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Abstract

In this paper some new approximate fixed point theorems for multifunctions in Banach s
are presented and a method is developed indicating how to use approximate fixed point theo
proving the existence of approximate Nash equilibria for non-cooperative games.
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1. Introduction

In this paper we are interested in multifunctionsF :X →→ X which possess (fixe
points or) approximate fixed points. Fixed point theorems deal with sufficient cond
onX andF guaranteeing that there exists a fixed point, that is, anx̂ ∈ X with x̂ ∈ F(x̂).
There are many fixed point theorems known on topological spaces (Brouwer [5], K

✩ Supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilita e loro Applicazioni (GNAM
and Universita di Napoli Federico II.

* Corresponding author.
E-mail addresses:branzeir@infoiasi.ro (R. Brânzei), morgan@unina.it (J. Morgan), scalzo@unina.it

(V. Scalzo), s.h.tijs@uvt.nl (S. Tijs).
0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00450-5



620 R. Brânzei et al. / J. Math. Anal. Appl. 285 (2003) 619–628

ch as
ies (cf.
are

t,

o-
rems,
eorems
s of the

ulti-
nd both

fixed
strong
unded
role.

rantee
cludes

Banach
ems. In
and in

x
-

f

-

[7],
tani [8], Banach [3], etc.) which have proved to be useful in many applied fields su
game theory, mathematical economics and the theory of quasi-variational inequalit
Baiocchi and Capelo [2]). IfX is a metric space, approximate fixed point theorems
interesting. Such theorems deal with sufficient conditions onX andF guaranteeing tha
for eachε > 0, there is anε-fixed point, i.e., anx∗ ∈ X with d(x∗,F (x∗)) � ε, where
d(x∗,F (x∗))= inf{d(x∗, z) | z ∈ F(x∗)}. In Tijs et al. [22], approximate fixed point the
rems in the spirit of Brouwer, Kakutani and Banach were derived. In the first two theo
in finite dimensional spaces, the compactness conditions used in the above quoted th
have been replaced by boundedness conditions. In the third one, the completenes
metric space (used in Banach’s contraction theorem) has been dropped.

In this paper we will present some new approximate fixed point theorems for m
functions defined on Banach spaces. Weak and strong topologies play here a role a
bounded and unbounded regions are considered.

The outline of the paper is as follows. In Section 2, we present some approximate
point theorems for closed or upper semicontinuous (with respect to the weak or
topologies) multifunctions on bounded, totally bounded convex regions or on unbo
convex regions, respectively. Here the notion of tame multifunction plays a crucial
Section 3 gives an outline of how to use approximate fixed point theorems to gua
that non-cooperative games have approximate Nash equilibria, and Section 4 con
with some remarks.

2. New approximate fixed point theorems

In this section,V will be a real Banach space and forF : X →→ X with X ⊆ V , the
set{x ∈ V | d(x,F (x))= infy∈F(x) ‖y − x‖ � ε} of theε-fixed points of the multifunction
F onX is denoted byFIXε(F ).

The assumptions of closedness and boundedness for a set of a reflexive real
space is an usual and classical assumption in many theoretical and applied probl
light of the Alaoglu theorem, a closed and bounded set is sequentially compact
these cases we have to deal with weak convergence.

Thus, first, we present two theorems where the weak topology plays a role.

Theorem 2.1. LetV be a reflexive real Banach space and letX be a bounded and conve
subset ofV with non-empty interior. Assume thatF :X→→X is a weakly closed multi
function(that is, a multifunction closed with respect to the weak topology) such thatF(x)
is a non-empty and convex subset ofX for eachx ∈X. Then FIXε(F ) 
= ∅ for eachε > 0.

