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Very recently, motivated by the result of Bhatia and Šemrl which characterizes the 
Birkhoff-James orthogonality of operators on a finite dimensional Hilbert space in 
terms of norm attaining points, the Bhatia-Šemrl property was introduced. The 
main purpose of this article is to study the denseness of the set of multilinear maps 
with the Bhatia-Šemrl property which is contained in the set of norm attaining 
ones. Contrary to the most of previous results which were shown for operators on 
real Banach spaces, we prove the denseness for multilinear maps on some complex 
Banach spaces. We also show that the denseness of operators does not hold when the 
domain space is c0 for arbitrary range. Moreover, we find plenty of Banach spaces 
Y such that only the zero operator has the Bhatia-Šemrl property in the space of 
operators from c0 to Y .

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The concept of orthogonality on a normed space was first considered by G. Birkhoff [5] in 1935, known 
as the Birkhoff-James orthogonality. This extends the classical orthogonality on a Hilbert space to a general 
Banach space, and does an important role in figuring out the geometric structure of the space. Later in 1999, 
R. Bhatia and P. Šemrl [4] found a way to characterize the orthogonality of operators on a finite dimensional 
Hilbert space in the sense of the norm attainment of operators. The characterization of orthogonality of 
operators on a Hilbert space was also obtained in 1999 using different technique [17]. Afterwards it was shown 
by C. K. Li and H. Schneider [14] that such characterization is not applicable in general even for operators 
on finite dimensional spaces. In the recent decade, there have been many works to study operators that the 
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characterization holds, and we say that such operators have the Bhatia-Šemrl property [18,19,21,22]. Our 
goal of the present paper is also to study multilinear maps such characterization holds.

For a better understanding, we shall introduce some required basic terminologies and backgrounds here. 
Unless it is written specifically, we denote Banach spaces by X, Xi (1 � i � N, N ∈ N) and Y over a 
base field K = R or C. We write BX and SX for the unit ball and unit sphere of X, respectively. We write 
LN (X1, . . . , XN ; Y ) to be the space of all N -linear maps from X1 × · · · × XN into Y equipped with the 
typical supremum norm on SX1 × · · · × SXN

. Especially, we denote the case when N = 1, the space of 
operators from X into Y , by L(X; Y ) and the topological dual space L(X; K) by X∗. An N -linear map 
A ∈ LN (X1, . . . , XN ; Y ) is said to attain its norm at (x1, . . . , xN ) ∈ SX1 × · · · × SXN

if ‖A(x1, . . . , xN )‖ =
‖A‖, and we write as A ∈ NA(X1, . . . , XN ; Y ) and (x1, . . . , xN ) ∈ MA := {(z1, . . . , zN ) ∈ SX1 × · · · ×
SXN

: ‖A(z1, . . . , zN )‖ = ‖A‖}. We now introduce the orthogonality on Banach spaces which is the main 
concept of this article.

Definition 1.1. [5] We say a vector x ∈ X is orthogonal to y ∈ X in the sense of Birkhoff-James if ‖x‖ �
‖x + λy‖ for any λ ∈ K, and it is denoted by x ⊥B y.

Note that the Birkhoff-James orthogonality is not a symmetric notion. A useful characterization of the 
orthogonality on X is given as follows [10]:

For x, y ∈ X,x ⊥B y if and only if there exists x∗ ∈ SX∗ such that x∗(x) = ‖x‖ and x∗(y) = 0.

If we take operators T ∈ NA(X; Y ), S ∈ L(X; Y ) and a point x0 ∈ MT , one may easily see that 
Tx0 ⊥B Sx0 implies that T ⊥B S. As it is mentioned in the introduction, Bhatia and Šemrl showed in [4]
that the opposite direction of implication still holds when X = Y is a finite dimensional complex Hilbert 
space. Motivated by this result, the Bhatia-Šemrl property is defined as follows.

Definition 1.2. [22] A bounded linear operator T ∈ L(X; Y ) is said to have the Bhatia-Šemrl property (in 
short, BŠ property) if for any S ∈ L(X; Y ) with T ⊥B S, there exists x0 ∈ SX such that ‖Tx0‖ = ‖T‖ and 
Tx0 ⊥B Sx0. The set of operators with the BŠ property is denoted by BŠ(X; Y ).

It is easy to see that every operator in L(X; K) has the BŠ property if and only if X is reflexive from 
the characterization of Birkhoff-James orthogonality given by James. However, it is known that there is 
an operator without the BŠ property in general [14], and so many authors are interested in investigating 
the “quantity” of operators with the property. More precisely, in [22], it is shown that the set of operators 
with the BŠ property defined on a real finite dimensional strictly convex Banach space X is always dense 
in L(X; X). After that Paul, Sain and Ghosh found a useful characterization theorem in [19] provided some 
constraints on MT , and we introduce here for its importance. We refer to [20] for the characterization of 
the BŠ property in matrices on an Euclidean spaces without any restriction on the norm attaining set.

Theorem 1.3. [19, Theorem 2.2] Let X and Y be real Banach spaces, and T ∈ L(X; Y ) be such that 
MT = C ∪ −C for some nonempty compact connected C ⊂ X. Suppose that supx∈D ‖Tx‖ < ‖T‖ whenever 
D is a closed subset of SX with dist(MT , D) > 0. Then, for any S ∈ L(X; Y ), T ⊥B S if and only if there 
exists x0 ∈ MT such that Tx0 ⊥B Sx0.

With the aid of the above result, one may find a way to measure the denseness of operators with the BŠ
property in many cases. Kim proved that some conditions on pairs of Banach spaces ensure the denseness 
of operators with the BŠ property such as when X has the Radon-Nikodým property (in short, RNP) [11]. 
This is a generalization of the result in [22] since it is known that every finite dimensional space has the 
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RNP. Later, Kim and Lee [12] complemented the result with the case when X has so-called property α or 
when BŠ(X; R) is dense in L(X; R) and Y has property β.

The main goal of Section 2 is to generalize and strengthen aforementioned results in [11,12] for multilinear 
maps. Similarly to the case of operators, it is clear that A ∈ NA(X1, . . . , XN ; Y ) and B ∈ LN (X1, . . . , XN ; Y )
satisfy A ⊥B B if A(x1, . . . , xN ) ⊥B B(x1, . . . , xN ) for some (x1, . . . , xN ) ∈ MA. What we are going to see 
is whether the converse holds or not.

