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Abstract

This paper investigates the existence of minimal and maximal solutions of the periodic
boundary value problem for first-order impulsive differential equations by establishing two
comparison results and using the method of upper and lower solutions and the monotone
iterative technique.
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1. Introduction

The theory of impulsive differential equations has become an important area of
investigation in recent years (see Refs. [1,2,5,6,9]). In this paper we consider the
periodic boundary value problem for first-order impulsive ordinary differential
equations (PBVP)


x ′(t)= f (t, x(t)), t �= tk, t ∈ J ,
∆x(tk)= Ik(x(tk)), k = 1,2, . . . , p,
x(0)= x(T ),

(1)
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where f ∈ C(J ×R,R), J = [0, T ], Ik ∈ C(R,R), ∆x(tk) = x(t+k ) − x(tk)

(k = 1,2, . . . , p), 0< t1 < t2 < · · ·< tk < · · ·< tp < T .

The method of upper and lower solutions coupled with the monotone iterative
technique has been widely used in the treatment of nonlinear differential equations
in recent years (see Refs. [3–9]). The basic idea of this method is that using
the upper and lower solutions as an initial iteration one can construct monotone
sequences from a corresponding linear equation, and these sequences converge
monotonically to the maximal and minimal solutions of the nonlinear equation.
When the method is applied to impulsive differential equations, it usually need a
suitable impulsive differential inequality as a comparison principle.

The results in the paper are inspired by Lakshmikantham and Leela [4], Liu [5],
Vatsala and Sun [6]. Here we establish two comparison principles, i.e., Lemmas
2 and 3. Then we discuss the existence and uniqueness of the solutions for
linear periodic boundary value problems for impulsive differential equation, i.e.,
Lemmas 4 and 5. Finally, by use of the monotone iterative technique and the
method of upper and lower solutions we obtain the existence theorems of extremal
solutions for the PBVP (1).

2. Preliminaries and comparison principles

Let PC(J,R) = {x :J → R; x(t) is continuous everywhere except sometk
at whichx(t−k ) andx(t+k ) exist andx(t−k ) = x(tk)}. Let J ′ = J\{t1, t2, . . . , tp},
Ω = PC(J,R) ∩ C1(J ′,R). A function x ∈ Ω is called a solution of PBVP (1)
if it satisfies (1).

Let t0 = 0, tp+1 = T . We list the following assumptions for convenience.

(A0) There exist functionα,β ∈Ω, β(t) � α(t) (∀t ∈ J ) such that{
α′(t)� f (t, α(t))−Mrα, t �= tk, t ∈ J ,

∆α(tk)� Ik(α(tk)), k = 1,2, . . . , p,
(2)

and {
β ′(t) � f (t, β(t))+Mrβ, t �= tk, t ∈ J ,

∆β(tk)� Ik(β(tk)), k = 1,2, . . . , p,
(3)

whereM > 0, rα andrβ are given by

rα =
{ [α(0)−α(T )]∑p

i=0

∏
t0<tk<ti

(1+Lk)−1(e−Mti−e−Mti+1)
, if α(0) > α(T ),

0, if α(0) � α(T ),

rβ =
{ [β(T )−β(0)]∑p

i=0
∏

t0<tk<ti
(1+Lk)−1(e−Mti−e−Mti+1)

, if β(0) < β(T ),

0, if β(0)� β(T );
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that is,α(t) andβ(t) are lower and upper solutions of PBVP (1), respec-
tively.

(A1) The functionf ∈C(J ×R,R) satisfies

f (t, x)− f (t, y)� M(x − y),

wheneverβ(t)� y � x � α(t), t ∈ J, whereM > 0.
(A2) The functionsIk ∈C(R,R) satisfy

Ik(x)− Ik(y)� Lk(x − y),

wheneverβ(tk) � y � x � α(tk), and k = 1,2, . . . , p, whereLk < 1,
k = 1,2, . . . , p.

(B0) There exist functionsα,β ∈ Ω, α(t) � β(t) (∀t ∈ J ) such that{
α′(t) � f (t, α(t))−Mr̄α, t �= tk, t ∈ J ,

∆α(tk)� Ik(α(tk)), k = 1,2, . . . , p,
(4)

and {
β ′(t) � f (t, β(t))+Mr̄β, t �= tk, t ∈ J ,

∆β(tk)� Ik(β(tk)), k = 1,2, . . . , p,
(5)

whereM > 0, r̄α andr̄β are given by

r̄α =



[α(0)−α(T )]eMT∑p
i=0

∏
ti<tk<tp+1

(1−Lk)(e
Mti+1−eMti )

, if α(0) > α(T ),

0, if α(0)� α(T ),

r̄β =



[β(T )−β(0)]eMT∑p

i=0

∏
ti<tk<tp+1

(1−Lk)(e
Mti+1−eMti )

, if β(0) < β(T ),

0, if β(0)� β(T );

that is,α(t) andβ(t) are lower and upper solutions of PBVP (1), respec-
tively.

