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1. INTRODUCTION

In this paper we are concerned with the problem of finding a fixed-point
of a nonexpansive self-mapping P defined on a closed convex set C of a
real Hilbert space X. When P is strongly nonexpansive, that is, for all

< < < <x, y g C one has Px y Py F u x y y with 0 F u - 1, the well-known
Banach principle asserts that a fixed point x* exists and it is unique.
Moreover, the sequence generated by the method of successive approxima-
tion strongly converges to x* and the convergence is stable with respect to
perturbations of P. As u goes to 1, the problem is a priori unstable and it
is necessary to apply some regularizing procedures. At the same time, the
existence of x* is asserted on bounded closed convex set C but the
convergence can only be weak. Hereafter, we are interested in a less

Ž . Ž .standard situation i.e., u s 1 and in covering the case where 1.1 has
multiple solutions. Assuming that the fixed points set, S, is nonempty, we
propose viscosity approximation methods which generate sequences that
strongly converge to particular fixed-points of P. To this end we associate
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VISCOSITY APPROXIMATION METHODS 47

to the initial problem, namely,

find x g C such that x s P x , 1.1Ž . Ž .

the following approximate well-posed problem

1 «k
find x g C such that x s P x q p x , 1.2Ž . Ž . Ž .k k k k1 q « 1 q «k k

� 4where « is a sequence of positive real numbers having to go to zero andk
Ž .p : X ª C is a strongly nonexpansive mapping with constant u .

Note that Banach’s theorem ensures the existence and uniqueness of x .k
Ž .Moreover, by taking p s 0 or p x s x for all x g X we recover the0

Žwell-known continuous regularization method as a special case see, for
w x.example 1, 2 . All definitions and notations used throughout this work are

the usual ones in convex and nonlinear analysis and they can be found in
w xthe book of Brezis 5 .´

2. THE MAIN RESULTS

� 4THEOREM 2.1. The sequence x generated by the proposed methodk
strongly con¨erges to the unique solution of the ¨ariational inequality

² :find x g S such that I y p x , x y x F 0 ; x g S, 2.3Ž . Ž .˜ ˜ ˜

in other words, the unique fixed-point of the operator proj (p .S

Ž . Ž .Ž .Proof. We have y« I y p x s I y P x , by invoking thek k k
Ž .monotonocity of I y P , we get

² :I y p x , x y x G 0 ; x g S. 2.4Ž . Ž .k k

Ž .On the other hand, strong monotonicity of I y p yields

² : < < 2I y p x y I y p x , x y x G 1 y u x y x . 2.5Ž . Ž . Ž . Ž .k k k

Combining the last inequalities we obtain

² : < < 2I y p x , x y x G 1 y u x y x ; x g S. 2.6Ž . Ž . Ž .k k

Thus,

y1< <x y x F 1 y u I y p x ; x g S, 2.7Ž . Ž . Ž .k

� 4which implies the boundedness of x . Let x be any weak-cluster point ofk
� 4 � 4x , there exists a subsequence x that converges weakly to x.k kn
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Ž .From 1.2 , we can write

1
0 s I y p q I y P x . 2.8Ž . Ž . Ž .knž /«kn

Žw x. � Ž .4Thanks to a result of Lions 8, Proposition 2 , we have that 1r« I y Pk
graph converges to N , the normal cone to the solution set. This combinedS

w x �Ž .with a result of Brezis 5 gives the graph convergence of I y p q´
Ž .4 Ž . Ž .1r« I y P to I y p q N . Now passing to the limit in relation 2.8k S

and taking into account the fact that the graph of a maximal monotone
operator is weakly]strongly closed, we infer

0 g I y p x q N x , that is x s proj p x . 2.9Ž . Ž . Ž . Ž .Ž .S S

Thus, x s x, the weak cluster point being unique, the whole sequence˜
weakly converges to x. The desired result follows by setting x s x in˜ ˜

Ž .Relation 2.6 and passing to the limit.