Definition 1.4. An N -linear map A ∈ LN (X1, . . . , XN ; Y ) is said to have the BŠ property if for any 
B ∈ LN (X1, . . . , XN ; Y ) with A ⊥B B, there exists (x1, . . . , xN ) ∈ MA such that A(x1, . . . , xN ) ⊥B

B(x1, . . . , xN ), and we write by A ∈ BŠ(X1, . . . , XN ; Y ) in this case.

We observe first that an N -linear map A ∈ LN (X1, . . . , XN ; Y ) can be identified by an operator TA ∈
L(X1; LN−1(X2, . . . , XN ; Y )) with the canonical isometric relation A(x1, . . . , xN ) = (TAx1)(x2, . . . , xN ), 
and so we have that A, B ∈ LN (X1, . . . , XN ; Y ) satisfy A ⊥B B if and only if TA ⊥B TB . From this 
identification, for a finite dimensional complex Hilbert space H, we rewrite the result of Bhatia and Šemrl 
in terms of bilinear forms as follows.

For every A,B ∈ L2(H,H;C), A ⊥B B if and only if A(x1, x2) ⊥B B(x1, x2) for some (x1, x2) ∈ MA.

Indeed, the result of Bhatia and Šemrl [4] says that TAx1 ⊥B TBx1 for some x1 ∈ MTA
. Since Hilbert 

spaces are isometrically isomorphic to their dual spaces, there exists x2 ∈ SH(= SH∗∗) such that x2(TAx1) =
‖TAx1‖ and x2(TBx1) = 0 by the characterization of James [10]. This shows that (x1, x2) ∈ MA and 
A(x1, x2) ⊥B B(x1, x2). In this argument, in fact, we used only the facts that every operator T ∈ L(H, H∗)
has the BŠ property and that H∗ is reflexive. Hence, we deduce the following.

Lemma 1.5. For Banach spaces X and Y , if Y is reflexive, then A ∈ L2(X, Y ; K) has the BŠ property if 
and only if the corresponding operator TA ∈ L(X; Y ∗) has the BŠ property.

As a consequence of the equivalence, we obtain a positive result by applying [12, Corollary 3.5] with the 
fact that �n∞ is a reflexive space having property β.

Corollary 1.6. Let X be a locally uniformly convex Banach space and n ∈ N. Then, BŠ(X, �n1 ; K) is dense 
in L2(X, �n1 ; K).

In the above statement, it should be written by R instead of K since [12, Corollary 3.5] is proved for real 
spaces. However, in Section 2 we prove a stronger statement for complex spaces, and this is why we put 
K. We also comment that the version of Lemma 1.5 for a non-reflexive Y does not hold. Since L2(K, Y ; K)
can be identified with L(Y ; K) and there exists an operator in L(Y ; K) without the BŠ property, we can 
find A ∈ L2(K, Y ; K) without the BŠ property whenever Y is non-reflexive. However, it is clear that the 
corresponding operator TA belongs to BŠ(K; Y ∗).

We remark that previous results in [11,12] are only valid for real cases, as the construction of C in 
Theorem 1.3 strongly depends on the disconnectedness of two specific partitions. We present a similar 
result to Theorem 1.3 in Section 2 which is slightly weaker but which also covers the complex case, and 
deduce some denseness results.

On the opposite hand, there are still many examples which shows that BŠ(X; Y ) is a very small set 
compared to L(X; Y ). As shown in [11], there is no nontrivial operator with the BŠ property in L(c0; Y )
when Y is strictly convex and moreover that BŠ(c0; c0) is not dense in L(c0; c0). In [12], the authors proved 
that BŠ(L1[0, 1]; Y ) = {0} for an arbitrary Banach space Y . It is a very intriguing result as there are 
many range spaces Y such that NA(L1[0, 1]; Y ) is dense in L(L1[0, 1]; Y ) on the contrary. In Section 3, we 
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strengthen the result on c0. More precisely, we show first that there are plenty of Banach spaces Y such 
that BŠ(c0; Y ) only consists of the zero operator, and secondly a quite stunning result that BŠ(c0; Y ) is 
never dense in L(c0; Y ) for every Banach space Y . This eventually gives rise to producing a negative result 
on the denseness of multilinear maps when one of the domain space is c0.

2. Denseness of N -linear maps with the Bhatia-Šemrl property

We provide in this section many positive examples of tuples (X1, X2, . . . , XN , Y ) of Banach spaces such 
that the set of N -linear maps with the BŠ property is dense in LN (X1, . . . , XN ; Y ). As many previous 
results for operators rely on Theorem 1.3, it is inevitable to compromise Theorem 1.3 also to cover the 
complex case, and a stronger assumption will help to handle those situations. In the followings, TN denotes 
the N product of unit spheres of the scalar field K and SX1 ×· · ·×SXN

stands for the product metric space 
of SX1 , . . . , SXN

endowed with the supremum metric.

Proposition 2.1. Let X1, . . . , XN and Y be Banach spaces. Let A ∈ LN (X1, . . . , XN ; Y ) be such that MA =
{(θ1x1

0, . . . , θ
NxN

0 ) ∈ SX1 × · · · × SXN
: (θ1, . . . , θN ) ∈ TN} for some (x1

0, . . . , x
N
0 ) ∈ SX1 × · · · × SXN

. 
Suppose that sup(x1,...,xN )∈D ‖A(x1, . . . , xN )‖ < ‖A‖ whenever D is a closed subset of SX1 × · · · × SXN

with dist(MA, D) > 0. Then, for any B ∈ LN (X1, . . . , XN ; Y ), A ⊥B B if and only if A(x1
0, . . . , x

N
0 ) ⊥B

B(x1
0, . . . , x

N
0 ).

Proof. Since the ‘if’ part is evident, suppose that A ⊥B B and there exists λ0 ∈ K such that 
‖A(x1

0, . . . , x
N
0 )‖ > ‖A(x1

0, . . . , x
N
0 ) + λ0B(x1

0, . . . , x
N
0 )‖. By assumption, we can choose a sequence 

{(x1
j , . . . , x

N
j )}∞j=1 ⊂ SX1 × · · · × SXN

so that

∥∥∥∥A(x1
j , . . . , x

N
j ) + λ0

j
B(x1

j , . . . , x
N
j )
∥∥∥∥ � ‖A‖ − 1

j2 for each j ∈ N.