Proof. Suppose without loss of generality that 0∈ intX. Let α = sup{‖x‖ | x ∈X}. Take
ε > 0 and 0< δ < 1 such thatδα � ε. LetY be the weakly compact and convex subset oX
defined byY = (1−δ)X, whereX is the closure ofX. Define the multifunctionG :Y →→
Y byG(x)= (1−δ)F (x) for all x ∈ Y . ThenG is a weakly closed multifunction with non
empty, convex and weakly compact values. But, with respect to the weak topology,V is an
Hausdorff locally convex topological vector space, so, in view of Glicksberg’s theorem
G has at least one fixed point onY . So there is anx∗ ∈ Y such thatx∗ ∈G(x∗)= (1− δ)×
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F(x∗). Then there is az ∈ F(x∗) such thatx∗ = (1 − δ)z, so‖z− x∗‖ = δ‖z‖ � δα � ε.
Hencex∗ is anε-fixed point ofF . ✷
Theorem 2.2. LetV be a reflexive and separable real Banach space and letX be a bounded
and convex subset ofV with non-empty interior. Assume thatF :X →→ X is a weakly
upper semicontinuous multifunction(that is, a multifunction upper semicontinuous w
respect to the weak topology) such thatF(x) is a non-empty and convex subset ofX for
eachx ∈X. Then FIXε(F ) 
= ∅ for eachε > 0.

Proof. As in the proof of Theorem 2.1, we assume that 0∈ intX and α = sup{‖x‖ |
x ∈ X}. Takeε > 0, 0< δ < 1 such thatδα � ε/2 andY = (1 − δ)X. Define the mul-
tifunctionG :Y →→ Y byG(x)= (1− δ)F (x) for all x ∈ Y .G is weakly upper semicon
tinuous. In fact, sinceV is a separable real Banach space andX is bounded, there exis
a metricdw onV such that the weak topology onX is induced by the metricdw (see, for
example, [6, Proposition 8.7]). Letx ∈ Y and assume thatA is a weakly open neighbou
hood ofG(x). For σ > 0, we denote withAσ the open set{y ∈ Y | dw(y,G(x)) < σ }.
SinceG(x) is weakly compact, we have thatdw(Y \A,G(x))= inf{dw(y, z) | y ∈ Y \A,
z ∈ G(x)} > 0, whereY \ A = {y ∈ Y | y /∈ A}. So, if 0< σ ′ < σ < dw(Y \ A,G(x)),
we haveG(x) ⊂ Aσ ′ ⊂ {y ∈ Y | dw(y,G(x)) � σ ′} ⊂ Aσ ⊂ A. In view of the weakly
upper semicontinuity of the multifunction(1− δ)F , there exists an open neighbourho
I of x such that(1 − δ)F (z) ⊂ Aσ ′ for all z ∈ I . ThereforeG(z) = (1 − δ)F (z) ⊆
{y ∈ Y | dw(y,G(x)) � σ ′} ⊂ A for all z ∈ I . So G is a weakly upper semicontinu
ous multifunction atx. In the light of [1, Proposition 4, p. 72],G is also a weakly
closed multifunction atx. Therefore, in view of Glicksberg’s theorem, there exists a p
x∗ ∈ Y such thatx∗ ∈ G(x∗). Hence, there existsz ∈ F(x∗) such thatx∗ = (1 − δ)z, so
‖z − x∗‖ = δ‖z‖ � δα � ε/2. Moreover, there isz′ ∈ F(x∗) such that‖z′ − z‖ < ε/2.
Hence‖z′ − x∗‖< ε, that is,x∗ ∈ FIXε(F ). ✷
Remark 2.1. Even if the assumption of “weakly closed graph onX” looks very strong,
it can be obtained for multifunctions whose fixed points are interesting. For exam
solution of a quasi-variational inequality is a fixed point of a suitable set-valued fun
which is weakly closed under classical assumptions. In fact, following Baiocchi and C
[2, p. 240], one can “reconduce the study of the quasi-variational inequality to the s
of a family of variational inequalities and to the finding of a fixed point for an appropr
transformation.” To obtain weak closedness of the graph of this appropriate transform
it is then sufficient to apply two results of Mosco [19, Theorems A and B] or follow
slight improvement by Lignola and Morgan [12, Corollary 2.2] forK =X.

In the next theorem the strong topology is involved.

Theorem 2.3. Let V be a real Banach space and letX be a convex and totally bounde
subset ofV with non-empty interior. Assume thatF :X→→X is a closed or upper sem
continuous multifunction such thatF(x) is a non-empty and convex subset ofX for each
x ∈X. Then FIXε(F ) 
= ∅ for eachε > 0.
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Proof. Assume without loss of generality that 0∈ intX. Takeε > 0 andη > 0. SinceX is
totally bounded there existsm ∈ N andx1, . . . , xm ∈X such thatX ⊆ ⋃m

i=1 B̊(xi, η) (see,
for example, [4]), where̊B(xi, η)= {y ∈ V | ‖y − xi‖< η}. Moreover, leth= max{‖xi‖ |
i ∈ {1, . . . ,m}}. If 0 < δ < 1 the setY = (1 − δ)X is a non-empty, convex and total
bounded subset ofV . SinceY is also closed,Y is complete and therefore compact.

