bα → Bαβ is onto.

Proof. Since r(·, β) is a Boolean algebra homomorphism, it is sufficient to prove that the generators of Bαβ

are in the range of r(·, β). Observe that Bαβ is generated by the sets C(αβ, ω) ∩ C(γ, δ) for β, γ, δ ∈ LX. 
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For this intersection not to be empty, it is necessary that αβδ ∈ LX, and in which case C(αβ, ω) ∩C(γ, δ) =
C(αβ, ω) ∩ C(β, ω) ∩ C(γ, δ) = r(C(α, ω) ∩ C(γ, βδ), β). The result now follows since C(α, ω) ∩ C(γ, βδ) ∈
Bα. �
Lemma 7.2. Let α, β ∈ LX be such that αβ ∈ LX. For all F ∈ Xα such that Fα ∩ Zβ ∈ F , there exists a 
unique G ∈ Xαβ such that fα[β](G) = F .

Proof. The result is trivial for β = ω since fα[ω] is the identity on Xα. Hence, suppose that β �= ω and let 
F ∈ Xα be such that Fα ∩ Zβ ∈ F . Consider G := {r(A, β) ∈ Bαβ | A ∈ F}. We prove that G ∈ Xαβ .

For A ∈ F , since A ∩ Fα ∩ Zβ �= ∅, there exists x ∈ X such that αβx ∈ X and βx ∈ A. Observe that 
x ∈ r(A, β) so that r(A, β) �= ∅.

That G is closed under intersections follows immediately from the fact that the relative range preserves 
intersections, since (EX, LX, BX) is weakly left-resolving.

Given D ∈ Bαβ such that r(A, β) ⊆ D, we have to show that D ∈ G. By Lemma 7.1, there exists B ∈ Bα

such that r(B, β) = D. Suppose, by way of contradiction, that B /∈ F . Then, since F is an ultrafilter, there 
is C ∈ F such that B ∩C = ∅. In this case, since A ∩C ∈ F and, using the first part of this proof, we have 
that

∅ �= r(A ∩ C, β) = r(A, β) ∩ r(C, β) ⊆ r(B, β) ∩ r(C, β) = r(B ∩ C, β) = ∅,

which is a contradiction. Hence, D ∈ G and that G is a filter.
To prove that G is an ultrafilter in Bαβ, suppose that there exists a filter H in Bαβ such that G � H. 

Arguing as in the previous paragraph, if D ∈ H \ G, there exists C ∈ F such that r(C, β) ∩D = ∅, which 
would imply that H is not a filter. Hence G ∈ Xαβ .

Now, by the definition of fα[β], it is clear that fα[β](G) = F . Also, if H ∈ Xαβ is such that H �= G, then 
as above, there exist D ∈ H \ G and C ∈ F such that r(C, β) ∩D = ∅. This implies that r(C, β) /∈ H and 
fα[β](H) �= F . Hence, the uniqueness of G. �
Lemma 7.3. Let α ∈ L∗. For F ∈ Xα, there is a unique y ∈ Fα such that Zy0,n ∩ Fα ∈ F for all n ∈ N.

Proof. We use the fact that if a union of elements of Bα is in F then one of the sets of the union is in F
(since ultrafilters in Boolean algebras are prime filters). In particular, if A1, . . . , An ∈ Bα are such that the 
disjoint union A1 � · · · �An belongs to F then there is a unique i ∈ {1, . . . , n} such that Ai ∈ F .

Notice that

F � r(α) = �
b∈A

Zb ∩ r(α)

so that there is a unique b0 ∈ A such that ∅ �= Zb0 ∩ r(α) ∈ F . Also, there exists x(0) ∈ X such that 
b0x

(0) ∈ r(α). Now

F � Zb0 ∩ r(α) = �
b∈A:b0b∈LX

Zb0b ∩ r(α),

and there is a unique b1 ∈ A such that b0b1 ∈ LX and Zb0b1 ∩ r(α) ∈ F . As above, there exists x(1) ∈ X such 
that b0b1x(1) ∈ r(α). Continuing this process we find sequences {bn}n∈N in A and {x(n)}n∈N in X such that 
for all n ∈ N, b0 . . . bn ∈ LX, Zb0...bn ∩ r(α) ∈ F and b0 . . . bnx(n) ∈ r(α). Define y = b0b1 . . . and observe 
that b0 . . . bnx(n) n→∞−−−−→ y so that y ∈ X. Since r(α) = Fα is closed, y ∈ Fα.

The uniqueness of y follows by construction. �
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Lemma 7.4. Let α ∈ L∗. For all y ∈ Fα, the set Fy := {A ∈ Bα | y ∈ A} is an ultrafilter in Bα. Moreover, 
the map I : y ∈ Fα → Fy ∈ Xα is one-to-one and has dense image.

