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In this work we study linear Maxwell equations with time- and space-dependent 
matrix-valued permittivity and permeability on domains with a perfectly conducting 
boundary. This leads to an initial boundary value problem for a first-order 
hyperbolic system with characteristic boundary. We prove a priori estimates for 
solutions in Hm. Moreover, we show the existence of a unique Hm-solution if the 
coefficients and the data are sufficiently regular and satisfy certain compatibility 
conditions. Since the boundary is characteristic for the Maxwell system, we have 
to exploit the divergence conditions in the Maxwell equations in order to derive 
the energy-type Hm-estimates. A combination of these estimates with several 
regularization techniques then yields the existence of solutions in Hm.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction and main result

The Maxwell equations are the mathematical foundation of the theory of electromagnetism and therefore 
one of the most significant partial differential equations in physics. In this paper we establish a detailed 
regularity theory in the case of nonautonomous linear material laws and perfectly conducting boundary 
conditions. Such results are known in the autonomous case, where, e.g., semigroup methods can be applied. 
For the nonautonomous problem one only has satisfactory results in the full space case [8,9] or for other 
types of boundary conditions (absorbing ones) [2,12,14]. The general theory of symmetric hyperbolic systems 
merely yields partial regularity results [6,12,16]. In this article we obtain a full regularity theory using the 
special structure of Maxwell’s equations. Based on these results, in the companion paper [19] we develop a 
complete local wellposedness theory for quasilinear Maxwell equations in H3, which so far was only known 
for the full space case, see [10].

In the presence of a linear heterogeneous anisotropic medium, the macroscopic Maxwell equations in a 
domain G read
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∂t(εE) = curlH − (σE + J), for x ∈ G, t ∈ (t0, T ),

∂t(μH) = − curlE, for x ∈ G, t ∈ (t0, T ),

div(εE) = ρ, div(μH) = 0, for x ∈ G, t ∈ (t0, T ),

E × ν = 0, (μH) · ν = 0, for x ∈ ∂G, t ∈ (t0, T ),

E(t0) = E0, H(t0) = H0, for x ∈ G,

(1.1)

for an initial time t0 ∈ R. Here E(t, x) ∈ R3 and H(t, x) ∈ R3 denote the electric and the magnetic field. 
The conductivity σ(t, x) ∈ R3×3 and current density J(t, x) ∈ R3 are given. The charge density ρ(t, x)
depends on the current and the electric field via

ρ(t) = div(ε(t0)E0) −
t∫

t0

div(σE + J)(s)ds

for all t ≥ t0. We further assume that the permittivity ε(t, x) ∈ R3×3 and permeability μ(t, x) ∈ R3×3 are 
symmetric and uniformly positive definite on (t0, T ) × G. In (1.1) we have equipped the Maxwell system 
with the boundary conditions of a perfect conductor, where ν denotes the outer normal unit vector to G. 
In order to write the Maxwell equations (1.1) in the standard form of a first-order hyperbolic system, we 
introduce the matrices

J1 =
(0 0 0

0 0 −1
0 1 0

)
, J2 =

( 0 0 1
0 0 0
−1 0 0

)
, J3 =

(0 −1 0
1 0 0
0 0 0

)

and

Aco
j =

(
0 −Jj
Jj 0

)
(1.2)

for j = 1, 2, 3. Note that 
∑3

j=1 Jj∂j = curl. Setting

A0 =
(
ε 0
0 μ

)
, D =

(
∂tε + σ 0

0 ∂tμ

)
, f =

(
−J
0

)
(1.3)

and introducing u = (E, H) as a new variable, we can write the evolutionary part of the Maxwell equa-
tions (1.1) as

A0∂tu +
3∑

j=1
Aco

j ∂ju + Du = f. (1.4)

Under mild regularity conditions on the fields and the coefficients, e.g., εE, μH ∈ C([t0, T ], H1(G)) ∩
C1([t0, T ], L2(G)) and div(σE + J) ∈ L1((t0, T ), L2(G)), a solution u = (E, H) of (1.4) satisfies the diver-
gence conditions in (1.1) if they hold at the initial time t = t0. Similarly, the second part of the boundary 
conditions, i.e., (μH) · ν = 0 on (t0, T ) × ∂G is true if E × ν = 0 on (t0, T ) × ∂G and (μH)(t0) · ν = 0 on 
∂G. We refer to [18, Lemma 7.25] for details. Defining the matrix

B =
( 0 ν3 −ν2 0 0 0
−ν3 0 ν1 0 0 0
ν2 −ν1 0 0 0 0

)
,

we can thus cast the Maxwell system (1.1) into the first-order linear initial boundary value problem
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A0∂tu +
3∑

j=1
Aco

j ∂ju + Du = f, x ∈ G, t ∈ (t0, T );

Bu = g, x ∈ ∂G, t ∈ (t0, T );

u(t0) = u0, x ∈ G,

(1.5)

with additional conditions for the initial data. We also consider inhomogeneous boundary conditions here. 
Besides being of mathematical interest, inhomogeneous boundary conditions for the perfect conductor also 
have physical relevance, see [3].

The goal of this article is to prove a priori estimates for and the existence of regular solutions of (1.5)
provided that the coefficients and the data fulfill suitable regularity and compatibility conditions, see (2.4)
below. Our main Theorem 1.1 describes in detail how the constants in the a priori estimates depend on 
suitable norms of the coefficients. This precise information is crucial for the nonlinear results in [19]. In view 
of the above observations, our results for problem (1.5) directly transfer to (1.1).

Problem (1.5) is a symmetric hyperbolic system with conservative boundary conditions. Since the clas-
sical work of Friedrichs [5] and Lax-Phillips [11] on symmetric hyperbolic boundary value problems with 
dissipative boundary conditions, a lot of progress has been made. We refer to [1] and [4] for an overview of 
the state of the art for hyperbolic systems.

For Lipschitz coefficients, it is known that the system (1.5) has a unique solution in L2(J×G) if the data 
satisfy u0 ∈ L2(G), g ∈ L2(J, H1/2(∂G)), and f ∈ L2(J×G), see [4]. Here we set J = (t0, T ). Moreover, one 
has the basic L2-estimate (3.2) for the solutions. We start from this result and use a classical strategy. A 
localization procedure transforms the problem to the half-space. In order to derive a priori estimates for more 
regular solutions, one then differentiates in tangential directions and applies the basic L2-estimate to these 
derivatives, as they again solve an initial boundary value problem with known initial value, boundary value, 
and inhomogeneity, see [15–17]. But this procedure does not work for the derivative in normal direction since 
we cannot control its behavior at the boundary. If the boundary matrix A(ν) =

∑d
j=1 Ajνj is regular, one 

can express the normal derivative of the solution via the equation by tangential derivatives of the solution 
and lower order terms and thus obtains the desired full regularity. Even if A(ν) is singular (the characteristic 
case), one can recover normal regularity from tangential regularity under certain structural conditions on the 
problem, see e.g. [12,13]. However, these conditions fail for the Maxwell system (1.5) (which is characteristic 
as the boundary matrix 

∑3
j=1 A

co
j νj is singular) with perfectly conducting boundary conditions, cf. [12]. It 

also seems that Kato’s approach from [8,9] cannot be applied here. On the other hand, for general symmetric 
hyperbolic systems a loss of derivatives in the normal direction may occur, see e.g. [6,12].

In our paper we use the structure of Maxwell’s equations to prove the full regularity of solutions of (1.5). 
We proceed as indicated above and focus on the half-space problem in R3

+ = {x ∈ R3 : x3 > 0}. The main 
difficulty is to control the derivative in the normal direction ∂3u. Although the boundary matrix is not 
invertible, using the equation, we can bound four components of ∂3u by ∂1u, ∂2u, ∂tu, and f . The key 
step is then to prove that the structure of the Maxwell operator allows us to estimate the remaining two 
components. Here we exploit the divergence conditions for the Maxwell operator and a generalized variable 
coefficient Maxwell operator which arises due to the localization. By means of a Gronwall argument, we can 
then control these two components.

Also in the regularization procedure the characteristic boundary poses several challenges. It is no longer 
sufficient (as in the noncharacteristic case) to regularize only in tangential directions. However, applying a 
mollifier in the normal direction leads to a loss of derivatives in this direction at the boundary. We overcome 
this problem by studying a family of spatially restricted problems. The regularity of corresponding solutions 
then implies the smoothness of the solution of the original problem. To derive the regularity in tangential 
directions we apply classical techniques from [7]. Here we rely on the structure of the Maxwell operator which 
allows us to transform the half-space problem to an equivalent one with A3 = Aco

3 so that no commutator 
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terms between mollifier and A3 appear. For temporal differentiability, yet another regularization technique 
is necessary as the a priori estimates do not allow for a mollifier in time. Moreover, these three regularization 
steps have to be subtly intertwined to retrieve the full regularity of the solution.

Even for the wellposedness in L2 in [4] coefficients in W 1,∞(J ×G) (constant outside of a compact set) 
are needed. To treat the initial boundary value problem in higher regularity, we require the coefficients A0
and D to belong to

Fm,k(J ×G) = {A ∈ W 1,∞(J ×G)k×k : ∂αA ∈ L∞(J, L2(G))k×k for all α ∈ N4
0 with 1 ≤ |α| ≤ m},

‖A‖Fm(J×G) = max{‖A‖W 1,∞(J×G), max
1≤|α|≤m

‖∂αA‖L∞(J,L2(G))},

where m ∈ N0, see Remark 1.2 below for the motivation of this particular space. The smoothness of time 
evaluations of these coefficients will be measured in

F 0
m,k(G) = {A ∈ L∞(G)k×k : ∂αA ∈ L2(G)k×k for all α ∈ N3

0 with 1 ≤ |α| ≤ m},
‖A‖F 0

m(G) = max{‖A‖L∞(G), max
1≤|α|≤m

‖∂αA‖L2(G)}.

We write Fm,k,η(J × G) for the set of functions A ∈ Fm,k(J × G) with A(t, x)T = A(t, x) ≥ η for all 
(t, x) ∈ J×G. The set F cp

m,k(J×G) contains the functions from Fm,k(J×G) which are constant outside of a 
compact subset of J ×G and F c

m,k(J×G) the ones which have a limit as |(t, x)| → ∞. Finally, F cp
m,k,η(J×G)

and F c
m,k,η(J × G) are defined as the intersection of Fm,k,η(J × G) with F cp

m,k(J × G) and F c
m,k(J × G), 

respectively. We only use k = 1 and k = 6 in the following. As it will be clear from the context which choice 
of k we consider, we usually drop it.

The analysis in [4] requires that the boundary data g belong to L2(J, H1/2(∂G)). In higher regularity we 
thus take g from the spaces

Em(J × ∂G) =
m⋂
j=0

Hj(J,Hm+ 1
2−j(∂G)),

‖g‖Em(J×∂G) = max
0≤j≤m

‖∂j
t g‖L2(J,Hm+1/2−j(∂G)).

We want to show that under suitable assumptions the solutions to (1.5) belong to

Gm(J ×G) =
m⋂
j=0

Cj(J,Hm−j(G)).

We equip these spaces with the family of time-weighted norms

‖v‖Gm,γ(J×G) = max
0≤j≤m

‖e−γ∂
j
t v‖L∞(J,Hm−j(G))

for all γ ≥ 0, where e−γ denotes the exponential function t 	→ e−γt. If γ = 0, we also abbreviate ‖v‖Gm,0(J×G)
by ‖v‖Gm(J×G). Analogously, any time-space norm indexed by γ means the usual norm complemented by 
the time weight e−γ .

When looking for solutions in Gm(J×G) (with data u0 ∈ Hm(G), g ∈ Em(J×∂G), and f ∈ Hm(J×G)) 
with m ≥ 1, we have to note that the time evaluation of u still has a trace on ∂G which coincides with the 
time evaluation of the trace of u on ∂G. In the case m = 1, we thus obtain Bu0 = g(t0) as a necessary 
condition for the existence of a Gm(J×G)-solution. For m > 1 there are more of these so-called compatibility 
conditions which have to be satisfied. We discuss them in detail in Section 2 below. We can now state our 
main result.
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Theorem 1.1. Let η > 0, m ∈ N0, and m̃ = max{m, 3}. Fix r ≥ r0 > 0. Consider a domain G with 
compact Cm̃+2-boundary. Choose t0 ∈ R, T ′ > 0 and T ∈ (0, T ′) and set J = (t0, t0 + T ). Select coefficients 
A0 ∈ F c

m̃,η(J ×G) and D ∈ F c
m̃(J ×G) with

‖A0‖Fm̃(J×G) ≤ r, ‖D‖Fm̃(J×G) ≤ r,

max{‖A0(t0)‖F 0
m̃−1(G), max

1≤j≤m̃−1
‖∂j

tA0(t0)‖Hm̃−j−1(G)} ≤ r0,

max{‖D(t0)‖F 0
m̃−1(G), max

1≤j≤m̃−1
‖∂j

tD(t0)‖Hm̃−j−1(G)} ≤ r0.

Choose data f ∈ Hm(J×G), g ∈ Em(J×∂G), and u0 ∈ Hm(G) such that the tuple (t0, A0, Aco
1 , Aco

2 , Aco
3 , D,

B, f, g, u0) fulfills the compatibility conditions (2.4) of order m.
Then the linear initial boundary value problem (1.5) has a unique solution u in Gm(J × G). Moreover, 

there exists a number γm = γm(η, r, T ′) ≥ 1 such that

‖u‖2
Gm,γ(J×G) ≤ (Cm,0 + TCm)emC1T

(m−1∑
j=0

‖∂j
t f(t0)‖2

Hm−1−j(G) + ‖g‖2
Em,γ(J×∂G)

+ ‖u0‖2
Hm(G)

)
+ Cm

γ
‖f‖2

Hm
γ (J×G)

for all γ ≥ γm, where Ci = Ci(η, r, T ′) ≥ 1 and Ci,0 = Ci,0(η, r0) ≥ 1 for i ∈ {1, m}.

Several remarks are in order.

Remark 1.2.

(1) Since the L2-result [4] requires the coefficients to belong to W 1,∞(J × G), one may ask why we use 
coefficients from Fm(J×G) and not from Wm,∞(J×G). The reason is that the space Fm(J×G) occurs 
naturally if one applies the above result to quasilinear problems, cf. [19]. In fact, in Theorem 1.1 and 
other results in this article we could replace Fm(J×G) with the space consisting of those W 1,∞(J×G)-
functions whose derivatives up to order m belong to L∞(J, L2(G)) + L∞(J ×G). Since the part of the 
derivatives in L∞(J ×G) is much easier to treat, we however concentrate on Fm(J ×G) here.

(2) The assumption that G has a compact boundary is not necessary. We can also treat more general domains 
with a uniform Cm̃+2-boundary satisfying some extra properties. See [18, Chapter 5] for details.

(3) In [19] we also show the finite speed of propagation of solutions of (1.5).

The proof of Theorem 1.1 proceeds in several steps. In Section 2 we describe the localization procedure 
which transforms (1.5) into a half-space problem. By an additional transformation we manage to keep the 
matrix A3 = Aco

3 unchanged, which is a crucial ingredient in the regularization procedure. In this preparatory 
section we further define the aforementioned compatibility conditions and protocol crucial properties of the 
function spaces Fm(J ×G). We then proceed with deriving a priori estimates in Section 3. Differentiating 
in tangential directions and applying the basic L2-estimate, we obtain bounds for the tangential derivatives 
of the solution. As explained above, the crucial step is to derive an a priori bound for the derivative in 
the normal direction from the properties of the Maxwell operator, which is done in Proposition 3.3. An 
iteration argument then yields a priori estimates of higher order. In Section 4 we show that the solution of 
the initial boundary value problem has essentially the same level of regularity as the data and the coefficients. 
Analogous to the derivation of the a priori estimates, the regularization procedure is also more difficult than 
in the noncharacteristic case. We use three different regularization techniques in normal, tangential, and 
time direction, which also have to be subtly intertwined, see Lemma 4.1, Lemma 4.4, and Lemma 4.5. For 
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several arguments there we need more regular coefficients. However, approximating only the coefficients 
violates the compatibility conditions. We therefore have to construct smooth coefficients and data which 
approximate the original ones in suitable spaces and satisfy the compatibility conditions, see Lemma 4.8. 
Combining these ingredients we finally obtain the claimed regularity of the solution.

Notation: By m we always mean a nonnegative integer. We further denote the differential operator 
A0∂t +

∑3
j=1 Aj∂j + D as L(A0, . . . , A3, D). If it is clear from the context which coefficients we consider, 

we often suppress the argument and only write L for the differential operator. We also set ∂0 = ∂t.
We further fix a number T ′ > t0 and take T ∈ (t0, T ′]. We set J = (t0, T ) and Ω = J × R3

+. Due to the 
translation invariance of (1.5), we often assume without loss of generality t0 = 0.

2. Compatibility conditions, function spaces, and localization

In this section we denote by G a domain with a compact Cm+2-boundary or the half-space. The function 
spaces Fm(J × G) and F 0

m(G) as well as Gm(J × G) contain the coefficients and the solution of (1.5). 
In view of the strategy described in the introduction, it is clear that we will need corresponding bilinear 
estimates for functions from these spaces. Also the spaces G̃m(J × G), consisting of all functions v with 
∂αv ∈ L∞(J, L2(G)) for all α ∈ N4

0 with 0 ≤ |α| ≤ m, will be useful for the fixed point argument applied 
to the nonlinear problem, cf. [19].

Lemma 2.1. Take m1, m2 ∈ N with m1 ≥ m2 and m1 ≥ 2 and a parameter γ ≥ 0.

(1) Let k ∈ {0, . . . , m1}, f ∈ G̃m1−k(J ×G), and g ∈ G̃k(J ×G). Then fg ∈ G̃0(J ×G) and

‖fg‖G0,γ(J×G) ≤ C‖f‖Gm1−k(J×G)‖g‖Gk,γ(J×G).