First, we assume thatF is a closed multifunction and we take 0< δ < 1 such that
δ(η+h)� ε. Then the multifunctionG :Y →→ Y , defined byG(x)= (1− δ)F (x) for all
x ∈ Y , is closed. This implies by Glicksberg’s theorem thatG possesses a fixed pointx∗.
Then there is a pointz ∈ F(x∗) such thatx∗ = (1 − δ)z. SinceX ⊆ ⋃m

i=1 B̊(xi, η), there
exists anr ∈ {1, . . . ,m} such thatz ∈ B̊(xr, η). So‖x∗−z‖ = δ‖z‖ � δ(‖z−xr‖+‖xr‖) <
δ(η+ h)� ε. Hencex∗ ∈ FIXε(F ).

Assume now thatF is an upper semicontinuous multifunction. We take 0< δ < 1
such thatδ(η + h) � ε/2. Let G :Y →→ Y , defined byG(x) = (1 − δ)F (x) for all
x ∈ Y . We claim thatG is upper semicontinuous. Letx ∈ Y and assume thatA is an
open neighbourhood ofG(x). For eachσ > 0, we denote withAσ the open set{y ∈ Y |
infz∈G(x) ‖z−y‖< σ }. As in the proof of Theorem 2.2, we obtain thatG is an upper semi
continuous multifunction atx and is also a closed multifunction atx. In view of Glicks-
berg’s theorem, there exists a pointx∗ ∈ Y such thatx∗ ∈G(x∗) andz ∈ F(x∗) such that
x∗ = (1−δ)z. SinceX ⊆ ⋃m

i=1 B̊(xi, η), there existss ∈ {1, . . . ,m} such thatz ∈ B̊(xs, η),
so‖z−x∗‖ = δ‖z‖ � δ(‖z−xs‖+‖xs‖) < δ(η+h)� ε/2. Moreover, there exists a poi
z′ ∈ F(x∗) such that‖z′ − z‖< ε/2, so‖z′ − x∗‖< ε, that is,x∗ ∈ FIXε(F ). ✷

The next theorems deal with the existence of approximate fixed points for multi
tions on convex regions which are not necessarily bounded. Useful here is the notio
tame multifunction, which we introduce in

Definition 2.1. Let U be a normed space andX ⊆ U with 0 ∈X. A multifunction F :
X→→X is called atame multifunctionif, for eachε > 0, there is anR > 0 such that for
eachx ∈ B(0,R) ∩X the setF(x)∩B(0,R + ε) is non-empty, whereB(0,R)= {z ∈ U |
‖z‖ �R}.

Example 2.1. The mapF : [0,∞[→→ [0,∞[, defined by

F(x)= [
x + (x + 1)−1,∞[

for all x ∈ [0,∞[,
is a tame multifunction on the unbounded set[0,∞[. Moreover,F hasε-fixed points for
eachε > 0 (see Theorems 2.4 and 2.5).

Example 2.2. LetU be a normed space. LetF :U →→ U be a multifunction withF(x) 
=
∅ for eachx ∈ U . Suppose that the imageF(U) = {y ∈ U | y ∈ F(x) for somex ∈ U}
of F is a bounded set. ThenF is a tame multifunction (for eachε > 0, takeR = 1 +
sup{‖y‖, y ∈ F(U)}).

Remark 2.2. It follows from Example 2.2 that eachF :X→→X, whereX is a bounded
subset of a normed spaceU andF(x) is non-empty for allx ∈X, is a tame multifunction
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Example 2.3. LetU be a normed linear space. The translationT :U →U given byT (x)=
x + a, wherea ∈ U \ {0}, is not tame and for smallε > 0, T has noε-fixed points. The
tameproperty for multifunction in the next theorems is a non-superfluous condition fo
existence ofε-fixed points.

