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The affine scaling method has been a typical approach to study complex domains 
with noncompact automorphism group. In this article, we will introduce an 
alternative approach, so called, the method of potential scaling to construct a certain 
class of potential functions of the Kähler-Einstein metric. We will also prove that if 
a bounded pseudoconvex domain admits a potential function of the Kähler-Einstein 
metric whose differential has constant length, then there is an 1-parameter family 
of automorphisms.
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1. Introduction

For a bounded domain Ω in the complex Euclidean space Cn, the automorphism group of Ω, denoted by 
Aut(Ω), is the set of automorphisms (self-biholomorphisms) of Ω under the law of the mapping composition. 
The automorphism group Aut(Ω) with the compact-open topology has a Lie group structure. A fundamental 
problem in both Complex Analysis and Complex Geometry is the classification of pseudoconvex domains 
with noncompact automorphism group; especially domains with compact quotient. A fundamental result of 
the classification is B. Wong’s theorem in [20]: a strongly pseudoconvex bounded domain with noncompact 
automorphism group is biholomorphic to the unit ball. Due to J.P. Rosay’s improvement [18], the unit 
ball is the biholomorphically unique, smoothly bounded domain with compact quotient (see also [9]). After 
S. Pinchuk’s observation ([16,17]), the affine scaling method has been a typical approach to classify such 
domains (see [1,13,14]). The main application of the affine scaling method is to show the existence of 1-
parameter family of automorphisms. This is an important ingredient in S. Frankel’s study on convex domains 
with compact quotient ([8]).
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The affine scaling method is to construct a biholomorphism from a domain with noncompact automor-
phism group to an unbounded domain admitting an affine translation as its holomorphic transformation. 
Suppose that Aut(Ω) is noncompact, equivalently, there exists a sequence of automorphisms {fj} of Ω such 
that an automorphism orbit {fj(p)} for some p ∈ Ω accumulates at a boundary point of Ω. Then any subse-
quential limit of {fj} is a holomorphic mapping from Ω to the boundary ∂Ω; thus it is not a biholomorphic 
imbedding of Ω into Cn anymore. In the scaling method, taking an affine mapping Aj of Cn whose Jacobian
dAj blows up properly, we can make {Aj ◦ fj} to converge subsequentially to a biholomorphic imbedding. 
The choice of affine mappings is strongly depends on the boundary geometry at an orbit accumulation point 
and the boundary behavior of an automorphism orbit.

In this paper, we will introduce a method of potential scaling to construct a certain class of potential 
functions for the holomorphically invariant Kähler metric; especially the complete Kähler-Einstein met-
ric (Section 2). If the potential function we obtained satisfies a specified condition, we can construct an 
1-parameter family of automorphisms (Theorem 2.4). This is an alternative (but fundamentally same) ap-
proach to the affine scaling method in the study of domains with noncompact automorphism group. We 
will also deal with a relation to the affine scaling method.

Notation and Convention. Throughout this paper, the summation convention for duplicated indices is always 
assumed. We denote the complex conjugate of a tensor by taking the bar on the indices, that is, zα = zᾱ, 
hαβ̄ = hᾱβ and so on.

2. The method of potential scaling and main results

In this section, we introduce the method of potential scaling and main results. The potential scaling is 
to rescale potential functions of the holomorphically invariant Kähler metric of a bounded pseudoconvex 
domain by automorphisms. Typical invariant Kähler metrics are the complete Kähler-Einstein metric and 
the Bergman metric. In this paper, we will focus on the Kähler-Einstein metric. At the last of this section, 
we will also discuss the potential scaling for the Bergman metric.

2.1. The Kähler-Einstein metric

For a bounded pseudoconvex domain Ω in Cn, the Kähler-Einstein metric of Ω, denoted by its Kähler 
form ωKE, is the unique complete Kähler metric with the normalized Einstein condition,

RicωKE = −(n + 1)ωKE .

The uniqueness is due to Yau’s Schwarz lemma in [21] and the existence is due to Cheng-Yau [3] and 
Mok-Yau [15]. Since RicωKE = −ddc log det(hαβ̄) where ωKE = ihαβ̄dz

α ∧ dzβ̄ in the standard coordinates 

z = (z1, . . . , zn) and dc = i

2(∂̄ − ∂), we can write the Einstein condition by ddc log det(hαβ̄) = (n + 1)ωKE. 
For the sake of simplicity, we will denote by

ψ = det(hαβ̄)

throughout this paper. Then the Einstein condition is now of the form

ddc logψ = (n + 1)ωKE .