(2) Let f ∈ G̃m1(J ×G) and g ∈ G̃m2(J ×G). Then fg ∈ G̃m2(J ×G) and

‖fg‖Gm2,γ(J×G) ≤ C min{‖f‖Gm1 (J×G)‖g‖Gm2,γ(J×G),

‖f‖Gm1,γ(J×G)‖g‖Gm2 (J×G)}.

The result remains true if we replace G̃m1(J × G) by Fm1(J × G) or replace both G̃m1(J × G) and 
G̃m2(J ×G) by Fm1(J ×G) and Fm2(J ×G).

(3) Let k ∈ {0, . . . , m1}, f ∈ Hm1−k(G), and g ∈ Hk(G). Then fg ∈ L2(G) and

‖fg‖L2(G) ≤ C‖f‖Hm1−k(G)‖g‖Hk(G).

(4) Let f ∈ Hm1(G) and g ∈ Hm2(G). Then fg ∈ Hm2(G) and

‖fg‖Hm2 (G) ≤ C‖f‖Hm1 (G)‖g‖Hm2 (G).

The result remains true if we replace Hm1(G) by F 0
m1

(G).

The assertions in (1) and (2) remain true if we remove the tildes there.

The proof relies on a term-by-term analysis of the derivatives of the products combined with an appro-
priate application of the Sobolev embedding theorem and Hölder’s inequality, see [18, Lemma 2.22].

For the regularity results in Section 4 we have to apply techniques which only work for smooth coefficients. 
We then need an approximating sequence for coefficients in Fm(Ω) with properties strong enough to transfer 
regularity.



M. Spitz / J. Math. Anal. Appl. 506 (2022) 125646 7
Lemma 2.2. Let m ∈ N. Choose A ∈ Fm(Ω). Then there exists a family {Aε}ε>0 in C∞(Ω) with

(1) ∂αAε ∈ Fm(Ω) for all α ∈ N4
0 and ε > 0,

(2) ‖Aε‖W 1,∞(Ω) ≤ C‖A‖W 1,∞(Ω) and ‖∂αAε‖L∞(J,L2(R3
+)) ≤ C‖A‖Fm(Ω) for all multi-indices 1 ≤ |α| ≤ m

and ε > 0,
(3) Aε → A in L∞(Ω) as ε → 0, and
(4) Aε(0) → A(0) in L∞(R3

+) and ∂αA and ∂αAε have a representative in the space C(J, L2(R3
+)) with 

∂αAε(0) → ∂αA(0) in L2(R3
+) as ε → 0 for all α ∈ N4

0 with 0 < |α| ≤ m − 1.

If A is independent of time, the same is true for Aε for all ε > 0. If A additionally belongs to F cp
m (Ω), 

F c
m(Ω), Fm,η(Ω) for a number η > 0, or the intersection of two of these spaces, then the same is true for 

Aε for all ε > 0.

The proof again follows standard ideas, see [18, Lemma 2.21] for details.
As indicated in the introduction, we will reduce (1.5) via localization to a half-space problem with variable 

coefficients below. In order to discuss the compatibility conditions in a unified framework, we consider (1.5)
with variable coefficients A1, A2, A3 ∈ Fm(J×G) independent of time for a moment. We further fix a positive 
definite coefficient A0 ∈ Fm(J ×G), as well as D ∈ Fm(J ×G), B ∈ Wm+1,∞(G) and data f ∈ Hm(J ×G), 
g ∈ Em(J × ∂G), and u0 ∈ Hm(G). If (1.5) has a solution u which belongs to Gm(J × G), then we can 
differentiate the differential equation in (1.5) by Lemma 2.1 up to (m − 1)-times in time to obtain

∂p
t u(t) = SG,m,p(t, A0, A1, A2, A3, D, f, u(t)), (2.1)

for all t ∈ J and p ∈ {0, . . . , m}, where SG,m,p = SG,m,p(t0, A0, A1, A2, A3, D, f, u0) is defined by

SG,m,0 = u0,

SG,m,p = A0(t0)−1
(
∂p−1
t f(t0) −

3∑
j=1

Aj∂jSG,m,p−1 −
p−1∑
l=1

(
p− 1
l

)
∂l
tA0(t0)SG,m,p−l

−
p−1∑
l=0

(
p− 1
l

)
∂l
tD(t0)SG,m,p−1−l

)
, (2.2)

for 1 ≤ p ≤ m. On the other hand, differentiating the boundary condition in (1.5) up to (m − 1)-times in 
time and evaluating at any t ∈ J , we get

B∂p
t u(t) = ∂p

t g(t) (2.3)

on ∂G for all 0 ≤ p ≤ m − 1 and t ∈ J . Combining (2.1) with (2.3) in t = t0, we obtain the compatibility 
conditions of order m

BSG,m,p(t0, A0, . . . , A3, D, f, u0) = ∂p
t g(t0) on ∂G for 0 ≤ p ≤ m− 1 (2.4)

for the coefficients and data. These conditions are thus necessary for the existence of a solution in Gm(J×G). 
We will show in Section 4 that they are also sufficient. If it is clear from the context which domain G we 
consider, we will often suppress it in the notation.

The operators SG,m,p for 0 ≤ p ≤ m appear frequently in the sequel and corresponding estimates are 
indispensable.
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Lemma 2.3. Take η > 0, m ∈ N, and set m̃ := max{m, 3}. Pick r0 > 0. Choose A0 ∈ Fm̃,η(J × G), 
A1, A2, A3 ∈ Fm̃(J ×G) independent of time, and D ∈ Fm̃(J ×G) with

‖Ai(t0)‖F 0
m̃−1(G) ≤ r0, ‖D(t0)‖F 0

m̃−1(G) ≤ r0,

max
1≤j≤m−1

‖∂j
tA0(t0)‖Hm̃−1−j(G) ≤ r0, max

1≤j≤m−1
‖∂j

tD(t0)‖Hm̃−1−j(G) ≤ r0

for all i ∈ {0, . . . , 3}. Take f ∈ Hm(J ×G) and u0 ∈ Hm(G). Then the function SG,m,p(t0, A0, . . . , A3, D,

f, u0) is contained in Hm−p(G) for all p ∈ {0, . . . , m}. Moreover, there exist constants Cm,p = Cm,p(η, r0) >
0 such that

‖SG,m,p‖Hm−p(G) ≤ Cm,p

( p−1∑
j=0

‖∂j
t f(t0)‖Hm−1−j(G) + ‖u0‖Hm(G)

)

for 0 ≤ p ≤ m.

For the proof one applies Lemma 2.1 to the terms appearing in (2.2), see [18, Lemma 2.33] for details.
Via localization, we reduce the initial boundary value problem (1.5) in general domains G to the corre-

sponding problem in the half-space. While this procedure simplifies the underlying domain, we no longer 
deal with the curl-operators but more general variable coefficient linear first-order differential operators in 
the half-space. However, these operators still have a structural similarity with the curl-operator. Since this 
structure is utterly important in the following, we want at least to indicate how the half-space problem 
arises from the local charts.

To that purpose, assume that we have chosen a finite covering (Ui)i∈N of ∂G with corresponding charts 
ϕi, which are Cm+2-diffeomorphisms from Ui to subsets Vi of B(0, 1). Denoting the composition with ϕ−1

i

by Φi, we consider in the half-space the differential operator

Liv = Φi

(
A0∂t +

3∑
j=1

Aco
j ∂j + D

)
Φ−1

i v

= Φi

(
A0∂tv ◦ ϕi +

3∑
j=1

Aco
j ∂j(v ◦ ϕi) + Dv ◦ ϕi

)

= ΦiA0 ∂tv + Φi

( 3∑
j=1

3∑
l=1

Aco
j Φ−1

i ∂lv ∂jϕi,l

)
+ ΦiDv

= ΦiA0 ∂tv +
3∑

l=1

( 3∑
j=1

Aco
j Φi∂jϕi,l

)
∂lv + ΦiDv, (2.5)

for v ∈ L2(Vi), where ϕi,l denotes the l-th component of ϕi for all i ∈ N. Extending the coefficients of Li

from the bounded set Vi to R3
+ appropriately, we obtain coefficients Ai

0 ∈ F cp
m,η(Ω) and Di ∈ F cp

m (Ω) if A0
and D belong to F cp

m,η(J × G) respectively F cp
m (J × G). Moreover, the remaining coefficients Ai

1, Ai
2, and 

Ai
3 are contained in

F cp
m,coeff(R3

+) := {A ∈ F cp
m,6(Ω): ∃μ1, μ2, μ3 ∈ F cp

m,1(Ω) independent of time, such that A =
3∑

j=1
Aco

j μj}.

In fact, they even belong to Wm+1,∞(R3
+) as G has a Cm+2-boundary. Exploiting this amount of regularity 

makes the spatial coefficients easier to treat. However, in order to streamline the assumptions in the results 
below, we treat them in the larger space F cp (R3

+).
m,coeff
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Since the matrix B is of rank 2, we eliminate one row of the boundary condition in the localization 
procedure. The boundary condition is then given by a 2 × 6 matrix Bi. On the right-hand sides we obtain 
localized data f i, gi, and ui

0. We note that the localized coefficients and data can be estimated by their 
original counterparts in the corresponding norms with a constant only depending on the shape of ∂G.

Choosing the covering of ∂G fine enough, there exist numbers τ > 0 and k(i) ∈ {1, 2, 3} such that 
|μi

3,k(i)| ≥ τ on R3
+ for all i ∈ N, see Lemma 5.1 in [18]. Here we denote by μi

3,j the coefficients for which 

Ai
3 =

∑3
j=1 A

co
j μi

3,j . This property allows us to transform for every i ∈ N the initial boundary value problem 
on the half-space into the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ãi
0∂tv +

3∑
j=1

Ãi
j∂jv + D̃iv = f̃ i, x ∈ R3

+, t ∈ J ;

B̃iv = g̃i, x ∈ ∂R3
+, t ∈ J ;

v(0) = ũi
0, x ∈ R3

+;

(2.6)

with coefficients Ãi
0 ∈ F cp

m,η(Ω), Ãi
1, Ã

i
2 ∈ F cp

m,coeff(R3
+), Ãi

3 = Aco
3 , and B̃i = Bco, where Bco is a constant 

2 × 6 matrix of rank 2. (The actual form of Bco depends on k(i), e.g., in the case k(i) = 3 we have 
Bco = (e2, −e1)T , where e1 and e2 are the correspondent unit vectors of R6.) For the transformed data 
we have f̃ i ∈ Hm(Ω)6, g̃i ∈ Em(J × ∂R3

+)2, and ũi
0 ∈ Hm(R3

+)6 for all i ∈ N if f ∈ Hm(J × G)6, 
g ∈ Em(J × ∂G)3, and u0 ∈ Hm(G)6. The localized and transformed data can be estimated by its original 
counterparts in the corresponding norms with a constant depending on suitable norms of the coefficients 
and the shape of ∂G. The transform is given by

Ãi
j = GT

i A
i
jGi, D̃i = GT

i D
iGi −

3∑
j=1

GT
i A

i
jGi∂jG

−1
i Gi, B̃i = BiGi,

f̃ i = GT
i f

i, g̃i = gi, ũi
0 = G−1

i ui
0,

for j ∈ {0, . . . , 3}, where

Gi =
(
Ĝi 0
0 Ĝi

)
, and Ĝi = 1√

μi
3,3

⎛
⎝1 0 μi

1,3
0 1 μi

2,3
0 0 μi

3,3

⎞
⎠

in the case k(i) = 3 and μi
3,3 ≥ τ on R3

+. In the remaining cases, the matrix Ĝi has to be adapted 
accordingly. A function ui then solves the untransformed problem if and only if ũi = G−1

i ui solves the 
transformed one. Here we invoke the fact that the coefficients Ai

j belong to Wm+1,∞(R3
+) for j ∈ {1, 2, 3} in 

order to conclude that it is enough to study the transformed problem in the half-space in the following. We 
refer to [18, Theorem 5.6 IV)] for the details of the localization procedure and the subsequent transform.

Finally, we point out that there is a constant 2 ×6 matrix Cco such that Aco
3 = 1/2(CcoTBco +BcoTCco). 

We further note that Aco
3 has exactly two positive and two negative eigenvalues counted with multiplicities.

Remark 2.4.

(1) For the localization procedure we also have to treat the part U0 of G which is not contained in the 
covering of ∂G. In U0 a similar but simpler procedure as described above leads to a full-space problem 
for the localized solution. The results in Sections 3 and 4 are also true on the full space and follow by the 
same strategy, which is much easier in that case. See [18, Theorem 5.3] for a more detailed discussion.
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(2) The proof that Theorem 1.1 indeed follows from the corresponding result for problem (2.6) is very 
technical but follows from standard ideas, see [18, Theorem 5.6] once again.

3. A priori estimates

In the previous section we have reduced (1.5) to the initial boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A0∂tu +
3∑

j=1
Aj∂ju + Du = f, x ∈ R3

+, t ∈ J ;

Bu = g, x ∈ ∂R3
+, t ∈ J ;

u(0) = u0, x ∈ R3
+;

(3.1)

in the half-space with A3 = Aco
3 and B = Bco. In this section we derive a priori estimates for Gm(Ω)-solutions 

of (3.1). We note that L(A0, . . . A3, D)u = f ∈ L2(Ω) implies that the divergence of ((A0u)k, . . . , (A3u)k)
belongs to L2(Ω) for 1 ≤ k ≤ 6, A1, . . . , A3 ∈ W 1,∞(Ω), and u ∈ L2(Ω). Therefore, this vector has a 
normal trace ((A0u)k, . . . , (A3u)k) · ν in H−1/2(∂Ω), where ν denotes the outer unit normal of ∂Ω. On 
J × ∂R3

+ this product coincides with −(A3u)k, which allows us to define a trace for A3u. One can find 
a constant matrix M co such that Bco = M coAco

3 so that we obtain a trace operator Tr for the function 
Bu. We refer to Section 2.1 in [18] for the details of this construction. A function u ∈ C(J, L2(R3

+)) with 
L(A0, . . . , A3, D)u = f in the weak sense, Tr(Bu) = g on J × ∂R3

+, and u(0) = u0 is referred to as a (weak) 
solution of (3.1).

We first state the fundamental a priori estimate on L2-level which was shown in Proposition 5.1 in [4]. 
The dependencies of the constants follow from the proof of this result in [4].

Lemma 3.1. Let η > 0 and r ≥ r0 > 0. Take A0 ∈ F cp
0,η(Ω), A1, A2 ∈ F cp

0,coeff(R3
+) with ‖Ai‖W 1,∞(Ω) ≤ r

and ‖Ai(0)‖L∞(R3
+) ≤ r0 for all i ∈ {0, 1, 2}, and A3 = Aco

3 . Let D ∈ L∞(Ω) with ‖D‖L∞(Ω) ≤ r and 

B = Bco. Let f ∈ L2(Ω), g ∈ L2(J, H1/2(∂R3
+)), and u0 ∈ L2(R3

+). Then (3.1) has a unique solution u in 
C(J, L2(R3

+)), and there exists a number γ0 = γ0(η, r) ≥ 1 such that

sup
t∈J

‖e−γtu(t)‖2
L2(R3

+) + γ‖u‖2
L2

γ(Ω) ≤ C0,0‖u0‖2
L2(R3

+) + C0,0‖g‖2
L2

γ(J,H1/2(∂R3
+)) + C0

1
γ
‖f‖2

L2
γ(Ω) (3.2)

for all γ ≥ γ0, where C0 = C0(η, r) and C0,0 = C0,0(η, r0).

We now derive the desired a priori estimates. In a first step, we give estimates for the tangential derivatives 
of a solution. The proof is classical but since we are interested in the particular structure of the constants, 
we provide the details.

We introduce the space Hm
ta (Ω) which consists of those functions v ∈ L2(Ω) with ∂αv ∈ L2(Ω) for all 

α ∈ N4
0 with |α| ≤ m and α3 = 0. We equip this space with its natural norm.

Lemma 3.2. Let η > 0 and r ≥ r0 > 0. Pick m ∈ N and set m̃ = max{m, 3}. Take A0 ∈ F cp
m̃,η(Ω), 

A1, A2 ∈ F cp
m̃,coeff(R3

+), A3 = Aco
3 , D ∈ F cp

m̃ (Ω), and B = Bco with

‖Ai‖Fm̃(Ω) ≤ r, ‖D‖Fm̃(Ω) ≤ r,

max{‖Ai(0)‖F 0
m̃−1(R3

+), max
1≤j≤m−1

‖∂j
tA0(0)‖Hm̃−1−j(R3

+)} ≤ r0,

max{‖D(0)‖F 0
m̃−1(R3

+), max
1≤j≤m−1

‖∂j
tD(0)‖Hm̃−1−j(R3

+)} ≤ r0,
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for all i ∈ {0, 1, 2}. Choose f ∈ Hm
ta (Ω), g ∈ Em(J × ∂R3

+), and u0 ∈ Hm(R3
+). Assume that the solution u

of (3.1) belongs to Gm(Ω). Then there exists γm = γm(η, r) ≥ 1 such that

∑
|α|≤m
α3=0

‖∂αu‖2
G0,γ(Ω) + γ‖u‖2

Hm
ta,γ(Ω) (3.3)

≤ Cm,0

(m−1∑
j=0

‖∂j
t f(0)‖2

Hm−1−j(R3
+) + ‖g‖2

Em,γ(J×∂R3
+) + ‖u0‖2

Hm(R3
+)

)

+ Cm

γ

(
‖f‖2

Hm
ta,γ(Ω) + ‖u‖2

Gm,γ(Ω)

)
,

for all γ ≥ γ0, where Cm = Cm(η, r, T ′), and Cm,0 = Cm,0(η, r0).

