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Abstract. This paper deals with the quasilinear parabolic—elliptic chemotaxis system
with logistic source and nonlinear production,

up =V - (D(w)Vu) =V - (S(uw)Vo) + du — pu®, € Q, t >0,
0= Av— Ms(t)+ f(u), zeQ, t>0,

where A > 0, > 0, k > 1 and My(t) := Iﬁl\ Jo f(u(zx,t)) dz, and D, S and f are functions
generalizing the prototypes

D)= (u+1)™"1, S =u(u+1)*" and f(u)=u"

with m € R, @ > 0 and ¢ > 0. In the case m = a = £ = 1, Fuest (NoDEA Nonlinear
Differential Equations Appl.; 2021; 28; 16) obtained conditions for & such that solutions
blow up in finite time. However, in the above system boundedness and finite-time blow-up
of solutions have been not yet established. This paper gives boundedness and finite-time
blow-up under some conditions for m, «, x and /.
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1. Introduction

In this paper we consider the following quasilinear parabolic—elliptic chemotaxis system
with logistic source and nonlinear production:

u =V - (Dw)Vu) =V - (S(w)Vv) + Au — pu®, €, t>0,

(11) 0= Av — M(t) + f(u), r€eQ, t>0,
' Vu-v=Vv-v=0, r eI, t>0,
u(z,0) = up(x), x € (),

where Q C R” (n > 1) is a bounded domain with smooth boundary 9Q; A > 0, x> 0 and
k> 1; D, S € C*([0,00)) and D(0) > 0; f € Upe(o.1) Choc([0,00)) N CH((0,00));

M(t) = ,32—, / f(ulx, ) da

v is the outward normal vector to 9€2; ug € Uﬁe(o 3 CP(9) is nonnegative.

The system (1.1) describes a motion of cellular slime molds with chemotaxis, and
the unknown function u = u(x,t) denotes the density of cells and the unknown function
v = v(x,t) represents the concentration of the chemical substance at place x € Q and
time ¢ > 0. This system is one of many types of the Keller—Segel system

(1.2)
vy = Av — v+ u, xreQ t>0,

{ut:Au—V-(qu), re, t>0,
which was proposed by Keller and Segel [9]. A number of variations of the original
system (1.2) and related results for blow-up (in the radial setting) and boundedness are

introduced in [1, 6, 11]:
e We first focus on the quasilinear Keller-Segel system,

u =V - (Dw)Vu) = V- (S(u)Vv), z€Q, t>0,
Tv; = Av — v + f(u), reQ t>0,

where 7 € {0,1}. When f(u) = u, in the parabolic-parabolic setting (7 = 1), Tao
and Winkler [17] showed that solutions are global and bounded under the conditions
that [S)((Z)) < cuf with ¢ < % and ¢ > 0 and that €2 is a convex domain; Ishida et al.
[7] removed the convexity of €2; whereas Winkler [21] proved that solutions blow
15;((1;)) > cu? with ¢ > 2 and ¢ > 0; In the
parabolic—elliptic setting (7 = 0), Lankeit [10] proved that solutions exist globally
and are bounded in the case ¢ < % and that unbounded solutions are constructed in
the case ¢ > 2. When 7 = 1 and D(u) = 1, S(u) = w and f(u) = u* with ¢ > 0, Liu
and Tao [13] established global existence and boundedness under the condition that
0 < ¢ < 2; Moreover, in the case that D(u) = (u+ 1)™"! and S(u) = u(1 4 u)*!
with m € R and a € R, it was obtained that solutions are global and bounded
under the condition v — m + max {¢, £} < 2 in [15].

up in either finite or infinite time when
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e We next review the quasilinear Keller-Segel system with logistic source,

u =V - (Dw)Vu) = V- (S(u)Vov) + Au — pu®, €, t>0,
Tup = Av — v+ f(u), zeN, t>0,

where A > 0, 4 >0, K > 1 and 7 € {0,1}. As to this system, blow-up phenomena
are suppressed when x > 2 and f(u) = u. Indeed, in the parabolic—parabolic setting
(r = 1), when D(u) = 1 and S(u) = u, Winkler [20] derived that solutions exist
globally and are bounded if y > 0 is so large and x = 2; When D(u) = (u+ 1)™!
and S(u) = u(u+ 1)*"! with m € R and « € R, global existence and boundedness
were obtained if A\ = pu =1,k =2and 0 <a—-—m+1< 4+—n by Zheng [28]. In
the parabolic—elliptic setting (7 = 0), when D(u) = 1 and S(u) = u, Tello and
Winker [18] showed that solutions exist globally and are bounded in the cases that
k=2 and p > max {0, 22} and that £ > 2 and p > 0; When D(u) = ™! and
S(u) = u® for all u > 1 Wlth m > 1 and a > 0, Zheng [27] proved global existence
and boundedness in the cases that x > 1 and o + 1 < max {m + %, fi} and that
k>1, a+1=kand u > g for some g > 0. On the other hands, in the parabolic—
elliptic setting, it is known that blow-up occurs under the some conditions for x > 1
when f(u) = u. When D(u) = 1 and S(u ) = u, Winkler [24] presented that if
l<rh<ime{34})andl<r<l+ D) (n > 5), then solutions blow up in

finite time; Similar blow-up results were obtained in the case that D(u) = (u+1)™"*
and S(u) = u(u+1)*"! with m > 1 and a > 0 (see [2, 14, 16]).

e We turn our eyes into the quasilinear parabolic—elliptic chemotaxis system

u =V - (Duw)Vu) =V - (S(u)Vv), =€, t>0,
0=Av— M)+ f(u), reQ, t>0.

A simplification of this system was introduced by Jéger and Luckhaus [8]. When
D(u) = (u+ 1)™! with m € R, S(u) = u and f(u) = u, Ciedlak and Winkler [3]
derived global existence and boundedness in the case 2 —m < 2 and finite-time
blow-up in the case 2 —m > 2; When D(u) = (u + 1)™* and S( ) =u(u+ 1)1
with m < 1 and o € R as well as f(u) = u, Winkler and Djie [25] proved that
solutions are global and bounded if « —m + 1 < %, whereas finite-time blow-up
occurs if « —m +1 > %; When D(u) = 1, S(u) = u and f(u) = u® with £ > 0,
Winkler [23] obtained that solutions exist globally and remain bounded in the case
¢ < % and that there exist solutions which are unbounded in finite time in the
case £ > 2; When D(u) = (u+ 1)™1, S(u) = v and f(u) = u’ with m € R and
‘>0, global existence and boundedness were established if £/ —m + 1 < % by Li
[12]. Moreover, in [12] it was asserted that finite-time blow-up occurs under the
condition that / —m +1 > % However, this condition should be repaired because

from assumptions of [12, Lemma 3.5] we can obtain the condition that
2

(1.3) (—(m—1); >—, where (m—1); :=max{0,m —1};
n

When D(u) = 1, S(u) = u(u + 1)*"! and f(u) = v’ with a > 0 and ¢ > 0, Wang
and Li [19] derived the critical value a + ¢ —1 = 2
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In the system (1 1), when D(u) =1, S(u) = v and f(u) = u, Winkler [22] showed
thatif 1 < k < —i—2n 5 (n > 5), then there exists a solution blowing up in finite time;
Moreover, a sumlar blow-up result was obtained in the case that D(u) = (u+1)""*
with m > 1 in [2]; Furthermore, Fuest [5] showed that solutions blow up in finite
time under the conditions that 1 < £ < min{2,2} and x> 0 (n > 3) and that
k=2and u € ( 7%4) (n > 5); In the two dimensional setting and x = 2, global
existence and boundedness were established when fQ ug < 8w, whereas finite-time

blow-up occurs when fQ uy < mo with mg > 87 in [4].