Proof. Since y ∈ Fα = r(α), for an arbitrary A ∈ Bα, either y ∈ A or y /∈ A so that A ∈ Fy or r(α) \A ∈ Fy. 
This implies that Fy is an ultrafilter in the Boolean algebra Bα.

Suppose now that y, z ∈ Fα and y �= z. Then there exists n ∈ N such that yn �= zn. Define β = y0 . . . yn
and γ = z0 . . . zn. For A = Zβ ∩ Fα ∈ Bα, we have that y ∈ A but z /∈ A, which implies that Fy �= Fz.

Finally, given any basic open set UA of Xα, where A ∈ Bα, we have that A ⊆ Fα and Fy ∈ UA for all 
y ∈ A. This implies the density of the image of I. �
Lemma 7.5. If (α, A, α) ∈ S(EX, LX, BX), then there exists B ∈ BX such that V(α,A,α) = V(ω,B,ω).

Proof. Since (α, A, α) ∈ S(EX, LX, BX), we have that α ∈ Bα. By Lemma 7.1, there exists B ∈ BX such 
that r(B, α) = A. We prove that V(α,A,α) = V(ω,B∩Zα,ω).

If ξ ∈ V(α,A,α), then (α, A, α) ∈ ξ. And since, A = r(B, α) = r(B, α) ∩ r(α) = r(B, α) ∩ r(Zα, α) =
r(B ∩ Zα, α), by Theorem 2.4, we have that (ω, B ∩ Zα, ω) ∈ ξ, that is, ξ ∈ V(ω,B∩Zα,ω).

On the other hand, suppose that ξ ∈ V(ω,B∩Zα,ω). In this case B ∩ Zα ∈ ξ0. Since ξ0 is a filter, we have 
that Zα ∈ ξ0. Now, let β be the word associated to ξ, then, by Theorem 2.4, r(Zα, β1,|α|) ∈ ξ|α|. In particular 
r(Zα, β1,|α|) �= ∅ and for this to be the case, we must have β1,|α| = α. Computing as above, we have that 
A = r(B ∩Zα, α) = r(B ∩Zα, β1,|α|) ∈ ξ|α|. By the definition of complete family, (α, A, α) ∈ ξ|α| and hence 
ξ ∈ V(α,A,α). �
Proposition 7.6. The map Φ : T → Xω given by Φ(ξ) = ξ0 is a homeomorphism.

Proof. As observed at the start of this section, the elements of T are all of infinite type. Hence, for ξ =
ξα ∈ T, the labelled path α is an element of X. According to [6, Proposition 5.9], ξ0 can be either the empty 
set or an element of Xω. The case of being the empty set only happens if r(A, α1) is empty for all A ∈ B. 
However r(Zα1 , α1) = Fα1 �= ∅, which implies that ξ0 ∈ Xω and that Φ is well defined.

To prove that Φ is bijective, we build its inverse. For F ∈ Xω, let y ∈ X be as in Lemma 7.3. For each 
n ∈ N, let Fn be the unique element of Xy0,n such that fω[y0,n](Fn) = F as in Lemma 7.2. Then {Fn}n∈N is 
a complete family of ultrafilters for y (see Section 2.4). Using [6, Propositions 4.9 and 5.9], we can associate 
a unique element ξF ∈ T to the pair (y, {Fn}n∈N). Define Ψ : Xω → T by Ψ(F) = ξF .

By construction, Φ(Ψ(F)) = F for all F ∈ Xω. That Ψ(Φ(ξα)) = ξα, for ξα ∈ T, follows from the 
uniqueness in Lemma 7.2 and that fω[α0,n](ξn) = ξ0 for all n ∈ N.

We now prove that Φ is a homeomorphism. Since all elements of T are of infinite type, all elements of 
T are ultrafilters, by [6, Theorem 6.7]. In this case, by [30, Lemma 2.26] the family {V(α,A,α) | (α, A, α) ∈
S(EX, LX, BX)} is a basis for T. By Lemma 7.5, this family is the same as {V(ω,B,ω) | B ∈ B}.

Now, for B ∈ B, the set UB = {F ∈ Xω | B ∈ F} is a basic open subset of Xω. Then Φ sends the family 
of basic open sets {V(ω,B,ω) | B ∈ B} of T to the family of basic open sets {UB | B ∈ B}, and Ψ goes the 
other way around. Whence Φ is a homeomorphism. �
Proposition 7.7. The algebra DX is isomorphic to C0(T).

Proof. As discussed above DX ∼= span{pA | A ∈ BX}. On the other hand, by [7, Theorem 6.9], C0(T) ∼=
span{sαpAs∗α | (α, A, α) ∈ S(EX, LX, BX)}. It then suffices to show that if (α, A, α) ∈ S(EX, LX, BX), then 
sαpAs

∗
α = pB for some B ∈ BX.