Proof. Let α ∈ N4
0 with |α| ≤ m and α3 = 0. It is straightforward to show that ∂αu solves the initial 

boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
L(A0, . . . , A3, D)v = fα, x ∈ R3

+, t ∈ J ;

Bv = ∂αg, x ∈ ∂R3
+, t ∈ J ;

v(0) = u0,α, x ∈ R3
+,

(3.4)

where

fα = ∂αf −
2∑

j=0

∑
0<β≤α

(
α

β

)
∂βAj∂

α−β∂ju−
∑

0<β≤α

(
α

β

)
∂βD∂α−βu,

u0,α = ∂αu(0) = ∂(0,α1,α2,0)SR3
+,m,α0(0, A0, . . . , A3, D, f, u0),

and where we employed that A3 = Aco
3 and B = Bco, see Section 3.1 in [18] for details. We note that fα is 

an element of Hm−|α|(Ω) with

‖fα‖L2
γ(Ω) ≤ ‖f‖Hm

ta,γ(Ω) + C(r, T ′)‖u‖Gm,γ(Ω) (3.5)

by Lemma 3.4 of [18], which uses Lemma 2.1 above. Lemma 2.3 further yields that u0,α belongs to 
Hm−|α|(R3

+) and

‖u0,α‖Hm−|α|(R3
+) ≤ C2.3;m,|α|

(m−1∑
k=0

‖∂k
t f(0)‖Hm−1−k(R3

+) + ‖u0‖Hm(R3
+)

)
, (3.6)

where C2.3;m,|α| = C2.3;m,|α|(η, r0) is the constant from Lemma 2.3.
Since ∂αu solves the initial boundary value problem (3.4), we can apply estimate (3.2) to ∂αu and then 

invoke estimates (3.5) and (3.6) to deduce

‖∂αu‖2
G0,γ(Ω) + γ‖∂αu‖2

L2
γ(Ω)

≤ C0,0‖u0,α‖2
L2(R3

+) + C0,0‖∂αg‖2
L2

γ(J,H1/2(∂R3
+)) + C0

1
γ
‖fα‖2

L2
γ(Ω)

≤ C̃m,0

(m−1∑
‖∂k

t f(0)‖2
Hm−1−k(R3

+) + ‖u0‖2
Hm(R3

+)

)
+ C̃m,0‖g‖2

Em,γ(J×∂R3
+)
k=0
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+ C̃m
1
γ

(
‖u‖2

Gm,γ(Ω) + ‖f‖2
Hm

ta,γ(Ω)

)

for all γ ≥ γ0. Here γ0(η, r) = γ3.1;0(η, r) is the corresponding number from Lemma 3.1 and C̃m,0 =
C̃m,0(η, r0) and C̃m = C̃m(η, r, T ′) denote constants with the described dependencies. Summing over all 
multi-indices α ∈ N4

0 with α3 = 0 and |α| ≤ m, we thus obtain the assertion. �
The above procedure only works in tangential directions because differentiation in the normal direction 

does not preserve the boundary condition. Since the boundary matrix A3 is not invertible, we neither obtain 
the normal derivative from the equation itself. Instead, we will use the structure of the Maxwell equations 
to get an estimate for the normal derivative in Proposition 3.3 below. In that proposition, we consider the 
initial value problem

{
L(A0, . . . , A3, D)u = f, x ∈ R3

+, t ∈ J ;

u(0) = u0, x ∈ R3
+.

(3.7)

We define a solution of (3.7) to be a function u ∈ C(J, L2(R3
+)) with u(0) = u0 in L2(R3

+) and Lu = f in 
H−1(Ω). For the subsequent application of Proposition 3.3, it is crucial that there is no boundary condition 
in (3.7).

For the formulation of Proposition 3.3 we also need the following construction. Take A1, A2, A3 ∈
F cp

0,coeff(R3
+). The definition of this space then implies that there are functions μlj ∈ F cp

0,1(Ω) such that

Aj =
3∑

l=1

Aco
l μlj for all j ∈ {1, 2, 3}. (3.8)

We set

μ̃ =
(
μ 0
0 μ

)
, (3.9)

where μ denotes the 3 × 3-matrix (μlj)lj , and we define

Div(A1, A2, A3)h =
( 3∑

k=1

(μ̃T∇h)kk,
3∑

k=1

(μ̃T∇h)(k+3)k

)
(3.10)

for all h ∈ L2(R3
+)6.

The next proposition is the key step in the derivation of the regularity theory for (1.5). It tells us that the 
derivative in normal direction can be controlled by the ones in tangential directions and the data despite the 
problem being characteristic. In the complement of the kernel of Aco

3 we can control ∂3u via the equation. For 
the remaining components we exploit that the (generalized) divergence Div(A1, A2, A3) of the (generalized) 
Maxwell operator 

∑3
j=1 Aj∂ju only contains first-order derivatives of u. This cancellation property of the 

Maxwell system then allows us to apply a Gronwall argument.
We point out that we do not assume that u belongs to G1(Ω). For the derivative in the normal direction it 

is enough to require that it belongs to L∞(J, L2(R3
+)). While the gain of regularity which is thus contained in 

Proposition 3.3 is just a byproduct of the proof here, the reduced regularity assumption is utterly important 
for the regularization procedure in Section 4. Similarly, estimate (3.13) with its less regular right-hand side 
is a significant tool in Section 4.

Proposition 3.3. Let T ′ > 0, η > 0, γ ≥ 1, and r ≥ r0 > 0. Take A0 ∈ F cp
0,η(Ω), A1, A2 ∈ F cp

0,coeff(R3
+), 

A3 = Aco
3 , and D ∈ F cp

0 (Ω) with
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‖Ai‖W 1,∞(Ω) ≤ r, ‖D‖W 1,∞(Ω) ≤ r,

‖Ai(0)‖L∞(R3
+) ≤ r0, ‖D(0)‖L∞(R3

+) ≤ r0

for all i ∈ {0, 1, 2}. Choose f ∈ G0(Ω) with Div(A1, A2, A3)f ∈ L2(Ω) and u0 ∈ H1(R3
+). Let u

solve (3.7) with initial value u0 and inhomogeneity f . Assume that u ∈ C1(J, L2(R3
+)) ∩ C(J, H1

ta(R3
+)) ∩

L∞(J, H1(R3
+)). Then u belongs to G1(Ω) and there are constants C1,0 = C1,0(η, r0) ≥ 1 and C1 =

C1(η, r, T ′) ≥ 1 such that

‖∇u‖2
G0,γ(Ω) ≤ eC1T

(
(C1,0 + TC1)

( 2∑
j=0

‖∂ju‖2
G0,γ(Ω) + ‖f‖2

G0,γ(Ω) + ‖u0‖2
H1(R3

+)

)

+ C1

γ
‖Div(A1, A2, A3)f‖2

L2
γ(Ω)

)
. (3.11)

If f additionally belongs to H1(Ω), we get

‖∇u‖2
G0,γ(Ω) ≤ eC1T

(
(C1,0 + TC1)

( 2∑
j=0

‖∂ju‖2
G0,γ(Ω) + ‖f(0)‖2

L2(R3
+) + ‖u0‖2

H1(R3
+)

)

+ C1

γ
‖f‖2

H1
γ(Ω)

)
. (3.12)

Finally, if f merely belongs to L2(Ω) with Div(A1, A2, A3)f ∈ L2(Ω), we still have

‖∇u‖2
L2

γ(Ω) ≤ eC1T
(
(C1,0 + TC1)

( 2∑
j=0

‖∂ju‖2
L2

γ(Ω) + ‖f‖2
L2

γ(Ω) + ‖u0‖2
H1(R3

+)

)

+ C1

γ
‖Div(A1, A2, A3)f‖2

L2
γ(Ω)

)
. (3.13)

Proof. To prove the lemma it is enough to show that ∂3u belongs to C(J, L2(R3
+)) and that inequali-

ties (3.11) to (3.13) hold.
By the definition of the space F cp

0,coeff(R3
+) there exist functions μlj ∈ F cp

0,1(Ω) for l, j ∈ {1, 2, 3} which 
satisfy (3.8) and are bounded by C(r) in F0,1(Ω). Since A3 = Aco

3 , we have μ13 = μ23 = 0 and μ33 = 1. 
Moreover,

Aco
l =

(
0 −Jl
Jl 0

)
with Jl;mn = −εlmn (3.14)

for all l, m, n ∈ {1, 2, 3}, where εlmn is the Levi-Civita symbol, i.e.,

εijk =

⎧⎪⎪⎨
⎪⎪⎩

1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},
−1 if (i, j, k) ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)},

0 else.

We use the matrix μ̃ from (3.9). Since the coefficients are Lipschitzian, we can take the weak time derivative 
of μ̃TA0∇u componentwise to obtain

∂t(μ̃TA0∇u) = μ̃T∂tA0∇u + μ̃TA0∂t∇u
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= μ̃T∂tA0∇u + μ̃TA0∇
(
A−1

0

(
f −

3∑
j=1

Aj∂ju−Du
))

= μ̃T∂tA0∇u + μ̃TA0∇A−1
0

(
f −

3∑
j=1

Aj∂ju−Du
)

+ μ̃T∇f − μ̃T
2∑

j=1
∇Aj∂ju− μ̃T∇Du− μ̃TD∇u− μ̃T

3∑
j=1

Aj∇∂ju (3.15)

in L∞(J, H−1(R3
+)), also employing (3.7) and that

((∇A−1
0 )h)jk :=

6∑
l=1

∂kA
−1
0;jlhl

and analogously for Aj with j ∈ {1, 2, 3} and D. We abbreviate

Λ := μ̃T∂tA0∇u + μ̃TA0∇A−1
0

(
f −

3∑
j=1

Aj∂ju−Du
)

+ μ̃T∇f − μ̃T
2∑

j=1
∇Aj∂ju− μ̃T∇Du− μ̃TD∇u (3.16)

and note that this sum only contains first-order spatial derivatives of u. We further compute

3∑
k=1

(
μ̃T

3∑
j=1

Aj∇∂ju
)
kk

=
3∑

j,k=1

6∑
l,p=1

μ̃T
klAj;lp∂k∂jup

=
3∑

j,k,n=1

6∑
l,p=1

μ̃T
klA

co
n;lpμnj∂k∂jup =

3∑
j,k,l,n=1

6∑
p=1

μlkA
co
n;lpμnj∂k∂jup,

using that μ̃lk = 0 for all (l, k) ∈ {4, 5, 6} × {1, 2, 3}. Formula (3.14) thus leads to

3∑
k=1

(
μ̃T

3∑
j=1

Aj∇∂ju
)
kk

=
3∑

j,k,l,n,p=1

εnlpμlkμnj∂k∂jup+3. (3.17)

Interchanging the indices l and n as well as k and j, we arrive at

3∑
k=1

(
μ̃T

3∑
j=1

Aj∇∂ju
)
kk

=
3∑

j,k,l,n,p=1

εlnpμnjμlk∂j∂kup+3

= −
3∑

j,k,l,n,p=1

εnlpμlkμnj∂k∂jup+3. (3.18)

Equations (3.17) and (3.18) thus yield

3∑(
μ̃T

3∑
Aj∇∂ju

)
kk

= 0. (3.19)

k=1 j=1
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Analogously, we conclude

3∑
k=1

(
μ̃T

3∑
j=1

Aj∇∂ju
)

(k+3)k
= 0. (3.20)

In view of (3.16), equation (3.15) now implies that

3∑
k=1

∂t(μ̃TA0∇u)kk =
3∑

k=1

Λkk.

An integration in H−1(R3
+) from 0 to t then leads to the identity

3∑
k=1

(μ̃TA0∇u)kk(t) =
3∑

k=1

(μ̃TA0∇u)kk(0) +
3∑

k=1

t∫
0

Λkk(s)ds

for all t ∈ J . The integrand on the right-hand side is also integrable with values in L2(R3
+), implying that 

the integral exists in L2(R3
+) and the equality holds in L2(R3

+) for all t ∈ J . Starting from (3.20), we obtain 
in the same way that

3∑
k=1

(μ̃TA0∇u)(k+3)k(t) =
3∑

k=1

(μ̃TA0∇u)(k+3)k(0) +
3∑

k=1

t∫
0

Λ(k+3)k(s)ds

in L2(R3
+) for all t ∈ J . We denote the k-th row and the k-th column of a matrix N by Nk· and N·k, 

respectively, and set

F7(t) =
3∑

k=1

(μ̃TA0∇u)kk(0) +
3∑

k=1

t∫
0

Λkk(s)ds−
2∑

k=1

(μ̃TA0)k·∂ku(t), (3.21)

F8(t) =
3∑

k=1

(μ̃TA0∇u)(k+3)k(0) +
3∑

k=1

t∫
0

Λ(k+3)k(s)ds−
2∑

k=1

(μ̃TA0)(k+3)·∂ku(t)

for all t ∈ J . Further, we define

(F1, . . . , F6)T = f −
2∑

j=0
Aj∂ju−Du. (3.22)

The function F = (F1, . . . , F8)T then belongs to C(J, L2(R3
+)). Introducing the matrix

μ̂ =

⎛
⎝ A3

(μ̃TA0)3·
(μ̃TA0)6·

⎞
⎠ ∈ F0(Ω)8×6,

we obtain

μ̂∂3u = F. (3.23)

We multiply μ̂ with the matrix
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G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

−μ̃T
3lA0;l5 μ̃T

3lA0;l4 0 μ̃T
3lA0;l2 −μ̃T

3lA0;l1 0 1 0
−μ̃T

6lA0;l5 μ̃T
6lA0;l4 0 μ̃T

6lA0;l2 −μ̃T
6lA0;l1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.24)

where summation over the index l (from 1 to 6) is implicitly assumed. It follows

G1μ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 α33 0 0 α36
0 0 α63 0 0 α66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the numbers

αkn =
3∑

j=1

6∑
l=1

μ̃T
klA0;l(j+n−3)μj3 = μ̃T

k·A0μ̃·n = A0;kn

for all k, n ∈ {3, 6}. We conclude that
(
α33 α36
α63 α66

)
=

(
A0;33 A0;36
A0;63 A0;66

)
≥ η. (3.25)

Hence, it has an inverse β satisfying

‖β‖L∞(Ω) ≤ C(η).

Introducing the matrix

G2 =
(
I6×6 0

0 β

)
, (3.26)

we compute

G2G1μ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=: M̃. (3.27)

Using also (3.8) and (3.9), we see that

‖G2G1‖L∞(Ω) ≤ C(η)(1 + c0)2

with the constant



M. Spitz / J. Math. Anal. Appl. 506 (2022) 125646 17
c0 = max{ max
j=0,...,3

‖Aj‖L∞(Ω), ‖D‖L∞(Ω)}.

Equation (3.23) and (3.27) yield

M̃∂3u = G2G1F. (3.28)

Since the matrices Gi belong to C(J, L∞(R3
+)) and F is contained in C(J, L2(R3

+)), we infer that ∂3u is 
contained in C(J, L2(R3

+)) and

‖∂3u(t)‖L2(R3
+) ≤ C(η)(1 + c0)2‖F (t)‖L2(R3

+) (3.29)

for all t ∈ J . To estimate ‖F (t)‖L2(R3
+) we first note that

‖F (t)‖L2(R3
+) ≤ ‖(F1, . . . , F6)T (t)‖L2(R3

+) + ‖(F7, F8)T (t)‖L2(R3
+) (3.30)

≤ ‖f(t)‖L2(R3
+) + c0

2∑
j=0

‖∂ju(t)‖L2(R3
+) + c0‖u(t)‖L2(R3

+) + ‖(F7, F8)T (t)‖L2(R3
+)

for all t ∈ J . Applying Minkowski’s inequality, we further deduce

‖(F7, F8)T (t)‖L2(R3
+) ≤ C(r0)‖u0‖H1(R3

+) + c20

2∑
k=1

‖∂ku(t)‖L2(R3
+)

+ C(η, r)
t∫

0

(‖∇u(s)‖L2(R3
+) + ‖u(s)‖L2(R3

+) + ‖Div f(s)‖L2(R3
+) + ‖f(s)‖L2(R3

+))ds

for all t ∈ J , where we abbreviate Div(A1, A2, A3) as Div. This estimate, (3.29), and (3.30), lead to the 
inequality

‖∇u(t)‖L2(R3
+) (3.31)

≤ C(η)(1 + c0)2
(
‖f(t)‖L2(R3

+) + (1 + c0)2
2∑

j=0
‖∂ju(t)‖L2(R3

+) + c0‖u(t)‖L2(R3
+)

+ C(r0)‖u0‖H1(R3
+) + C(η, r)

t∫
0

(‖∇u(s)‖L2(R3
+) + ‖u(s)‖L2(R3

+)

+ ‖Div f(s)‖L2(R3
+) + ‖f(s)‖L2(R3

+))ds
)

for all t ∈ J . Let γ ≥ 1. Using Hölder’s inequality, we infer

‖∇u(t)‖L2(R3
+) ≤ C(η)(1 + c0)2(1 + TC(η, r))

(
eγt‖f‖G0,γ(Ω) + c0e

γt‖u‖G0,γ(Ω)

+ (1 + c0)2eγt
2∑

j=0
‖∂ju‖G0,γ(Ω) + C(r0)‖u0‖H1(R3

+)

)

+ C(η, r)
( 1
√
γ
eγt‖Div f‖L2

γ(Ω) +
t∫
‖∇u(s)‖L2(R3

+)ds
)

0
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=: g(t) + C(η, r)
t∫

0

‖∇u(s)‖L2(R3
+)ds

for all t ∈ J . Since the function g increases in t, Gronwall’s inequality yields

‖∇u‖G0,γ(Ω) ≤
(
C(η, r0)(1 + c0)4(1 + TC(η, r))

(
‖f‖G0,γ(Ω) + ‖u‖G0,γ(Ω)

+
2∑

j=0
‖∂ju‖G0,γ(Ω) + ‖u0‖H1(R3

+)

)
+ C(η, r) 1

√
γ
‖Div f‖L2

γ(Ω)

)
eC(η,r)T . (3.32)

Employing that ∂tA0 belongs to L∞(Ω), we further obtain

‖A0‖L∞(Ω) ≤ ‖A0(0)‖L∞(R3
+) + T‖A0‖W 1,∞(Ω) ≤ r0 + Tr.