summary, in [2, 4, 5, 22], blow-up results were derived in the chemotaxis system

with logistic source and linear production. However, boundedness and blow-up results
were not obtained in the quasilinear chemotaxis system with logistic source and nonlinear
production (when D(u) = 1 and S(u) = u, recently, Yi et al. [26] derived the blow-up

result

under the condition that £+ 1 > (1 + 2)).

Our aim of this paper is to present conditions that solutions of (1.1) are bounded or
blow up. Before we state the main results, we give conditions for the functions D, S and
f as follows:

(1.4)
(1.5)

(1.6)

D € C*([0,00)) is positive;

S e C*(Jo, oo)) is nonnegative and nondecreasing;

fe U 1OC )N C*((0,00)) is nonnegative and nondecreasing.
B€(0,1)

We now state the main theorems. The first one asserts boundedness of solutions.

Theorem 1.1. Let Q@ C R™ (n > 1) be a smooth bounded domain, and let 6 € (0,1],
meR, a>0,A>0,u>0,k>1andl > 0. Assume that ug € UBE(O,l) CP(Q) is
nonnegative and D, S and f satisfy (1.4), (1.5) and (1.6) as well as

(1.7)
and

(1.8)

D(&) > Cp(E+ )™, 5(6) < Cs&(6+0)*" forall >0

f(€) < L& forall € >0

with Cp > 0, Cs > 0 and L > 0. If one of the following cases holds:

(1.9)

(1.10)

2
a+€<max{m+,ﬁ} and p >0,
n

n(a+0—m)—2
2(a—1)+n(la+£€—m)

a+l =~k and > CsL,

then there ezists an ezxactly one pair (u,v) of functions

which
there

{u € C°(Q x [0,00)) N C1(Q x (0, 00)),
v € Nyan CO([0,00); WH(Q)) N C*(Q x (0, 00))

solves (1.1) classically. Moreover, the solution (u,v) is bounded in the sense that
exists C' > 0 such that

|w(-, ) ||y £ C for all t € (0,00).
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We next state a result such that solutions blow up in finite time.

Theorem 1.2. Let Q) := Br(0) C R™ (n > 1) be a ball with some R > 0, and let § € (0,1],
meR, a>0,A>0,u>0,k>1andl>0. Assume that D, S and f satisfy (1.4),
(1.5) and (1.6) as well as

(L.11) D(E) < Cp(€+ 8™, S(€) > Cs&(€+ 6 for all€ >0
and
(1.12) (€)= L& forall€ >0

with Cp > 0, Cg > 0 and L > 0. Suppose that
2 .
(1.13) @+€>max{m+—ﬁ,ﬁ}, ifm >0,
n
2 )
(1.14) or a+€>max{—/f,/f}, if m < 0.
n

Then for all My > 0 there exist g € (0, My) and r, € (0, R) with the following property:
If

(1.15)
Uug € U CP(Q) is nonnegative, radially symmetric, nonincreasing with respect to ||
Be(0,1)
and
(1.16) / up(z)de = My and / uo(z) dx > My — e,
Q By, (0)

then there exist T* € (0,00) and an ezactly one pair (u,v) of functions

u € OO x [0,T%) NC>LQ x (0,T%)),
V€ Nyon CO([0,T*); Wh1(Q)) N C*0(Q2 x (0,T))

which solves (1.1) classically and blows up in the sense that

lim

Jim, u(-, )| Lo () = 00.

Remark 1.1. As to Theorem 1.1, letting x — 1 implies that the condition (1.9) reduces
the condition

2
a+l< max{m—i——,l},
n
which is a generalized condition such that solutions remain bounded in [12, 19, 23]. Also,

as to Theorem 1.2, we see that the condition (1.13) with m = 1 and kK — 1 is a generalized
condition such that solutions blow up in finite time in [19, 23].
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The proofs of Theorems 1.1 and 1.2 are based on those in [23]. As to the proof of
Theorem 1.1, our purpose is to establish an LP-estimate for u. In order to obtain an
LP-estimate, we consider three cases. With regard to the proof of Theorem 1.2, we first

define the mass accumulation function
1

w(s,t) == / " tu(p,t)dp for s € [0,R"] and t € [0, Thax),
0
where s :=r" for r € [0, R], and transform the system (1.1) to the parabolic equation

1
w; = n*s? nD(nwS Wes — —sS(nws)Mf( )

S(nws / f(nws(o,t)) do + Aw — n” 1u/ ws(o,t) do.
0

Next, we introduce the moment-type functional

50
o(t) = / s 7(sp — s)w(s,t)ds
0
and the functional s
W»(t) ::/ s'7(sg — §)w (s, ) ds
0

with some sy € (0, R") and v € (—o0,1). By using the above functionals, we will derive
nonlinear differential inequalities ¢’ > ¢, — c,. In order to attain this inequality, we
apply the inequality ¢ > e3¢+ (in [26] the inequality 1 > c4gb1_:l with some ¢4 > 0 was
obtained). Moreover, in the case m = 0, due to use the estimate log(a + ) < %as + ¢5 for
all ¢ > 0 with some ¢; > 0, we can improve the condition (1.3) to the conditions (1.17)
and (1.18).

This paper is organized as follows. In Section 2 we recall local existence and show
Theorem 1.1. In Section 3 we prove Theorem 1.2 and give open problems.

2. Boundedness

In this section we derive global existence and boundedness in (1.1). We first introduce
a result on local existence of classical solutions to (1.1). This lemma can be proved by a
standard fixed point argument (see e.g., [25]).