Thus the function logψ is a canonical potential function of ωKE. By Yau’s Schwarz lemma, each automor-
phism f ∈ Aut(Ω) preserves the volume form so that
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f∗(ωKE)n = (ωKE)n

equivalently

(ψ ◦ f) |Jf |2 = ψ . (2.1)

This implies that each f ∈ Aut(Ω) satisfies

(n + 1)f∗ωKE = f∗ddc logψ = ddc log(ψ ◦ f) = ddc
(
logψ − log |Jf |2

)
= ddc logψ = (n + 1)ωKE ,

so is an isometry of ωKE. Here Jf is the holomorphic Jacobian determinant

Jf = det
(
∂fα

∂zβ

)

of the holomorphic mapping f = (f1, . . . , fn).

2.2. The scaling of Kähler-Einstein potentials

Let f ∈ Aut(Ω) and consider the pulling-back function

f∗ logψ = log(ψ ◦ f)

which is also a potential function of ωKE for each f ∈ Aut(Ω) by (2.1)
Suppose that there is a sequence {fj} of automorphisms whose orbit of a point of Ω accumulates at a 

boundary point. Since any subsequential limit {fj(p)} for each p ∈ Ω is on the boundary ∂Ω, the com-
pleteness of ωKE implies that the sequence of potential functions, {log(ψ ◦ fj)}, blows up in the sense that 
limj→∞ log(ψ ◦fj) = ∞. The method of potential scaling is to take dominators cj properly so that potential 
functions

log ψ ◦ fj
cj

converge to another potential function of ωKE. The following theorem is on the convergence of the potential 
scaling.

Theorem 2.1. Let ωKE = ihαβ̄dz
α ∧ dzβ̄ be the Kähler-Einstein metric of the bounded pseudoconvex domain 

Ω and let ψ = det(hαβ̄). Suppose that there is a constant C > 0 with

‖d logψ‖2
ωKE

= ∂ logψ
∂zα

∂ logψ
∂zβ̄

hαβ̄ < C2 on Ω. (2.2)

Then for any compact subset K in Ω, the collection of holomorphic functions,

FK =
{

Jf
Jf (p) : f ∈ Aut(Ω), p ∈ K

}
,

is a normal family. Moreover any limit of a convergent sequence in FK is a nowhere vanishing holomorphic 
function.
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Here (hαβ̄) stands for the inverse matrix of the Kähler-Einstein metric (hαβ̄). Assumption (2.2) is associ-
ated with the Kähler-hyperbolicity of ωKE as will be mentioned in Remark 2.7. We will prove this theorem 
in Section 3.

For a compact subset K in Ω, take fj ∈ Aut(Ω) and pj ∈ K for each j. Under the assumption of 
Theorem 2.1, let us consider a potential scaling

log ψ ◦ fj
(ψ ◦ fj)(pj)

.

Since

ψ ◦ fj
(ψ ◦ fj)(pj)

= ψ

ψ(pj)

∣∣∣∣Jfj (pj)Jfj

∣∣∣∣
2

by (2.1), Theorem 2.1 implies that the sequence 
{
Jfj/Jfj (pj)

}
admits a subsequence converging uniformly 

on any compact subset of Ω. Passing to a subsequence, we may assume that Jfj/Jfj (pj) → η uniformly on 
any compact subset of Ω and pj → p ∈ Ω. Then

ψ ◦ fj
(ψ ◦ fj)(pj)

→ ψ∞ = ψ

ψ(p)
1

|η|2
(2.3)

in the local C∞ topology. Therefore logψ∞ satisfies ddc logψ∞ = (n + 1)ωKE, so it is also a potential 
function of ωKE.

The function logψ∞ possesses information on the boundary value of ‖d logψ‖2
ωKE

.

Proposition 2.2. Assume (2.3). Then

‖d logψ∞‖ωKE
(p) = lim

j→∞
‖logψ‖ωKE

(fj(p))

for any p ∈ Ω.

Proof. Since each fj is an isometry of ωKE, we have

‖d logψ∞‖ωKE
(p) = lim

j→∞

∥∥∥∥log ψ ◦ fj
(ψ ◦ fj)(pj)

∥∥∥∥
ωKE

(p) = lim
j→∞

‖logψ ◦ fj‖ωKE
(p) = lim

j→∞
‖logψ‖ωKE

(fj(p))

for any p ∈ Ω. �
Let us see the boundary behavior of ‖logψ‖2

ωKE
of the unit ball.

Example 2.3. For the unit ball Bn = {z ∈ Cn : ‖z‖ < 1}, the Kähler-Einstein metric ωBn

KE = ihB
n

αβ̄
dzα ∧ dzβ̄

is given by

hB
n

αβ̄
= 1(

1 − ‖z‖2
)2

(
δαβ̄(1 − ‖z‖2) + zᾱzβ

)
,

and its inverse is given by

(hB
n

)αβ̄ = (1 − ‖z‖2)
(
δαβ̄ − zαzβ̄

)
.
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For the determinant of the metric tensor

ψBn

= det(hB
n

αβ̄
) = 1(

1 − ‖z‖2
)n+1 ,

we can easily see ddc logψBn = (n + 1)ωBn

KE. Then we have

∥∥∥d logψBn
∥∥∥2

ωKE
= (n + 1)2 ‖z‖2

.