By Theorem 4.8 and Lemma 4.4 (iii), sαpAs∗α = pB if and only if V(α,A,α) = V(ω,B,ω). The existence of 
such B is given by Lemma 7.5. �
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Remark 7.8. We can use the theory developed here and in [8] to describe C∗(X) as a groupoid C*-algebra 
and as a partial crossed product. Using Proposition 7.6 and the map σ of [8, Proposition 4.8], we can define 
a local homeomorphism σ̃ : Xω → Xω as follows: for F ∈ Xω and y ∈ X given by Lemma 7.3, we define

σ̃(F) = Φ(H[y0]y1y2...(Φ
−1(F))) =↑B{r(A, y0) | A ∈ F}.

From the results of [8], if G(Xω, ̃σ) is the groupoid defined from the pair (Xω, ̃σ) as in [35], then C∗(X) ∼=
C∗(G(Xω, ̃σ)).

A similar description could be done for the partial action, however this will not be necessary for the 
remainder of the text.

We now tackle the problem of studying the simplicity of C∗(X). We recover some of the results of [17]
using the theory developed in Section 6. We begin by characterizing minimality of the partial action (see also 
Theorem 6.15) in terms of hyper cofinality. See [17, Section 13] for the relevant discussion and motivation 
on cofinality.

Definition 7.9. For a finite set P ⊆ LX, FP :=
⋂

β∈P Fβ is called the follower set of P . Given also x ∈ X, 
the cost of reaching x from P is

Cost(P, x) = inf{|α| + |γ| : x = αy ∈ X, βγy ∈ X, for all β ∈ P},

with the convention that inf ∅ = ∞. We say that the subshift is hyper cofinal if

sup
x∈X

Cost(P, x) < ∞,

for every P ⊆ LX finite such that FP �= ∅.

Proposition 7.10. The only hereditary saturated subsets of BX are {∅} and BX if and only if X is hyper 
cofinal.

Proof. Suppose that the only saturated hereditary subsets of BX are {∅} and BX, and let P ⊆ LX be a 
finite set such that FP �= ∅. Since S(H(FP )) is a hereditary saturated subset of BX that contains FP , we 
have that S(H(FP )) = BX.

Since X ∈ BX is regular, there exists n ∈ N such that X ∈ S [n](H(FP )), which means that for every 
α ∈ LX such that |α| = n, we have that r(X, α) = Fα ∈ H(FP ). Therefore, there exist γ1

α, . . . , γ
mα
α such 

that Fα ⊆
⋃mα

i=1 r(FP , γi). In particular, if x = αy ∈ X, then y ∈
⋃mα

i=1 r(FP , γi) and hence y ∈ r(FP , γi)
for some i ∈ {1, . . . , mα}, which implies that βγiy ∈ X for all β ∈ P . It follows that Cost(P, x) ≤ n +
max{|γ1

α|, . . . , |γmα
α |}. Since there are only finitely many labelled paths of length n,

sup
x∈X

Cost(P, x) ≤ n + max{|γi
α| : α ∈ X, |α| = n, i = 1, . . . ,mα} < ∞.

Now suppose that X is hyper cofinal. We need to prove that for all A ∈ BX, if A �= ∅, then S(H(A)) = BX. 
We will make a series of reductions to show that it is sufficient to consider A = FP for some P ⊆ LX
finite. For that, observe that for A, B ∈ BX, if A ⊆ B then S(H(A)) ⊆ S(H(B)), and for any α ∈ LX, 
S(H(r(A, α))) ⊆ S(H(A)). Since BX is generated by C(α, β), it follows that any element of BX is a finite 
union of sets of the form

C(α1, β1) ∩ · · · ∩ C(αn, βn) ∩ C(μ1, ν1)c ∩ · · ·C(μm, νm)c.
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If z is an element in this intersection, then for p > max{|β1|, . . . , |βn|, |ν1|, . . . , |νm|}, the relative range of 
this intersection with respect to z0,p is of the form

Fγ1 ∩ · · · ∩ Fγk
∩ F c

δ1 ∩ · · · ∩ F c
δl
,

and it contains zp+1,∞. For y in this intersection, there exists then q ∈ N∗ such that δ1y0,q, . . . δly0,q /∈ LX, 
which implies that

Fγ1 ∩ · · · ∩ Fγk
∩ Zy0,q ⊆ Fγ1 ∩ · · · ∩ Fγk

∩ F c
δ1 ∩ · · · ∩ F c

δl
.

Finally, yq+1,∞ ∈ r(Fγ1 ∩ · · · ∩ Fγk
∩ Zy0,q , y0,q) = FP for some finite P ⊆ LX.