Lemma 2.1. Let Q@ C R" (n > 1) be a smooth bounded domain, and let A > 0, p > 0
and k > 1. Assume that ug € Uﬂe(o,l) CP(Q) is nonnegative and D, S and f fulfill (1.4),

(1.5) and (1.6). Then there exist T € (0,00] and a unique classical solution (u,v) of
(1.1) satisfying
{u € CO X [0, Tiuax)) N C21(Q X (0, Thar)),
0 € Nyon CO0, Tinax); WH(Q)) N CZ(Q X (0, Trpax))-
Moreover, u > 0 in Q X (0, Thax) and

if Thax < 00,  then t lim (-, )| g (o) = o0.

max

If ug is radially symmetric, then so are u(-,t) and v(-,t) for all t € (0, Thax)-
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In the following we assume that  C R" (n > 1) is a smooth bounded domain and
b€ (0,1],meR, a>0,A>0,u>0,x>1and ¢ >0. Also, we suppose that D, S and
f satisfy (1.7) and (1.8). Moreover, let (u,v) be the solution of (1.1) on [0, Tix) as in
Lemma 2.1. We next recall the following lemma which is obtained from the first equation
in (1.1).

Lemma 2.2. The classical solution u satisfies that

(2.1) /Qu(a:,t) dr < M, := max {/QUQ(.CE) dz, (%]Q]”_l) m} for all t € (0, Thax)-

Proof. Integrating the first equation in (1.1) and using Hélder’s inequality, we have

d K
—/udxg)\/udx—,u]ml” (/udx)
dt Jo Q Q

for all t € (0, Thhax). By an ODE comparison argument we attain (2.1). O

In order to see global existence and boundedness of solutions, it is sufficient to make
sure that for each nonnegative initial data uy € Uﬁe(o,l) CP(Q) and for any p > 1 we can
take C'= C(p) > 0 such that

(2.2) / W(z,t) dz < O for all t € (0, Tnay).
Q

In the following subsections we will prove (2.2) in three cases as follows:
e Case 1. a+€<m+% and pu > 0.

o Case 2. o+ /¢ <k and pu > 0.

e Case 3. a+ /¢ =k and pu > 2(a"_(i“)i€:($lﬁm) CsL.

2.1. Case 1. oz—l—€<m+% and p > 0.
In this subsection we derive (2.2) under the condition that o+ ¢ < m + 2 and p > 0.

Lemma 2.3. Let > 0 and assume that m € R, a > 0 and ¢ > 0 satisfy
2

(2.3) a+l<m+ —.
n

Then for any p > max{1,2—m,2— (a+£),2(1—m)+ (2 —1) (a+—1)} there is
C=CQm,a,\ kLl L p Cp Cs) >0 such that

(2.4) / uP(z,t)de < C for allt € (0, Tiax)-
Q



Proof. By virtue of the first equation in (1.1) and D(u) > Cp(u + 6)™" !, we have

(2.5) (u +0)Pde < —plp—1)Cp / (u + 0)PT™ 3| Vul? dx

dt o

+p(p — 1)/Q(u+5)p25(u)Vu~Vvdx

+pk/ (u+6)p‘1dx—pu/ w4+ 0)P da
p+m_1 /|v 6"

+p(p—1)/9v (/0 (€+0)P25(¢) dg) Vo dr

+p>\/ u(u + 0)P~ dx — p,u/ u(u+ 6P dx
Q Q

= [1+IQ+[3—|—[4

|2dx

for all t € (0, Thnax). Noting from S(§) < Cs(€ 4 6)® and p > 1 — « that

/Ou(§ + 5)p—25(§) ds < Cy /Ou(§ n 6)p+a—2 ¢ < %(u + 5)p+a—17

from (1.8) and the second equation in (1.1) we can obtain

(2.6) h=—pp=1) | ( | erorsie d&) Avds

0
< P2 1Cs [k gyt payds

—1)CqL
< p(p )Cs /(u+5>p+a+£1 de
pta—=1 Jg

for all ¢ € (0, Tinax)- As to I3 and Iy, since we see from elementary calculations that there
exists € > 0 so small such that

(u+9)" < (1+e)u™+ C.0,

k—1
where C. = [ —& > (, we can observe
—(14¢) 7T

(2.7) I3+ I

C
< pA sy dy — LE / syeld &/5 5)Pd
<p /Qu(u—l—) e Q(u—i—) l’+1+€ Q(u—i-) x

< 6’6/(u+5)pdm— P (u+ 6P de
Q 1+4+¢ O



for all t € (0, Tinax), where C. := max {p)\, pl‘f;s} > 0. From (2.5)—(2.7) it follows that

(2.8) % /Q (u+ 6) da

4 P —1)CqL
p( /lv —{—(S) + |2d ‘I’ ( ) S /(u+5)p+a+€—1 dl‘
C(p+m— 1 p+a—1 Jq
+C. / (u+ 8)P do — 22 /(u + ol gy
Q 1 + € O
for all t € (0, Tiax). Here, let
ptm—1 p+m—1
g .— 2 2(p+a+i-1)

m—1
phnl 1T
From p > max{1,2—m—2,2—(a+0),2(1—-m)+ (2 —1) (a+€—1)} we see 6 €
(0,1). Thus we can apply the Gagliardo—Nirenberg inequality to find ¢; = ¢1 (2, m, a, ¢, p) >
0 such that

2(ptatel—1)
(2.9) /(u+ 5)p+a+£_1 dx = ||(u+ 5) p+m i
Q tatt
Aptatt_l)g L, 2prate1) g
<el|V(u+8)" A [ b el (1-0)
LP+m— Q)
2(ptat+e—1)
+Cl||(u+ ) +m 1
+ —1 Q)

for all t € (0, Tinax). Moreover, thanks to (2.3), we have

2(p+oz—|—£—1)6_ pra+l—2 -9
p+m—1 llp+m—242)

Hence, noticing from Lemma 2.2 that fﬂudx < M,, from (2.9) and Young’s inequality
we can take co = co(Q, m,a, A\, i, k, ¢, L, 6, p, Cp, C’S) > 0 such that

(2.10) M/(wé)p*a*“dx /|V +6)"
p+a—1 Jq p+m—1

1\2d$+cg

for all t € (0, Thax). A combination of (2.8) and (2.10) yields that

(u+5)pd:v<0/(u+(5)pda:— pu /(u+5)p+”_ldﬁc+62
Q

dt Q 2(1+¢)

for all ¢ € (0, Tmax). By Holder’s inequality there exists c3 = c3(Q2, m, a, p, 5, ¢, p) > 0
such that

pt+r—1

(u+ ) dz — ¢4 (/Q<u+5)wx> " e

(u+5)pdx<0/

dt o

for all ¢ € (0, Thax). Noting the fact that HT’f*l > 1, this inequality yields (2.4) by an
ODE comparison argument. O
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2.2. Case 2. a+/{ <k and u > 0.
In this subsection we show (2.2) under the condition that o + ¢ < x and g > 0.

Lemma 2.4. Let ;n > 0 and assume that o >0, Kk > 1 and { > 0 satisfy
(2.11) a+ Ll <-K.