This implies that the boundary value of 
∥∥d logψBn∥∥

ωKE
is n + 1.

In the case of a strongly pseudoconvex domain Ω with C∞ smooth boundary, the boundary behavior of 
the geometric quantities of logψ is the same as that of the unit ball (see [3,19,4]). Thus function ‖d logψ‖ωKE

is continuous up to the boundary of Ω and its boundary value is always n + 1:

lim
p→∂Ω

‖logψ‖ωKE
(p) = n + 1 .

Proposition 2.2 implies that if an orbit of {fj} accumulates at a boundary point of Ω, then the potential 
scaling limit logψ∞ satisfies

‖d logψ∞‖ωKE
≡ n + 1 .

The second main result of this paper is on the existence of 1-parameter family of automorphisms.

Theorem 2.4. Let Ω be a bounded pseudoconvex domain in Cn. If there is a positive-valued smooth function 
ψ̃ : Ω → R such that

ddc log ψ̃ = (n + 1)ωKE and ‖d log ψ̃‖ωKE ≡ C

for some positive constant C ≤ n + 1, then there is a nowhere vanishing complete holomorphic vector field 
on Ω.

By a holomorphic tangent vector field, we mean a holomorphic section Z to the holomorphic tangent 
bundle T 1,0Ω. If the corresponding real tangent vector field ReZ = Z + Z is complete, we also say Z
is complete. Thus a complete holomorphic tangent vector field in Theorem 2.4 generates an 1-parameter 
family of holomorphic automorphisms of Ω. The proof will be in Section 4.

From Kai-Ohsawa [11], every bounded homogeneous domain (equivalently, a bounded pseudoconvex 
domain biholomorphic to an affine homogeneous domain) has a potential function log ψ̃ of ωKE such that 
‖d log ψ̃‖ωKE is constant and the constant is uniquely determined by the complex structure of the domain. 
But most bounded homogeneous domains in Cn except the unit ball should have the constant greater than 
n + 1. In the 1-dimensional case, the possible constant is only 2 = 1 + 1. This case has been dealt in [5]:

Theorem 2.5 (Theorem 3.1 in [5]). Let X be a Riemann surface with a complete hermitian metric ωX with 
constant Gaussian curvature −4. If there is a function ϕ : X → R with

ddc logϕ = 2ωX and ‖d logϕ‖ωX
≡ 2

then there is a nowhere vanishing complete holomorphic vector field on X.
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2.3. Affine scaling limits and potential scaling limits

As we mentioned in Introduction, the affine scaling method for a sequence {fj} of automorphisms of Ω
is to take affine mapping Aj so that {Aj ◦ fj} converges to a holomorphic imbedding. The scaling method 
due to S. Frankel [8] is to choose Aj as

Aj(z) = (dfj(pj))−1(z − fj(pj))

where pj lies on a fixed compact subset K of Ω. If Ω is convex or the boundary of an orbit accumulating 
point is locally convex, then the scaling sequence

Aj ◦ fj(z) = (dfj(pj))−1(fj(z) − fj(pj)) (2.4)

converges to a biholomorphic imbedding (see K.T. Kim [12]).
Suppose that {Aj ◦ fj} in (2.4) converges to a biholomorphism F : Ω → Ω′. Since each holomorphic 

Jacobian determinant of Aj ◦ fj is of the form

JAj◦fj = JAj
Jfj =

Jfj
Jfj (pj)

,

we have

Jfj
Jfj (pj)

→ JF .

This implies that JF is the same as η in (2.3).
Let ωKE = ihαβ̄dz

α ∧ dzβ̄ and ω′
KE = ih′

αβ̄
dzα ∧ dzβ̄ be the Kähler-Einstein metrics of Ω and Ω′, 

respectively. Since F ∗ω′
KE = ωKE, we have

(ψ′ ◦ F ) |JF |2 = ψ

where ψ = det(hαβ̄) and ψ′ = det(h′
αβ̄

). The scaling limit ψ∞ as in (2.3) is indeed the pulling-back of ψ′

by F in the sense of

ψ∞ = ψ

ψ(p)
1

|η|2
= ψ

ψ(p)
1

|JF |2
= 1

ψ(p)ψ
′ ◦ F .

As a conclusion, the potential scaling limit logψ∞ is the pulling-back of the canonical potential function 
ψ′ = det(h′

αβ̄
) of the limit domain Ω′ by the affine scaling limit F .