(B1) The functionf ∈C(J ×R,R) satisfies

f (t, x)− f (t, y)� −M(x − y),

wheneverα(t) � y � x � β(t), t ∈ J, whereM > 0.
(B2) The functionsIk ∈C(R,R) satisfy

Ik(x)− Ik(y)� −Lk(x − y),

wheneverα(tk) � y � x � β(tk), and k = 1,2, . . . , p, whereLk < 1,
k = 1,2, . . . , p.

Lemma 1 [1]. Assume that

(C0) the sequence{tk} satisfies0 � t0 < t1 < t2 < · · · < tk < · · · with limk→∞ tk
= ∞;
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(C1) m ∈ PC1(R+,R) is left continuous attk for k = 1,2, . . . ;
(C2) for k = 1,2, . . . , t � t0,

m′(t) � p(t)m(t) + q(t), t �= tk, (6)

m(t+k )� dkm(tk)+ bk, (7)

wherep,q ∈C(R+,R), dk � 0 andbk are real constants.

Then

m(t)�m(t0)
∏

t0<tk<t

dk exp

( t∫
t0

p(s) ds

)

+
t∫

t0

∏
s<tk<t

dk exp

( t∫
s

p(σ ) dσ

)
q(s) ds

+
∑

t0<tk<t

∏
tk<tj<t

dj exp

( t∫
tk

p(s) ds

)
bk. (8)

Remark 1. If the inequalities (6) and (7) are reversed then in the conclusion the
inequality (8) is also reversed.

Lemma 2. Assume thatm ∈Ω satisfies{
m′(t) � Mm(t)+Mrm, t �= tk, t ∈ J ,

∆m(tk) � Lkm(tk), k = 1,2, . . . , p,
(9)

whereM > 0, Lk >−1 for k = 1,2, . . . , p,
∏p

k=1(1+Lk)
−1e−MT < 1, and

rm =
{ [m(T )−m(0)]∑p

i=0

∏
t0<tk<ti

(1+Lk)−1(e−Mti−e−Mti+1)
, if m(0) < m(T ),

0, if m(0)� m(T ).

Thenm(t) � 0 for t ∈ J.

Proof. Consider inequalities (9). In view of Lemma 1, we get

m(T )�m(t)
∏

t<tk<T

(1+Lk)e
M(T−t )

+Mrm

T∫
t

∏
s<tk<T

(1+Lk)e
M(T−s) ds. (10)

From (10), we have
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m(t)�m(T )
∏

t<tk<T

(1+Lk)
−1e−M(T−t )

− Mrm
∫ T

t

∏
s<tk<T (1+Lk)e

M(T−s) ds∏
t<tk<T (1+Lk)eM(T−t )

. (11)

Sincerm � 0, it is enough to showm(T )� 0, from which the lemma follows.
Let t = 0 in (11). We get

m(0)�m(T )

p∏
k=1

(1+Lk)
−1e−MT

− Mrm
∫ T

0

∏
s<tk<T (1+Lk)e

M(T−s) ds∏p
k=1(1+Lk)eMT

=m(T )

p∏
k=1

(1+Lk)
−1e−MT

−Mrm

p∏
k=1

(1+Lk)
−1

[ t1∫
0

∏
s<tk<T

(1+Lk)e
−Ms ds

+
t2∫

t+1

∏
s<tk<T

(1+Lk)e
−Ms ds + · · ·

+
ti+1∫
t+i

∏
s<tk<T

(1+Lk)e
−Ms ds + · · ·

+
T∫

t+p

∏
s<tk<T

(1+Lk)e
−Ms ds

]

=m(T )

p∏
k=1

(1+Lk)
−1e−MT

+ rm

p∏
k=1

(1+Lk)
−1

(
p∑
i=0

∏
ti<tk<tp+1

(1+Lk)
(
e−Mti+1 − e−Mti

))

=m(T )

p∏
k=1

(1+Lk)
−1e−MT

− rm

p∑
i=0

∏
t0<tk<ti

(1+Lk)
−1(e−Mti − e−Mti+1

)
.