Then for any p > 1 there exists C = C(Q, a, \, i, 5, £, L, 5, p,Cs) > 0 such that
(2.12) / uP(z,t)de < C for allt € (0, Tiax)-
Q

Proof. We know that there exist ¢ > 0 and C. > 0 such that (2.8) holds. By virtue of
(2.11), we have
pta+l—1<p+r—1.
Thus, by using Young’s inequality, we can find ¢; = ¢;(Q, o, i, K, £, L, §, p,Cs) > 0 such
that
plp—1)CsL
p+a—1

(2.13) /(u +oyprettlar < L /(u + 6P dr + ¢
0 Q

4(1+¢)

for all t € (0, Tyax). Combining (2.13) with (2.8) and applying Holder’s inequality, we
observe that there exists co = ¢2(€, 1, Kk, p) > 0 such that

pt+r—1

a4 (u+5)pdx§65/(u+5)pdx—02 /(u+5)pdx ’ +c
dt Jo Q Q
for all t € (0, Thax). Accordingly, we see that (2.12) holds. O

2.3. Case 3. a+/(=x and pu > 2(031(?)1[5(;?23@ CgL.

In order to prove (2.2) under the condition that a+¢ = x and p > x n(otlom) 2 ;CsL,

a—1)+n(a+l—m
i P_esti __ar
we first derive the LP-estimate for some p < 1 + oA

Lemma 2.5. Let it > 0 and assume that o > 0, k > 1 and £ > 0 satisfy o« +¢ = k. Then
for any p € <1, 1+ (ngiﬁuh> there exists C' = C(Q, o, A\, i, &, L, p, Cs) > 0 such that

/ uP(z,t)de < C for all t € (0, Tinax)-
Q

Proof. Since the condition p < 1 + ﬁ implies that

plp —1)CsL

<0,
p+a—1 a

we can take € > 0 small enough such that

plp—1)CsL  pp

< 0.
p+a—1 1+e¢

11



Thus we have that there exists 5 > 0 such that

d B _
p <_ 2 D
= (u+5) dx +m_1 /|V +6)" \dm—IrCE/Q(u—HS) da

(pﬂ B _1)05L)/( _|_5>p+n—1dx
1+e¢ p+a—1 Q

for all t € (0,Twax). By Holder’s inequality, we obtain ¢; = ¢1(Q, o, p, &, L,p,Cs) > 0
such that

ptr—1

jt (u+ 6 do < C. /Q(u—l—é)pdx—cl (/Q(u+5)pdx)

for all t € (0, Tiax), and thereby we can arrive at the conclusion. O
Next we establish the LP-estimate for any p > 1.
Lemma 2.6. Assume thatm € R, a >0, 4 >0, kK > 1 and £ > 0 satisfy

n(a+£€—m)—2

L.
2(a—1)+n(a+e—m)05

(2.14) a+l=r and p>
Then for any p > 1 there exists C = C(Q2, m, a, A\, u, k, ¢, L,0,p,Cp,Cs) > 0 such that
(2.15) / uP(z,t)de < C for allt € (0, Tiax)-

Q

Proof. The second condition of (2.14) yields that

(1+ﬁ> —g(a+€—m)>0.

Therefore we can pick some py € <g(a +0—m), 1+ m) Thanks to Lemma 2.5,

we see that there exists ¢; = ¢1(Q, a, A\, i, K, ¢, L, p, Cs) > 0 such that

(2.16) / uP dx < ¢y
Q

for all t € (0, Thnax). Moreover, we choose
p>max {po.po 1= mpot 1= (a+0,5(1=m)+ (5 -1)(@+-1)}

and take e > 0 and C. > 0 such that (2.8) holds. Applying the Gagliardo—Nirenberg
inequality, we have

2(pta+l— 1)
p+m 1

/ (0 + )P 4y — [[(u 4 6)
Q

L P+m “oFmeT
2(pta+L—1) 5

oy~ I (u+9)

2(pta+£—1) 5
I;erfl (1-9)
|| 2pg
Lrtm=1(Q)

p+7n 1 p+7n 1

2(pta+e—1)
H p+m—1
2p0
LPFm-1(Q)

p+m 1

+ cof[(u 4+ 9)

12



for all t € (0, Thax) With some co = c2(2, m, o, £, p) > 0, where

p+tm—1 ptm-—1
A 2po (p-‘roa—‘rﬁ—l)
p+m—1 + 11 € (O 1)'
2po 2

Here, we note from py > 4(a + ¢ — m) that

+a+0—1 +m—1 2 a+l—m
2(p+04+f—1)9~ 2—17 Po _1_<pp0 +ﬁ_1)_ +—£0 _% 0
p+m—1 o ptm—l 4 1 1 _p+_m—1+1_1< '
2po n 2 2po n 2

Thus, due to the inequality (2.16) and Young’s inequality, we can show that there is
c3 = c3(Q,m,a, A\, Kk, 0, L, 0,p, Cp,Cs) > 0 such that

(2.17) M/(wé)“a*“d /|V +

for all ¢ € (0, Tipax). From (2.8) and (2.17) we infer that

- (u+5)pdx<(]/(u+5)pdx— i /(u+5)p+“_1dx+63
Q

Q 1+4+¢
for all t € (0, Tax), which implies that (2.15) holds. O

2.4. Proof of Theorem 1.1

In this subsection we complete the proof of boundedness.

Proof of Theorem 1.1. Thanks to (1.9) and (1.10), we can apply Lemmas 2.3, 2.4 and 2.6.
Therefore, for any p > 1 we can find ¢; = (2, m,a, A\, u, k, ¢, L, 0, p, Cp,Cs) > 0 such

that
/ wPdr < ¢
Q

for all ¢ € (0, Tiuax). By the Moser iteration (see [17, Lemma A.1]), we obtain
[l )| ey < 00

for all t € (0, Tiax), which concludes the proof. O

3. Finite-time blow-up

In this section we will show Theorem 1.2. In the following let Q := Br(0) C R™ (n > 1)
be a ball with some R > 0 and let A > 0, x > 0 and x > 1. Also, we suppose that D, S and
f fulfill (1.4), (1.5) and (1.6), respectively, and u, satisfies (1.15). Moreover, introducing

= |z|, we denote by (u,v) = (u(r,t),v(r,t)) the radially symmetric local solution of
(1.1) on [0, Thnax). Based on [8], we define the mass accumulation function w such that

3l

(3.1) w(s,t) ::/ " tu(p,t)dp for s € [0,R"] and t € [0, Thax)-
0

13



This implies that
s(s,t) = — %775 d ss(8, 1) = —sn r(sm,t
ws(s, 1) nu(s ) and  wg(s,t) ot up(sn,t)
for all s € (0, R") and t € (0, Tnax). Thus we have from the first equation in (1.1) that
(3.2) W, = n232_%D(nws)wss - sl_%S(nws)vr + Aw — n“_lp,/ wh(o,t) do
0

for all s € (0, R") and ¢ € (0, Tiax), and see from the second equation in (1.1) that

1 — 1 [°
(3.3) sy, = JWf(t)f - _/ f(nws(o,t)) do
n nJj
for all s € (0, R™) and ¢ € (0, Truax). From (3.2) and (3.3) it follows that
1 -
(3.4) wy > n’s>h (nws)wss — —sS(nws) M(t)
n
1 S S
+ —S(nws)/ f(nws(o,t)) do —n”_l,u/ w?(o,t) do
n 0 0

for all s € (0, R") and t € (0, Tyax)-

In Subsection 3.1 we recall some lemmas in order to obtain inequalities for a derivative
of a moment-type functional. In Subsection 3.2 we establish some estimates which lead
to differential inequalities for the moment-type functional. The proof of Theorem 3.3 is
shown in Subsection 3.3. Finally, we give open problems in Subsection 3.4.