For Dn := {(x1
j , . . . , x

N
j )}∞

j=n ⊂ SX1 × · · · × SXN
, if there exist only finite number of indices j1 < · · · < jk

such that (θ1
i x

1
ji
, . . . , θNi xN

ji
) = (x1

0, . . . , x
N
0 ) for some (θ1

i , . . . , θ
N
i ) ∈ TN for each 1 � i � k then we 

take m = jk + 1, and we take m = 1 if there are infinitely many such indices. We now show that 
dist(MA, Dm) > 0. Otherwise, there is a subsequence {(x1

σ(j), . . . , x
N
σ(j))} such that (x1

σ(j), . . . , x
N
σ(j)) con-

verges to (θ1
0x

1
0, . . . , θ

N
0 xN

0 ) for some (θ1
0, . . . , θ

N
0 ) ∈ TN . It follows that

‖A‖ = ‖A(x1
0, . . . , x

N
0 )‖

> ‖A(x1
0, . . . , x

N
0 ) + λ0B(x1

0, . . . , x
N
0 )‖

= lim
j→∞

∥∥∥A(x1
σ(j), . . . , x

N
σ(j)) + λ0B(x1

σ(j), . . . , x
N
σ(j))

∥∥∥
� lim

j→∞

(
σ(j)

∥∥∥∥A(x1
σ(j), . . . , x

N
σ(j)) + λ0

σ(j)B(x1
σ(j), . . . , x

N
σ(j))

∥∥∥∥− (σ(j) − 1)‖A(x1
σ(j), . . . , x

N
σ(j))‖

)
� lim

j→∞

(
σ(j)

(
‖A‖ − 1

σ(j)2

)
− (σ(j) − 1)‖A‖

)
= lim

j→∞

(
‖A‖ − 1

σ(j)

)
= ‖A‖,

which is a contradiction.



G. Choi, S.K. Kim / J. Math. Anal. Appl. 502 (2021) 125275 5
Hence, we get

ε := ‖A‖ − sup
j�m

‖A(x1
j , . . . , x

N
j )‖ > 0.

Take M ∈ N so that M > max
{
m, 

2
ε
|λ0|‖B‖, 

√
2
ε

}
, then we have the following desired contradiction

‖A‖ − ε

2 < ‖A‖ − 1
M2 � ‖A(x1

M , . . . , xN
M ) + λ0

M
B(x1

M , . . . , xN
M )‖

� ‖A(x1
M , . . . , xN

M )‖ + |λ0|
M

‖B(x1
M , . . . , xN

M )‖

� (‖A‖ − ε) + ε

2
= ‖A‖ − ε

2 . �
We now recall some concepts, namely property quasi-α, as a sufficient condition on the domain spaces for 

the denseness of N -linear maps with the BŠ property. This is introduced in [6] as a sufficient condition for 
the denseness of norm attaining operators. We note that property quasi-α is strictly weaker than property 
α and it is shown in [12] that BŠ(X; Y ) is dense in L(X; Y ) whenever X has property α for real Banach 
spaces.

Definition 2.2. A Banach space X is said to have property quasi-α if there exist an index set I, {xα}α∈I ⊂ SX , 
{x∗

α}α∈I ⊂ SX∗ , and λ : {xα}α∈I → R satisfying that

(i) x∗
α(xα) = 1 for all α ∈ I,

(ii) |x∗
α(xβ)| � λ(xα) < 1 for all α, β ∈ I with α �= β,

(iii) For every e ∈ Ext(BX∗∗), there exists Ie ⊂ I such that te ∈ {xα}
w∗

α∈Ie
for some t ∈ T and re =

sup{λ(xα) : α ∈ Ie} < 1.

Motivated by the proof of [6, Proposition 2.1], we show the following proposition.

Proposition 2.3. Let X, X1, . . . , XN and Y be Banach spaces. If X has property quasi-α and BŠ(X1, . . . , XN ;
Y ) is dense in LN (X1, . . . , XN ; Y ), then BŠ(X, X1, . . . , XN ; Y ) is dense in LN+1(X, X1, . . . , XN ; Y ).

Proof. Before proving the statement, we first see the canonical isometry shows that

LN+1(X,X1, . . . , XN ;Y ) = L(X;LN (X1, . . . , XN ;Y )).

For convenience, we set Z = LN (X1, . . . , XN ; Y ) and TD ∈ L(X; Z) to be the image of D ∈
LN+1(X, X1, . . . , XN ; Y ) by the isometry.

We show that it is possible to approximate A ∈ LN+1(X, X1, . . . , XN ; Y ) by B ∈ BŠ(X, X1, . . . , XN ; Y ). 
We here assume that ‖A‖ = 1 without any loss of generality, and assume that (TA)∗∗ ∈ NA(X∗∗; Z∗∗)
by Lindenstrauss (see [16, Theorem 1]). Let {xα}α∈I ⊂ SX and {x∗

α}α∈I ⊂ SX∗ be as in the definition of 
property quasi-α. Since (TA)∗∗ attains its norm at some e ∈ Ext(BX∗∗) (see [15, Theorem 5.8]), there exists 
an index set Ie ⊂ I as in the definition.

For arbitrary ε > 0, take 0 < δ <
ε

2 so that

1 + re

(ε + δ
)
<
(
1 + ε) (1 − δ).
2 2
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As it is known that te ∈ {xα}
w∗

α∈Ie
for some t ∈ T , we can choose α0 ∈ Ie such that

‖TAxα0‖ > ‖TA‖ − δ = 1 − δ.

By the assumption that BŠ(X1, . . . , XN ; Y ) is dense in Z, there exists U ∈ BŠ(X1, . . . , XN ; Y ) with ‖U‖ =
‖TAxα0‖ such that ‖U−TAxα0‖ < δ. Indeed, we can find Ũ ∈ BŠ(X1, . . . , XN ; Y ) such that ‖Ũ−TAxα0‖ <
δ/2 and thus we can take U := ‖TAxα0‖Ũ/‖Ũ‖ since

‖U − TAxα0‖ � ‖U − Ũ‖ + ‖Ũ − TAxα0‖ < δ.

The operator S ∈ L(X; Z) defined by

S(·) := TA(·) +
[(

1 + ε

2

)
U − (TAxα0)

]
x∗
α0

(·)

attains its norm at xα0 . Indeed, we have that Sxα0 =
(
1 + ε

2

)
U ∈ BŠ(X1, . . . , XN ; Y ) and so

‖Sxα0‖ >
(
1 + ε

2

)
(1 − δ).

On the other hand, for α ∈ I \ {α0},

‖Sxα‖ � ‖TAxα‖ +
(∥∥∥ε2 U

∥∥∥+ ‖U − TAxα0‖
) ∣∣x∗

α0
(xα)

∣∣
� 1 + re

(ε
2 + δ

)
<
(
1 + ε

2

)
(1 − δ).