2.4. The scaling of Bergman kernel functions

For a bounded domain Ω in Cn, the Bergman metric ωB of Ω is defined by

ωB = ddc logKΩ

where KΩ = KΩ(z, z) is the Bergman kernel function of Ω ([2]). By the transformation formula of KΩ under 
f ∈ Aut(Ω), namely

(KΩ ◦ f) |Jf |2 = KΩ , (2.5)
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the Bergman metric is invariant under the action by Aut(Ω). Thus every automorphism of Ω is an isometry 
with respect to ωB. Identity (2.5) also implies the analogue of Theorem 2.1 as following.

Theorem 2.6. Let ωB = igαβ̄dz
α ∧ dzβ̄ be the Bergman metric of the bounded domain Ω. Suppose that the 

length of d logKΩ with respect to ωB is bounded, i.e. there is a constant C > 0 with

‖d logKΩ‖2
ωB

= ∂ logKΩ

∂zα
∂ logKΩ

∂zβ̄
gαβ̄ < C2 (2.6)

on Ω. For any compact subset K in Ω, the collection of holomorphic functions,

FK =
{

Jf
Jf (p) : f ∈ Aut(Ω), p ∈ K

}
,

is a normal family. Moreover any limit of a convergent sequence in FK is a nowhere vanishing holomorphic 
function.

As same as the scaling of Kähler-Einstein potentials, this theorem implies the convergence of

log KΩ ◦ fj
(KΩ ◦ fj)(pj)

,

under Assumption (2.6).

Remark 2.7. Assumptions (2.2) and (2.6) are sufficient conditions for ωKE and ωB to be Kähler hyperbolic, 
respectively. Let (X, ω) be a n-dimensional Kähler manifold. If there is a global 1-form θ such that dθ = ω

and the length ‖θ‖ω of θ with respect to ω is bounded on X, then (X, ω) is called Kähler hyperbolic due to 
M. Gromov [10]. The Kähler-hyperbolicity implies the vanishing of the space of L2 harmonic (p, q) forms 
(see [6] also).

Suppose that there is a global Kähler potential Φ : X → R of ω, i.e. ddcΦ = ω. If ‖dΦ‖ω is bounded on 
X, then ω is Kähler hyperbolic because ‖dcΦ‖ω = 2 ‖dΦ‖ω. For a bounded pseudoconvex domain Ω, the 
typical invariant Kähler metric has a canonical global potential, so the study on the Kähler hyperbolicity 
of domains has been concentrated on the length of differential of the canonical potentials (see [7,22]).

3. Convergence of potential scaling

In order to prove Theorem 2.1 and Theorem 2.6, we have the following basic estimate.

Lemma 3.1. Let Ω be a domain in Cn with a holomorphically invariant Kähler metric ω. Suppose that there 
is a positive-valued function ϕ : Ω → R satisfying

‖d logϕ‖ω < C on Ω (3.1)

for some C > 0. Then for each compact subsets K and K ′ in Ω, there is A > 0 such that

1
A

≤ ϕ ◦ f
(ϕ ◦ f)(p) ≤ A on K ′

for any f ∈ Aut(Ω) and p ∈ K.
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Proof. Let f ∈ Aut(Ω) and p ∈ K. The automorphism f is isometric with respect to ω so that ‖d(ϕ ◦ f)‖2
ω =

‖dϕ‖2
ω ◦ f . Since ϕ is positive on Ω, we have dϕ = ϕ(d logϕ); hence

‖d(ϕ ◦ f)‖2
ω = ‖dϕ‖2

ω ◦ f = (ϕ ◦ f)2
(
‖d logϕ‖2

ω ◦ f
)

. (3.2)

For the sake of simplicity, let us denote by

σf,p = ϕ ◦ f
(ϕ ◦ f)(p) .

Assumption (3.1) and Identity (3.2) imply that

‖dσf,p‖2
ω = 1

|(ϕ ◦ f)(p)|2
‖d(ϕ ◦ f)‖2

ω =
∣∣∣∣ ϕ ◦ f
(ϕ ◦ f)(p)

∣∣∣∣2 (‖d logϕ‖2
ω ◦ f

)
≤ C2 |σf,p|2 .

For a unit speed curve γ : (−R, R) → Ω with respect to ω with γ(0) = p, this inequality implies that the 
positive-valued function σf,p ◦ γ : R → R satisfies

|(σf,p ◦ γ)′(t)| ≤ C(σf,p ◦ γ)(t) .

Since (σf,p ◦ γ)(0) = σf,p(p) = 1, Gronwall’s inequality gives

e−Ct ≤ (σf,p ◦ γ)(t) ≤ eCt .

For a point q ∈ Ω with dω(p, q) < R where dω is the distance associated to ω, we get

e−CR ≤ σf,p(q) ≤ eCR .