3.1. Preliminaries
We first derive the concavity of w.
Lemma 3.1. Assume that ug satisfies (1.15). Then
up(r,t) <0 forallr € (0,R) and t € (0, Trax),
that is, for w as in (3.1)
Wss(s,t) <0 forall s € (0, R") and t € (0, Tinax)-

Proof. By an argument similar to that in the proof of [23, Lemma 2.2] or [2, Lemma 5.1],
we can prove this lemma. O

Given s € (0, R") and v € (—o0, 1), we set the moment-type functional
S0
o(t) :== / s (s — s)w(s,t)ds fort € [0, Thax)-
0

Here, we note that ¢ € C°([0, Trax)) (N CH((0, Trax)). Moreover, we introduce the func-
tional

S0
W(t) ::/ s (59 — s)w* (s, t)ds for t € (0, Tinax)
0

14



and
M — So ) 327}
1-ME2=7w.
The choices of ¢, 1 and Sy as well as the underlying overall strategy quite closely follow

the approach in [23]. However, in our method we do not use the set Sy defined in [23].
Next we recall the following two lemmas which were shown in [23].

S¢ = {t € (07Tmax)

o(t) >

Lemma 3.2. Assume that ug satisfies (1.15) and let so € (0, R™) and vy € (—o0,1). Then

50 1 4dsg
f,t>>—- M- ——— ltesS,.
o(50) 2 5 (Mt S ateess
The following lemma is obtained from Lemmas 3.1 and 3.2 (see [23, Lemma 3.2]).

Lemma 3.3. Assume that ug satisfies (1.15) and let sy € (0, %] and v € (—o0,1). Then

(3.5) Me(t) < f, + 1 /S f(nws(o,t))do  for all s € (0,s09) and t € Sy,
2s Jo
where
&n

In order to derive differential inequalities for ¢ we establish an estimate for ¢'. This
method has been developed in [23].

Lemma 3.4. Assume that f fulfills (1.12) and ug satisfies (1.15). Let sy € (O, %] and
v € (—o0,1) as well as

2
. 2— —.
(3.7) y<2-=

Then

S0 )
+ n2/ §*7 77 (89 — 8) D(nws(s, t))ws(s, ) ds
0

S0 s
- n”_l,u/ s 7(sg— s) {/ wh(o,t) da} ds
0 0

:Z[1—|-12—|—[3+[4

for allt € Sy, where f, > 0 is defined as (3.6).
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Proof. Invoking (3.4) and (3.5), we have
(3.9) wy > n232_%D(nws)wss - ﬁsS(nws)
n
1 S S
+ —S(nws)/ f(nws(o, t))da—n”_lu/ w?(o,t) do
2n 0 0

for all s € (O, %] and t € Sy. Here, we note from Lemma 3.1 that
wS<O-7 t) Z wS<S7 t) (O- S S)'

Thanks to this inequality and (1.12), we see that
(3.10) S(sws)/ f(nws(o,t))do > LS(nws)/ (nw(o,t))" do > n*LsS(nw,)w’
0 0

for all s € (0,£%] and t € S,. By virtue of (3.9) and (3.10), we attain (3.8). O

3.2. Estimates for the four integrals in the inequality (3.8)

In this subsection, in order to derive different inequalities for ¢ we show estimates for
the four integrals in (3.8) by using lower bound for ). We first provide the estimate for
I + I in the following lemma.

Lemma 3.5. Assume that S and f fulfill (1.11) and (1.12), and uy satisfies (1.15). Let
v € (—00,1). Suppose that a > 0 and ¢ > 0 satisfy

(3.11) a+l>1.

Then there ezists C, = Cy(a, l, L,Cg) > 0 and Cy = Co(R,a, ¢, L,7y) > 0 such that for
any choices of sy € (O, %],

(312) Il -+ ]2 Z Cﬂ/](t) - 0283_7
forallt € Sy.

Proof. We define the function y 4 as the characteristic function of the set A and put

A
C = (T) > 0.

As to Iy, noticing that S is nondecreasing, we see that

S0
(3.13) I, = _%/o X{nws(-,t)26}517'y(50 — 5)S(nwy) ds
f’y S0 .
N E/o Xfnui )<y (S0 = 8)S(nw;) ds
Lo oy S(nw,) d
== | Xewcozeys (50— 8)S(nw,) ds

Fon [ i
~L5©) [ ey 0= 5) s
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for all ¢ € Sy. Moreover, we have that

s0
(3.14) — %/0 X{nw_g(.,t)26}81_7(50 — 5)S(nwy) ds
v [ _ nw, \
= _ﬁ 0 X{nws(-,t)26}81 ’Y(SO - S)S(nws) 6 ds
néfl 80
> _TL/ s'77 (59 — 5)S(nw,)wt ds
0
and
oy 7 - HS(C) 5
(3.15) 05O | Xemo<oys (0 = 8)ds 2 —mmaET e
for all t € Sy. In light of (3.13)—(3.15), we observe that
nt1 %0 f,5(0) _
3.16 L+1,>—L (50 — 8)S(nws)wt ds — - o
(3.16) 1+ 12 2 1 /0 s "(so — 5)S(nw;)w, ds 2—70 _,y)nSO

for all £ € Sy. Recalling (1.11), we can obtain

(3.17) /OSO s'77 (s — 8)S(nws)wh ds > nCy /080 s'77 (50 — 8)(nws + 0)* tw' T ds
for all ¢ € Sy. If @ > 1, then it follows from (nws + 6)*~* > (nw,)*~* that

(3.18) nClg /OSO s'7 (50 — 8)(nws + 0)* it ds > n“Csh(t)

for all t € S;. Hence, in the case v > 1 a combination of (3.16), (3.17) and (3.18) yields
(3.12). On the other hand, if o < 1, then we can show from w'*! = Lw’(nw, + § — 9)

s T n
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that

S0
(3.19) nC’S/ s (59 — 8)(nwg 4 6)* twt T ds
0
S0
= nCS/ X{nws(.,t)zg}sl_V(SO — 8)(nw, + 0)* twt T ds
0