Theorem 2.4. LetX be a convex subset with non-empty interior, containing0, of a reflexive
real Banach space. Assume thatF :X→→X is a tame and weakly closed multifuncti
such thatF(x) is a non-empty and convex subset ofX for eachx ∈X. Then FIXε(F ) 
= ∅
for eachε > 0.

Proof. Let ε > 0 andR > 0 such thatF(x)∩B(0,R+ε/2) 
= ∅ for eachx ∈ B(0,R)∩X,
and letC = B(0,R) ∩X. C is a non-empty, bounded and convex set. ThenG :C →→ C,
defined by

G(x)=R

(
R + ε

2

)−1

F(x)∩B
(

0,R+ ε

2

)
for all x ∈C,

satisfies the conditions of Theorem 2.1. Hence there isx∗ ∈ FIXε/4(G) such that
d(x∗,G(x∗))� ε/4< ε/2 and there existsx ′ ∈G(x∗) such that‖x ′ − x∗‖< ε/2. More-
over, there exists an elementz ∈ F(x∗) such thatz=R−1(R + ε/2)x ′. This implies that

‖z− x∗‖ �
∥∥∥∥R−1

(
R + ε

2

)
x ′ − x ′

∥∥∥∥ + ‖x ′ − x∗‖< ε

2
R−1‖x ′‖ + ε

2
� ε.

Sox∗ ∈ FIXε(F ). ✷
Theorem 2.5. LetX be a convex subset with non-empty interior, containing0, of a reflexive
and separable real Banach space. Assume thatF :X→→X is a tame and weakly uppe
semicontinuous multifunction such thatF(x) is a non-empty and convex subset ofX for
eachx ∈X. Then FIXε(F ) 
= ∅ for eachε > 0.

Proof. Using the same arguments of the proof of Theorem 2.4, we can show th
multifunctionG, defined onB(0,R) ∩X by

G(x)=R

(
R + ε

2

)−1

F(x)∩B
(

0,R+ ε

2

)
,

satisfies the conditions of Theorem 2.2 and the conclusion follows as in Theorem 2.✷

3. Approximate Nash equilibria for strategic games

In Nash [20], Nash equilibria forn-person non-cooperative games have been introd
and using Kakutani’s fixed point theorem it has been shown that mixed extensions o
n-person non-cooperative games possess at least one Nash equilibrium. The aggreg
response multifunction on the Cartesian product of the strategy spaces construct
the aid of the best response multifunctions for each player possesses fixed points
coincide with the Nash equilibria of the game.
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Of course, for many non-cooperative games Nash equilibria do not exist. Interesti
games for whichε-Nash equilibria exist for eachε > 0. Here a strategy profile is called a
ε-Nash equilibrium if unilateral deviation of one of the players does not increase his p
with more thanε. One can try to derive the existence of approximate equilibrium po
following the next scheme:

(i) developε-fixed point theorems and find conditions on strategy spaces and p
functions of the game such that the aggregateε-best response multifunction satisfi
conditions in anε-fixed point theorem;

(ii) add extra conditions on the payoff-functions, guaranteeing that points in the Car
product of the strategy spaces nearby each other have payoffs sufficiently nearb

We will derive in this section a key proposition, which gives the possibility to
various approximate equilibrium theorems.

First we recall some definitions. Ann-person strategic gameis a tupleΓ = 〈X1, . . . ,Xn,

u1, . . . , un〉 where for each playeri ∈ N = {1, . . . , n} Xi is the set of strategies an
ui :

∏
i∈N Xi → R is the payoff function. If players 1, . . . , n choose strategiesx1, . . . , xn,

thenu1(x1, . . . , xn), . . . , un(x1, . . . , xn) are the resulting payoffs for the players 1, . . . , n,
respectively. Letε > 0. Then we say that(x∗

i )i∈N ∈ ∏
i∈N Xi is anε-Nash equilibriumif

ui(xi, x
∗−i )� ui(x

∗)+ ε for all xi ∈Xi and for alli ∈N.
Herex∗−i is a shorthand for(x∗

j )j∈N\{i} and we will denote byNEε(Γ ) the set ofε-Nash
equilibria for the gameΓ . Note that for anx∗ ∈ NEε(Γ ), a unilateral deviation by a playe
does not improve the payoff with more thanε. Useful will be for eachi ∈ N the ε-best
response multifunctionBεi :

∏
j∈N\{i}Xj →→Xi defined by

Bεi (x−i )=
{
xi ∈Xi | ui(xi, x−i )� sup

ti∈Xi
ui(ti, x−i )− ε

}

and theaggregateε-best response multifunctionBε :X→→X defined by

Bε(x)=
∏
i∈N

Bεi (x−i ).