This is independent of any choice of f ∈ Aut(Ω) and p ∈ K. Let K ′ be a compact subset of Ω and let 
R = sup{dω(p, q) : p ∈ K, q ∈ K ′}. Then we have

e−CR ≤ σf,p(q) ≤ eCR for any q ∈ K ′ .

This completes the proof. �
Remark 3.2. In this proof, we only use the fact that f ∈ Aut(Ω) is the isometry of ω. Therefore the estimate 
in Lemma 3.1 holds for any isometry f of (Ω, ω).

Now we present proofs of Theorem 2.1 and Theorem 2.6.

Proof of Theorem 2.1 and Theorem 2.6. We will prove both theorems simultaneously. Let ω be a invariant 
Kähler metric of Ω:

(1) If ω is the complete Kähler-Einstein metric ωKE, let ϕ = det(hαβ̄) where ωKE = ihαβ̄dz
α ∧ dzβ̄ .

(2) If ω is the Bergman metric ωB, let ϕ = KΩ.

In both cases, Equations (2.1) and (2.5) imply that

(ϕ ◦ f) |Jf |2 = ϕ (3.3)
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for any f ∈ Aut(Ω).
Now let us assume that

‖d logϕ‖ω < C on Ω,

for a constant C > 0 and let K be a compact subset of Ω. Lemma 3.1 implies that for any compact subset 
K ′ ⊂ Ω, we have A > 0 such that

1
A

≤ ϕ ◦ f
ϕ(f(p)) ≤ A on K ′,

for any f ∈ Aut(Ω) and p ∈ K. By the transformation formula (3.3), we have

1
A

≤ ϕ ◦ f
ϕ(f(p)) = ϕ

ϕ(p)

∣∣∣∣Jf (p)
Jf

∣∣∣∣2 ≤ A on K ′.

In other words,

1
A

ϕ

ϕ(p) ≤
∣∣∣∣ Jf
Jf (p)2

∣∣∣∣2 ≤ A
ϕ

ϕ(p) on K ′.

Since the function ϕ/ϕ(p) is pinched by positive constants on K ′ independent of the choice of p ∈ K, we 
can conclude that every element of

FK =
{

Jf
Jf (p) : f ∈ Aut(Ω), p ∈ K

}

is uniformly bounded on K ′. Since K ′ is arbitrary, Montel’s theorem implies that FK is normal.
Since Jf/Jf (p) = 1 at p, a limit holomorphic function of {Jf/Jf (p) : f ∈ Aut(Ω)} is nowhere vanishing 

by Hurwitz’s theorem. This completes the proof of Theorem 2.1 and Theorem 2.6. �
4. Existence of complete holomorphic vector fields

In this section, we will prove Theorem 2.4. Throughout this section, we will use the symbol Φ as a 
potential function of the Kähler-Einstein metric, instead of log ψ̃ as in Theorem 2.4.

4.1. Covariant derivatives of potential functions

Let Ω be a bounded pseudoconvex domain in Cn with the Kähler-Einstein metric ωKE = ihαβ̄dz
α ∧ dzβ̄ . 

Suppose that there is a potential function Φ : Ω → R in the sense that ddcΦ = (n +1)ωKE. We will compute 
covariant derivatives of

‖dΦ‖2
ωKE

= ΦαΦβ̄h
αβ̄ = ΦαΦα .

As above, we will use the matrix of the Käher metric (hαβ̄) and its inverse matrix (hβ̄α) to raise and lower 
indices. We will denote coordinate vector fields by ∂α = ∂/∂zα and ∂ᾱ = ∂/∂zᾱ for α = 1, . . . , n and 
covariant derivatives by ∇A = ∇∂A

for A = 1, . . . , n, ̄1, . . . , ̄n where ∇ is the Kähler connection of ωKE. 
Especially covariant derivatives of Φ will be denoted by ΦA = ∇AΦ = ∂AΦ, ΦAB = ∇B∇AΦ and so on. 
Since Φ is real-valued, ΦAB··· = ΦĀB̄···.
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The connection form (θ α
β ) of ωKE is the collection of 1-forms uniquely determined by the metric com-

patibility condition

dhαβ̄ = θ γ
α hγβ̄ + θ γ̄

β̄
hγ̄α for any α, β (4.1)

where θ γ̄

β̄
= θ γ

β and the torsion-free condition

0 = dzβ ∧ θ α
β for any α. (4.2)

The 1-form θ α
β is of type (1, 0) so θ α

β = (∂hβγ̄)hγ̄α. Then the Kähler connection ∇ can be given by

∇∂α = θ β
α ⊗ ∂β , ∇∂ᾱ = θ β̄

ᾱ
⊗ ∂β̄ ,

∇dzα = −θ α
β ⊗ dzβ , ∇dzᾱ = −θ ᾱ

β̄
⊗ dzβ̄ .