We argue analogously for the remaining coefficients, which yields c0 ≤ r0 + Tr.
To conclude (3.11), we write u as

u(t) = u(0) +
t∫

0

∂tu(s)ds

in L2(R3
+) using that u belongs to C1(J, L2(R3

+)). Minkowski’s and Hölder’s inequality then imply

‖u‖2
G0,γ(Ω) ≤ 2‖u0‖2

L2(R3
+) + 1

γ
T‖∂tu‖2

G0,γ(Ω). (3.33)

Plugging this inequality into (3.32), assertion (3.11) follows. If f additionally belongs to H1(Ω), we argue 
as in (3.33) for the function f to derive (3.12).

Now assume that f only belongs to L2(Ω) with Div f ∈ L2(Ω). Then estimate (3.31) is still valid for 
almost all t ∈ J . We square (3.31), multiply with the exponential e−2γ , and integrate from 0 to T . Applying 
Gronwall’s inequality to the function t 	→

∫ t

0 e−2γs‖∇u(s)‖2
L2(R3

+)ds, we deduce (3.13) in the same way as 
we obtained (3.11). �

Combining the a priori estimates in the tangential and normal directions with an iteration argument, we 
obtain our first main result. It provides the desired a priori estimates of arbitrary order.

Theorem 3.4. Let T ′ > 0, η > 0, and r ≥ r0 > 0. Pick T ∈ (0, T ′] and set J = (0, T ). Let m ∈ N and 
m̃ = max{m, 3}. Choose A0 ∈ F cp

m̃,η(Ω), A1, A2 ∈ F cp
m̃,coeff(R3

+), A3 = Aco
3 , D ∈ F cp

m̃ (Ω), and B = Bco with

‖Ai‖Fm̃(Ω) ≤ r, ‖D‖Fm̃(Ω) ≤ r,

max{‖Ai(0)‖F 0
m̃−1(R3

+), max
1≤j≤m̃−1

‖∂j
tA0(0)‖Hm̃−j−1(R3

+)} ≤ r0,

max{‖D(0)‖F 0
m̃−1(R3

+), max
1≤j≤m̃−1

‖∂j
tD(0)‖Hm̃−j−1(R3

+)} ≤ r0

for all i ∈ {0, 1, 2}. Let f ∈ Hm(Ω), g ∈ Em(J × ∂R3
+), and u0 ∈ Hm(R3

+). Assume that the solution u
of (3.1) belongs to Gm(Ω). Then there exists a number γm = γm(η, r, T ′) ≥ 1 such that
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‖u‖2
Gm,γ(Ω) ≤ (Cm,0 + TCm)emC1T

(m−1∑
j=0

‖∂j
t f(0)‖2

Hm−1−j(R3
+) + ‖g‖2

Em,γ(J×∂R3
+)

+ ‖u0‖2
Hm(R3

+)

)
+ Cm

γ
‖f‖2

Hm
γ (Ω)

for all γ ≥ γm, where Cm = Cm(η, r, T ′) ≥ 1, Cm,0 = Cm,0(η, r0) ≥ 1, and C1 = C1(η, r, T ′) is a constant 
independent of m.

Proof. We prove the assertion by induction with respect to m. To this purpose we observe that combining 
Lemma 3.1, Lemma 3.2, and Proposition 3.3, and choosing γ1 = γ1(η, r, T ′) large enough, we obtain the 
assertion for m = 1. Next suppose that m ≥ 2 and that the assertion has been shown for m − 1.

We now take u, data, and coefficients as in the formulation of the theorem. Let p ∈ {0, 1, 2}. As in (3.4)
we deduce that ∂pu solves (3.1) with differential operator L(A0, . . . , A3, D), inhomogeneity f1,p, boundary 
value ∂pg, and initial value ∂pu0, where

f1,p = ∂pf −
2∑

i=0
∂pAi∂iu− ∂pDu, (3.34)

∂0u0 = Sm,1(0, A0, . . . , A3, D, f, u0).

Note that f1,p belongs to Hm−1(Ω) by Lemma 2.1. Since A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈ F cp

m̃,coeff(R3
+), D ∈

F cp
m̃ (Ω), f ∈ Hm(Ω), and u0 ∈ Hm(R3

+), Lemma 2.3 yields that Sm,1(0, A0, . . . , A3, D, f, u0) is contained in 
Hm−1(R3

+). The induction hypothesis therefore gives

‖∂pu‖2
Gm−1,γ(Ω) ≤ (Cm−1,0 + TCm−1)e(m−1)C1T

(m−2∑
j=0

‖∂j
t f1,p(0)‖2

Hm−2−j(R3
+)

+ ‖∂pg‖2
Em−1,γ(J×∂R3

+) + ‖∂pu0‖2
Hm−1(R3

+)

)
+ Cm−1

γ
‖f1,p‖2

Hm−1
γ (Ω) (3.35)

for all γ ≥ γm−1. We next estimate the terms appearing on the right-hand side of (3.35). To that end, let 
j ∈ {0, . . . , m − 2}. We observe that

∂j
t (∂pA0∂tu)(0) =

j∑
l=0

(
j

l

)
∂l
t∂pA0(0)Sm,j+1−l(0, A0, . . . , A3, D, f, u0).

Since the function ∂l
t∂pA0(0) belongs to Hm̃−l−2(R3

+) and Sm,j+1−l is contained in Hm−j+l−1(R3
+) by 

Lemma 2.3, Lemma 2.1 (3) in the case j = m − 2 and Lemma 2.1 (4) in the case j < m − 2 show

‖∂l
t∂pA0(0)Sm,j+1−l(0, A0, . . . , A3, D, f, u0)‖Hm−2−j(R3

+)

≤ C2.3;m,j−l+1(η, r0)r0
( j−l∑

k=0

‖∂k
t f(0)‖Hm−1−k(R3

+) + ‖u0‖Hm(R3
+)

)
,

where we also applied Lemma 2.3. Arguing analogously, for A1, A2, and D, we arrive at

‖∂j
t f1,p(0)‖Hm−2−j(R3

+) ≤ C(η, r0)
(m−1∑

k=0

‖∂k
t f(0)‖Hm−1−k(R3

+) + ‖u0‖Hm(R3
+)

)
. (3.36)

Lemma 2.1 further yields
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‖f1,p‖Hm−1
γ (Ω) ≤ ‖f‖Hm

γ (Ω) + C(r, T ′)‖u‖Gm,γ(Ω) (3.37)

for all γ > 0.
We plug the estimates (3.36) and (3.37) into (3.35) and combine it with the induction hypothesis and 

Lemma 2.3 in the case p = 0 to infer

‖u‖2
Gm−1,γ(Ω) +

2∑
p=0

‖∂pu‖2
Gm−1,γ(Ω) (3.38)

≤ (C̃m,0 + TC̃m)e(m−1)C1T
(m−1∑

k=0

‖∂k
t f(0)‖2

Hm−1−k(R3
+) + ‖u0‖2

Hm(R3
+)

+ ‖g‖2
Em,γ(J×∂R3

+)

)
+ C̃m

γ

(
‖f‖2

Hm
γ (Ω) + ‖u‖2

Gm,γ(Ω)

)

for all γ ≥ γm−1, where C̃m,0 = C̃m,0(η, r0) and C̃m = C̃m(η, r, T ′) denote constants which may change 
from line to line.

It only remains to control the G0,γ(Ω)-norm of ∂m
3 u. To this purpose, we note that ∂m−1

3 u ∈ G1(Ω) solves 
the initial value problem

{
Lv = fm,3, x ∈ R3

+, t ∈ J ;

v(0) = ∂m−1
3 u0, x ∈ R3

+;
(3.39)

where

fm,3 = ∂m−1
3 f −

∑
0<j≤m−1

(
m− 1

j

)( 2∑
k=0

∂j
3Ak ∂k∂

m−1−j
3 u + ∂j

3D∂m−1−j
3 u

)
.

Lemma 2.1 (2) implies that fm,3 belongs to H1(Ω) with

‖fm,3‖2
H1

γ(Ω) ≤ C(r, T ′)
(
‖f‖2

Hm
γ (Ω) + ‖u‖2

Gm,γ(Ω)

)
, (3.40)

for all γ > 0. As ∂j
3Ak(0) is an element of Hm̃−1−j(R3

+) and ∂m−1−j
3 ∂ku(0) of Hj(R3

+), Lemma 2.1 (3) 
yields

‖∂j
3Ak(0)∂m−1−j

3 ∂ku(0)‖L2(R3
+) ≤ C(η, r0)(‖f(0)‖Hm−1(R3

+) + ‖u0‖Hm(R3
+))

for all k ∈ {0, 1, 2} and j ∈ {1, . . . , m − 1}, where we employed Lemma 2.3 for the case k = 0. The same 
arguments applied to D allow us to conclude

‖fm,3(0)‖2
L2(R3

+) ≤ C(η, r0)
(
‖f(0)‖2

Hm−1(R3
+) + ‖u0‖2

Hm(R3
+)

)
. (3.41)

On the other hand, Proposition 3.3 applied to (3.39) furnishes

‖∂m
3 u‖2

G0,γ(Ω) ≤ (C1,0 + TC1)eC1T
( 2∑

j=0
‖∂j∂m−1

3 u‖2
G0,γ(Ω) + ‖fm,3(0)‖2

L2(R3
+)

+ ‖∂m−1
3 u0‖2

H1(R3
+)

)
+ C1

γ
eC1T ‖fm,3‖2

H1
γ(Ω)
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for all γ ≥ 1. Combined with (3.40) and (3.41) the above inequality implies

‖∂m
3 u‖2

G0,γ(Ω) ≤ (C̃m,0 + TC̃m)eC1T
( 2∑

j=0
‖∂ju‖2

Gm−1,γ(Ω) + ‖f(0)‖2
Hm−1(R3

+)

+ ‖u0‖2
Hm(R3

+)

)
+ C̃m

γ

(
‖f‖2

Hm
γ (Ω) + ‖u‖2

Gm,γ(Ω)

)
(3.42)

for all γ ≥ 1. We then use (3.42) to estimate

‖u‖2
Gm,γ(Ω) ≤ ‖u‖2

Gm−1,γ(Ω) +
2∑

j=0
‖∂ju‖2

Gm−1,γ(Ω) + ‖∂m
3 u‖2

G0,γ(Ω)

≤ (C̃m,0 + TC̃m)eC1T
( 2∑

j=0
‖∂ju‖2

Gm−1,γ(Ω) + ‖u‖2
Gm−1,γ(Ω)

)
+ C̃m

γ
‖u‖2

Gm,γ(Ω)

+ (C̃m,0 + TC̃m)eC1T
(
‖f(0)‖2

Hm−1(R3
+) + ‖u0‖2

Hm(R3
+)

)
+ C̃m

γ
‖f‖2

Hm
γ (Ω)

for all γ ≥ 1. Together with (3.38), it follows

‖u‖2
Gm,γ(Ω) ≤ (C̃m,0 + TC̃m)emC1T

(m−1∑
k=0

‖∂k
t f(0)‖2

Hm−1−k(R3
+) + ‖g‖2

Em,γ(J×∂R3
+)

+ ‖u0‖2
Hm(R3

+)

)
+ C̃m

γ

(
‖f‖2

Hm
γ (Ω) + ‖u‖2

Gm,γ(Ω)

)
(3.43)

for all γ ≥ γm−1. Choosing γm = γm(η, r, T ′) large enough, the assertion follows. �
4. Regularity of solutions

In order to prove that the solution of (3.1) belongs to Gm(Ω) if the data and the coefficients are appropri-
ately smooth and compatible, we have to apply different regularizing techniques in the normal, tangential, 
and time directions. We begin by showing that regularity in time and in tangential directions implies reg-
ularity in normal direction. The main difficulty here is to avoid a loss of regularity in the normal direction 
at the boundary of ∂R3

+.

Lemma 4.1. Let η > 0, m ∈ N, and m̃ = max{m, 3}. Take A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈ F cp

m̃,coeff(R3
+), A3 = Aco

3 , 
and D ∈ F cp

m̃ (Ω). Pick f ∈ Hm(Ω), and u0 ∈ Hm(R3
+). Let u be a solution of the linear initial value 

problem (3.7) with differential operator L = L(A0, . . . , A3, D), inhomogeneity f , and initial value u0. Assume 
that u belongs to 

⋂m
j=1 C

j(J, Hm−j(R3
+)).

Take k ∈ {1, . . . , m} and a multi-index α ∈ N4
0 with |α| = m, α0 = 0, and α3 = k. Suppose that ∂βu is 

contained in G0(Ω) for all β ∈ N4
0 with |β| = m and β3 ≤ k − 1. Then ∂αu is an element of G0(Ω).

Proof. I) We have to start with several preparations. Let ρ ∈ C∞
c (R3) be a nonnegative function with ∫

R3 ρ(x)dx = 1 and supp ρ ⊆ B(0, 1). We denote the convolution operator with kernel ρε = ε−3ρ(ε−1·) by 
Mε for all ε > 0, where the convolution is taken over R3. We further define the translation operator

Tτv(x) = v(x1, x2, x3 + τ) (4.1)
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for all v ∈ L1
loc(R3

+), τ > 0, and for almost all x ∈ R2 × (−τ, ∞). Clearly, Tτ maps W l,p(R3
+) continuously 

into W l,p(R2× (−τ, ∞)) and ∂α̃Tτv = Tτ∂
α̃v for all v ∈ W l,p(R3

+), α̃ ∈ N4
0 with |α̃| ≤ l, l ∈ N0, 1 ≤ p ≤ ∞, 

and τ > 0. If v ∈ L1
loc(R3), we further define Tτv by formula (4.1) for all τ ∈ R.

Functions which are only defined on a subset of R3 will be identified with their zero-extensions in the 
following. We extend the translations Tδ to continuous operators on H−1(R3

+) by setting

〈Tδv, ψ〉H−1(R3
+)×H1

0 (R3
+) = 〈v, T−δψ〉H−1(R3

+)×H1
0 (R3

+)

for all ψ ∈ H1
0 (R3

+) and δ > 0. Since partial derivatives commute with T−δ and the extension by zero on 
H1

0 (R3
+), we thus also have

∂jTδv = Tδ∂jv (4.2)

for all v ∈ L2(R3
+) and δ > 0.

We next take a closer look on the convolution operator Mε, which is defined for functions in L1
loc(R3). 

We want to properly extend this operator to functions in L1
loc(R3

+) without producing singularities at the 
boundary. To this end, take 0 < ε < δ. For functions v in L1

loc(R3
+) we will employ the regularization MεTδv

and restrict it to R3
+. As it will be clear from the context over which domain we consider MεTδv, we will 

not write this restriction explicitly. It is easy to see that if v has a weak derivative in R3
+, then also MεTδv

has a weak derivative in R3
+ and

∂jMεTδv = MεTδ∂jv

for all j ∈ {1, 2, 3}.
We define ρ̃ by ρ̃(x) = ρ(−x) for all x ∈ R3. The convolution operator with the kernel ρ̃ε is denoted by 

M̃ε for all ε > 0. Fix 0 < ε < δ. A straightforward computation shows that

〈MεTδv, ψ〉H−1(R3
+)×H1

0 (R3
+) = 〈v, T−δM̃εψ〉H−1(R3

+)×H1
0 (R3

+) (4.3)

for all v ∈ L2(R3
+) and ψ ∈ H1

0 (R3
+). As T−δM̃ε maps H1

0 (R3
+) continuously into itself, the mapping MεTδ

continuously extends to an operator on H−1(R3
+) via formula (4.3). We deduce the identity

∂jMεTδv = Mε∂jTδv = MεTδ∂jv

by duality for all j ∈ {1, 2, 3} and v ∈ L2(R3
+) using the fact that the partial derivative commutes with 

T−δ, M̃ε, and the zero extension on H1
0 (R3

+). We further note that for A ∈ W 1,∞(R3
+) and v ∈ H−1(R3

+)
we have

(TδA)Tδv = Tδ(Av) (4.4)

in H−1(R3
+).

II) Let 0 < ε < δ. In the following, we abbreviate the differential operator L(TδA0, . . . , TδA3, TδD)
by Lδ and Div(TδA1, TδA2, TδA3) by Divδ. (Recall (3.10).) We define α′ = α − e3 ∈ N4

0 and note that 
|α′| = m − 1 and α′

3 = k − 1. In particular, ∂α′
u belongs to G0(Ω) by assumption. Due to the presence of 

the mollifier, the function MεTδ∂
α′
u is contained in C1(J, H1(R3

+)) ↪→ G1(Ω), MεTδ∂
α′
u0 is an element of 

H1(R3
+), LδMεTδ∂

α′
u is contained in G0(Ω), and Divδ LδMεTδ∂

α′
u belongs to L2(Ω). We want to apply 

estimate (3.11) from Proposition 3.3 with the differential operator Lδ to differences of functions MεTδ∂
α′
u
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and show that they form a Cauchy sequence in H1(R3
+) as ε tends to 0. Therefore, we have to study the 

convergence properties of LδMεTδ∂
α′
u and Divδ LδMεTδ∂

α′
u as ε → 0. We focus on the latter as this is 

the more difficult term.
We select functions μlj ∈ F cp

m̃,1(Ω) (independent of time) with

Aj =
3∑

l=1

Aco
l μlj

for all j ∈ {1, 2, 3} which exist by the definition of F cp
m̃,coeff(R3

+). We set

μ̃ =
(
μ 0
0 μ

)

and compute

(Tδμ̃)T∇LδMεTδ∂
α′
u (4.5)

=
2∑

j=0
(Tδμ̃)T (Tδ∇Aj)∂jMεTδ∂

α′
u + (Tδμ̃)T (Tδ∇D)MεTδ∂

α′
u

+ Tδ(μ̃TA0)∇MεTδ∂t∂
α′
u + Tδ(μ̃TD)∇MεTδ∂

α′
u +

3∑
j=1

Tδ(μ̃TAj)∇∂jMεTδ∂
α′
u

=: Λδ,ε +
3∑

j=1
Tδ(μ̃TAj)∇∂jMεTδ∂

α′
u,

where we exploited the results from step I). The cancellation properties of the Lδ-operator established 
in (3.19) and (3.20) show that

3∑
j=1

( 3∑
k=1

(Tδ(μ̃TAj)∇∂jMεTδ∂
α′
u)kk,

3∑
k=1

(Tδ(μ̃TAj)∇∂jMεTδ∂
α′
u)(k+3)k

)
= 0.