S0
+ nC'g/ X{nws(.7t)<5}sl_'y(so — s)(nws + 5)a_1w§+1 ds
0

nOé

21704

50
+ OS/ Xinws(-<6yS (S0 — 8)(nws + 6)*w? ds
0

S0
> Cg/ X{nws(.,t)zg}sl_'y(so — s)wt ds
0

0
— (56’5/ X{nws(-,t)<5}51_7(30 — s)(nws + 5)“‘1wﬁ ds
0

« S0
> U CS/ Xinws (02615 (80 — 8)we T ds
S0
+n*Cs / Xinws (1)<618" (80 — s)wt ds
S0
— 505/ X{nws(-,t)<6}31_7(30 — 8)(nws + 6)* tw ds
0

for all t € Sg. Noting from o < 1 that

-«

_ nwg v _ _ _

(nws+5)a 1U}£:( +5> ne 1w?+€ 1 < n® 1w?+€ 1,
nw,

we establish that
S0
- 605/ X (-t)<0}5 " (s0 — ) (nws + 0)* " w ds
0
S0
2 _nalcS/ X{nws(-,t)<5}3177(30 - S)w?M*l ds
0

S0
> _na_ICS/ X{nws(~,t)<5}51_’y(80 - S) ds

for all £ € Sy. From this inequality and (3.19) we see that

ne na—lCS
=V~ G —)

for all t € Sy. Thus, in the case o < 1, from (3.16), (3.17) and (3.20) we attain (3.12). O

3—y
So

S0
(3.20) nCs/ s'7(so — 8)(nw, + 8)* Twit ds >
0

Next, we show the estimate for 3. In the case m # 0 the proof of the following lemma
is based on that of [12]. However, in the case m = 0 we will use a different estimate for
log(z + 1) for any > 0 than the one used in the proof of [12, Corollary 3.4].
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Lemma 3.6. Assume that D fulfills (1.11) and wq satisfies (1.15). Suppose that m € R,
a>0,0>0 andy € (—o0,1) satisfy

2 1
(3.21) ifm>0, then a+{>m and 2——-L>’y,
n a+l—m
2
(3.22) if m <0, then 2——>7.
n

Then there exist € > 0 so small, C1 = C1(m,a,,6,7v,Cp) > 0, Co = Cy(m, d,v,Cp) >0,
C3 = Cs(m,a,4,6,7v,6,Cp) > 0 and Cy = Cy(m,d,7v,e,Cp) > 0 such that for any sy €
(0, %],

3_nyatl—m_2 . 3—y—2 .
( ’Y) a+l nwa_'_z (t) _ 0230 T~ n me > 0,

_ atl—e 2 e A2
(3.23) I > —033((]3 N T a (1) —Cysy T if m =0,
—y—2
—Cgsg T ifm <0

forallt € Sy.

Remark 3.1. In this lemma, the constants C; > 0 and C5 > 0 depend on 6. However,
in the case m > 0, we can take them which are independent of §.

Proof. We have from (1.11) that

S0 9
I3 > nQCD/ s* 7w (89 — 8)(nws + 0)" Mw,, ds
0

=nCp /80 52*%*7(50 - S)dis {/nws(ﬁ + §)m ! df} ds
0 0

for all £ € Sy. Since it follows that

1
—(nws + 6)™ if m > 0,
nws m
/ (€4 6™ tde < { log(nw, +0) —logd if m =0,
0
1
——m if m <0,
m
we obtain from integrating by parts that
( n 2 5o 2
——Cp (2 - —— ’y) / s'7w Y (s — ) (nw, + 0)™ ds if m >0,
m n 0
2 0 e nws .
(324) I3><—nCp(2———7 s n”(so—s)log< 5 —i—l) ds if m=0,
n 0
n 2 5o 1-2_ .
—0mCp (2———7 s n V(sp—$)ds ifm<0
L m n 0
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for all ¢ € S,. First, we show the estimate (3.23) in the case m > 0. By applying the
inequality (nws + )™ < 2™((nws)™ + §™), we know that

s0 ) 50 2
(3.25) / s'TR T (59 — 8)(nws +6)"ds < 2mnm/ s'TR T (59 — s)w ds
0 0

50
+ 2m5m/ sl_%_7(50 —s)ds
0

= Ji+Jy
for all t € Sy. Invoking from (3.21) that 7 < 1, we see from Holder’s inequality that
» o aTt—m atl—m
S = anm/ "7 (50 — s)wg ] o+ s 7%(80 —s) 7 ds
0
atl—m

_m_ 50 1o~y 2. _att a+t
< 2MnMapati(t) - s T niattom (sg — §) ds
0

for all ¢ € Sy. Moreover, thanks to the condition 2 — % . aj_‘zr_em > 7y, we can observe

S0 2 a+l
12, _ate 3—y—2._atl
/ s nattom (sg — 8)ds = 18, O™
0

where )
cl = > 0.

2-7v-2 25) B=7—2-355)

Thus we establish that

at+l—m (377) atl—m

(3.26) Ji < 2MpMe, oF sy T mapata (t)

for all t € Sy. Also, since 2 — v — % >2—y—2. 9 5 0and§ <1, it follows that

n  atl—m
2mem 53—7—% < om 3oy 2
2=7=-36B-1-D" T L2-1=)B-7-3)

In the case m > 0, from (3.24)—(3.27) we can deduce that

(327) o=

2mnm+1C 2 atl—m 3— atl—m 2 m anc 2
[32—7D 2___,-}/ Cla+£ S(() 7) a+{ 7twm(t - D 33— n

m mE-y-2)"

for all ¢t € Sy, which implies (3.23). Next, we confirm that the estimate (3.23) holds in
the case m = 0. Due to (3.21) with m = 0, we can take € > 0 small enough such that

2 1
a+{0>¢e and 2——-L>7.
n a+l—c¢

Furthermore, we have that

i 1 ) e 11 1
s (%5 1) 2 ("5 1) = -
€ e €o¢ €
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In light of (3.24), we obtain that

(3.28) I3 > —nggf) (2 _ % . 7) /050 517%77(50 — s)(nws + 9)° ds
+ nCp <2 _2_ ’y) /SO 31’%’7(50 —s)ds
€ n 0
for all t € Sy. As in the case m > 0, we can verify that
(3.29)
N ZgD (2 - % - 7) /o 5" (s — ) (nw, + 0)° ds
Do 3 e gt gy i
for all t € Sy, where
1
eI B G

Accordingly, a combination of (3.28) and (3.29) yields (3.23). Finally, in the case m < 0,
we can show from (3.24) that

n 2 S0 g nd™Cp 3_y—2
Mo, (22 - 123 (50 — §) ds = 3
- D( - 7)/0 s (so — s)ds Y Cp— i

which concludes the proof. O
In the following lemma we derive the estimate for Iy.