For second order covariant derivatives

Φαβ = ∇β∇αΦ = ∂βΦα − θ γ
α (∂β)Φγ ,

Φαβ̄ = ∇β̄∇αΦ = ∂β̄∂αΦ = (n + 1)hαβ̄

of Φ can be obtained by

dΦα − θ β
α Φβ = Φαβdz

β + Φαβ̄dz
β̄ . (4.3)

Note that Φαβ = Φβα since ∇ is torsion-free. Differentiating Equation (4.3), we have

−(dθ β
α )Φβ + θ β

α ∧ dΦβ = dΦαβ ∧ dzβ + dΦαβ̄ ∧ dzβ̄ .

Applying (4.2) and (4.3), this can be written by

−
(
dθ β

α − θ γ
α ∧ θ β

γ

)
Φβ =

(
dΦαλ − Φαβθ

β
λ − θ β

α Φβλ

)
∧ dzλ +

(
dΦαμ̄ − Φαβ̄θ

β̄

μ̄
− θ β

α Φβμ̄

)
∧ dzμ̄ .

The curvature form (Θ β
α ) of ωKE is the collection of 2-forms

Θ β
α = dθ β

α − θ γ
α ∧ θ β

γ = R β
α λμ̄dz

λ ∧ dzμ̄

where 
(
R β

α λμ̄

)
stands for the curvature operator in the sense of (∇λ∇μ̄ − ∇μ̄∇λ)∂α = R β

α λμ̄∂β . Since 

dΦαμ̄ − Φαβ̄θ
β̄

μ̄
− θ β

α Φβμ̄ = 0 by the metric compatibility (4.1), we get

−Θ β
α Φβ =

(
dΦαλ − Φαβθ

β
λ − θ β

α Φβλ

)
∧ dzλ ,

equivalently,

−R β
α λμ̄Φβdz

λ ∧ dzμ̄ = Φαλμdz
μ ∧ dzλ + Φαλμ̄dz

μ̄ ∧ dzλ

The curvature form (Θ β) consists of (1, 1)-forms only so that
α
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Φαβγ = Φαγβ , Φαλμ̄ = ΦβR
β

α λμ̄ . (4.4)

Now differentiating ‖dΦ‖2
ωKE

= ΦαΦα, we have

d ‖dΦ‖2
ωKE

= (dΦα)Φα + Φα(dΦα) =
(
dΦα − θ β

α Φβ

)
Φα + Φα

(
dΦα + Φβθ α

β

)
=

(
ΦαβΦα + ΦαΦα

β

)
dzβ +

(
Φαβ̄Φα + ΦαΦα

β̄

)
dzβ̄

so that

∂ ‖dΦ‖2
ωKE

=
(
ΦαβΦα + ΦαΦα

β

)
dzβ . (4.5)

We can get

d∂ ‖dΦ‖2
ωKE

=
(
dΦαλ − θ γ

α Φγλ − Φαγθ
γ

λ

)
∧ Φαdzλ + Φαλ

(
dΦα + Φγθ α

γ

)
∧ dzλ

+
(
dΦα − θ γ

α Φγ

)
∧ Φα

λdz
λ + Φα

(
dΦα

λ + Φγ
λθ

α
γ − θ γ

λ Φα
γ

)
∧ dzλ

differentiating (4.5), then gathering (1, 1)-forms we have

∂̄∂ ‖dΦ‖2
ωKE

= Φαλμ̄dz
μ̄ ∧ Φαdzλ + ΦαλΦα

μ̄dz
μ̄ ∧ dzλ + Φαμ̄dz

μ̄ ∧ Φα
λdz

λ + ΦαΦα
λμ̄dz

μ̄ ∧ dzλ

Since Φα
λμ̄ = hαβ̄Φβ̄λμ̄ = 0,

∂∂̄ ‖dΦ‖2
ωKE

= −∂̄∂ ‖dΦ‖2
ωKE

=
(
Φαλμ̄Φα + ΦαλΦα

μ̄ + Φαμ̄Φα
λ

)
dzλ ∧ dzμ̄ . (4.6)

Now we have

Proposition 4.1. If ‖dΦ‖2
ωKE

= ΦαΦα is constant on Ω, then

ΦαβΦα = −(n + 1)Φβ (4.7)

and

ΦαλΦαλ = (n + 1)ΦαΦα − n(n + 1)2 . (4.8)

Proof. Since ‖dΦ‖2
ωKE

is constant, so ∂ ‖dΦ‖2
ωKE

= 0 and ∂∂̄ ‖dΦ‖2
ωKE

= 0. From (4.5) and (4.6), we have

ΦαβΦα = −ΦαΦα
β = −Φγ̄Φγ̄β = −(n + 1)Φγ̄hγ̄β = −(n + 1)Φβ ,

and

Φαλμ̄Φα + ΦαλΦα
μ̄ + Φαμ̄Φα

λ = 0 .