Let B ∈ LN+1(X, X1, . . . , XN ; Y ) be the corresponding (N+1)-linear map of S, and it is enough to prove 
that B has the BŠ property. To do so, we first check the conditions of Proposition 2.1 to see S ∈ BŠ(X; Z). 
Indeed, for 0 < γ < 2 and x ∈ SX such that dist ({θxα0 : θ ∈ T}, x) > γ, we show that

‖Sx‖ � ‖S‖ −
γ
(
‖S‖ −

(
1 + ε

2

)
(1 − δ)

)
4 .

From the fact that the absolutely closed convex hull of {xα}α∈I is BX which can be deduced by the usual 
separation argument, choose n ∈ N, an absolutely convex series {cαi

}ni=0 ⊂ BK (indeed, 
∑n

i=0 |cαi
| � 1) 

and distinct elements xα1 , . . . , xαn
∈ {xα}α∈I such that z =

∑n
i=0 cαi

xαi
satisfies

‖z − x‖ <
γ
(
‖S‖ −

(
1 + ε

2

)
(1 − δ)

)
4‖S‖ and dist ({θxα0 : θ ∈ T}, z) > γ.

If |cα0 | > 1 − γ/2, then ∥∥∥∥ cα0

|cα0 |
xα0 − z

∥∥∥∥ �
∥∥∥∥ cα0

|cα0 |
xα0 − cα0xα0

∥∥∥∥+ ‖cα0xα0 − z‖

<
γ

2 +

∥∥∥∥∥
n∑

i=1
cαi

xαi

∥∥∥∥∥
< γ.

Hence we have |cα0 | � 1 − γ/2, and this leads to that
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‖Sz‖ � |cα0 |‖Sxα0‖ +
n∑

i=1
|cj |‖Sxαj

‖

� |cα0 |‖S‖ + (1 − |cα0 |)
(
1 + ε

2

)
(1 − δ)

� ‖S‖ − (1 − |cα0 |)
(
‖S‖ −

(
1 + ε

2

)
(1 − δ)

)

� ‖S‖ −
γ
(
‖S‖ −

(
1 + ε

2

)
(1 − δ)

)
2 .

Thus, it follows that

‖Sx‖ � ‖Sz‖ + ‖Sx− Sz‖ � ‖Sz‖ + ‖S‖‖x− z‖ � ‖S‖ −
γ
(
‖S‖ −

(
1 + ε

2

)
(1 − δ)

)
4 .

Therefore, whenever B ⊥B C for C ∈ LN+1(X, X1, . . . , XN ; Y ) we have that Sxα0 ⊥B TCxα0 . Since we 

know that Sxα0 =
(
1 + ε

2

)
U has the BŠ property, there exists (xβ1 , . . . , xβN

) ∈ MSxα0
so that

‖Sxα0(xβ1 , . . . , xβN
)‖ = ‖Sxα0‖ and Sxα0(xβ1 , . . . , xβN

) ⊥B TCxα0(xβ1 , . . . , xβN
).

From the facts that Sxα0(xβ1 , . . . , xβN
) = B(xα0 , xβ1 , . . . , xβN

) and TCxα0(xβ1 , . . . , xβN
) = C(xα0 , xβ1 , . . . ,

xβN
), we finish the proof. �

The Radon-Nikodým property, RNP in short, had been considered as an important concept to understand 
the geometry of infinite dimensional Banach spaces. Especially, Stegall [23] proved the following optimization 
principle on spaces with the RNP. For a subset D ⊂ X, a real valued function f on D is said to strongly 
expose D if there exists x0 ∈ D such that f(x0) = supt∈D f(t) and that every sequence {xn}∞n=1 ⊂ D

converges to x0 whenever f(xn) converges to f(x0).

Lemma 2.4. [20, Stegall’s optimization principle] Let X be a Banach space, D ⊂ X be a bounded RNP set 
and f : D → R is an upper semi-continuous bounded above function. Then,

0 ∈ {x∗ ∈ X∗ : f + Rex∗ strongly exposes D}

For more information on the RNP, we refer the reader to the classical monograph [7]. In [11], it is proved 
for the real case that if X is a Banach space with the RNP, then BŠ(X; Y ) is dense in L(X; Y ) for every 
Banach space Y . Applying the idea of [3], we extend this result to N -linear maps, and we cover complex 
case as well.

Proposition 2.5. Let X1, . . . , XN be Banach spaces with the RNP. Then, BŠ(X1, . . . , XN ; Y ) is dense in 
LN (X1, . . . , XN ; Y ) for every Banach space Y .

Proof. For an arbitrary A ∈ LN (X1, . . . , XN ; Y ), our goal is to approximate A with elements in 
BŠ(X1, . . . , XN ; Y ). Without loss of generality, we may assume that ‖A‖ = 1. Fix any 0 < ε < 1/2 and 
we first follow the idea in [3] to find B ∈ BŠ(X1, . . . , XN ; Y ) so that ‖B − A‖ < ε. Indeed, as X1, . . . , XN

have the RNP, we see that the finite �∞-sum X1 ⊕∞ · · · ⊕∞ XN has the RNP. Thus by Lemma 2.4, there 
exists φ = (x∗

1, . . . , x
∗
N ) ∈ X∗

1 ⊕1 · · · ⊕1 X∗
N with ‖φ‖ < ε such that ‖A(·)‖ + Reφ(·) strongly exposes 

BX1 × · · · ×BXN
at some (x1, . . . , xN ).
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We see that all the elements x1, . . . , xN are nonzero from the inequality

‖A(x1, . . . , xN )‖ + Re [φ(x1, . . . , xN )] � ‖A(z1, . . . , zN )‖ + Re [φ(z1, . . . , zN )]

for all (z1, . . . , zN ) ∈ BX1 × · · · ×BXN
, since ‖A(x1, . . . , xN )‖ + Re [φ(x1, . . . , xN )] < ε < 1/2 otherwise.

Thus we see that ‖x1‖ = . . . = ‖xN‖ = 1 by normalization, and so there exists (w∗
1 , . . . , w

∗
N ) ∈ SX1∗ ×

· · · × SXN
∗ such that w∗

1(x1) = . . . = w∗
N (xN ) = 1. We also note that |φ(x1, . . . , xN )| = φ(x1, . . . , xN ) and

‖A(x1, . . . , xN )‖ + Re [φ(x1, . . . , xN )] � ‖A(z1, . . . , zN )‖ + |φ(z1, . . . , zN )|

for all (z1, . . . , zN ) ∈ BX1 × · · · ×BXN
by rotation of elements.