We thus obtain from (4.5) that

Divδ LδMεTδ∂
α′
u =

( 3∑
k=1

Λδ,ε
kk ,

3∑
k=1

Λδ,ε
(k+3)k

)
. (4.6)

We rewrite Λδ,ε in the form

Λδ,ε =
2∑

j=0
[Tδ(μ̃T∇Aj),Mε]∂jTδ∂

α′
u + [Tδ(μ̃T∇D),Mε]Tδ∂

α′
u

+ [Tδ(μ̃TA0),Mε]∇Tδ∂t∂
α′
u + [Tδ(μ̃TD),Mε]∇Tδ∂

α′
u

+ MεTδ

( 2∑
j=0

μ̃T∇Aj∂j∂
α′
u + μ̃T∇D∂α′

u + μ̃TA0∇∂t∂
α′
u + μ̃TD∇∂α′

u
)
,

and introduce the function
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f̃α′ =
∑

0<β≤α′

(
α′

β

)
∂β(μ̃TA0)∇∂α′−β∂tu +

∑
0<β≤α′

(
α′

β

)
∂β(μ̃TD)∇∂α′−βu

+
2∑

j=0

∑
0<β≤α′

(
α′

β

)
∂β(μ̃T∇Aj)∂α′−β∂ju +

∑
0<β≤α′

(
α′

β

)
∂β(μ̃T∇D)∂α′−βu.

As u and ∂tu are contained in C(J, Hm−1(R3
+)), Lemma 2.1 implies that the function f̃α′ is an element of 

L2(Ω). With this definition at hand, we deduce

Λδ,ε =
2∑

j=0
[Tδ(μ̃T∇Aj),Mε]∂jTδ∂

α′
u + [Tδ(μ̃T∇D),Mε]Tδ∂

α′
u

+ [Tδ(μ̃TA0),Mε]∇Tδ∂t∂
α′
u + [Tδ(μ̃TD),Mε]∇Tδ∂

α′
u + ∂α′

MεTδ(μ̃T∇f)

−MεTδ f̃α′ −
3∑

j=1
∂α′

MεTδ(μ̃TAj∇∂ju)

=: Λ̃δ,ε −
3∑

j=1
∂α′

MεTδ(μ̃TAj∇∂ju).

The cancellation properties of the differential operator from (3.19) and (3.20) imply that

( 3∑
k=1

Λδ,ε
kk ,

3∑
k=1

Λδ,ε
(k+3)k

)
=

( 3∑
k=1

Λ̃δ,ε
kk ,

3∑
k=1

Λ̃δ,ε
(k+3)k

)
.

In view of (4.6), we conclude that

Divδ LδMεTδ∂
α′
u =

( 3∑
k=1

Λ̃δ,ε
kk ,

3∑
k=1

Λ̃δ,ε
(k+3)k

)
. (4.7)

Since ∂j∂α′
u and ∂α′

u belong to C(J, L2(R3
+)) and ∇Aj and ∇D are contained in L∞(Ω), we have

[Tδ(μ̃T∇Aj),Mε]∂jTδ∂
α′
u + [Tδ(μ̃T∇D),Mε]Tδ∂

α′
u −→ 0 (4.8)

in L2(Ω) as ε → 0 for all j ∈ {0, 1, 2}. For the remaining commutator terms we employ estimates for the 
commutator of a W 1,∞-function with a mollifier. Take j ∈ {1, 2, 3}. To satisfy the assumptions of these 
commutator estimates, we extend the function μ̃TA0(t) by reflection at ∂R3

+ to a function in W 1,∞(R3)
which we still denote by μ̃TA0(t) for all t ∈ J . Theorem C.14 of [1] now yields that [Tδ(μ̃TA0), Mε]∂jTδ∂t∂

α′
u

maps into L2(R3), where we identify as usual the function ∂t∂α′
u with its zero extension to R3. In particular, 

([Tδ(μ̃TA0), Mε]∂jTδ∂t∂
α′
u)(t) is an element of L2(R3

+) and Theorem C.14 of [1] further shows that

‖([Tδ(μ̃TA0),Mε]∂jTδ∂t∂
α′
u)(t)‖L2(R3

+) (4.9)

≤ ‖([Tδ(μ̃TA0),Mε]∂jTδ∂t∂
α′
u)(t)‖L2(R3)

≤ C‖Tδ(μ̃TA0)(t)‖W 1,∞(R3)‖Tδ∂t∂
α′
u(t)‖L2(R3)

≤ C‖(μ̃TA0)(t)‖W 1,∞(R3
+) ‖∂t∂α′

u(t)‖L2(R3
+),

lim
ε→0

‖([Tδ(μ̃TA0),Mε]∂jTδ∂t∂
α′
u)(t)‖L2(R3

+) = 0 (4.10)
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for all t ∈ J . Hence, the dominated convergence theorem implies

‖[Tδ(μ̃TA0),Mε]∂jTδ∂t∂
α′
u‖L2(Ω) −→ 0

as ε → 0. In the same way we deduce that also the other remaining commutators in Λ̃δ,ε converge to 0 as 
ε → 0. As Tδ(μ̃T∇f) belongs to Hm−1(J ×R2 × (−δ, ∞)) and f̃α′ to L2(Ω), we arrive at

Divδ LδMεTδ∂
α′
u (4.11)

−→
3∑

k=1

Tδ

(
(∂α′

(μ̃T∇f) − f̃α′)kk, (∂α′
(μ̃T∇f) − f̃α′)(k+3)k

)
=: Tδfdiv,α′

in L2(Ω) as ε → 0. In the same way we infer that LδMεTδ∂
α′
u converges to Tδfα′ with

fα′ := ∂α′
f −

2∑
j=0

∑
0<β≤α′

(
α′

β

)
∂βAj∂j∂

α′−βu−
∑

0<β≤α′

(
α′

β

)
∂βD∂α′−βu

in G0(Ω). Here one combines commutator estimates as in (4.9) and (4.10) with a standard compactness 
argument to derive that the convergence is also uniform in t, see [18, Lemma 4.1] for details.

Next take η, r > 0 with A0 ≥ η, ‖Ai‖W 1,∞(Ω) ≤ r, and ‖D‖W 1,∞(Ω) ≤ r for all i ∈ {0, . . . , 3}. Note that 
in particular ‖Ai(0)‖L∞(R3

+) ≤ r and ‖D(0)‖L∞(R3
+) ≤ r for i ∈ {0, . . . , 3}. Now let δ > 0 and take nδ ∈ N

with n−1
δ < δ. Fix a number γ ≥ 1 and define the constant C ′ = C ′(η, r, T ) by

C ′ =
(
C3.3;1,0 + TC3.3;1 + C3.3;1

γ

)
eC3.3;1T (4.12)

where C3.3;1,0 = C3.3;1,0(η, r) and C3.3;1 = C3.3;1(η, r, T ) are the corresponding constants from Propo-
sition 3.3. Observe that MεTδ∂

α′
u solves the initial value problem (3.7) with differential operator Lδ, 

inhomogeneity LδMεTδ∂
α′
u and initial value MεTδu0 for each ε ∈ (0, δ). Moreover, ‖TδAi‖W 1,∞(Ω) ≤ r and 

‖TδAi(0)‖L∞(R3
+) ≤ r for all δ > 0 and i ∈ {0, . . . , 3}, and the same is true for D. Proposition 3.3 thus 

shows

‖∇(M 1
n
Tδ∂

α′
u−M 1

k
Tδ∂

α′
u)‖2

G0,γ(Ω) (4.13)

≤ C ′
( 2∑

j=0
‖(M 1

n
−M 1

k
)∂jTδ∂

α′
u‖2

G0,γ(Ω) + ‖Lδ(M 1
n
−M 1

k
)∂α′

u‖2
G0,γ(Ω)

+ ‖Divδ Lδ(M 1
n
−M 1

k
)∂α′

u‖2
L2

γ(Ω) + ‖(M 1
n
−M 1

k
)Tδ∂

α′
u0‖2

H1(R3
+)

)
,

for all n, k ∈ N with n, k ≥ nδ. Since ∂jTδ∂
α′
u belongs to C(J, L2(R2 × (−δ, ∞))) for j ∈ {0, 1, 2}, J is 

compact, and Tδ∂
α′
u0 is contained in H1(R2 × (−δ, ∞)), the sum and the last term on the right-hand side 

of (4.13) converge to zero as n, k → ∞. Exploiting that LδM 1
n
Tδ∂

α′
u converges to fα′ and Divδ LδM 1

n
Tδ∂

α′
u

to Tδfdiv,α′ in G0(Ω) and L2(Ω), respectively, as n → ∞, we infer that (∇M 1
n
Tδ∂

α′
u)n≥nδ

is a Cauchy 

sequence in G0(Ω). Since (M 1
n
Tδ∂

α′
u)n≥nδ

converges to Tδ∂
α′
u in G0(Ω), we conclude that Tδ∂

α′
u belongs 

to C(J, H1(R3
+)) and that

‖∇M 1
n
Tδ∂

α′
u−∇Tδ∂

α′
u‖G0,γ(Ω) −→ 0 (4.14)

as n → ∞ for all δ > 0. Applying Proposition 3.3 directly to M 1 Tδ∂
α′
u and letting n → ∞, we obtain
n
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‖∇Tδ∂
α′
u‖2

G0,γ(Ω) ≤ C ′
( 2∑

j=0
‖∂jTδ∂

α′
u‖2

G0,γ(Ω) + ‖Tδfα′‖2
G0,γ(Ω) + ‖Tδfdiv,α′‖2

L2
γ(Ω)

+ ‖Tδ∂
α′
u0‖2

H1(R3
+)

)
, (4.15)

for γ ≥ 1, cf. (4.13).
III) We next show that ∂α′

u(t) is an element of H1(R3
+) for all t ∈ J . Note that we only have to prove 

that ∂3∂
α′
u(t) belongs to L2(R3

+) for this claim. We abbreviate R2×(δ, ∞) by R3
δ and denote the restriction 

operator to R3
δ by Rδ for all δ > 0. In the next step we show that Rδu(t) belongs to H1(R3

δ) for all δ > 0.
Fix δ > 0 and t ∈ J . Let ϕ ∈ C∞

c (R3
δ). We compute

∫
R3

δ

Rδ∂
α′
u(t, x)∂3ϕ(x)dx =

∫
R3

+

Tδ∂
α′
u(t, x)∂3Tδϕ(x)dx

= −
∫
R3

+

∂3Tδ∂
α′
u(t, x)Tδϕ(x)dx = −

∫
R3

δ

T−δ∂3Tδ∂
α′
u(t, x)ϕ(x)dx,

using that Tδϕ ∈ C∞
c (R3

+). It follows

∂3Rδ∂
α′
u(t) = T−δ∂3Tδ∂

α′
u(t) ∈ L2(R2 × (δ,∞)) (4.16)

as ∂3Tδ∂
α′
u(t) ∈ L2(R3

+) by step II).
Next pick δ > δ and ϕ ∈ C∞

c (R3
δ
). We compute

∫
R3

δ

Rδ∂3Rδ∂
α′
u(t, x)ϕ(x)dx =

∫
R3

δ

∂3Rδ∂
α′
u(t, x)ϕ(x)dx

= −
∫
R3

δ

Rδ∂
α′
u(t, x)∂3ϕ(x)dx = −

∫
R3

δ

Rδ∂
α′
u(t, x)∂3ϕ(x)dx

=
∫
R3

δ

∂3Rδ∂
α′
u(t, x)ϕ(x)dx,

where we exploited that supp(ϕ) � R3
δ
. Since ϕ ∈ C∞

c (R3
δ
) was arbitrary, we conclude ∂3Rδ∂

α′
u(t) =

∂3Rδ∂
α′
u(t) on R3

δ
. In particular, we can define the function v(t) ∈ L2

loc(R3
+) by setting for all δ > 0

v(t, x) = ∂3Rδ∂
α′
u(t, x) for almost all x ∈ R3

δ .

Take ϕ ∈ C∞
c (R3

+). Fix a number τ > 0 with dist(supp(ϕ), ∂R3
+) > τ , i.e., supp(ϕ) � R3

τ . We then 
deduce ∫

R3
+

∂α′
u(t, x)∂3ϕ(x)dx =

∫
R3

τ

Rτ∂
α′
u(t, x)∂3ϕ(x)dx = −

∫
R3

τ

∂3Rτ∂
α′
u(t, x)ϕ(x)dx

= −
∫
R3

τ

v(t, x)ϕ(x)dx = −
∫
R3

+

v(t, x)ϕ(x)dx.

This means that ∂3∂
α′
u(t) = v(t) ∈ L2

loc(R3
+).
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We further note that ∂3Rδ∂
α′
u(t) converges pointwise almost everywhere in R3

+ to v(t) = ∂3∂
α′
u(t) as 

δ → 0. Using (4.16), we further infer

‖∂3Rδ∂
α′
u(t)‖2

L2(R3
+) =

∫
R3

δ

|T−δ∂3Tδ∂
α′
u(t, x)|2dx =

∫
R3

+

|∂3Tδ∂
α′
u(t, x)|2dx

= ‖∂3Tδ∂
α′
u(t)‖2

L2(R3
+). (4.17)

Let (δn)n be a null-sequence. Fatou’s lemma, (4.17), and (4.15) then imply

∫
R3

+

|∂3∂
α′
u(t, x)|2dx =

∫
R3

+

lim inf
n→∞

|∂3Rδn∂
α′
u(t, x)|dx

≤ lim inf
n→∞

∫
R3

+

|∂3Rδn∂
α′
u(t, x)|2dx = lim inf

n→∞
‖∂3Tδn∂

α′
u(t)‖2

L2(R3
+)

≤ e2γT lim inf
n→∞

‖∇Tδn∂
α′
u‖2

G0,γ(Ω)

≤ C ′e2γT
( 2∑

j=0
‖∂j∂α′

u‖2
G0,γ(Ω) + ‖fα′‖2

G0,γ(Ω) + ‖fdiv,α′‖2
L2

γ(Ω) + ‖∂α′
u0‖2

H1(R3
+)

)

=: K2
u < ∞,

where we used that ∂j∂α′
u, ∂α′

u ∈ C(J, L2(R3
+)) for j ∈ {0, 1, 2}, fα′ ∈ G0(Ω), fdiv,α′ ∈ L2(Ω), and 

∂α′
u0 ∈ H1(R3

+). We conclude that ∂3∂
α′
u(t) belongs to L2(R3

+) with ‖∂3∂
α′
u(t)‖L2(R3

+) ≤ Ku for all 
t ∈ J .

We further point out that Rδ∂3∂
α′
u(t) = Rδv(t) = ∂3Rδ∂

α′
u(t). This fact implies that

|∂3Rδ∂
α′
u(t)| ≤ |∂3∂

α′
u(t)|

on R3
+. As ∂3Rδ∂

α′
u(t) tends to ∂3∂

α′
u(t) pointwise almost everywhere on R3

+, we obtain that

∂3Rδ∂
α′
u(t) −→ ∂3∂

α′
u(t)

in L2(R3
+) as δ → 0.

Since ∂3Tδ∂
α′
u belongs to C(J, L2(R3

+)) for all δ > 0, one can argue as in (4.17) to deduce that ∂3Rδ∂
α′
u

is also continuous on J with values in L2(R3
+) and thus strongly measurable. Hence, ∂3∂

α′
u is the pointwise 

limit of strongly measurable functions and therefore itself strongly measurable on J with values in L2(R3
+). 

As a result, ∂3∂
α′
u and thus ∇∂α′

u belong to L∞(J, L2(R3
+)). We then obtain via Proposition 3.3 that ∂α′

u

is contained in C(J, H1(R3
+)). �

Corollary 4.2. Let η > 0, m ∈ N, and m̃ = max{m, 3}. Take A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈ F cp

m̃,coeff(R3
+), 

A3 = Aco
3 , and D ∈ F cp

m̃ (Ω). Pick f ∈ Hm(Ω), and u0 ∈ Hm(R3
+). Let u be a solution of the initial 

value problem (3.7) with differential operator L = L(A0, . . . , A3, D), inhomogeneity f , and initial value u0. 
Assume that u belongs to 

⋂m
j=1 C

j(J, Hm−j(R3
+)).