Obviously, ifx∗ ∈ Bε(x∗), thenx∗ ∈ NEε(Γ ), and conversely. So ifBε has a fixed point
then we have anε-Nash equilibrium. If we do not know whetherBε has a fixed point bu
we know thatBε hasδ-fixed points for eachδ > 0, then this leads under extra continu
conditions to the existence of approximate Nash equilibria for the game as we will s

The next result is called the key proposition because it opens the door to obtain di
ε-equilibrium point theorems, using as inspiration source the existing literature on
equilibrium point theorems. Many of them contain collections of sufficient condition
the strategy spaces and payoff functions, guaranteeing that the aggregate best r
multifunction has a fixed point. To guarantee the existence ofε-fixed points one has t
modify, often in an obvious way, the conditions guaranteeing the existence ofδ-fixed points
for the aggregateε-best response multifunction and to replace the condition (iii) in the
proposition by the obtained conditions.
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Key proposition. Let Γ = 〈X1, . . . ,Xn,u1, . . . , un〉 be ann-person strategic game wit
the following three properties:

(i) for eachi ∈N = {1, . . . , n}, the strategy spaceXi is endowed with a metricdi;
(ii) the payoff functionsu1, . . . , un are uniform continuous functions onX = ∏n

i=1Xi ,
whereX is endowed with the metricd defined by

d(x, y)=
n∑
i=1

di(xi, yi) for all x, y ∈X;

(iii) for eachε > 0 andδ > 0, the aggregateε-best response multifunctionBε possesse
at least oneδ-fixed point, i.e., FIXδ(Bε) 
= ∅.

Then, NEε(Γ ) 
= ∅ for eachε > 0.

Proof. Takeε > 0. By (ii) we can findη > 0 such that for allx, x ′ ∈X with d(x, x ′) < η
we have|ui(x)− ui(x

′)|< ε/2 for eachi ∈N . We will prove that

x∗ ∈ FIXη/2(Bε/2) ⇒ x∗ ∈ NEε(Γ ).

Takex∗ ∈ FIXη/2(Bε/2), which is possible by (iii). Then there existsx̂ ∈ Bε/2(x∗) such
thatd(x∗, x̂) < η, and, consequently, for eachi ∈N , d((x∗

i , x
∗−i ), (x̂i , x∗−i )) < η. This im-

plies that

ui(x
∗
i , x

∗−i )� ui(x̂i , x
∗−i )−

1

2
ε for all i ∈N. (1)

Furtherx̂ ∈Bε/2(x∗) implies

ui(x̂i , x
∗−i )� sup

ti∈Xi
ui(ti, x

∗−i )−
1

2
ε for all i ∈N. (2)

Combining (1) and (2) we obtain

ui(x
∗
i , x

∗−i )� sup
ti∈Xi

ui(ti , x
∗−i )− ε for all i ∈N, (3)

that is,x∗ ∈ NEε(Γ ). ✷
It will be clear that using the key proposition many approximate Nash equilibrium

orems can be obtained. We restrict ourselves here in giving three examples.

Example 3.1 (Games on the open unit square). Let〈]0,1[, ]0,1[, u1, u2〉 be a game with
uniform continuous payoff functionsu1 andu2. Suppose thatu1 is concave in the firs
coordinate andu2 is concave in the second coordinate. Then for eachε > 0, the game ha
anε-Nash equilibrium point. In fact, apply the key proposition to the above game and
that (i) and (ii) are satisfied by taking the standard metric on]0,1[. Further, (iii) follows
from Theorem 2.1 applied to the set-valued functionBε .
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Example 3.2 (Completely mixed approximate Nash equilibria for finite games). LetA and
B be(m× n)-matrices of real numbers. Consider the two-person game〈∆̊m, ∆̊n, u1, u2〉,
where