As in [3], we clearly see a map B ∈ LN (X1, . . . , XN ; Y ) given by

B(z1, . . . , zN ) := A(z1, . . . , zN )+
n∑

j=1

⎛⎜⎝x∗
j (zj)

n∏
i=1
i�=j

w∗
i (zi)

⎞⎟⎠ A(x1, . . . , xN )
‖A(x1, . . . , xN )‖ for (z1, . . . , zN ) ∈ X1×· · ·×XN

attains its norm at (x1, . . . , xN ), and especially we deduce

‖B‖ = ‖B(x1, . . . , xN )‖ = ‖A(x1, . . . , xN )‖ + Re [φ(x1, . . . , xN )] .

We now show that B is the desired one by checking the conditions in Proposition 2.1. Let

M := {(θ1x1, . . . , θ
NxN ) ∈ SX1 × · · · × SXN

: (θ1, . . . , θN ) ∈ TN}.

If there exists a closed subset D of SX1 × · · · × SXN
so that

sup
(z1,...,zN )∈D

‖B(z1, . . . , zN )‖ = ‖B‖ and dist(M,D) > 0,

there is a sequence 
{
(z1

j , . . . , z
N
j )
}∞
j=1 ⊂ D satisfying ‖B(z1

j , . . . , z
N
j )‖ converges to ‖B‖. Since

‖B(θjz1
j , . . . , θjz

N
j )‖ � ‖A(z1

j , . . . , z
N
j )‖ +

∣∣φ(θjz1
j , . . . , θjz

N
j )
∣∣

= ‖A(z1
j , . . . , z

N
j )‖ +

∣∣θj (x∗
1(z1

j ) + . . . x∗
N (zNj )

)∣∣
= ‖A(z1

j , . . . , z
N
j )‖ + Re

[(
x∗

1(z1
j ) + . . . x∗

N (zNj )
)]

� ‖A(x1, . . . , xN )‖ + Re [φ(x1, . . . , xN )]

for a suitable θj ∈ T for each j, we have that (θjz1
j , . . . , θjz

N
j ) converges to (x1, . . . , xN ) from the strong 

exposedness of ‖A(·)‖ + Reφ(·), and this contradicts to dist(M, D) > 0. �
As a consequence of Propositions 2.3 and 2.5, we have the following.

Corollary 2.6. Let X1, . . . , XN be Banach spaces having at least one of properties among the RNP and 
property quasi-α. Then, BŠ(X1, . . . , XN ; Y ) is dense in LN (X1, . . . , XN ; Y ) for every Banach space Y .

Proof. We first consider the case that there are at least two types of different spaces in Xi’s such that 
some has the RNP and the rest has property quasi-α. By a suitable rearrangement of spaces, we assume 
that there exists 1 � k � N − 1 so that Xi has property quasi-α if 1 � i � k and it has the RNP 
otherwise. From Proposition 2.5, we have that BŠ(Xk+1, . . . , XN ; Y ) is dense in LN−k(Xk+1, . . . , XN ; Y ). 
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Thus Proposition 2.3 shows that BŠ(Xk, . . . , XN ; Y ) is dense in LN−k+1(Xk, . . . , XN ; Y ). From the usual 
induction argument we prove the statement.

Since the case that all of Xi’s having the RNP is proved in Proposition 2.5, it remains to show the case 
when all Xi’s having property quasi-α. We here take the isometry Y = L(K; Y ) and use N + 1 instead 
of N and XN+1 = K. Since K has the RNP, it is possible to apply the argument above and we see that 
BŠ(X1, . . . , XN+1; Y ) is dense in LN+1(X1, . . . , XN+1; Y ). Hence, from the canonical isometry, we have that 
BŠ(X1, . . . , XN ; L(XN+1; Y )) is dense in LN (X1, . . . , XN ; L(XN+1; Y )) and so we finish the proof. �

We now move on to a condition for range spaces for the denseness, which is a dual notion of property 
quasi-α.

Definition 2.7. [2] A Banach space X is said to have property quasi-β if there exist an index set I, {xα}α∈I ⊂
SX , {x∗

α}α∈I ⊂ SX∗ , and λ : {x∗
α}α∈I → R satisfying that

(i) x∗
α(xα) = 1 for all α ∈ I,

(ii) |x∗
β(xα)| � λ(x∗

α) < 1 for all α, β ∈ I with α �= β,

(iii) For every e∗ ∈ Ext(BX∗), there exists Ie∗ ⊂ I such that te∗ ∈ {x∗
α}

w∗

α∈Ie
for some t ∈ T and re∗ =

sup{λ(x∗
α) : α ∈ Ie∗} < 1.

Similarly to the case of property quasi-α, property quasi-β is introduced as a sufficient condition on the 
range space for the denseness of norm attaining operators. In [12], the authors showed that property β of a 
real Banach space Y is a universal condition for BŠ(X; Y ) being dense in L(X; Y ) provided that BŠ(X; R)
is dense in L(X; R). We improve this result with a strictly weaker property, and we refer to [2] for more 
information on property quasi-β.

Proposition 2.8. Let X1, . . . , XN be Banach spaces such that BŠ(X1, . . . , XN ; K) is dense in LN (X1, . . . , XN ;
K). Let Y be a Banach space with property quasi-β. Then, BŠ(X1, . . . , XN ; Y ) is dense in LN (X1, . . . , XN ;
Y ).

Proof. The beginning of the proof is from [2, Theorem 2] and [6, Theorem 2.12], but we give details for the 
completeness.

Let {yα}α∈I ⊂ SY and {y∗α}α∈I ⊂ SY ∗ be the corresponding index sets in the definition of property 
quasi-β. By [24, Proposition 4], it suffices to show that every A ∈ LN (X1, . . . , XN ; Y ) with ‖A‖ = 1
satisfying Ã∗ ∈ NA(Y ∗; Z∗) can be approximated by B ∈ BŠ(X1, . . . , XN ; Y ), where Z is the completed 
projective tensor product space X1⊗̂π · · · ⊗̂πXN and Ã is a linearization of A on Z. As in Proposition 2.3, 
we see that Ã∗ attains its norm at some e∗ ∈ Ext(BZ∗) by [15, Theorem 5.8] and choose an index set Ie∗ ⊂ I

in the definition of property quasi-β.
For an arbitrary ε > 0, take 0 < δ <

ε

2 so that

1 + re∗
(ε

2 + δ
)
< (1 − δ)

(
1 + ε

2

)
.