72 Z. He, J. Yu / J. Math. Anal. Appl. 272 (2002) 67–78

Consider the casem(0)� m(T ); thenrm = 0. Supposem(T ) > 0. We have

m(T ) � m(0)� m(T )

p∏
k=1

(1+Lk)
−1e−MT <m(T ),

which is a contradiction. Som(T ) � 0.
If m(0) < m(T ), thenrm > 0. Supposem(T ) > 0. Then

m(0)�m(T )

p∏
k=1

(1+Lk)
−1e−MT

− [m(T )−m(0)]∑p

i=0

∏
t0<tk<ti

(1+Lk)−1(e−Mti − eMti+1)

×
p∑

i=0

∏
t0<tk<ti

(1+Lk)
−1(e−Mti − e−Mti+1

)

=m(T )

[
p∏

k=1

(1+Lk)
−1e−MT − 1

]
+m(0)

<m(0),

which is also a contradiction. Thereforem(T ) � 0. The proof of Lemma 2 is
complete. ✷
Lemma 3. Assume thatm ∈Ω satisfies{

m′(t) � −Mm(t)−Mr̄m, t �= tk, t ∈ J ,

∆m(tk) � −Lkm(tk), k = 1,2, . . . , p,
(12)

whereM > 0, Lk < 1 for k = 1,2, . . . , p,
∏p

k=1(1−Lk)e
−MT < 1, and

r̄m =



[m(0)−m(T )]eMT∑p
i=0

∏
ti<tk<tp+1

(1−Lk)(e
Mti+1−eMti )

, if m(0) > m(T ),

0, if m(0)� m(T ).

Thenm(t) � 0 for t ∈ J.

Proof. Consider inequalities (12). By Lemma 1 we get

m(t)�m(0)
∏

0<tk<t

(1−Lk)e
−Mt

−Mr̄m

t∫
0

∏
s<tk<t

(1−Lk)e
M(s−t ) ds. (13)

Sincer̄m � 0, it is enough to showm(0)� 0, from which the lemma follows.
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Let t = T in (13). We have

m(T )�m(0)
p∏

k=1

(1−Lk)e
−MT −Mr̄m

T∫
0

∏
s<tk<T

(1−Lk)e
M(s−T ) ds

=m(0)
p∏

k=1

(1−Lk)e
−MT −Mr̄m

[ t1∫
0

∏
s<tk<T

(1−Lk)e
M(s−T ) ds

+
t2∫

t+1

∏
s<tk<T

(1−Lk)e
M(s−T ) ds + · · ·

+
ti+1∫
t+i

∏
s<tk<T

(1−Lk)e
M(s−T ) ds + · · ·

+
T∫

t+p

∏
s<tk<T

(1−Lk)e
M(s−T ) ds

]

=m(0)
p∏

k=1

(1−Lk)e
−MT

− r̄m

p∑
i=0

∏
ti<tk<tp+1

(1−Lk)
(
eMti+1 − eMti

)
e−MT .

Consider the casem(0)� m(T ); thenr̄m = 0. Supposem(0) > 0. We have

m(0)� m(T ) � m(0)
p∏

k=1

(1−Lk)e
−MT <m(0),

which is a contradiction. Som(0)� 0.
If m(0) > m(T ), thenr̄m > 0. Supposem(0) > 0. Then

m(T )�m(0)
p∏

k=1

(1−Lk)e
−MT

− [m(0)−m(T )]eMT∑p

i=0

∏
ti<tk<tp+1

(1−Lk)(eMti+1 − eMti )

×
p∑

i=0

∏
ti<tk<tp+1

(1−Lk)
(
eMti+1 − eMti

)
e−MT
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=m(0)

[
p∏

k=1

(1−Lk)e
−MT − 1

]
+m(T )

<m(T ),

which is also a contradiction. Thereforem(0) � 0. The proof of Lemma 3 is
complete. ✷

Let us consider the following periodic boundary value problems of linear
impulsive differential equations (PBVP):


u′(t)−Mu(t)= σ(t), t �= tk, t ∈ J ,
∆u(tk)= Lku(tk)+ Ik(η(tk))−Lkη(tk), k = 1,2, . . . , p,
u(0)= u(T ),

(14)

and 

u′(t)+Mu(t)= σ(t), t �= tk, t ∈ J ,

∆u(tk)= −Lku(tk)+ Ik(η(tk))+Lkη(tk), k = 1,2, . . . , p,

u(0)= u(T ),

(15)

whereM, Lk (k = 1,2, . . . , p) are constants,Ik ∈ C(J,R) (k = 1,2, . . . , p),
σ ∈ PC(J,R) andη ∈Ω.