Hence suppose that P ⊆ LX is finite and that FP �= ∅. By hypothesis, we have that N :=
supx∈X Cost(P, x) < ∞. Then, given x ∈ X, there exists α, γ ∈ LX with |α|, |γ| ≤ N such that x = αy

and βγy ∈ X for all β ∈ P . We can write y = α′y′ in such a way that |α| + |α′| = N , and then βγα′y′ ∈ X
for all β ∈ P . This implies that if |α| = N , then Fα ⊆

⋃
γ∈LX,|γ|≤2N r(FP , γ), which is a finite union. It 

follows that r(X, α) = Fα ∈ H(FP ) and since alpha was arbitrary, X ∈ S [N ](H(FP )). Finally, X is the top 
element of BX and by the definition of a hereditary subset, S(H(FP )) = BX. �
Definition 7.11. We say that γ ∈ LX is a circuit if γ∞ ∈ X. We say that the subshift X satisfies condition 
(L) if for every finite P ⊆ LX such that γ∞ ∈ FP for some circuit γ, there is an element y ∈ FP that is 
different from γ∞.

Our definition of condition (L) is the same as [17, Theorem 12.6(ii)]. We call it condition (L) due to the 
following proposition.

Proposition 7.12. The subshift X satisfies condition (L) if and only if (EX, LX, BX) satisfies condition (LB).

Proof. If X does not satisfy condition (L), then there exists P ⊆ LX finite and γ a circuit such that 
FP = {γ∞}. In this case, (γ, FP ) is a cycle without exit, so that (EX, LX, BX) does not satisfy condition 
(LB).

Conversely, if (EX, LX, BX) does not satisfy condition (LB), then there exists a cycle without exit (α, A). 
However, for the shift labelled space, this implies that α is a circuit and A = {α∞}. Arguing as in the proof 
of Proposition 7.10, for n ∈ N large enough, there exists P ⊆ LX finite such that α∞ ∈ FP ⊆ r(A, αn) =
A = {α∞}. It follows that X does not satisfy condition (L). �

The following theorem is the equivalence of (i) and (ii) from [17, Theorem 14.5], which we prove using 
the theory developed in this paper.

Theorem 7.13. Let X be a subshift. Then, C∗(X) is simple if and only if X is hyper cofinal and satisfies 
condition (L).

Proof. It follows from Theorem 6.16 and Propositions 7.10 and 7.12. �
We now compare our results with [15, Example 11.4]. First we need some definitions. Given l ∈ N, we 

say that x, y ∈ X are l-past equivalent, written x ∼l y, if

{α ∈ LX | x ∈ Fα, |α| ≤ l} = {α ∈ LX | y ∈ Fα, |α| ≤ l}.

The shift X is said to be cofinal in past equivalence if for any x, y ∈ X and l ∈ N, there exist z ∈ X, m, n ∈ N

such that y ∼l z and σm(x) = σn(z). A point x ∈ X is said to be isolated in past equivalence if there exists 
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l ∈ N such that [x]l = {x}, and cyclic if x = γ∞ for some circuit γ. It is claimed in [15, Example 11.4]
that C∗(X) is simple if and only if X is cofinal in past equivalence and there is no cyclic point isolated in 
past equivalence. However, we illustrate with a counterexample that a stronger condition than cofinality is 
needed.

First, observe that there is no cyclic point isolated in past equivalence if and only if X satisfies condition 
(L). Indeed, for a circuit γ, we just need to look at the set P = {α ∈ LX | γ∞ ∈ Fα, |α| ≤ l} for l ∈ N. We 
now check that being cofinal in past equivalence is not equivalent to being hyper cofinal. For that, consider 
the shift over the alphabet {a, b, c} with set of forbidden words:

F = {bakb | k is not a power of 2} ∪ {cakb | k is not a power of 2}.

The class of a point in y ∈ XF depends on whether the beginning of y is of the form akb, for some k, or 
not, and one can check that each equivalence class with respect to ∼l is infinite, so that there are no cyclic 
points isolated in past equivalence. Notice that given x ∈ XF , there exists m ∈ N such that we can glue akb
or c at the beginning of σm(x). This implies that XF is cofinal in past equivalence. However, we claim that 
XF is not hyper cofinal. To see this claim, consider P = {c} and x = akb∞, where k = 2n + 2n+1 for some 
n ∈ N. Then Cost(P, x) = 2n, which implies that XF is not hyper cofinal.

The issue with the proof in [15, Example 11.4] is the claim that to check minimality, using our terminology, 
it is sufficient to show that for each x ∈ X = Fω, the orbit of each Fx, given in Lemma 7.4, is dense. However, 
we also need a boundedness condition on m and n in the definition of cofinal in past equivalence for it to 
be equivalent to minimality. Although we did not use the density of {Fx | x ∈ X} in Xω in our proof of 
minimality, the proof of [17, Theorem 13.6] uses an analogous property where the necessity of a boundedness 
condition is evident.
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