As we know that te∗ ∈ {y∗α}
w∗

α∈I for some t ∈ T , there exists α0 ∈ Ie∗ so that

‖Ã∗y∗α0
‖ > ‖A‖ − δ = 1 − δ.

For convenience, we consider Ã∗y∗α0
as an element in LN (X1, . . . , XN ; K) instead of L(Z; K) according to 

an isometric correspondence. By the assumption that BŠ(X1, . . . , XN ; K) is dense in LN (X1, . . . , XN ; K), 
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there exists ϕ ∈ BŠ(X1, . . . , XN ; K) with ‖ϕ‖ = ‖Ã∗y∗α0
‖ such that ‖ϕ − Ã∗y∗α0

‖ < δ similarly as the choice 
of U in the proof in Proposition 2.3.

For B ∈ LN (X1, . . . , XN ; Y ) defined by

B(·) := A(·) +
[(

1 + ε

2

)
ϕ(·) − (Ã∗y∗α0

)(·)
]
yα0 ,

we deduce that B̃∗ attains its norm at y∗α0
. Indeed, we have that B̃∗y∗α0

=
(
1 + ε

2

)
ϕ ∈ BŠ(X1, . . . , XN ; K)

and so ∥∥∥B̃∗y∗α0

∥∥∥ > (1 + ε

2

)
(1 − δ).

On the other hand, for α ∈ I \ {α0},

‖B̃∗y∗α‖ �
∥∥∥Ã∗y∗α

∥∥∥+
(∥∥∥ε2ϕ∥∥∥+

∥∥∥ϕ− Ã∗y∗α0

∥∥∥) |y∗α(yα0)|

� 1 + re∗
(ε

2 + δ
)
<
(
1 + ε

2

)
(1 − δ).

Since we already have that ‖B − A‖ <
ε

2 + δ < ε, it remains to show that B ∈ BŠ(X1, . . . , XN ; Y ). To 

do so, it is enough to prove that B̃∗y∗α0
⊥B C̃∗y∗α0

for an arbitrary nonzero C ∈ LN (X1, . . . , XN ; Y ) with 
B ⊥B C. In other words, since B̃∗y∗α0

∈ BŠ(X1, . . . , XN ; K), there exists (x1, . . . , xN ) ∈ MB̃∗y∗
α0

such that 

B̃∗y∗α0
(x1, . . . , xN ) ⊥B C̃∗y∗α0

(x1, . . . , xN ). This gives that

y∗α0
(B(x1, . . . , xN )) =

∥∥∥B̃∗y∗α0

∥∥∥ = ‖B‖ and y∗α0
(C(x1, . . . , xN )) = 0

which deduce (x1, . . . , xN ) ∈ MB and B(x1, . . . , xN ) ⊥B C(x1, . . . , xN ).
To prove the claim, we assume that B ⊥B C. From (iii) of property quasi-β, we have that

‖B̃∗ + λC̃∗‖ = sup
α∈I

∥∥∥B̃∗y∗α + λC̃∗y∗α

∥∥∥ for any λ ∈ K.

Thus for 0 < |λ| < 1
‖C‖

[
(1 − δ)

(
1 + ε

2

)
−
(
1 + re∗

(ε
2 + δ

))]
, we have

sup
α∈I\{α0}

‖B̃∗y∗α + λC̃∗y∗α‖ � sup
α∈I\{α0}

‖B̃∗y∗α‖ + |λ| sup
α∈I\{α0}

‖C̃∗y∗α‖

<
(
1 + re∗

(ε
2 + δ

))
+
[
(1 − δ)

(
1 + ε

2

)
−
(
1 + re∗

(ε
2 + δ

))]
= (1 − δ)

(
1 + ε

2

)
< ‖B̃∗y∗α0

‖.

Since B ⊥B C implies B̃∗ ⊥B C̃∗ which means that ‖B̃∗ + λC̃∗‖ � ‖B̃∗‖ for every λ ∈ K, we have

‖B̃∗y∗α0
‖ � ‖B̃∗y∗α0

+ λC̃∗y∗α0
‖ for λ ∈ K

by convexity of the norm, and so we finish the proof. �
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It is shown in [12] that BŠ(X; R) is dense in L(X; R) whenever X is locally uniformly convex. It is not 
difficult to see that the underlying base field can be extended to the complex plane for an analogous result, 
so we have the following immediate result.

Corollary 2.9. Let X be a locally uniformly convex Banach space and Y be a Banach space with property 
quasi-β. Then, BŠ(X; Y ) is dense in L(X; Y ).

Lindenstrauss showed in [16] that there is a weaker condition than property α but still NA(X; Y ) is dense 
in L(X; Y ) for such X. Hence, it can also be asked whether it works as property α is a universal condition 
of domain spaces for BŠ(X; Y ) to be dense in L(X; Y ). Recall that a subset {xα}α∈I ⊂ SX for some index 
set I is said to be uniformly exposed if there exists {x∗

α}α∈I ⊂ SX∗ such that x∗
α(xα) = 1 for all α ∈ I

and that for any given ε > 0, there is δ > 0 so that ‖x − xα‖ < ε whenever α ∈ I and x ∈ BX satisfy 
Rex∗

α(x) > 1 − δ.

Question 2.10. Let X be a Banach space such that BX is the absolutely closed convex hull of a uniformly 
exposing set. Is BŠ(X; Y ) dense in L(X; Y ) for every Banach space Y ?

3. Operators with the Bhatia-Šemrl property on c0

We focus on the case of operators defined on the null sequence space c0. In [11], the author showed that 
BŠ(c0; Y ) only consists of a zero operator whenever Y is a strictly convex Banach space, and it is applied 
to show that BŠ(c0; c0) is not dense in L(c0; c0). We improve these results in further ways to observe that 
the operators with the BŠ property do not play well when the domain space is c0. In this section, for a set 
A ⊂ N, the notion PA : c0 → �A∞ ⊂ c0 denotes the canonical projection on the components in A.

Theorem 3.1. Let Y be any Banach space and T ∈ NA(c0; Y ) be given. If there is a finite set A ⊂ N so that 
‖TPA‖ = ‖T‖ and ‖T (I − PA)‖ < ‖T‖, then T does not have the BŠ property.

Proof. Since TPA can be considered as an operator defined on a finite dimensional space, it attains its norm 
at some x0 ∈ Sc0 whose support belongs to A which means that x0 = PAx0.