Take k ∈ {1, . . . , m} and a multi-index α ∈ N4
0 with |α| = m, α0 = 0, and α3 = k. Suppose that ∂βu is 

contained in L2(Ω) for all β ∈ N4
0 with |β| = m and β3 ≤ k − 1. Then ∂αu is an element of L2(Ω).
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Proof. We only have to make small amendments to the proof of Lemma 4.1. In step II) of that proof we 
replace the a priori estimate (3.11) from Proposition 3.3 by estimate (3.13). The arguments from step II) 
then yield that Tδ∂

α′
u is an element of L2(J, H1(R3

+)). Integrating over the time-space domain in step III) 
of the proof of Lemma 4.1, we derive that ∂α′

u belongs to L2(J, H1(R3
+)). �

For the regularization in spatial tangential variables, we first introduce the family of norms

‖v‖2
Hs

ta(R3
+) =

∫
R+

∫
R2

(1 + |ξ|2)s|(F2v)(ξ, x3)|2dξdx3,

‖v‖2
Hs

ta,δ(R3
+) =

∫
R+

∫
R2

(1 + |ξ|2)s+1(1 + |δξ|2)−1|(F2v)(ξ, x3)|2dξdx3 (4.18)

for all v ∈ S ′(R3
+) with F2v ∈ L2

loc(R3
+), s ∈ R and δ > 0, where F2 denotes the Fourier transform in x1-

and x2-direction and S ′(R3
+) the space of tempered distributions on R3

+, see Section 1.7 and Section 2.4 
in [7]. The space Hs

ta(R3
+) consists of those v for which ‖v‖Hs

ta(R3
+) is finite. As in the unweighted case we 

have the identity

‖v‖2
Hs+1

ta,δ (R3
+) = ‖v‖2

Hs
ta,δ(R3

+) +
2∑

j=1
‖∂jv‖2

Hs
ta,δ(R3

+) (4.19)

for all s ∈ R and δ > 0. We further note that the definition directly implies

‖v‖Hs
ta,δ(R3

+) ≤ ‖v‖Hs+1
ta (R3

+)

for all v ∈ Hs+1
ta (R3

+), s ∈ R, and δ > 0.
We further take a function χ ∈ C∞

c (R2) such that F2χ(ξ) = O(|ξ|m+1) as ξ → 0 and F2χ(tξ) = 0 for all 
t ∈ R implies ξ = 0, cf. [7]. As usual we set χε(x) = ε−2χ(x/ε) for all x ∈ R2 and ε > 0 and denote the 
convolution in spatial tangential variables with χε by Jε, i.e.,

Jεv(x) = χε ∗ta v(x) =
∫
R2

χ(y)v(x1 − y1, x2 − y2, x3)dy

for all v ∈ L2(R3
+).

One of the advantages to work with the weighted norms from (4.18) is that one can reduce the task of 
showing that a function v from Hs

ta(R3
+) belongs to Hs+1

ta (R3
+) to finding a uniform bound in δ > 0 for the 

Hs
ta,δ(R3

+)-norms. The following properties of this family of weighted norms are a consequence of (2.4.4), 
Theorem 2.4.1, Theorem 2.4.2, Theorem 2.4.5, and Theorem 2.4.6 in [7].

Lemma 4.3. Let s ∈ [0, m +1), v ∈ Hs−1
ta (R3

+), and let A ∈ L∞(R3
+) with ∂αA ∈ L2(R3

+) for all α ∈ N3
0 \{0}.

(1) Assume that there is a constant C, independent of δ, such that

‖v‖Hs−1
ta,δ (R3

+) ≤ C

for all δ > 0 in a neighborhood of 0. Then v belongs to Hs
ta(R3

+).
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(2) There exist constants C, c > 0, independent of δ and v, such that

c‖v‖2
Hs−1

ta,δ (R3
+) ≤ ‖v‖2

Hs−1
ta (R3

+) +
1∫

0

‖Jεv‖2
L2(R3

+)ε
−2s−1

(
1 + δ2

ε2

)−1
dε

≤ C‖v‖2
Hs−1

ta,δ (R3
+)

for all δ ∈ (0, 1).
(3) There is a constant C, independent of δ and v, such that

1∫
0

‖AJεv − Jε(Av)‖2
L2(R3

+)ε
−2s−1

(
1 + δ2

ε2

)−1
dε ≤ C‖v‖2

Hs−2
ta,δ (R3

+)

for all δ ∈ (0, 1).

We note that Hörmander states the commutator estimate only for coefficients from the Schwartz space. 
The proof of Theorem 2.4.2 in [7], however, also works for coefficients of the above regularity.

Employing the family of weighted norms from (4.18) and Lemma 4.3, we can now show how regularity 
in time implies regularity in tangential directions. Since we want to apply Lemma 4.3, we have to assume 
that the coefficients are smooth. We will return to coefficients in Fm(Ω) with an approximation argument 
below.

Lemma 4.4. Let η > 0, m ∈ N and m̃ = max{m, 3}. Take coefficients A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈ F cp

m̃,coeff(R3
+), 

A3 = Aco
3 , D ∈ F cp

m̃ (Ω) and B = Bco. We further assume that ∂αAi, ∂αD ∈ L2(Ω) for all α ∈ N4
0 \ {0}

and i ∈ {0, 1, 2}. Let u be the weak solution of (3.1) with differential operator L = L(A0, . . . , A3, D), 
inhomogeneity f ∈ Hm

ta (Ω), boundary value g ∈ Em(J × ∂R3
+), and initial value u0 ∈ Hm

ta (R3
+). Suppose 

that u belongs to 
⋂m

j=1 C
j(J, Hm−j(R3

+)). Pick a multi-index α ∈ N4
0 with |α| = m and α0 = α3 = 0. Then 

∂αu is an element of C(J, L2(R3
+)).

Proof. I) We will establish the assertion in two steps. First we will show that u is an element of 
L∞(J, Hm

ta (R3
+)). To that end, we will apply Lemma 4.3 and the a priori estimates from Lemma 3.1.

Fix a parameter δ ∈ (0, 1). Let γ > 0. The generic constants appearing in the following will all be 
independent of δ and γ. We further note that Lemma 4.3 will be used in almost every step in the following 
so that we will not cite it every time. Applying the differential operator L to Jεu, we obtain

LJεu = Jεf +
2∑

j=0
[Aj , Jε]∂ju + [D, Jε]u (4.20)

for all ε ∈ (0, 1) since A3 = Aco
3 . Lemma 4.3 allows us to estimate

∫
J

e−2γt
1∫

0

‖[Aj , Jε]∂ju(t)‖2
L2(R3

+)ε
−2m−1

(
1 + δ2

ε2

)−1
dεdt (4.21)

≤ C‖u‖2
L2

γ(J,Hm−1
ta,δ (R3

+)) + C‖∂tu‖2
L2

γ(J,Hm−2
ta,δ (R3

+))

≤ C‖u‖2
L2

γ(J,Hm−1
ta,δ (R3

+)) + C‖∂tu‖2
Hm−1

γ (Ω)
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for all j ∈ {0, 1, 2}. The commutator [D, Jε]u is treated analogously. In particular, LJεu is an element 
of L2(Ω). Identity (4.20) further implies that A3∂3Jεu belongs to L2(Ω) so that A3Jεu is an element of 
L2(J, H1(R3

+)). We infer that the trace of BJεu is contained in L2(J, H1/2(∂R3
+)). Finally, Jεu0 is an 

element of L2(R3
+) so that we can apply the a priori estimate from Lemma 3.1 to the function Jεu. Before 

doing so, we use Lemma 4.3 to derive

sup
t∈J

e−2γt‖u(t)‖2
Hm−1

ta,δ (R3
+) ≤ C sup

t∈J
e−2γt‖u(t)‖2

Hm−1(R3
+) (4.22)

+ C sup
t∈J

e−2γt
1∫

0

‖Jεu(t)‖2
L2(R3

+)ε
−2m−1

(
1 + δ2

ε2

)−1
dε

≤ C‖u‖2
Gm−1,γ(Ω) + C

1∫
0

‖Jεu‖2
G0,γ(Ω)ε

−2m−1
(
1 + δ2

ε2

)−1
dε

for all γ > 0. The a priori estimates from Lemma 3.1 now show that there is a constant C0 and a number 
γ0 > 0 such that

‖Jεu‖2
G0,γ(Ω) ≤ C0‖Jεu0‖2

L2(R3
+) + C0‖BJεu‖2

L2
γ(J,H1/2(∂R3

+)) + C0

γ
‖LJεu‖2

L2
γ(Ω) (4.23)

for all γ ≥ γ0. Fix such a parameter γ in the following. We next treat the terms appearing in (4.23). 
Applying identity (4.20), Fubini’s theorem, and estimate (4.21), we infer

1∫
0

‖LJεu‖2
L2

γ(Ω)ε
−2m−1

(
1 + δ2

ε2

)−1
dε

≤ C

1∫
0

(
‖Jεf‖2

L2
γ(Ω) +

2∑
j=0

‖[Aj , Jε]∂ju‖2
L2

γ(Ω) + ‖[D, Jε]u‖2
L2

γ(Ω)

)
ε−2m−1

(
1 + δ2

ε2

)−1
dε

= C

∫
J

e−2γt
1∫

0

(
‖Jεf(t)‖2

L2(R3
+) +

2∑
j=0

‖[Aj , Jε]∂ju(t)‖2
L2(R3

+)

+ ‖[D, Jε]u(t)‖2
L2(R3

+)

)
ε−2m−1

(
1 + δ2

ε2

)−1
dε dt

≤ C‖f‖2
L2

γ(J,Hm−1
ta,δ (R3

+)) + C‖u‖2
L2

γ(J,Hm−1
ta,δ (R3

+)) + C‖∂tu‖2
Hm−1

γ (Ω), (4.24)

where we once again employed Lemma 4.3 in the last line. Since the matrix B is constant, it commutes 
with the mollifier Jε so that BJεu = Jεg for all ε > 0. We note that the proof of Lemma 4.3 (2), see 
Theorems 2.4.5 and 2.4.1 in [7], shows that

1∫
0

‖Jεv‖2
H1/2(∂R3

+)ε
−2m−1

(
1 + δ2

ε2

)−1
dε ≤ C‖v‖2

H
m−1/2
δ (∂R3

+)

for all v ∈ Hm−1/2(∂R3
+) and δ ∈ (0, 1). Here we identify ∂R3

+ with R2 and make the natural adaptions 
in (4.18) to define Hm−1/2(∂R3

+), see also Section 2.4 in [7]. Consequently,
δ
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1∫
0

‖BJεu‖2
L2

γ(J,H1/2(∂R3
+))ε

−2m−1
(
1 + δ2

ε2

)−1
dε (4.25)

=
∫
J

e−2γt
1∫

0

‖Jεg(t)‖2
H1/2(∂R3

+)ε
−2m−1

(
1 + δ2

ε2

)−1
dεdt

≤ C

∫
J

e−2γt‖g(t)‖2
H

m−1/2
δ (∂R3

+)
dt

≤ C

∫
J

e−2γt‖g(t)‖2
Hm+1/2(∂R3

+)dt ≤ C‖g‖2
Em,γ(J×∂R3

+).

For the initial value we note that Lemma 4.3 directly yields

1∫
0

‖Jεu0‖2
L2(R3

+)ε
−2m−1

(
1 + δ2

ε2

)−1
dε ≤ C‖u0‖2

Hm−1
ta,δ (R3

+) ≤ C‖u0‖2
Hm(R3

+). (4.26)

Inserting (4.23) to (4.26) into (4.22), we obtain that

sup
t∈J

e−2γt‖u(t)‖2
Hm−1

ta,δ (R3
+) (4.27)

≤ C‖u‖2
Gm−1,γ(Ω) + C‖u0‖2

Hm(R3
+) + C‖g‖2

Em,γ(J×∂R3
+)

+ C

γ

(
‖f‖2

L2
γ(J,Hm

ta (R3
+)) + C‖∂tu‖2

Hm−1
γ (Ω) + C‖u‖2

L2
γ(J,Hm−1

ta,δ (R3
+))

)
.

Choosing a number γ large enough, we thus find a constant K1 such that

sup
t∈J

e−2γt‖u(t)‖2
Hm−1

ta,δ (R3
+) ≤ K1 (4.28)

for all δ ∈ (0, 1). Hence, Lemma 4.3 (1) implies that u(t) belongs to Hm
ta (R3

+) for all t ∈ J and that u is 
contained in L∞(J, Hm

ta (R3
+)).

II) Applying Corollary 4.2 inductively, we infer that u is an element of Hm(Ω). To establish that u
belongs to Gm(Ω), we apply Lemma 3.1 again.

Fix a multi-index α ∈ N4
0 with |α| = m and α0 = α3 = 0. Since u is a solution of (3.1) and we already 

know that u ∈ Hm(Ω), we derive

L∂αu = ∂αf −
2∑

j=0

∑
0<β≤α

(
α

β

)
∂βAj∂

α−β∂ju−
∑

0<β≤α

(
α

β

)
∂βD∂α−βu =: fα,

where fα belongs to L2(Ω). Next consider the function J 1
n
∂αu, which belongs to G0(Ω). As in (4.20) we 

compute

LJ 1
n
∂αu = J 1

n
fα +

2∑
j=0

[Aj , J 1
n
]∂j∂αu + [D, J 1

n
]∂αu

for all n ∈ N. As fα is an element of L2(Ω), we have

J 1 fα −→ fα (4.29)

n
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in L2(Ω) as n → ∞. Arguing as in (4.9) and (4.10), we further derive

2∑
j=0

[Aj , J 1
n
]∂j∂αu + [D, J 1

n
]∂αu −→ 0 (4.30)

in L2(Ω) as n → ∞ since u belongs to Hm(Ω). Since g belongs to Em(J × ∂R3
+) and u0 to Hm(R3

+), the 
functions BJ 1

n
∂αu = J 1

n
∂αg and J 1

n
∂αu0 tend to ∂αg in E0(J × ∂R3

+) respectively to ∂αu0 in L2(R3
+) as 

n → ∞. Applying Lemma 3.1, we get a constant C0 and a number γ > 0 such that

‖J 1
n
∂αu− J 1

k
∂αu‖2

G0,γ(Ω) ≤ C0‖J 1
n
∂αu0 − J 1

k
∂αu0‖2

L2(R3
+)

+ C0‖BJ 1
n
∂αu−BJ 1

k
∂αu‖2

E0,γ(J×∂R3
+) + C0

γ
‖LJ 1

n
∂αu− LJ 1

k
∂αu‖2

L2
γ(Ω)

for all n, k ∈ N. We conclude that (J 1
n
∂αu)n is a Cauchy sequence in G0(Ω). As (J 1

n
∂αu)n converges to 

∂αu in L2(Ω), we obtain that ∂αu is an element of G0(Ω). �
In the next result we show how to gain one derivative in time. We study the initial boundary value 

problem formally solved by ∂tu. The time integral of the solution of this problem then coincides with u. 
Here one sees explicitly where the compatibility conditions are needed.

Lemma 4.5. Let η > 0. Take coefficients A0 ∈ F cp
3,η(Ω), A1, A2 ∈ F cp

3,coeff(R3
+), A3 = Aco

3 , D ∈ F cp
3 (Ω), 

and B = Bco. Choose data u0 ∈ H1(R3
+), g ∈ E1(J × ∂R3

+), and f ∈ H1(Ω). Assume that the tuple 
(0, A0, . . . , A3, D, B, f, g, u0) fulfills the compatibility conditions (2.4) of order 1. Let u ∈ C(J, L2(R3

+)) be 
the weak solution of (3.1) with differential operator L = L(A0, . . . , A3, D), inhomogeneity f , boundary data 
g, and initial data u0. Assume that u ∈ C1(J ′, L2(R3

+)) implies u ∈ G1(J ′ × R3
+) for every open interval 

J ′ ⊆ J . Then u belongs to G1(Ω).

Proof. Without loss of generality we assume J = (0, T ). Take r > 0 such that

‖Ai‖F3(Ω) ≤ r, ‖D‖F3(Ω) ≤ r,

max{‖Ai(t)‖F 0
2 (R3

+), max
1≤j≤2

‖∂j
tA0(t)‖H2−j(R3

+)} ≤ r,

max{‖D(t)‖F 0
2 (R3

+), max
1≤j≤2

‖∂j
tD(t)‖H2−j(R3

+)} ≤ r (4.31)

for all t ∈ J and i ∈ {0, 1, 2}. Let γ = γ(η, r, T ) be defined by

γ = max{γ3.1;0, γ3.4;1} ≥ 1,

where γ3.1;0 = γ3.1;0(η, r) and γ3.4;1 = γ3.4;1(η, r, T ) are the corresponding constants from Lemma 3.1 and 
Theorem 3.4 respectively. We further introduce the constant C0 = C0(η, r, T ) by

C0 = max{C3.1;0,0, C3.1;0,1, C3.1;0, C3.4;1, (C3.4;1,0 + TC3.4;1)eC3.4;1T , C2.3;1,1} ≥ 1,

where again C3.1;0,0 = C3.1;0,0(η, r), C3.1;0 = C3.1;0(η, r), C3.4;1 = C3.4;1(η, r, T ), and C2.3;1,1 = C2.3;1,1(η, r)
are the corresponding constants from Lemma 3.1, Theorem 3.4, and Lemma 2.3 respectively. Finally, we set

R1 = C0e
2γT (‖f‖2

G0,γ(Ω) + ‖f‖2
H1

γ(Ω) + ‖g‖2
E1,γ(J×∂R3

+) + ‖u0‖2
H1(R3

+)).
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I) Take t0 ∈ J and assume that u(t0) ∈ H1(R3
+) with ‖u(t0)‖2

H1(R3
+) ≤ R1. We show the existence of a 

time step Ts > 0 and a function v ∈ C([t0, T ′
s], L2(R3

+)) satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L∂t
v = ∂tf − ∂tD

( t∫
t0

v(s)ds + u(t0)
)
, x ∈ R3

+, t ∈ J ′;

Bv = ∂tg, x ∈ ∂R3
+, t ∈ J ′;

v(t0) = S1,1(t0, A0, . . . , A3, D, f, u(t0)), x ∈ R3
+;

(4.32)

where we abbreviate

L∂t
= L(A0, . . . , A3, ∂tA0 + D)

and define T ′
s := min{t0 + Ts, T} and J ′ := (t0, T ′

s). Recall that the function S1,1(t0, A0, . . . , A3, D, f, u(t0))
belongs to L2(R3

+) by Lemma 2.3.
Consider a number Ts ∈ (0, T ) to be fixed below and define J ′ and T ′

s as above. We further set Ω′ =
J ′ ×R3

+. Let w ∈ C(J ′, L2(R3
+)). Note that ∂tA0 + D and ∂tD still belong to L∞(Ω). Hence, the problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L∂t
v = ∂tf − ∂tD

( t∫
t0

w(s)ds + u(t0)
)
, x ∈ R3

+, t ∈ J ′;

Bv = ∂tg, x ∈ ∂R3
+, t ∈ J ′;

v(t0) = S1,1(t0, A0, . . . , A3, D, f, u(t0)), x ∈ R3
+,

has a unique solution Φ(w) in C(J ′, L2(R3
+)) by Lemma 3.1. We next define

BR = {v ∈ C(J ′, L2(R3
+)) : ‖v‖G0,γ(Ω′) ≤ R}, (4.33)

where R > 0 will be fixed below. Equipped with the metric induced by the G0,γ(Ω)-norm this is a complete 
metric space. Let w ∈ BR. Employing Hölder’s and Minkowski’s inequality, Lemma 3.1, and the bound

‖S1,1(t0, A0, . . . , A3, D, f, u(t0))‖2
L2(R3

+) ≤ 2C2
2.3;1,1(‖f(t0)‖2

L2(R3
+) + ‖u(t0)‖2

H1(R3
+))

≤ 4C2
0R1

from Lemma 2.3, we estimate

‖Φ(w)‖2
G0,γ(Ω′) ≤ C0

∥∥∥∂tf − ∂tD

t∫
t0

w(s)ds− ∂tDu(t0)
∥∥∥2

L2
γ(Ω′)

(4.34)

+ C0‖∂tg‖2
E0,γ(J ′×∂R3

+) + C0‖S1,1(t0, A0, . . . , A3, D, f, u(t0))‖2
L2(R3

+)

≤ 2C0r
2

T ′
s∫

t0

e−2γt
( t∫
t0

‖w(s)‖L2(R3
+)ds + ‖u(t0)‖L2(R3

+)

)2
dt + 4(1 + C3

0 )R1

≤ 4C0r
2Ts‖w‖2

G0,γ(Ω′) + 4C0r
2TsR1 + 8C3

0R1.