From the second identity in (4.4) and Φαβ̄ = (n + 1)hαβ̄ , the last identity can be written by

ΦβR
β

α λμ̄Φα + ΦαλΦα
μ̄ + (n + 1)2hλμ̄ = 0 .

Contracting by hλμ̄, we have
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−(n + 1)ΦαΦα + ΦαλΦαλ + n(n + 1)2 = 0 ,

from the Einstein condition Rαβ̄λμ̄h
λμ̄ = Rαβ̄ = −(n + 1)hαβ̄ . This completes the proof. �

4.2. Proof of Theorem 2.4

Now suppose that Φ = Ω → R satisfies

ddcΦ = (n + 1)ωKE and ‖dΦ‖ωKE
≡ C

for some C > 0. We first consider the vector field V of type (1, 0) defined by

V = Φα∂α = hαβ̄Φβ̄

∂

∂zα
. (4.9)

This V has positive constant length: ‖V‖2
ωKE

= ΦαΦβ̄hαβ̄ ≡ C2. Thus let us consider the line bundle L → Ω
generated by V:

L =
{
v ∈ T 1,0Ω : v is parallel to V

}
.

This is a subbundle of T 1,0Ω but not holomorphic in general.

Proposition 4.2. If ‖dΦ‖ωKE
≡ C for some constant C with 0 < C ≤ (n + 1), then L is holomorphic.

Proof. We will prove that there is a real number t such that the nowhere vanishing section etΦV to L is a 
holomorphic tangent vector field. Let us consider

∂β̄
(
etΦΦα

)
= tetΦ

(
∂β̄Φ

)
Φα + etΦ∂β̄Φα = etΦ

(
t
(
∂β̄Φ

)
Φα + ∂β̄Φα

)
.

Since ∂β̄Φ = Φβ̄ and Φα
β̄

= ∂β̄Φα + θ α
γ (∂β̄)Φγ = ∂β̄Φα, we have

∇β̄(etΦV) = ∇β̄

(
etΦΦα∂α

)
= ∂β̄

(
etΦΦα

)
∂α = etΦ

(
tΦβ̄Φα + Φα

β̄

)
∂α .

When we denote ∇′′ by the (0, 1)-part of ∇, it follows

∇′′ (etΦV) = ∇β̄

(
etΦV

)
⊗ dzβ̄ = etΦ

(
tΦβ̄Φα + Φα

β̄

)
∂α ⊗ dzβ̄ .

The holomorphicity of etΦV is equivalent to the vanishing length of ∇′′ (etΦV) with respect to ωKE that 
can be computed by

∥∥∇′′ (etΦV)∥∥2
ωKE

= e2tΦ
(
tΦβ̄Φα + Φα

β̄

)(
tΦβ̄Φα + Φ β̄

α

)
= e2tΦ

(
t2Φβ̄ΦαΦβ̄Φα + tΦβ̄ΦαΦ β̄

α
+ tΦα

β̄
Φβ̄Φα + Φα

β̄
Φ β̄

α

)
= e2tΦ

(
t2ΦαΦαΦβ̄Φβ̄ + tΦβΦαΦαβ + tΦᾱβ̄Φβ̄Φᾱ + ΦαβΦαβ

)
.

Note that ΦαΦα = Φβ̄Φβ̄ ≡ C2 by the assumption and

ΦβΦαΦαβ = −(n + 1)ΦβΦβ ≡ −(n + 1)C2
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by (4.7). From (4.8), we have

ΦαβΦαβ ≡ (n + 1)C2 − n(n + 1)2 .

Therefore

∥∥∇′′ (etΦV)∥∥2
ωKE

≡ e2tΦ (
t2C4 − t2(n + 1)C2 + (n + 1)C2 − n(n + 1)2

)
.

So etΦV is holomorphic if and only if t satisfies

C4t2 − 2(n + 1)C2t + (n + 1)C2 − n(n + 1)2 = 0 .

The discriminant of this quadratic polynomial is

(n + 1)2C4 − C4((n + 1)C2 − n(n + 1)2) = (n + 1)C4((n + 1)2 − C2) .