In view of Lemma 1, we can show the following two lemmas easily.

Lemma 4. LetM > 0, Lk >−1 for k = 1,2, . . . , p. If
p∏

k=1

(1+Lk)
−1e−MT < 1,

then the PBVP(14) has a unique solution

u(t)= u(0)
∏

0<tk<t

(1+Lk)e
Mt +

t∫
0

∏
s<tk<t

(1+Lk)e
M(t−s)σ (s) ds

+
∑

0<tk<t

∏
tk<tj<t

(1+Lj)e
M(t−tk)

[
Ik(η(tk))−Lkη(tk)

]
, (16)

where

u(0)= u(T )

=
(

1−
p∏

k=1

(1+Lk)e
MT

)−1{ T∫
0

∏
s<tk<T

(1+Lk)e
M(T−s)σ (s) ds

+
∑

0<tk<T

∏
tk<tj<T

(1+Lj )e
M(T−tk)

[
Ik(η(tk))−Lkη(tk)

]}
. (17)
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Lemma 5. LetM > 0, Lk < 1 for k = 1,2, . . . , p. If
p∏

k=1

(1−Lk)e
−MT < 1,

then the PBVP(15) has a unique solution

u(t)= u(0)
∏

0<tk<t

(1−Lk)e
−Mt +

t∫
0

∏
s<tk<t

(1−Lk)e
−M(t−s)σ (s) ds

+
∑

0<tk<t

∏
tk<tj<t

(1−Lj )e
−M(t−tk)

[
Ik(η(tk))+Lkη(tk)

]
, (18)

where

u(0)= u(T )

=
(

1−
p∏

k=1

(1−Lk)e
−MT

)−1{ T∫
0

∏
s<tk<T

(1−Lk)e
−M(T−s)σ (s) ds

+
∑

0<tk<T

∏
tk<tj<T

(1−Lj)e
−M(T−tk)

[
Ik(η(tk))+Lkη(tk)

]}
. (19)

3. The main results

Theorem 1. Assume that conditions(A0)–(A2) hold and
p∏

k=1

(1+Lk)
−1e−MT < 1.

Then there exist monotone sequences{αn(t)}, {βn(t)} with α0 = α, β0 = β, such
that limn→∞ αn(t) = r(t), limn→∞ βn(t) = ρ(t) uniformly onJ , andρ(t), r(t)
are the minimal and the maximal solutions of the PBVP(1), respectively, such
that

β0 � β1 � β2 � · · · � βn � ρ � x � r � αn � · · · � α2 � α1 � α0 onJ,

wherex is any solution of the PBVP(1) such thatβ(t) � x(t)� α(t) onJ.

Proof. Let [β,α] = {x ∈Ω : β(t) � x(t)� α(t), t ∈ J }. For anyη ∈ [β,α], con-
sider the PBVP (14), where

σ(t)= f
(
t, η(t)

)−Mη(t).

By Lemma 4, PBVP (14) possesses a unique solutionu ∈ Ω . We define an
operatorA by u =Aη, then the operatorA has the following properties:
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(i) β � Aβ , Aα � α;
(ii) A is monotone nondecreasing in[β,α]; i.e., for anyη1, η2 ∈ [β,α],

η1 � η2 implies Aη1 � Aη2.

We consider here only the case whereα(0) > α(T ) andβ(0) < β(T ). To prove
(i), setm = β0 − β1, whereβ1 =Aβ0. Then, from(A0) and (14), we have

m′(t) = β ′
0(t)− β ′

1(t)

� f
(
t, β0(t)

)+M
[β0(T )− β0(0)]∑p

i=0

∏
t0<tk<ti

(1+Lk)−1(e−Mti − e−Mti+1)

− [
Mβ1(t)+ f

(
t, β0(t)

)−Mβ0(t)
]

=Mm(t)+M
[(β0(T )− β1(T ))− (β0(0)− β1(0))]∑p

i=0

∏
t0<tk<ti

(1+Lk)−1(e−Mti − e−Mti+1)

=Mm(t)+Mrm, t �= tk, t ∈ J,

∆m(tk) =∆β0(tk)−∆β1(tk)

� Ik
(
β0(tk)

)− [
Lkβ1(tk)+ Ik

(
β0(tk)

)−Lkβ0(tk)
]

= Lkm(tk), k = 1,2, . . . , p,

m(0) < m(T ).