We now set
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R = (18C3
0R1)1/2

in (4.33) and choose Ts ∈ (0, T ) so small that

4C0r
2Ts ≤

1
2 .

We point out that Ts is independent of t0. Using (4.33) and this choice of R and Ts, we obtain from (4.34)

‖Φ(w)‖2
G0,γ(Ω′) ≤

R2

2 + R2

2 = R2

for all w ∈ BR, i.e., Φ(BR) ⊆ BR. Moreover, Lemma 3.1 implies that

‖Φ(w1) − Φ(w2)‖2
G0,γ(Ω′) ≤ C0

∥∥∥∂tD
t∫

t0

(w1(s) − w2(s))ds
∥∥∥2

L2
γ(Ω′)

≤ C0‖∂tD‖2
L∞(Ω′)Ts‖w1 − w2‖2

G0,γ(Ω′) ≤ C0r
2Ts‖w1 − w2‖2

G0,γ(Ω′)

≤ 1
2‖w1 − w2‖2

G0,γ(Ω′)

for all w1, w2 ∈ BR. The Banach Fixed Point Theorem thus gives a unique v ∈ BR with Φ(v) = v on J ′, 
i.e., v is the asserted solution of (4.32).

II) In this step we assume that u(t0) belongs to H1(R3
+) with ‖u(t0)‖2

H1(R3
+) ≤ R1 and that 

(t0, A0, . . . , A3, D, f, g, u(t0)) fulfills the compatibility conditions (2.4) of order one; i.e., tr(Bu(t0)) = g(t0).
Let J ′ be defined as in step I) and let v be the solution of (4.32) constructed in step I). A straightforward 

computation shows that A0v has a weak time derivative in L2(J ′, H−1(R3
+)) and

∂t(A0v) = ∂tf − ∂tD
( t∫
t0

v(s)ds + u(t0)
)
−

3∑
j=1

Aj∂jv −Dv,

see [18, Lemma 4.7] for details. We set

w(t) = u(t0) +
t∫

t0

v(s)ds

for all t ∈ J ′. Observe that w belongs to C1(J ′, L2(R3
+)) with w(t0) = u(t0). Employing (4.32) and (2.2) we 

then compute in H−1(R3
+)

Lw(t) = (A0v)(t) +
t∫

t0

( 3∑
j=1

Aj∂jv(s)
)
ds +

3∑
j=1

Aj∂ju(t0) + (Dw)(t)

=
t∫

t0

(
∂t(A0v)(s) +

3∑
j=1

Aj∂jv(s)
)
ds + (Dw)(t) + (A0v)(t0) +

3∑
j=1

Aj∂ju(t0)

=
t∫
(∂tf(s) − (∂tDw)(s) − (Dv)(s))ds + (Dw)(t)
t0
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+ A0(t0)S1,1(t0, A0, . . . , A3, D, f, u(t0)) +
3∑

j=1
Aj∂ju(t0)

= f(t) − f(t0) −
t∫

t0

∂t(Dw)(s)ds + Dw(t) + f(t0) − (Dw)(t0) = f(t)

for all t ∈ J ′. In particular, L(A0, . . . , A3, D)w belongs to L2(Ω).
To compute the trace of Bw on Γ′ = J ′ × ∂R3

+, we stress that Tr(Bv) = ∂tg on Γ′ by (4.32). Moreover, 
the trace operator Tr commutes with integration in time here, see [18, Corollary 2.18] for the proof. Since 
(t0, A0, . . . , A3, D, f, g, u(t0)) fulfills the compatibility conditions of order one, we thus infer

Tr(Bw)(t) = Tr
(
B

t∫
t0

v(s)ds + Bu(t0)
)

=
t∫

t0

Tr(Bv)(s)ds + tr(Bu(t0))

=
t∫

t0

∂tg(s)ds + g(t0) = g(t)

for all t ∈ J ′. The function w ∈ C1(J ′, L2(R3
+)) consequently solves (3.1) on Ω′ with initial value u(t0)

at initial time t0. As u also solves (3.1) on Ω′ with inhomogeneity f , boundary value g, and initial value 
u(t0) in t0, the uniqueness statement in Lemma 3.1 yields u = w on Ω′. (Here we use the obvious variant of 
the lemma for the initial time t0.) We conclude that u is an element of C1(J ′, L2(R3

+)). The assumptions 
therefore tell us that u belongs to G1(Ω′).

III) We next consider t0 = 0. Since u(0) = u0 ∈ H1(R3
+), ‖u0‖2

H1(R3
+) ≤ R1, and (0, A0, . . . , A3, D, B, f,

g, u0) fulfills the compatibility conditions of first order by assumption, step II) shows that u belongs to 
G1((0, T0) ×R3

+), where we set T0 = min{Ts, T}. If T0 = T , we are done. Otherwise, we apply Theorem 3.4
to obtain

‖u‖2
G1,γ(Ω) ≤ C0(‖f‖2

G0,γ(Ω) + ‖u0‖2
H1(R3

+) + ‖g‖2
E1,γ(J×∂R3

+) + 1
γ
‖f‖2

H1
γ(Ω))

≤ e−2γTR1.

We conclude that ‖u(T0)‖2
H1(R3

+) ≤ R1. Moreover, (T0, A0, . . . , A3, D, B, f, g, u(T0)) fulfills the compatibility 

conditions of first order by (2.3) since u is a solution in G1(J ′ ×R3
+). We can therefore apply step II) with 

t0 = T0. We see that u belongs to G1((T0, T1) ×R3
+), with T1 = min{T, T0 + Ts}. Since

∂tu|[0,T0](T0) = S1,1(T0, A0, . . . , A3, D, f, u(T0)) = ∂tu|[T0,T1](T0),

we infer u ∈ G1((0, T1) ×R3
+). In this way we iterate. Since the time step Ts does not depend on t0, we are 

done after finitely many steps. We conclude that u is an element of G1((0, T ) ×R3
+). �

We want to iterate the previous result in order to deduce higher-order regularity. To that purpose we need 
a relation between the operators Sm,p of different order, which is stated in the next lemma. Its assertion 
follows inductively from the definition of the operators Sm,p and a straightforward computation. We refer 
to [18, Lemma 4.8] for the details.

Lemma 4.6. Let η > 0, m ∈ N and m̃ = max{m, 3}. Take A0 ∈ F cp
max{m+1,3},η(Ω) with ∂tA0 ∈ F cp

m̃ (Ω)
and D ∈ F cp (Ω). Let A1, A2 ∈ F cp (R3

+), A3 = Aco
3 , and B = Bco. Choose t0 ∈ J , 
max{m+1,3} max{m+1,3},coeff
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u0 ∈ Hm+1(R3
+), g ∈ Em+1(J × ∂R3

+), and f ∈ Hm+1(Ω). Assume that u ∈ Gm(Ω) solves (3.1) with 
differential operator L(A0, . . . , A3, D), inhomogeneity f , boundary data g, and initial data u0. Set u1 =
Sm+1,1(t0, A0, . . . , A3, D, f, u0) and f1 = ∂tf − ∂tDu. Then

Sm,p(t0, A0, . . . , A3, ∂tA0 + D, f1, u1) = Sm+1,p+1(t0, A0, . . . , A3, D, f, u0)

for all p ∈ {0, . . . , m − 1}.

A combination of the previous results with an iteration argument then yields the desired regularity of 
the solution u provided the coefficients are additionally smooth.

Proposition 4.7. Let η > 0, m ∈ N, and m̃ = max{m, 3}. Choose coefficients A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈

F cp
m̃,coeff(R3

+), A3 = Aco
3 , D ∈ F cp

m̃ (Ω), and B = Bco. Assume that ∂αAi, ∂αD ∈ L2(Ω) for all α ∈ N4
0 \ {0}

and i ∈ {0, 1, 2}. Take data f ∈ Hm(Ω), g ∈ Em(J × ∂R3
+), and u0 ∈ Hm(R3

+) such that the tuple 
(0, A0, . . . , A3, D, B, f, g, u0) satisfies the compatibility conditions (2.4) of order m, i.e.,

Tr(BSm,l(0, A0, . . . , A3, D, f, u0)) = ∂l
tg(0) for 0 ≤ l ≤ m− 1.

Let u be the weak solution of (3.1) with differential operator L = L(A0, . . . , A3, D), inhomogeneity f , bound-
ary value g, and initial value u0. Then u belongs to Gm(Ω).

Proof. The assertion is true for m = 1 by Lemma 4.5, Lemma 4.4, and Lemma 4.1. Now assume that we 
have shown the assertion for a number m ∈ N. Let all assumptions be fulfilled for m + 1. By the induction 
hypothesis, the weak solution u of (3.1) belongs to Gm(Ω). Moreover, ∂tu solves the initial boundary value 
problem

⎧⎪⎪⎨
⎪⎪⎩
L∂t

v = ∂tf − ∂tDu, x ∈ R3
+, t ∈ J ;

Bv = ∂tg, x ∈ ∂R3
+, t ∈ J ;

v(0) = Sm+1,1(0, A0, . . . , A3, D, f, u0), x ∈ R3
+,

where we again write L∂t
for L(A0, . . . , A3, ∂tA0 +D). Using the abbreviations u1 for Sm+1,1(0, A0, . . . , A3,

D, f, u0) and f1 for ∂tf−∂tDu once more, we deduce that u1 is contained in Hm(R3
+) by Lemma 2.3, that ∂tg

belongs to Em(J ×∂R3
+), and that f1 is an element of Hm(Ω) by Lemma 2.1 (2) since ∂tD ∈ Gmax{m,2}(Ω)

and u ∈ Gm(Ω). Lemma 4.6 further shows that (0, A0, . . . , A3, ∂tA0 +D, f1, ∂tg, u1) fulfills the compatibility 
conditions (2.4) of order m. Finally, we have A0 ∈ F cp

m̃,η(Ω) with ∂tA0 ∈ F cp
m̃ (Ω) and ∂tA0 + D ∈ F cp

m̃ (Ω)
and all derivatives of these coefficients belong to L2(Ω). The induction hypothesis thus yields that ∂tu is 
an element of Gm(Ω), implying that u is an element of 

⋂m+1
j=1 Cj(J, Hm+1−j(R3

+)). By Lemma 4.4 and 
Lemma 4.1, the solution u then belongs to Gm+1(Ω). �

It remains to remove the assumption of smooth coefficients. We therefore want to approximate the coef-
ficients from Fm(Ω) by smooth ones. However, approximating the coefficients will violate the compatibility 
conditions in general. We overcome this difficulty by not only approximating the coefficients but also the 
initial value in such a way, that the tuple consisting of the approximating coefficients and data still satisfies 
the compatibility conditions up to order m.

Lemma 4.8. Let η > 0, m ∈ N, and m̃ = max{m, 3}. Take coefficients A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈ F cp

m̃,coeff(R3
+), 

A3 = Aco
3 , D ∈ F cp

m̃ (Ω), and B = Bco and data f ∈ Hm(Ω), g ∈ Em(J × ∂R3
+), and u0 ∈ Hm(R3

+) which 
fulfill the compatibility conditions (2.4) of order m in t0 ∈ J , i.e.,
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TrBSm,l(t0, A0, . . . , A3, D, f, u0) = ∂l
tg(t0) for 0 ≤ l ≤ m− 1.

Let {Ai,ε}ε>0 and {Dε}ε>0 be the families of functions provided by Lemma 2.2 for Ai and D, respectively, 
for i ∈ {0, 1, 2}. Then there exists a number ε0 > 0 and a family {u0,ε}0<ε<ε0 in Hm(R3

+) such that the 
compatibility conditions for (t0, A0,ε, A1,ε, A2,ε, A3, Dε, B, f, g, u0,ε) of order m hold; i.e.,

TrBSm,l(t0, A0,ε, A1,ε, A2,ε, A3, Dε, f, u0,ε) = ∂l
tg(t0) for 0 ≤ l ≤ m− 1,

and u0,ε → u0 in Hm(R3
+) as ε → 0.

Proof. Without loss of generality, we assume t0 = 0. Note that A1,ε and A2,ε are still time independent 
for all ε > 0. We set u0,ε = u0 + hε and look for hε ∈ Hm(R3

+) with hε → 0 in Hm(R3
+) such that the 

compatibility conditions are fulfilled. Since B = MA3 for a constant matrix M = M co, it is sufficient for 
that purpose to find hε with

A3Sm,p(0, A0,ε, A1,ε, A2,ε, A3, Dε, f, u0 + hε) = A3Sm,p(0, A0, . . . , A3, D, f, u0)

for all 0 ≤ p ≤ m − 1 on ∂R3
+. To simplify the notation, we will drop the dependence of the operators on 0, 

A3, and f in the following since they remain fixed throughout the proof.
I) The definition of the operators Sm,k was given inductively. In principle, it is possible to derive an 

explicit representation of Sm,k. However, we are satisfied with the representation

Sm,p(A0, A1, A2, D, u0) = (−A0(0)−1A3)p∂p
3u0 +

p−1∑
j=0

Cp,p−j(A0, A1, A2, D)∂j
3u0

+ Bp(A0, A1, A2, D)f, (4.35)

where Cp,p−j is a differential operator which only involves tangential derivatives up to order p −j and which 
maps Hm−j(R3

+) continuously into Hm−p(R3
+) with

‖Cp,p−j(A0,ε, A1,ε, A2,ε, Dε)‖Hm−j(R3
+)→Hm−p(R3

+) ≤ C

for all ε ≥ 0 and j ∈ {0, . . . , p −1}. Here Ai,0 and D0 mean Ai and D, respectively, for i ∈ {0, 1, 2}. Similarly, 
Bp is a differential operator of order p − 1 which maps Hm(Ω) continuously into Hm−p(R3

+).
For the proof of this claim one proceeds by induction with respect to p, inserting the representation (4.35)

for the lower order terms into the definition of Sm,p. A very careful analysis of the regularity of the aris-
ing coefficients then yields the mapping properties of Cp,p−j and Bp. Similarly, an induction shows that 
Sm,p(A0,ε, A1,ε, A2,ε, Dε, u0) converges to Sm,p(A0, A1, A2, D, u0) in Hm−p(R3

+) as ε → 0 for 0 ≤ p ≤ m −1. 
The details can be found in [18, Lemma 4.10].

II) Let h ∈ Hm(R3
+). By means of (4.35), we have

Sm,p(A0,ε, A1,ε, A2,ε, Dε, u0 + h) = Sm,p(A0,ε, A1,ε, A2,ε, Dε, u0)

+ (−A0,ε(0)−1A3)p∂p
3h +

p−1∑
j=0

Cp,p−j(A0,ε, A1,ε, A2,ε, Dε)∂j
3h. (4.36)

Set aε0 = 0. Then aε0 ∈ Hm(R3
+)6 and

Sm,0(A0, A1, A2, D, u0) − Sm,0(A0,ε, A1,ε, A2,ε, Dε, u0) = u0 − u0 = 0 = aε0.
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Let k ∈ {0, . . . , m − 2}. Assume that we have constructed families of functions aεp ∈ Hm−p(R3
+)6 such that

A3
(
(−A0,ε(0)−1A3)paεp

)
(4.37)

= A3

(
Sm,p(A0, A1, A2, D, u0) − Sm,p(A0,ε, A1,ε, A2,ε, Dε, u0)

)

−A3

( p−1∑
j=0

Cp,p−j(0, A0,ε, A1,ε, A2,ε, Dε)aεj
)
,

aεp −→ 0 in Hm−p(R3
+)6 as ε → 0

for every p ∈ {0, . . . , k}. Then the functions

k∑
j=0

Ck+1,k+1−j(A0,ε, A1,ε, A2,ε, Dε)aεj ,

Sm,k+1(A0, A1, A2, D, u0) − Sm,k+1(A0,ε, A1,ε, A2,ε, Dε, u0)

belong to Hm−k−1(R3
+) and converge to zero in this space by step I) as ε → 0. Lemma 4.9 below thus gives 

a number ε0 > 0 and functions aεk+1 ∈ Hm−k−1(R3
+)6 such that

A3
(
(−A0,ε(0)−1A3)k+1aεk+1

)
= A3

(
Sm,k+1(A0, A1, A2, D, u0) − Sm,k+1(A0,ε, A1,ε, A2,ε, Dε, u0)

)

−A3

( k∑
j=0

Ck+1,k+1−j(A0,ε, A1,ε, A2,ε, Dε)aεj
)
,

aεk+1 −→ 0 in Hm−k−1(R3
+)6 as ε → 0,

for all ε ∈ (0, ε0). The induction is thus finished. We next define

bεp := aεp(·, 0) ∈ Hm−p− 1
2 (∂R3

+)

for 0 ≤ p ≤ m − 1. Since the trace operator from Hm−p(R3
+) into Hm−p− 1

2 (∂R3
+) is continuous, we infer 

that bεp → 0 in Hm−p− 1
2 (∂R3

+) as ε → 0. Theorems 2.5.7 and 2.5.6 in [7] now yield functions hε ∈ Hm(R3
+)

with

∂p
3hε(·, 0) = bεp on ∂R3

+

for 0 ≤ p ≤ m − 1 and ε ∈ (0, ε0), which satisfy hε → 0 in Hm(R3
+) as ε → 0.