∆̊m =
{
p ∈ R

m | pi > 0 for eachi ∈ {1, . . . ,m},
m∑
i=1

pi = 1

}
,

∆̊n =
{
q ∈ R

n | qj > 0 for eachj ∈ {1, . . . , n},
n∑
j=1

qj = 1

}
,

u1(p, q)= pT Aq, u2(p, q)= pT Bq for all p ∈ ∆̊m, q ∈ ∆̊n.
Then for eachε > 0 this game has anε-Nash equilibrium. Such anε-Nash equilibrium
is calledcompletely mixed, because both players use each of their pure strategies w
positive probability. The proof follows from the key proposition and Theorem 2.1 ta
the standard Euclidean metric.

Example 3.3. Let X be a normed linear space such that there existsa ∈ X \ {0}. Let
Γ = 〈X,X,u1, u2〉 be the two-person game withu1(x1, x2) = −‖x1 − x2‖, u2(x1, x2) =
−‖x1 − x2 − a/(1+ ‖x1‖)‖ for all (x1, x2) ∈X ×X. ThenB1(x2) = {x2} andB2(x1) =
{x1 − a/(1+ ‖x1‖)}. SoB(x1, x2)= {(x2, x1 − a/(1+ ‖x1‖))} for each(x1, x2) ∈X×X.
Hence,FIX(B)= ∅. However, for eachδ > 0, FIXδ(B) 
= ∅ since one can takex ∈X with
‖x‖ � δ−1‖a‖ and, then,(x, x) ∈ FIXδ(B) because∥∥∥∥(x, x)−

(
x, x − a

1+ ‖x‖
)∥∥∥∥ = a

1+ ‖x‖ � ‖a‖
‖x‖ � δ.

Moreover,u1 andu2 are uniform continuous functions onX×X. In fact,

∣∣u2(x1, x2)− u2(y1, y2)
∣∣ �

∥∥∥∥(x1 − y1)− (x2 − y2)+ ‖x1‖ − ‖y1‖
(1+ ‖x1‖)(1+ ‖y1‖)a

∥∥∥∥
�

(‖x1 − y1‖ + ‖x2 − y2‖
)(

1+ ‖a‖).
Therefore, in light of the key proposition we can conclude thatNEε(Γ ) 
= ∅ for each
ε > 0. In fact, for‖x‖ sufficiently large,(x, x) ∈ NEε(Γ ), sinceu2(x, x2) − u2(x, x) �
‖a‖/(1+ ‖x‖).

4. Concluding remarks

In Section 2 we developed five new approximate fixed point theorems in infinite di
sional Banach spaces. In Theorem 2.1–2.3 bounded and totally bounded convex
in Banach spaces are considered, while Theorems 2.4 and 2.5 treat possible unb
convex regions. Theorems 2.1 and 2.2, and Theorems 2.4 and 2.5, respectively, diff
in that in Theorems 2.1 and 2.4 the multifunction is required to be weakly closed,
in Theorems 2.2 and 2.5 it is required to be weakly upper semicontinuous. Theore
considers the situations in Theorems 2.1 and 2.2 in the context of the strong topolo
stead of the weak topology. It seems important to find more sophisticated approx
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fixed point theorems, especially for (tame) multifunctions on unbounded sets. In Sec
we have indicated, via the key proposition, how approximate fixed point theorems ca
a role in non-cooperative game theory to prove the existence of approximate Nash e
ria. For a survey of techniques to prove the existence of (ε-) Nash equilibria see Tijs [21]
For approximate equilibrium theorems using approximations of games with smalle
games see Lucchetti et al. [14]. Also we refer to Lignola [10] for the existence of
equilibria for games with non-compact strategy sets and to Lignola and Morgan [1
convergence of Nash equilibria. The importance ofε-Nash equilibria is also motivated b
well-posedness for Nash equilibria (cf. Lignola and Morgan [13], Margiocco et al. [
convergence properties of approximate Nash equilibria (cf. Morgan and Raucci [18
approximate solutions for hierarchical games (cf. Mallozzi and Morgan [15,16] for ap
imate mixed strategies).

Also finding new applications of approximate fixed point theorems in economic th
and in the study of well-posed fixed point problems (Lemaire et al. [9]) could be intere
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