Ž . .When p s 0, resp. p x s x for all x g X we recover the conver-0
gence result of the continuous regularization method to the element of

Ž . Ž Ž .. Ž wminimal norm, i.e., x s proj 0 resp. x s proj x see, for example, 1;˜ ˜S S 0
x.2, Theorem 3.2 . Let us now consider the following iterative method which

� 4generates from an initial point z a sequence z by0 k

1 «k
z s P z q p z , 2.10Ž . Ž . Ž .k ky1 ky11 q « 1 q «k k

� 4 � 4P, p , and « are as above. We show that z and x have the samek k
asymptotical behavior.

q` < <THEOREM 2.2. Suppose Ý « s q` and lim 1r« y 1r«ks1 k k ªq` k ky1
� 4s 0. Then, for all z , the sequence z con¨erges strongly to x.̃0 k

Ž . Ž .Proof. From 1.2 and 2.10 , we have

1 q u«k
< < < < < <z y x F z y x q x y x . 2.11Ž .Ž .k k ky1 ky1 k ky11 q «k

Ž . Ž . Ž . Ž .Since y« I y p x s I y P x and y« I y p x s I y P xk k k ky1 ky1 ky1
Ž .and thanks to the monotonicity of I y P , we get

«k2< < ² :x y x F p x y p x , x y x q 1 yŽ . Ž .k ky1 k ky1 k ky1 ž /«ky1

² : ² := x , x y x y p x , p x y p x .Ž . Ž . Ž .Ž .k k ky1 k k ky1
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� 4Since p is strongly nonexpansive and x is bounded, there exists ak
constant C such that

«k
< <x y x F C 1 y . 2.12Ž .k ky1 «ky1

Ž w x.We conclude by invoking the following result see, for example, 11 : Let
m G 0 and g G 0 such that Ýq` g s q` and m rg ª 0; if thek k ks1 k k k

� 4 Ž .sequence a satisfies 0 F a F 1 y g a q m then a ª 0.k k k ky1 k k

Ž .When p s 0 or p x s x for all x g X, we recover as a special case a0
Žw x w x.result given in 1 which is closely related to a result in 2 .

3. LINK WITH OTHER SELECTION METHODS

3.1. Con¨ex Optimization

Let f be a convex lower semicontinuous function and consider the
problem of finding a minimizer of f on X. A simple calculation shows that

;l ) 0, x s Argmin f m 0 g ­ f x m x s prox x ,Ž . Ž .˜ ˜ ˜ ˜l f

3.13Ž .

where ­ f stands for the convex subdifferential of f and prox is thel f
unique minimizer of the Moreau]Yosida approximate of f , namely,

1 2< <f x s inf f y q x y y . 3.14Ž . Ž . Ž .l ½ 52lygX

Ž . y1Žf is differentiable and its gradient is given by =f s ­ f [ l I yl l l

.prox and it is well known that the proximal mapping, prox : x ªl f l f
prox x, is nonexpansive.l f

q � 4By taking P s prox and p s prox , g : X ª R j q` being al f l g
Ž .strongly convex with modulus ar2 and lower semicontinuous function, S

is nothing but Argmin f , the viscosity approximation method corresponds
to

x s Argmin f x q « g x ; x g X , 3.15� 4Ž . Ž . Ž .l, k l k l

and x is characterized byl̃

x s Argmin g x ; x g Argmin f . 3.16� 4Ž . Ž .l̃ l
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In what follows we show that by letting l go to 0, we obtain at the limit a
w xviscosity principle proposed by Attouch 3 .

� 4 Ž . Ž .PROPOSITION 3.1. The sequence x , x defined by 3.15 ] 3.16 strongly˜l, k l

� 4con¨erges to x , x gï en by˜k

x s Argmin f x q « g x with x s Argmin g x .� 4Ž . Ž . Ž .˜k k
xgX xgS

Ž .Proof. The optimality condition of 3.16 gives

0 g =g x q N x in other words x s proj prox x . 3.17Ž .Ž . Ž .˜ ˜ ˜ ˜Ž .l l S l l S l g l

By taking x g S l dom ­ g, and according to the fact that prox is alg
1contraction with modulus , we have

1 q la

1
< <x y proj prox x F x y x . 3.18Ž . Ž .˜ ˜l S l g l1 q la

This implies

1 q la
y1< < < <x y x F x y prox x s l q a ­ g xŽ . Ž . Ž .˜ ll l gla

y1 <F l q a ­ g 8 x ,Ž . Ž . Ž .
Ž . Ž .­ g 8x stands for the element of minimal norm of the convex set ­ g x .