Lemma 3.7. Assume that ug satisfies (1.15). Suppose that « > 0, k > 1, £ > 0 and
v € (—o0,1) fulfill

o+ 0

(3.30) a+l>rk and 2-— <vy<Ll

Then there exists C; = Cy(a, p, K, £,7y) > 0 such that for any choices of sq € (O, %} ,

_ atl—k e
(3.31) L>~Cisg o (1)
forallt € Sy.

Proof. We apply the Fubini theorem to obtain that

Lo

50
< - _ K t d
<= = outten) do
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for all ¢ € Sy. Thus we have that

S0
(3.32) I, > _717“8(1)7/ (so — s)wh ds
-7 0

for all ¢ € S;. Owing to the first condition of (3.30), we see from Hoélder’s inequality that

atl—k

S0 S0 o .
(3.33) / (so — s)wh ds = / [s'77 (50 — s)wd ] o+ s UG (59 — 5) "ot ds
0 0
S0
< gpar(t) - (/ s EFER (50 — 5) ds)
0

for all ¢ € Sy. Here, noting from the second condition of (3.30) that

K a+/l K
- (1—y)—2 s )" =
( 7)a+€—/<c> ( K )a—irﬁ—/i ’

we can verify that

atl—k
o+l

50 —(1—7) 2—(1-7) 557==
(3.34) s ati=r (59 — 8)ds = 15, ,
0

where ]
c = > 0.
' (1 - (1 o /Y) a+’Z—n) (2 o (]' - 7)04-1—;—&)

Thanks to (3.32)-(3.34), it follows that

Kk—1 atl—k _ 2((1-0—@—&)_ Ak " k—1 at+l—k _Natl—k KU
iz =Tl g e T s () = L T ()
L 11—~
for all ¢ € Sy, which implies (3.31). O

In the next lemma we establish the estimate for w which is used later.

Lemma 3.8. Assume that ug satisfies (1.15). Suppose that & > 0, £ > 0 and vy € (—o0, 1)
fulfill

(3.35) a+l>1 and 2—(a+l)<y<l1.

Then there exists C; = Cy(a, £,7v) > 0 such that for any sy € (0, %} ,

atl4+y—2

w(&t) < (Ohs att (30 _S)iﬁ@bﬁ(t)

for all s € (0,50) and t € S,.
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Proof. According to the condition v + ¢ > 1, we have from Hélder’s inequality that
w(s,t) = / wy(o,t)do
0

= / [0 (s — 0)]7 7 wy(o, ) - [0 (50 — 0)] a7 do
0
atl—1

1 s 1—y 1 atl
< z/}a_H(t) . (/ g_m(so — g>_m dO')
0

for all s € (0,s9) and ¢t € S,. Moreover, thanks to the condition 2 — (v +¢) < v < 1, we
see that

s s
1=y 1 1 _ 1=y
/ O ati—1 (50 — 0—) atl—1 do' S (30 — 5) atl—1 / o ati-1 do'
0 0

at+l—1 a+ﬁ;v;2( ) -
= ———— | s aFeT (59— ) ati1.
a+l+v—2 R

Thus we can obtain that

a+f—1
a+l—1 o attiy2 11
e — S a+l Sn — S T o+l a+£ t
a+ 04— 2) (s0 = s) 7=ty (t)

w(s,t) < (

for all s € (0,s¢) and ¢t € S,, which concludes the proof. O
From Lemma 3.8 we derive the estimate for .

Lemma 3.9. Assume that ug satisfies (1.15). Suppose that & > 0, £ > 0 and vy € (—o0, 1)

Fulfill
a+l>1 and 2—(a+l)<y<l1.

Then there exists C; = Ci(a, £,v) > 0 such that for any choices of sq € (O, %} ,
(3.36) (1) = Crsy O g ()

for allt € Sy.

Proof. By an argument similar to that in the proof of [19, Lemma 3.7], we can show that
(3.36) holds. O

3.3. ODIs for ¢. Proof of Theorem 1.2

In this subsection we will prove Theorem 1.2. To this end, we first derive the ODIs
for the moment-type functional ¢ in the following lemma. The proof is similar to that in
[23].
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Lemma 3.10. Assume that D, S and f fulfill (1.11) and (1.12). Suppose that m € R,
a>0,k>1andl >0 satisfy that

2
(3.37) ifm>0, then o+ (> max {m + —kK, /@} ,
n
, 2
(3.38) ifm <0, then «a+{>max {—m, m} :
n

Then there ezist € > 0 small enough and one can find v = y(m,a, k, ) € (—o00,1) and
C=C(R,m,a,p,k, L, L5~ Cp,Cs) >0 such that if ug satisfies (1.15) and sq € (O, %],
then

(1 86(3 ~)(e+£—1) ¢a+g< ) 837 7%'044(:2:[771 me >0

C Y
1 (3= (ol A2 _ate )

(3.39) o' (t) > &% B=mlote=D) gatt(py _ g0 T aH if m=0,
1 3 (are —y—2 .

\680 (B=)(a+L 1)¢a+£(t) _ng T n ifm <0

forallt € Sy.

Proof. By virtue of (3.37), it follows that if m > 0, then

2 1 2 1
(3.40) (2—— LM)—(Q—O“LQ:(QM)(___._ )
n a+l—m K kK n at+l—m
1 2 n
f —_—— . — =
> ot )</<; n 25)
Thus, in the case m > 0 we can find v € ( ) such that
(3.41) guotdl o, 2 ottt

Thanks to (3.37) and (3.41), we know that (3.7), (3.11), (3.21), (3.30) and (3.35) hold. In
the case m > 0, applying Lemmas 3.4-3.7, we see that there exist ¢; = ¢;(a, ¢, L,Cg) > 0
and ¢ = co(R,m, , pu, k, ¢, L, 6,7v,Cp,Cs) > 0 such that

at —2 m 2
(3.42) 1) > erp(t) — cast™ — cast " & mapatt (t) — cpsy | "
_ atl—k
. 028(()3 a+L wa+e (t)

for all t € S,. Noting that a4+ ¢ > m and a + ¢ > &, from Young’s inequality we can take
c3 =c3(R,m,a, p, k, 0, L,0,7,Cp,Cs) > 0and ¢y = ¢4(R,m,, i, k, ¢, L, 6,v,Cp,Cg) >0
such that

s T () < Jult) sy | T

(377) atl—m 2 _ 2, _oatt



and

(3—)2ttes

caso TR (E) < Tult) +aasp .