This completes the proof. �
The complete holomorphic vector field in Theorem 2.4 is indeed a holomorphic section to L → Ω. Let us 

consider the function −e−εΦ. Since

ddc
(
−e−εΦ) = −i∂∂̄e−εΦ = −i∂

(
−εe−εΦ∂̄Φ

)
= εe−εΦ (

i∂∂̄Φ − εi∂Φ ∧ ∂̄Φ
)

= (n + 1)εe−εΦ
(
ωKE − ε

(n + 1) i∂Φ ∧ ∂̄Φ
)

,

the Cauchy-Schwarz inequality implies that −e−εΦ is strictly plurisubharmonic for any ε < (n + 1)/C2 =
(n + 1)/ ‖dΦ‖2

ωKE
. If ε = (n + 1)/C2, then the vector field V annihilates ddc(−e−εΦ) in the sense of

V � ddc
(
−e−(n+1)Φ/C2

)
≡ 0

because V � ωKE = ihαβ̄Φαdzβ̄ = iΦβ̄dz
β̄ = i∂̄Φ and ∂Φ(V) = ΦαΦα = C2 so that

V � ddc
(
−e−(n+1)Φ/C2

)
= (n + 1)2

C2 e−(n+1)Φ/C2
(
V � ωKE − 1

C2 i∂Φ(V)∂̄Φ
)

= (n + 1)2

C2 e−(n+1)Φ/C2 (
i∂̄Φ − i∂̄Φ

)
= 0 .

Proposition 4.3. Let

ρ = −e−(n+1)Φ/C2
.

For any (local) holomorphic section Z to L, the function Zρ is holomorphic.

Proof. Let W be a holomorphic tangent vector field of Ω. We will prove that W(Zρ) ≡ 0. For any properly 
differentiable function g : Ω → R, Z(Wg) = W(Zg). Therefore ZW = WZ as operators, so [Z, W] = 0. 
Since

ddcρ(Z,W) = Z
(
dcρ(W)

)
−W

(
dcρ(Z)

)
− dcρ([Z,W]) = Z

(
dcρ(W)

)
−W

(
dcρ(Z)

)
,
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and the section Z to L annihilates ddcρ, we have

W
(
dcρ(Z)

)
= Z

(
dcρ(W)

)
.

Since dc = i

2(∂̄ − ∂) and ZW = WZ, it follows that

− i

2W(Zρ) = i

2Z(Wρ) = i

2W(Zρ) .

This implies that W(Zρ) ≡ 0, so as a conclusion Zρ is holomorphic. �
Note that the function Vρ is nowhere vanishing since

Vρ = Φα∂α

(
−e−(n+1)Φ/C2

)
= Φα

(
e−(n+1)Φ/C2 n + 1

C2 Φα

)
= (n + 1)e−(n+1)Φ/C2

= −(n + 1)ρ > 0 .

(4.10)

If W is a nowhere vanishing local holomorphic section to L, then there is non-vanishing smooth function 
g such that W = gV. Therefore Wρ = g(Vρ) is a holomorphic function which is nowhere vanishing on its 
domain. Then we can define the holomorphic vector field W̃ by

W̃ = i

Wρ
W .

If W ′ is another nonvanishing holomorphic section to L, then W ′ = gW for some nonvanishing holomorphic 
function g on an open set where W and W ′ are both defined. Moreover

W̃ ′ = i

W ′ρ
W ′ = i

gWρ
gW = i

Wρ
W = W̃ .

Therefore we can define a global holomorphic vector field Zρ of Ω by

Zρ = i

Wρ
W (4.11)

for any nowhere vanishing holomorphic section W to L.
The following implies Theorem 2.4.

Proposition 4.4. The vector field Zρ in (4.11) is complete.

Proof. The real part of Zρ is tangent to ρ:

(ReZρ)ρ = (Zρ + Zρ)ρ =
(

i

Wρ
W − i

Wρ
W

)
ρ = 0 .

The length of Zρ can be locally written by

‖Zρ‖2
ωKE

=
∥∥∥∥ i

Wρ
W

∥∥∥∥2

ωKE

= 1
|Wρ|2

‖W‖2
ωKE

.

When we let W = gV for some g, we have ‖W‖2
ωKE

= g2 ‖V‖2
ωKE

= g2C2 and |Wρ|2 = (n + 1)2g2ρ2 from 
(4.10). This means that
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‖Zρ‖2
ωKE

= g2C2

(n + 1)2g2ρ2 = C2

(n + 1)2ρ2 .

This implies that ρZρ has constant length C/(n +1). Since the Kähler-Einstein metric ωKE is complete, the 
vector field Re (ρZρ) = ρ(ReZρ) is complete.

In order to show the completeness of Zρ, take any integral curve γ : R → X of ρ(ReZρ). It satisfies

(ρ(ReZρ)) ◦ γ = γ̇

equivalently

(ReZρ) ◦ γ =
(
ρ−1 ◦ γ

)
γ̇

Since (ReZρ)ρ ≡ 0, equivalently (ρ(ReZρ)) ρ ≡ 0, the curve γ lies on a level set of ρ so ρ−1 ◦γ ≡ c for some 
negative constant c. For the curve σ : R → X defined by σ(t) = γ(ct), we have

(ReZρ) ◦ σ(t) = (ReZρ)(γ(ct)) = cγ̇(ct) = σ̇(t)

This means that σ : R → Ω is the integral curve of ReZρ; therefore ReZρ is complete. This completes the 
proof. �
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