� 4From this we infer that x is bounded. Let x be a weak-cluster point of˜ ˜l

� 4 � 4x , there exists a subsequence x which weakly converges to x. Since˜l ln

Ž .;l ) 0, g F g and according to 3.16 , we can writel

g x F g x ; x g Argmin f . 3.19Ž . Ž .Ž .˜l l

Passing to the limit in the last inequality and taking into account the fact
Žthat g Mosco converges to g for definition and properties of the Moscol

w x.convergence, we refer to Mosco 10 , we obtain

g x F lim inf g x F g x ; x g Argmin f . 3.20Ž . Ž . Ž .˜ ˜Ž .l ln nnªq`

� 4As g is strongly convex, x is unique and hence the whole sequence x˜ l

weakly converges to x.̃
Ž .On the other hand, the optimality condition of 3.15 gives

0 g ­ f q « g x s =f x q « =g x ,Ž . Ž . Ž .l k l l , k l l , k k l l , k

which can be rewritten as

1 «
x s prox x q prox x .Ž . Ž .l, k l f l , k l g l , k1 q « 1 q «
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Let x g dom ­ f l dom ­ g, we have

1 «
x y prox x q prox xŽ . Ž .l, k l f l g1 q « 1 q «

1 «
< <F 1 q x y x ,l, kž /1 q « 1 q l«

from which we infer

1 q la
< <x y x F ­ f x q « ­ g xŽ . Ž . Ž . Ž .Ž .l ll , k k«a

1 q la
F ­ f 8 x q « ­ g 8 x .Ž . Ž . Ž . Ž .Ž .k«a

� 4This implies the boundedness of x .l, k
� 4Now let x be a weak-cluster point of x . There exists a subsequencek l, k

� 4x which weakly converges to x . Since for all l ) 0, f F f , andl , k k ln

g F g, we can writel

f x q « g x F f x q « g x ; x g X . 3.21Ž . Ž . Ž . Ž . Ž .l k k l k k

Passing to the limit in the last inequality and using the Mosco convergence
of f q « g to f q « g, we getl k l k

f x q g x F lim inf f q « g xŽ . Ž . Ž .Ž .k k l k l l , kn n nl ª0n

F f x q « g x for all x g X .Ž . Ž .k

As f q « g is also strongly convex, this implies that x is unique, hencek k
� 4the whole sequence x weakly converges to x . The convergence ofl, k k

� 4 � 4x , x to x , x is in fact strong. Indeed since the strong convexity of g˜ ˜l, k l k l

is equivalent to strong monotonicity of =g , we havel

< < 2² :=g x y =g x , x y x G a x y x . 3.22Ž . Ž .Ž .˜ ˜ ˜ ˜ ˜ ˜l l l l l l

Ž .On the other hand, from 3.17 we get

² :=g x , x y x G 0 ; x g S 3.23Ž .Ž .˜ ˜l l l

Ž .which combined with 3.22 implies

< < 2 ² :a x y x F =g x , x y x . 3.24Ž . Ž .˜ ˜ ˜ ˜ ˜l l l l
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It is easy to check that the modulus of strong convexity for =g is given byl
a

a s . Now, by passing to the limit in the last inequality and by takingl 1 q a l

Ž . Ž . Ž . Ž . Ž .into account the fact that =g x s ­ g x strongly converges to ­ g 8 x ,˜ ˜ ˜l l

we obtain

< <lim x y x s 0. 3.25Ž .˜ ˜l
lª0

As f q « g is also strongly convex, mimicking the proof above we get thek
strong convergence of x to x . The limit-selection principle takesl, k k

x s Argmin f x q « g x and x s Argmin g x . 3.26� 4Ž . Ž . Ž . Ž .˜k k
xgX xgS

w xThis selection principle has already been given in Attouch 3 . Here we
obtain it as a consequence of Theorem 2.1. It should be noticed that
applications of this result have been illustrated in some specific cases as

Žthe log-barrier and exponential penalty for linear programming see, for
w x.example, 4, 7 . More precisely, when considering an inequality con-

strained program of the form

� t 4min c x ; AX F b , 3.27Ž .
nxgR

� nwhich assumed to have a nonempty and bounded feasible set x g R ;
4Ax F b , the corresponding log-barrier approximation is given by

isn
t tmin c x y « ln b y a x , 3.28Ž .Ž .Ý i i½ 5nxgR is1

where a denotes the rows of A and an alternative penalty approach is toi
consider

isn
t tmin c x y « exp y b y a x r« . 3.29Ž .Ž .Ž .Ý i i½ 5nxgR is1

Ž . Ž Ž .. Ž .Problem 3.25 resp., 3.27 has a unique solution x resp. x which˜« «

converges when « ª 0 to the analytic center of the optimal set S, that is,
the unique solution of

min y ln b y at x where I s i ; at x s b ; x g S 3.30Ž .� 4Ž .Ý i i 0 i i½ 5
xgS ifI0