In light of (3.42), we obtain that

2 +4 2 +4£ 2 2 +¢
/ t Z ﬂ t —c 83_7_ﬁ'a$£7m Sz.aféfm + C_3 + SEA(H»”;;m _|_ %Sz.oﬂc:[fm
2 220 0 0 0
C2 C2

for all t € Sy. Since s < %, there exists ¢5 = ¢5(R, m, o, p, k, ¢, L, 6,7v,Cp,Cg) > 0 such
that

2 a+l

n atl—m

#(t) 2 SUlt) — cosy

for all t € S;. Moreover, we have from Lemma 3.9 that there exists ¢ = cg(a, £,7) > 0
such that —

B(t) = sy O g () — ey T
for all t € S,, which implies (3.39) in the case m > 0. As to the case m = 0, due to

(3.40), we can pick £ > 0 small enough and v € (—o0, 1) such that

a+€< <9 2 o+l
" n at+l—¢

9 _
Therefore, using Lemmas 3.4-3.7, we establish that there exist ¢; = ¢7(«a, ¢, L,Cg) > 0
and cg = cg(R, a, p, k, ¢, L, 0,7,Cp,Cs) > 0 such that

_atl—e 2 - 2 otk .
B(8) > crp(t) —casy T —exsy T (D) —cxsg T —cssy | o (i)

for all t € Sy. As in the case m > 0, from this inequality we can attain (3.39). Finally, in
the case m < 0 we see from (3.38) that

2 2 1 2 2
(2__)_(2_04—1—6):oz+€__>_‘_/<;__:()‘
n K K n~ kK n n

Thus we can take v € (—o0, 1) satisfying

0 2
g 9Tl 9 2
KR n

By virtue of Lemmas 3.4-3.7 we know that there exist ¢ = co(c, ¥, L,Cs) > 0 and
c10 = c1o(R,m, o,y k, €, L, 6,7y, Cp, Cs) > 0 such that

_ —y—2 3_~)atl=r K
¢ (t) > cotb(t) — cro85 " — cro8y | " — 0103(() Qe Wt (t)

for all t € S,. By an argument similar to that in the case m > 0, from Young’s inequality
and the relation sy < % we obtain ¢y; = ¢11(R, o, i, K, £, L, 0,7,Cp, Cs) > 0 such that

for allt € S,. Thanks to Lemma 3.9, we can verify that (3.39) holds in the case m < 0. O
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We are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We first consider the case m > 0. Due to (1.13), we can obtain
from Lemma 3.10 that there exist v € (—o0, 1), ¢; = ¢1(R,m, o, i, K, ¢, L, 6,v,Cp,Cs) > 0
and co = co(R,m, o, p, 5, ¢, L, 6,v,Cp,Cs) > 0 such that for each g satisfying (1.15) and
S0 < %, it follows that

2 a+l

(343) ¢/(t) Z 6185(3_7)(a+£—1)¢a+f(t) _ 0283—7—5.a+5_m

for all ¢ € Sy. Next we choose 5y < % small enough such that

M,
(3.44) sg < —2
2
and
a2 1 o+l
(345) S((]a-i—f)(l n a+€7’m) S i ( MO ) X
209 \2(1 = )(2 — 7)wn

Furthermore, we fix gq € (0, 570) so small and take s, € (0, sg) fulfilling
50 _ MO — So 9

s 7(sp — s)ds > sg .
L ' 1= - wn*

M0—€0

Wn

(3.46)

1
We define r, := s € (0, R) and suppose that ug satisfies (1.15) and (1.16). In order to
show Th.x < 00, assuming that T},., = 0o, we will derive a contradiction. We set

MO — Sy 2—~ }
S forallt € [0,T) ¢ .
(1= 2=y’ 0,7]

(3.47) S = {T e (0,00) ‘ o(t) >

Here, we note that S is not empty. Indeed, since we have that for any s € (s,, R")

Wn Wn

1 My —
w0 2 w0 = - [ wdez T,
BT'* (0)
we see from (3.46) that

»(0) > /50 s (sg — s)w(s,0)ds

My —co [
> 0 60/ s 7(sp— s)ds

Wn

M, — _

> 0~ % 5o
(1 =7)(2 = 7)wn

Thus we can put T := sup S € (0,00]. Moreover, we know that (O,f) C Sg. Owing to
(3.47) and (3.44), we establish that

My
(1 =7)2=7)wn

2—y
So

o0 = 5
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for all £ € (0,T). From (3.45) it follows that

c1 —(3—7)(a+€—1)¢a+4 (t)

M OH'_K o 2 a+l
2 atl = i ( ; ) SO( YOty >1
0283_7_;.a+27'm 262 2(]‘ - 7)(2 - ’Y)w’l’b

for all t € (0,T), which implies from (3.43) that

(3.48) #(t) = Sy T g ) > 0

forallt € (0, 7). This inequality yields that T = co. However, from (3.48) and a+(—1 > 0
we can show that

~ 2 (3-7)(a+e-1)
T < v
= (a1 - Degert1(0)

As a consequence, we attain that T},,, must be finite. In the cases m = 0 and m < 0, we
can prove that T,.. < co by an argument similar to that in the case m > 0. O

3.4. Open problems

In [5, 19, 23] the critical values such that solutions remain bounded or blow up in
finite time were derived. With regard to the conditions (1.9), (1.13) and (1.14), we see
that if n > 3 and m > 0 as well as —sm < K, then

2 2
max{m—I— —,Ii} = max{m+ —li,l{} = K.
n n

Thus we know that the critical value is a4+ ¢ = k in this case. However, in the cases that
n € {1,2} and that n > 3 and m > 0 as well as "sm > &, the conditions (1.9), (1.13)
and (1.14) are not optimal. Moreover, the special cases are as follows:

e In the case that m = a = 1, behavior of solutions is an open problem when
max{%,/f — 1} </< %/{ (see Figures 5 and 6).

1 14
2/ T l=rk-1
% < /
finite-time ,
blow-up p— finite- t1me/
Y, A %blow up
N_y— =
n : : n—2 ~y
/: : )
/o : : - VA N
/ boundedness % -
// : boundedness
K K
O 1 142 O 1 1+2 o
Figure 5: n € {1,2} and m=a =1 Figure 6: n >3 and m=a =1
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e In the case that m =1 and k < (—

from Figure 7 we have an open question of

whether solutions remain bounded or blow up when max {1 + E /i} <atl< 1—{—n/1

_

%

14
1+ 25 ///
max {1+ 2.}, % e
—\ /////
O max{1+5m} 1+nn

Figure 7: m =1 and s < =

e In the case that a = 1 and ¢ > 0, there is an open problem for behavior of solutions
when n = 1 and max{x —1,m+ 1} < ¢ <max{2k —1,m+ 2k —1}. Also, the same

question exists when n > 2 and max {/1 —1,m—

(1=3)y<f=m—(1-2r).

Moreover, in the case that o > 0 and ¢ = 1, we obtain regions that ¢ is replaced by

a in Figures 8 and 9.

{=m-+2rk—1
%/_/%

7 finite-time ,
blow—up/ Cl=m+1

o e
2k — 1 4

pA— . A
, boundedness

//A‘V

e |

kK—2 O

Figure 8: n=1and a=1
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