To prove the statement, we construct an operator U ∈ L(c0; Y ) such that T is orthogonal to U in the 
sense of Birkhoff-James but Tz is not orthogonal to Uz for any norm attaining point z ∈ MT . The desired 
operator is defined by

Uei :=

⎧⎪⎨⎪⎩
−Tei if i ∈ A

2r−iTx0 if i > r

0 otherwise,

where r is the largest element in A and {ei}∞i=1 is the canonical basis of c0. We comment that this is the 
one that firstly considered in the proof of [11, Theorem 2.6].

To show that T ⊥B U , take a functional y∗0 ∈ SY ∗ so that y∗0(Tx0) = ‖T‖. Since we have

|y∗0 (T (x0 ± (I − PA)x))| � ‖T‖ and ‖x0 ± (I − PA)x‖ = 1

for any x ∈ Bc0 , we obtain

y∗0 (T (x0 ± (I − PA)x)) = ‖T‖

by the equality
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‖T‖ = y∗0(Tx0) = y∗0 (T (x0 + (I − PA)x)) + y∗0 (T (x0 − (I − PA)x))
2 .

For arbitrary λ ∈ K and m > r, we have

y∗0

[
(T + λU)

(
x0 +

m∑
i=r+1

ei

)]
= y∗0

[
T

(
x0 + (I − PA)

(
m∑

i=r+1
ei

))]
+ λy∗0(Ux0) + λy∗0

(
m∑

i=r+1
Uei

)

= ‖T‖ − λ‖T‖
(

1 −
m−r∑
i=1

2−i

)
.

By letting m goes to infinity, we get ‖T + λU‖ � ‖T‖ and so T ⊥B U .
Now we claim that Tz is not orthogonal to Uz in the sense of Birkhoff-James for any norm attaining 

point z ∈ MT . In that case, it suffices to show that

‖(T + U)(I − PA)x‖ < ‖T‖ for any x =
(
x(i)
)∞
i=1 ∈ Bc0 .

If the claim is true, we have for 0 < λ < 1 that

‖Tz + λUz‖ = ‖(1 − λ)Tz + λ(T + U)(I − PA)z‖ < ‖T‖ = ‖Tz‖

which implies Tz is not orthogonal to Uz in the sense of Birkhoff-James.
For α =

∑
i>r 2r−ix(i), we have

‖(T + U)(I − PA)x‖ = ‖T (I − PA)x + U(I − PA)x‖

= ‖T (I − PA)x + αTx0‖

= ‖T (αx0 + (I − PA)x)‖

Note that |α| < 1. If α = 0, it then follows that

‖(T + U)(I − PA)x‖ = ‖T (I − PA)x‖ < ‖T‖,

so there is nothing to prove. Otherwise, sgn(α) = α

|α| is well-defined, and so we deduce the following 

inequality

‖(T + U)(I − PA)x‖ = ‖T (αx0 + (I − PA)x)‖

=
∥∥∥T (|α|x0 + sgn(α)(I − PA)x

)∥∥∥
=
∥∥∥T (|α|(x0 + sgn(α)(I − PA)x

))
+ T

(
(1 − |α|) sgn(α)(I − PA)x

)∥∥∥
=
∥∥∥|α|T (x0 + sgn(α)(I − PA)x

)
+ (1 − |α|) sgn(α)T (I − PA)x

∥∥∥
< |α|‖T‖ + (1 − |α|)‖T‖ = ‖T‖,

as we claimed. �
The next lemma allows us to deal with many cases for norm attaining operators which admit the first 

condition of Theorem 3.1.
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Lemma 3.2. Let Y be any Banach space and T ∈ NA(c0; Y ) be given. Then, there exists a finite set A ⊂ N

such that ‖TPA‖ = ‖T‖.

Proof. Let T attains its norm at x0 =
(
x0(i)

)∞
i=1 ∈ Sc0 . Since x0(i) converges to 0, we can take m ∈ N so 

that |x0(i)| < 1/2 for i � m. Since 
∥∥x0 ± (I − P{1,...,m})x0

∥∥ � 1 and

Tx0 =
(
Tx0 + T (I − P{1,...,m})x0

)
+
(
Tx0 − T (I − P{1,...,m})x0

)
2 ,

we have ∥∥TP{1,...,m}x0
∥∥ =

∥∥Tx0 − T (I − P{1,...,m})x0
∥∥ = ‖T‖.

Hence, A = {1, . . . , m} is the desired set. �
We are now able to generalize [11, Theorem 2.6] by obtaining that the set of operators with the BŠ

property is never dense in L(c0; Y ) for arbitrary range spaces Y . Note that in the case of norm attaining 
operators, NA(c0; Y ) is dense in L(c0; Y ) when Y is (complex) uniformly convex (see [1]).

Corollary 3.3. Let Y be any nontrivial Banach space. Then, BŠ(c0; Y ) is not dense in L(c0; Y ).

Proof. Fix a nonzero operator T ∈ L(c0; Y ) whose support B := {i ∈ N : T (ei) �= 0} is finite. Then it is 
clear that

‖TPB‖ = ‖T‖ and ‖T (I − PB)‖ = 0.

Let S be a norm attaining operator so that ‖S − T‖ <
1
2‖T‖ which gives ‖S‖ >

1
2‖T‖. From Lemma 3.2, 

there exists a finite set C ⊂ N so that ‖SPC‖ = ‖S‖.
Hence, for A = B ∪ C, we have ‖SPA‖ = ‖S‖ and that

‖S(I − PA)‖ � ‖S(I − PB)‖ � ‖T (I − PB)‖ + ‖(S − T )(I − PB)‖ <
1
2‖T‖.

By Theorem 3.1, S does not have the BŠ property. Since S is arbitrary, there is no operator with the BŠ
property whose distance from T is less than 

1
2‖T‖. �

One may notice that Corollary 3.3 induces the following negative result on the denseness of N -linear 
maps.

Corollary 3.4. Let X2, . . . , XN and Y be nontrivial Banach spaces. Then, BŠ(c0, X2, . . . , XN ; Y ) is not dense 
in LN (c0, XN , . . . , XN ; Y ).