Ž w x .resp., to x g S called the centroid, see 7 for details .˜
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3.2. Monotone Inclusions

Let A: X ª X be a multivalued maximal monotone operator and
consider the problem of finding a zero of A. A short calculation gives

0 g A x m x s J A x ;l ) 0, 3.31Ž . Ž . Ž .˜ ˜ ˜l

A Ž .y1where J [ I q l A denotes the resolvent of A. It should be noticedl

that J A is a nonexpansive mapping. Now, by setting P s J A and p s J B,l l l

ŽB being a maximal monotone operator which is strongly monotone with
. y1Ž .modulus a , S is nothing but A 0 , the viscosity method can be

expressed with the Yosida approximates of A and B, namely, ;l ) 0,
k g N,

0 s A x q « B x and 0 g B x q N x , 3.32Ž . Ž . Ž .Ž . Ž .˜ ˜l l , k k l l , k l l S l

y1Ž A. y1Ž B.where A [ l I y J and B [ l I y J .l l l l

To make the connection with a method proposed by Attouch, let us
recall that B graph converges to B and that for all x g dom B we havel

< Ž . < < <B x F B8x , B8x stands for the element of minimal norm of the convexl

set Bx.
First, by taking an x g dom A l dom B and using the same arguments

as the convex optimization case, we infer

1 q al
< < < < < <x y x F B8x q A8x . 3.33Ž . Ž .l, k «a

On the other hand, by setting x g S l dom B, we get

< < y1 < <x y x F a q l B8x . 3.34Ž . Ž .l̃

� 4 � 4In the same way, we establish that x , x weakly converges to x , x˜ ˜l, k l k
satisfying

0 g Ax q « Bx and 0 g B x q N x . 3.35Ž . Ž . Ž .˜ ˜k k k S

Finally, as in the convex optimization case, the strong convergence can be
obtained by using the strong monotonicity of B .l

Now, we state an application to the semi-coercive elliptic problem: Let
V be an open bounded subset of R N, N g N* with regular boundary ­ V.

2Ž .Given f g L V , we consider the following boundary value problem: find
1Ž .u g H V , such that

yDu s f on V ,

3.36Ž .­ u
s 0 on ­ V .

­ n
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1 Ž .Here, ­r­ n denotes the exterior normal derivative. Setting f s Hf x dx,
< <V

Ž . Ž .it is well known that 3.36 admits a solution unique upon a constant if,
Ž w x.and only if, f s 0 see, for example, Brezis and Lions 6 . The sequence´

� 4u generated by the viscosity approximation method, namely,«

« u y Du s f on V ,« «

3.37Ž .­ u« s 0 on ­ V
­ n

1Ž . Ž .converges in H V to u unique solution of minimal norm for 3.36 . This˜
is equivalent to

yDu s f on V ,˜
­ ũ

s 0 on ­ V ,
­ n 3.38Ž .

u x dx s 0.Ž .˜H
To conclude, we would like to emphasize that the extension of selection
methods to the problem of finding fixed-points of nonexpansive mappings
is justified by the fact that there exists nonexpansive mappings which are
not proximal mappings and are not resolvent operators. Indeed, if we
consider the following periodic problem: Given c g X, T ) 0, and f :
w x � 4 w x0, T = X ª R j q` , find an absolutely continuous function u: 0, T
ª X satisfying

du tŽ . w xy g ­ f t , u t , t g 0, T ,Ž .Ž .
dt 3.39Ž .
u 0 s u T s c.Ž . Ž .

ŽThen, assuming that, for any c g X, the solution x exists the uniquenessc
Ž . w x.being assured by the monotonicity of ­ f t, ? , see Moreau 9 , we define

Ž . Ž .P: X ª X by p c s x T . It is clear that the problem of finding fixed-c
Ž .points of P and 3.39 are equivalent problems. Moreover, thanks to the

Ž .same ‘‘argument which ensures the uniqueness in 3.39 , we get that P is a
Ž w x.nonexpansive self-mapping for more details see Moreau 9 .
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