We set u0,ε = u0 + hε for all ε > 0. Then u0,ε tends to u0 in Hm(R3
+) and by construction we have

tr
(
A3Sm,p(A0,ε, A1,ε, A2,ε, Dε, u0,ε)

)
= tr

(
A3Sm,p(A0, A1, A2, D, u0)

)
for 0 ≤ p ≤ m − 1. Since (0, A0, . . . , A3, D, B, f, g, u0) fulfills the compatibility conditions (2.4) of order m
and B = MA3, we conclude the assertion. �

In the proof of the previous result we exploited that we can continuously invert (−A0,ε(0)−1A3)p on the 
range of A3 in a certain sense. We provide the proof of this statement in the next lemma.
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Lemma 4.9. Let η > 0 and m ∈ N with m ≥ 3. Take A0 ∈ Fm,6,η(Ω) and A3 = Aco
3 . Pick k ∈ N with 

k ≤ m − 1 and p ∈ N0. Choose r > 0 such that ‖A0(0)‖F 0
m−1(R3

+) ≤ r. Take an approximating family 

{A0,ε}ε>0 provided by Lemma 2.2. Let {v0,ε}ε>0 be a family of functions in Hk(R3
+)6. Then there exists a 

number ε0 > 0 and a family of functions {vp,ε}0<ε<ε0 in Hk(R3
+)6 such that

A3(A0,ε(0)−1A3)pvp,ε = A3v0,ε

for all ε ∈ (0, ε0) and a constant C = C(η, r) such that

‖vp,ε‖Hk(R3
+) ≤ C‖v0,ε‖Hk(R3

+)

for all ε ∈ (0, ε0).

Proof. I) Due to the properties of the approximating family, we find an ε0 > 0 such that

‖A0,ε(0)‖F 0
m−1(R3

+) ≤ 2r (4.38)

for all ε ∈ (0, ε0). We introduce the invertible matrix

Q =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ so that A3Q =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

We further set

Θε =
(
A0,ε;33 A0,ε;36
A0,ε;63 A0,ε;66

)
,

which inherits the positive definiteness from A0,ε, i.e., Θε ≥ η on Ω. In particular, Θε has an inverse with

‖Θ−1
ε (0)‖F 0

m−1(R3
+) ≤ C(η, r) (4.39)

for all ε ∈ (0, ε0).
II) Let w0 ∈ Hk(R3

+)6. Due to the previous step we can define scalar functions h1,ε and h2,ε by

(h1,ε, h2,ε) = −Θ−1
ε (0)(A0,ε(0)w0)(3,6),

where we denote for any vector ζ from R6 by ζ(3,6) the two-dimensional vector (ζ3, ζ6). Note that

‖(h1,ε, h2,ε)‖Hk(R3
+) ≤ C(η, r)‖w0‖Hk(R3

+) (4.40)

for all ε ∈ (0, ε0) by Lemma 2.1, (4.38), and (4.39). We next set

w̃0,ε = −A0,ε(0)
(
w0 + h1,εe3 + h2,εe6

)
,

w̃1,ε = Qw̃0,ε (4.41)

for all ε ∈ (0, ε0). We once more obtain a constant C(η, r) such that
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‖w̃1,ε‖Hk(R3
+) ≤ C(η, r)‖w0‖Hk(R3

+)

for all ε ∈ (0, ε0) due to Lemma 2.1, (4.38), and (4.40). We further point out that the construction of h1,ε, 
h2,ε, and w̃0,ε yields

(w̃0,ε)(3,6) = (−A0,ε(0)w0)(3,6) − Θε(0)(h1,ε, h2,ε) = 0

for all ε ∈ (0, ε0). In particular,

A3Qw̃0,ε = w̃0,ε

for all ε ∈ (0, ε0). We thus compute

A3(−A0,ε(0)−1A3)w̃1,ε = A3(−A0,ε(0)−1)w̃0,ε = A3w0

for all ε ∈ (0, ε0), where we also used that the span of e3 and e6 is the kernel of A3. To summarize, we have 
shown that for each w0 ∈ Hk(R3

+)6 and ε ∈ (0, ε0), there is a function wε ∈ Hk(R3
+)6 such that

A3(−A0,ε(0)−1A3)wε = A3w0. (4.42)

Moreover, there is a constant C = C(η, r), in particular independent of ε, such that

‖wε‖Hk(R3
+) ≤ C‖w0‖Hk(R3

+) (4.43)

for all ε ∈ (0, ε0).
III) To show the actual assertion, we proceed inductively. We claim that for all p ∈ N0, ε ∈ (0, ε0), and 

w ∈ Hk(R3
+)6 there is a function wp,ε(w) in Hk(R3

+)6 and a constant Cp = Cp(η, r) such that

A3(−A0,ε(0)−1A3)pwp,ε(w) = A3w, (4.44)

‖wp,ε(w)‖Hk(R3
+) ≤ Cp‖w‖Hk(R3

+). (4.45)

Note that there is nothing to show in the case p = 0. Now assume that we have proven the claim for a number 
p ∈ N0. Fix ε ∈ (0, ε0) and w ∈ Hk(R3

+)6. Step II) applied with w0 = w yields a function w̃p,ε ∈ Hk(R3
+)6

with

A3(−A0,ε(0)−1A3)w̃p,ε = A3w and ‖w̃p,ε‖Hk(R3
+) ≤ C(η, r)‖w‖Hk(R3

+). (4.46)

We now define wp+1,ε(w) = wp,ε(w̃p,ε) for each ε ∈ (0, ε0). Then wp+1,ε(w) is contained in Hk(R3
+)6 and 

we compute

A3(−A0,ε(0)−1A3)p+1wp+1,ε(w) = A3(−A0,ε(0)−1)A3(−A0,ε(0)−1A3)pwp,ε(w̃p,ε)

= A3(−A0,ε(0)−1)A3w̃p,ε = A3w,

where we employed the induction hypothesis (4.44) and (4.46). Combining (4.45) with (4.43), we further 
obtain

‖wp+1,ε(w)‖Hk(R3
+) = ‖wp,ε(w̃p,ε)‖Hk(R3

+) ≤ Cp‖w̃p,ε‖Hk(R3
+) ≤ C‖w‖Hk(R3

+),

where C = C(η, r). The claim now follows by induction.
The assertion of the lemma is finally proven by setting vp,ε = wp,ε(v0,ε) for all ε ∈ (0, ε0) and p ∈ N0. �
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Applying now Proposition 4.7 to the solutions of the approximating initial boundary value problems with 
coefficients and data from Lemma 4.8, we derive the differentiability theorem.

Theorem 4.10. Let η > 0, m ∈ N, and m̃ = max{m, 3}. Take coefficients A0 ∈ F cp
m̃,η(Ω), A1, A2 ∈

F cp
m̃,coeff(R3

+), A3 = Aco
3 , D ∈ F cp

m̃ (Ω), and B = Bco. Choose data f ∈ Hm(Ω), g ∈ Em(J × ∂R3
+), and 

u0 ∈ Hm(R3
+) such that the tuple (0, A0, . . . , A3, D, B, f, g, u0) satisfies the compatibility conditions (2.4) of 

order m. Then the weak solution u of (3.1) belongs to Gm(Ω).

Proof. I) Let {Ai,ε}ε>0 and {Dε}ε>0 be the families of functions given by Lemma 2.2 for Ai, i ∈ {0, 1, 2}, and 
D respectively. In particular, all derivatives of the coefficients A0,ε, A1,ε, A2,ε, and Dε belong to L2(Ω) and 
∂tA0,ε is contained in Fm̃(Ω) for each ε > 0. Moreover, A1,ε and A2,ε are independent of time for all ε > 0 as 
A1 and A2 have this property. Lemma 4.8 provides a parameter ε0 > 0 and a family {u0,ε}0<ε<ε0 ⊆ Hm(R3

+)
such that (0, A0,ε, A1,ε, A2,ε, A3, Dε, B, f, g, u0,ε) fulfill the compatibility conditions (2.4) of order m for all 
ε ∈ (0, ε0) and u0,ε → u0 in Hm(R3

+) as ε → 0. Let uε denote the weak solution of (3.1) with differential 
operator L(A0,ε, A1,ε, A2,ε, A3, Dε) and inhomogeneity f , boundary value g, and initial value u0,ε for each 
ε ∈ (0, ε0). By Proposition 4.7, the function uε belongs to Gm(Ω) for all ε ∈ (0, ε0). Take r > 0 such that

‖Ai‖Fm̃(Ω) ≤ r and ‖D‖Fm̃(Ω) ≤ r

for all i ∈ {0, . . . , 3}. Due to Lemma 2.2 we then also have

‖Ai,ε‖Fm̃(Ω) ≤ Cr and ‖Dε‖Fm̃(Ω) ≤ Cr

for all ε ∈ (0, ε0) and i ∈ {0, 1, 2}. Theorem 3.4 then yields a constant C = C(η, r, T ) and a number 
γ = γ(η, r, T ) such that

‖uε‖2
Gm,γ(Ω) ≤ C

(m−1∑
j=0

‖∂j
t f(0)‖2

Hm−1−j(R3
+) + ‖g‖2

Em,γ(J×∂R3
+) + ‖u0,ε‖2

Hm(R3
+) + 1

γ
‖f‖2

Hm
γ (Ω)

)
(4.47)

for all ε ∈ (0, ε0). Let (εn) be a sequence of positive numbers converging to zero. Then (4.47) and u0,ε → u0 in 
Hm(R3

+) as ε → 0 yield that (∂αuεn) is bounded in L∞(J, L2(R3
+)) = (L1(J, L2(R3

+)))∗ for each α ∈ N4
0 with 

|α| ≤ m. Since L1(J, L2(R3
+)) is separable, the Banach-Alaoglu theorem gives a σ∗-convergent subsequence. 

Taking iteratively subsequences for each α ∈ N4
0 with |α| ≤ m, we obtain a subsequence, denoted by (un), 

such that the σ∗-limit uα of ∂αun exists for all α ∈ N4
0 with |α| ≤ m. Lemma 3.1 and Lemma 2.2 imply 

that

‖un − u‖G0,γ(Ω) ≤ C(‖L(A0, . . . , A3, D)un − f‖2
G0,γ(Ω) + ‖u0,n − u0‖2

L2(R3
+))

≤ C
( 2∑

i=0
‖Ai −Ai,n‖2

L∞(Ω)‖∂iun‖2
G0,γ(Ω)

+ ‖D −Dn‖2
L∞(Ω)‖un‖2

G0,γ(Ω) + ‖u0,n − u0‖2
L2(R3

+)

)
−→ 0

as n → ∞, where we also exploited that f = L(A0,n, A1,n, A2,n, A3, Dn)un, (4.47), and that (u0,n)n is 
bounded in Hm(R3

+). Consequently, u is equal to u(0,0,0,0). Looking at the distributional derivative, we 
further deduce

〈ϕ, ∂αu〉 = (−1)|α|〈∂αϕ, u〉 = (−1)|α| lim
n→∞

〈∂αϕ, un〉 = 〈ϕ, uα〉
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for all ϕ ∈ C∞
c (Ω). We conclude that ∂αu ∈ L∞(J, L2(R3

+)) for all α ∈ N4
0 with |α| ≤ m; i.e., u ∈ G̃m(Ω). 

It remains to remove the tilde here.
II) Let 0 ≤ j ≤ m − 1. Differentiating the differential equation and the boundary condition and employ-

ing (2.1), we see that ∂j
t u solves the initial boundary value problem,

⎧⎪⎪⎨
⎪⎪⎩
L(A0, . . . , A3, D)v = fj , x ∈ R3

+, t ∈ J ;

Bv = ∂j
t g, x ∈ ∂R3

+, t ∈ J ;

v(0) = Sm,j(0, A0, . . . , A3, D, f, u0), x ∈ R3
+;

where

fj = ∂j
t f −

j∑
l=1

(
j

l

)(
∂l
tA0∂

j+1−l
t u + ∂l

tD∂j−l
t u

)

belongs to Hm−j(Ω) by Lemma 2.1. We want to apply Lemma 4.5 to ∂j
t u. Therefore, the tuple 

(0, A0, . . . , A3, D, B, fj , ∂
j
t g, u

j
0) has to satisfy the compatibility conditions (2.4) of order m − j, where 

we abbreviate Sm,j(0, A0, . . . , A3, D, f, u0) by uj
0 for all 0 ≤ j ≤ m.

Similar to Lemma 4.6, an induction with a straightforward calculation in the induction step yields

Sm−m1,m2(0, A0, . . . , A3, D, fm1 , u
m1
0 ) = Sm,m1+m2(0, A0, . . . , A3, D, f, u0) (4.48)

for all m1, m2 ∈ N0 with m2 ≤ m1 and m1 + m2 ≤ m − 1. We once more refer to [18], see step III) of the 
proof of Theorem 4.12 there, for the details. Note that this identity implies that

BSm−m1,m2(0, A0, . . . , A3, D, fm1 , u
m1
0 ) = BSm,m1+m2(0, A0, . . . , A3, D, f, u0)

= ∂m1+m2
t g(0) = ∂m2

t (∂m1
t g)(0)

on ∂R3
+ for all m2 ≤ m −m1 − 1, as the tuple (0, A0, . . . , A3, D, B, f, g, u0) fulfills the compatibility con-

ditions of order m by assumption. We infer that the tuple (0, A0, . . . , A3, D, B, fm1 , ∂
m1
t g, um1

0 ) fulfills the 
compatibility conditions (2.4) of order m −m1.

III) Step II) applied with j = m − 1 shows that ∂m−1
t u solves (3.1) with inhomogeneity fm−1 ∈

H1(Ω), boundary value ∂m−1
t g ∈ E1(J × ∂R3

+), and initial value um−1
0 ∈ H1(R3

+). The tuple 
(0, A0, . . . , A3, D, B, fm−1, ∂

m−1
t g, um−1

0 ) fulfills the compatibility conditions (2.4) of order 1 by step II). 
Next take an open subinterval J ′ of J . Assume that ∂m−1

t u belongs to C1(J ′, L2(R3
+)). As we already know 

that ∂m−1
t u belongs to L∞(J, H1

ta(R3
+)), we can argue as in step II) of the proof of Lemma 4.4 to infer that 

∂m−1
t u is an element of C(J ′, H1

ta(R3
+)). (Note that the smoothness of the coefficients is not used in that step 

of the proof of Lemma 4.4.) Lemma 4.1 then implies that ∂m−1
t u is contained in G1(J ′ ×R3

+). Lemma 4.5
thus yields that ∂m−1

t u belongs to C1(J, L2(R3
+)); i.e., u ∈ Cm(J, L2(R3

+)). The previous arguments applied 
with J ′ = J now imply that ∂m−1

t u is an element of G1(Ω).
Next assume that we have proven that ∂m−k

t u is an element of Gk(Ω) for some k ∈ {1, . . . , m − 1}. Then 
∂m−k−1
t u belongs to

k⋂
l=0

Cl+1(J,Hk−l(R3
+)) =

k+1⋂
l=1

Cl(J,Hk+1−l(R3
+)).

Observe that ∂m−k−1
t u solves (3.1) with inhomogeneity fm−k−1 ∈ Hk+1(Ω), boundary value ∂m−k−1

t g ∈
Ek+1(J × ∂R3

+), and initial value um−k−1
0 ∈ Hk+1(R3

+) by step II). Arguing as before, i.e., combining 
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Lemma 4.5 with step II) of Lemma 4.4 and Lemma 4.1, we derive that ∂m−k−1
t u belongs to C(J, Hk+1(R3

+))
and thus to Gk+1(Ω).

By induction we arrive at ∂m−k
t u ∈ Gk(Ω) for all k ∈ {0, . . . , m}. With k = m we finally obtain 

u ∈ Gm(Ω). �
Proof of Theorem 1.1. Combining Theorems 3.4 and 4.10, we derive the assertion of Theorem 1.1 for G =
R3

+. The localization procedure from Section 2, see Remark 2.4, then yields Theorem 1.1 for coefficients 
constant outside of a compact set.

Once the regularity theory has been established for coefficients constant outside of a compact set, another 
approximation procedure extends the results to coefficients A0 and D which merely have a limit as |(t, x)| →
∞. We refer to [18, Theorem 4.13] for details. �
Remark 4.11. Not only the main result extends to coefficients A0 and D with a limit as |(t, x)| → ∞, but 
also all the intermediate results. In particular, Proposition 3.3, Theorem 3.4, and Theorem 4.10 are still 
true if A0 and D only have a limit as |(t, x)| → ∞, see [18, Theorem 4.13].
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