Proof. The conclusion follows directly from the isometry LN(c0, X2, . . . , XN ; Y ) = L(c0; LN−1(X2, . . . , XN ;
Y )) and Corollary 3.3. Indeed, it is not difficult to see the fact that A ∈ BŠ(c0, X2, . . . , XN ; Y ) implies 
TA ∈ BŠ(c0; LN−1(X2, . . . , XN ; Y )). �

It is remarkable that the compactness of an operator defined on c0 and the BŠ property are mutually 
incompatible. Recall that a bounded linear operator T ∈ L(X; Y ) is said to be compact if T (BX) is relatively 
compact in Y , and we denote by K(X; Y ) the set of all compact operators in L(X; Y ). We leave below a 
sketch of its proof with an easy argument.
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Corollary 3.5. Let Y be any Banach space. Then, BŠ(c0; Y ) ∩ K(c0; Y ) = {0}.

Proof. As �1 = c∗0 has the approximation property, every nonzero compact operator can be approximated 
by finite rank operators [9]. Again, every finite rank operator can be approximated by operators with finite 
supports. Since we have shown that each open ball (i) whose center is an operator with a finite support and 
(ii) whose radius is less than half of the operator norm contains no operator with the BŠ property in the 
proof of Corollary 3.3, any nonzero compact operator does not belong to BŠ(c0; Y ). �

We recall the complex strict convexity to give more examples. A Banach space X is said to be complex 
strictly convex if for every x ∈ SX , maxλ∈T ‖x + λy‖ = 1 implies y = 0. It is worth to note that the 
strict convexity implies the complex strict convexity, and these two geometric properties are equivalent for 
real spaces. This is the reason why we usually consider complex convexity only for complex spaces. For a 
complex strictly convex Banach space Y , we see that every norm attaining operator T ∈ L(c0; Y ) is compact. 
Indeed, by Lemma 3.2, there exists an element u ∈ Sc0 whose support belongs to a finite set A ⊂ N such 
that ‖Tu‖ = ‖T‖. Then, it is clear that ‖T (u + λ(I − PA)v) ‖ = ‖T‖ for arbitrary v ∈ Sc0 and λ ∈ T by 
convexity of the norm. Hence, x = Tu/‖T‖ and y = T (I − PA)v/‖T‖ gives that y = 0 which shows that T
has a finite support.

On the other hand, it is well known that every bounded linear operator from c0 to Y is compact if Y
contains no isomorphic copy of c0 such as spaces having the RNP (see [8, Theorem 6.26]). So the preceding 
two remarks can be summarized by the following result.

Corollary 3.6. Let Y be a Banach space satisfying one of the following conditions:

(a) Y contains no subspace isomorphic to c0. In particular, Y has the RNP.
(b) Y is (complex) strictly convex.

Then, BŠ(c0; Y ) = {0}.

We improve [11, Theorem 3.4] by showing that there is no nontrivial operator with the BŠ property when 
Y = c0. In this case, neither all the operators satisfy the condition stated in Theorem 3.1 nor all the norm 
attaining operators are compact. For instance, we may consider the identity operator Id ∈ L(c0; c0).

Proposition 3.7. There is no nonzero operator T ∈ L(c0; c0) with the BŠ property. That is, BŠ(c0; c0) = {0}.

Proof. It is enough to prove that T ∈ NA(c0; c0) with ‖T‖ = 1 does not have the BŠ property. We denote 
each Ti ∈ L(c0; K) for i ∈ N to be the nth coordinate projection of T . Let

Ω := {i ∈ N : ‖Ti‖ = 1 and Ti ∈ NA(c0;K)}.

It follows easily that Ω is a nonempty set, and each Ti for i ∈ Ω has a finite support Ai := {j ∈
N : Ti(ej) �= 0} since K is strictly convex. For i ∈ Ω, as in the proof of Theorem 3.1, define Ri ∈ L(c0; K) by

Ri(ej) :=

⎧⎪⎨⎪⎩
−Tiej if j ∈ Ai

2ri−jTixi if j > ri
0 otherwise,

where xi is a norm attaining point with the support Ai and ri is the largest element in Ai. From the proof 
of Theorem 3.1, we observe that
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Ti ⊥B Ri, ‖Ri‖ = 2 and |Tix + λRix| < 1 for any x ∈ MTi
and 0 < λ < 1.

Define S = (Si)i ∈ L(c0; c0) by Si = 1
i
Ri if i ∈ Ω and Si = 0 otherwise. Then, T ⊥B S since for i ∈ Ω, 

we have that Ti ⊥ Ri, and thus

‖T‖ = ‖Ti‖ �
∥∥∥∥Ti + λ

i
Ri

∥∥∥∥ � ‖T + λS‖ for any λ ∈ K.

It remains to show that Tx0 is not orthogonal to Sx0 in the sense of Birkhoff-James for any x0 ∈ MT . 
Define

Φ := {i ∈ N : |Tix0| = 1} .

Note that Φ is a finite subset of Ω and supi∈Φc |Tix0| < 1. Moreover, we have the followings:

(i) sup
i∈Φ

∣∣∣∣Tix0 + λ

i
Rix0

∣∣∣∣ < 1 for any 0 < λ < 1,

(ii) sup
i∈Φc∩Ω

∣∣∣∣Tix0 + λ

i
Rix0

∣∣∣∣ < 1 − |λ| for any λ ∈ K with 0 < |3λ| < 1 − sup
i∈Φc

|Tix0|,

(iii) sup
i∈Ωc

|Tix0| � sup
i∈Φc

|Tix0| < 1.

Consequently, ‖Tx0 + λSx0‖ < 1 whenever 0 < 3λ < 1 − supi∈Φc |Tix0|, which shows that Tx0 is not 
orthogonal to Sx0 in the sense of Birkhoff-James. �

Finally, as a direct consequence of Corollary 3.6 we are able to produce an example which distinguishes 
the BŠ property with the typical norm attainment for bilinear forms. Recall from [13] that the set of norm 
attaining bilinear forms on c0 × c0 is dense in L2(c0, c0; K).

Example 3.8. There is no nonzero bilinear form with the BŠ property in L2(c0, c0; K).

We finish the section with a very natural question. Let us bring to mind that BŠ(L1[0, 1]; Y ) = {0} for 
every Banach space Y (see [12]). As Bc0 does not have any extreme point as well as BL1[0,1], it is natural to 
ask if the same kind of result can be derived. Or we can ask the denseness question for an arbitrary Banach 
space Y when BX has no extreme point.

Question 3.9. Is it true that BŠ(c0; Y ) = {0} for an arbitrary Banach space Y ?

Question 3.10. Let X be a Banach space be such that Ext(BX) = ∅. Is it true that BŠ(X; Y ) is not dense 
in L(X; Y ) for every Banach space Y ?
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