By Lemma 2, we getm(t) � 0 onJ , i.e.,β � Aβ. Similar arguments show that
Aα � α.

To prove (ii), letu1 =Aη1, u2 =Aη2, whereη1 � η2 onJ andη1, η2 ∈ [β,α].
Setm = u1 − u2. Using(A1), (A2) and (14), we get

m′(t) = u′
1(t)− u′

2(t)

= [
Mu1(t)+ f

(
t, η1(t)

)−Mη1(t)
]

− [
Mu2(t)+ f

(
t, η2(t)

)−Mη2(t)
]

� M
(
u1(t)− u2(t)

)=Mm(t), t �= tk, t ∈ J,

∆m(tk)=∆u1(tk)−∆u2(tk)

= [
Lku1(tk)+ Ik

(
η1(tk)

)−Lkη1(tk)
]

− [
Lku2(tk)+ Ik

(
η2(tk)

)−Lkη2(tk)
]

�Lkm(tk), k = 1,2, . . . , p,

m(0)=m(T ).

In view of Lemma 2, we havem(t) � 0 onJ, i.e.,u1 � u2.
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It is now easy to define the sequences{αn(t)}, {βn(t)} with α0 = α, β0 = β

such thatαn+1 = Aαn, βn+1 = Aβn. From (i) and (ii), the functions{αn(t)},
{βn(t)} satisfy the inequalities

β0 � β1 � β2 � · · · � βn � · · · � αn � · · · � α2 � α1 � α0 onJ,

and eachαn,βn ∈ Ω (n = 1,2, . . .) satisfies

α′
n(t)−Mαn(t) = σn−1(t), t �= tk, t ∈ J ,

∆αn(tk)= Lkαn(tk)+ Ik(αn−1(tk))−Lkαn−1(tk), k = 1,2, . . . , p,

αn(0)= αn(T ),

and 

β ′
n(t)−Mβn(t) = σ̄n−1(t), t �= tk, t ∈ J ,

∆βn(tk)= Lkβn(tk)+ Ik(βn−1(tk))−Lkβn−1(tk), k = 1,2, . . . , p,

βn(0)= βn(T ),

where

σn−1(t) = f
(
t, αn−1(t)

)−Mαn−1(t),

σ̄n−1(t) = f
(
t, βn−1(t)

)−Mβn−1(t).

Therefore there existρ, r such that limn→∞ αn(t) = ρ(t), limn→∞ βn(t) =
r(t) uniformly on J . Clearly ρ, r satisfy the PBVP (1). To prove thatρ, r
are extreme solutions of PBVP (1), letx(t) be any solution of the PBVP (1)
such thatx ∈ [β,α]. Suppose that there exists a positive integern such that
βn(t)� x(t) � αn(t) onJ . Then, settingm= βn+1 − x, we have

m′(t)= β ′
n+1(t)− x ′(t)

= [
Mβn+1(t)+ f

(
t, βn(t)

)−Mβn(t)
]− f

(
t, x(t)

)
� Mm(t), t �= tk, t ∈ J,

∆m(tk)=∆βn+1(tk)−∆x(tk)

= [
Lkβn+1(tk)+ Ik

(
βn(tk)

)−Lkβn(tk)
]− Ik

(
x(tk)

)
� Lkm(tk), k = 1,2, . . . , p,

m(0)=m(T ).

By Lemma 2,m(t) � 0 on J , i.e., βn+1(t) � x(t) on J . Similarly, we obtain
x(t) � αn+1(t) on [0, T ]. Sinceβ0(t) � x(t) � α0(t) on J , by induction we get
βn(t) � x(t) � αn(t) on J for everyn. Therefore,ρ(t) � x(t) � r(t) on J by
taking limit asn → ∞. The proof of the theorem is complete.✷
Theorem 2. Assume that conditions(B0)–(B2) hold and

p∏
k=1

(1−Lk)e
−MT < 1.
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Then there exist monotone sequences{αn(t)}, {βn(t)} with α0 = α, β0 = β, such
that limn→∞ αn(t) = ρ(t), limn→∞ βn(t) = r(t) uniformly onJ , andρ(t), r(t)
are the minimal and the maximal solutions of the PBVP(1), respectively, such
that

α0 � α1 � α2 � · · · � αn � ρ � x � r � βn � · · · � β2 � β1 � β0 onJ,

wherex is any solution of the PBVP(1) such thatα(t) � x(t)� β(t) onJ.

We leave out the proof of this theorem because it can be complete in the same
way as the proof of Theorem 1.
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