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Abstract

In this paper some new approximate fixed point theorems for multifunctions in Banach spaces
are presented and a method is developed indicating how to use approximate fixed point theorems in
proving the existence of approximate Nash equilibria for non-cooperative games.
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1. Introduction

In this paper we are interested in multifunctioAs X —— X which possess (fixed
points or) approximate fixed points. Fixed point theorems deal with sufficient conditions
on X and F guaranteeing that there exists a fixed point, that isy anX with x € F(X).
There are many fixed point theorems known on topological spaces (Brouwer [5], Kaku-
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tani [8], Banach [3], etc.) which have proved to be useful in many applied fields such as
game theory, mathematical economics and the theory of quasi-variational inequalities (cf.
Baiocchi and Capelo [2]). I is a metric space, approximate fixed point theorems are
interesting. Such theorems deal with sufficient conditionXoand F guaranteeing that,

for eache > 0, there is are-fixed point, i.e., am™* € X with d(x*, F(x*)) < ¢, where

d(x*, F(x*)) =inf{d(x*,z) | z € F(x*)}. In Tijs et al. [22], approximate fixed point theo-

rems in the spirit of Brouwer, Kakutani and Banach were derived. In the first two theorems,

in finite dimensional spaces, the compactness conditions used in the above quoted theorems
have been replaced by boundedness conditions. In the third one, the completeness of the
metric space (used in Banach'’s contraction theorem) has been dropped.

In this paper we will present some new approximate fixed point theorems for multi-
functions defined on Banach spaces. Weak and strong topologies play here a role and both
bounded and unbounded regions are considered.

The outline of the paper is as follows. In Section 2, we present some approximate fixed
point theorems for closed or upper semicontinuous (with respect to the weak or strong
topologies) multifunctions on bounded, totally bounded convex regions or on unbounded
convex regions, respectively. Here the notion of tame multifunction plays a crucial role.
Section 3 gives an outline of how to use approximate fixed point theorems to guarantee
that non-cooperative games have approximate Nash equilibria, and Section 4 concludes
with some remarks.

2. New approximatefixed point theorems

In this section,V will be a real Banach space and fBr: X —— X with X C V, the
set{x e V |d(x, F(x)) =infycr) lly — x|l < &} of thee-fixed points of the multifunction
F on X is denoted byFIX? (F).

The assumptions of closedness and boundedness for a set of a reflexive real Banach
space is an usual and classical assumption in many theoretical and applied problems. In
light of the Alaoglu theorem, a closed and bounded set is sequentially compact and in
these cases we have to deal with weak convergence.

Thus, first, we present two theorems where the weak topology plays a role.

Theorem 2.1. Let V be a reflexive real Banach space andXebe a bounded and convex
subset oV with non-empty interior. Assume that: X —— X is a weakly closed multi-
function(that is, a multifunction closed with respect to the weak topolsggh thatF (x)

is a non-empty and convex subseofor eachx € X. Then FIX (F) # ¢ for eache > 0.

Proof. Suppose without loss of generality thatnt X. Let« = sud||x]|| | x € X}. Take

&> 0and0< § < 1suchthaba < ¢. LetY be the weakly compact and convex subset of
defined byY = (1—68)X, whereX is the closure o . Define the multifunctiorG : ¥ ——
YbyG(x)=(1-8)F(x)forallx € Y. ThenG is a weakly closed multifunction with non-
empty, convex and weakly compact values. But, with respect to the weak top¥liggn
Hausdorff locally convex topological vector space, so, in view of Glicksberg’s theorem [7],
G has at least one fixed point dh So there is an* € Y such thak™* € G(x*) = (1—§) x
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F(x*). Then there is a € F(x*) such thatt* = (1 — §)z, so|jz — x*|| = 8|z]| < o <L &.
Hencex™* is ane-fixed pointof F. O

Theorem 2.2. LetV be areflexive and separable real Banach space ani le¢ a bounded
and convex subset &f with non-empty interior. Assume that: X —— X is a weakly
upper semicontinuous multifunctig@that is, a multifunction upper semicontinuous with
respect to the weak topologguch thatF (x) is a non-empty and convex subsetofor
eachx € X. Then FIX (F) # ¢ for eache > 0.

Proof. As in the proof of Theorem 2.1, we assume that Dt X and o = sug|/x| |

x € X}. Takee > 0, 0< § < 1 such thaBa < ¢/2 andY = (1 — §)X. Define the mul-
tifunctionG:Y —— Y by G(x) = (1—8)F(x) forall x € Y. G is weakly upper semicon-
tinuous. In fact, sincé/ is a separable real Banach space ani$ bounded, there exists
a metricd,, on V such that the weak topology chnis induced by the metrid,, (see, for
example, [6, Proposition 8.7]). Lete Y and assume that is a weakly open neighbour-
hood of G(x). For o > 0, we denote withA, the open sefy e Y | dy(y, G(x)) < o}.
SinceG (x) is weakly compact, we have thé§, (Y \ A, G(x)) =inf{dy(y,2) |y € Y \ A,
z€Gx)}>0,whereY \A={yeY |y¢A}.S0,if0<o' <o <d,(Y \ A,G(x)),

we haveG(x) C Ay C{y e Y | dy(y,G(x)) <o’} C A;s C A. In view of the weakly
upper semicontinuity of the multifunctiold — §) F, there exists an open neighbourhood
I of x such that(1 — 8)F(z) C A, for all zeI. ThereforeG(z) = (1 — §)F(z) C
{yeY |dyly,G(x)) <o’} c Aforall zel. SoG is a weakly upper semicontinu-
ous multifunction atx. In the light of [1, Proposition 4, p. 72] is also a weakly
closed multifunction at. Therefore, in view of Glicksberg’s theorem, there exists a point
x* € Y such thate* € G(x*). Hence, there existse F(x*) such thatc* = (1 — §)z, SO

lz — x*|| =8|zl < 8 < /2. Moreover, there is’ € F(x*) such that||z’ — z|| < &/2.
Hence|lz/ — x*|| < g, thatis,x* e FIX8(F). O

Remark 2.1. Even if the assumption of “weakly closed graph Bih looks very strong,

it can be obtained for multifunctions whose fixed points are interesting. For example, a
solution of a quasi-variational inequality is a fixed point of a suitable set-valued function
which is weakly closed under classical assumptions. In fact, following Baiocchi and Capelo
[2, p. 240], one canréconduce the study of the quasi-variational inequality to the study
of a family of variational inequalities and to the finding of a fixed point for an appropriate
transformatior’ To obtain weak closedness of the graph of this appropriate transformation
it is then sufficient to apply two results of Mosco [19, Theorems A and B] or following
slight improvement by Lignola and Morgan [12, Corollary 2.2] 10r= X.

In the next theorem the strong topology is involved.

Theorem 2.3. Let V be a real Banach space and |&t be a convex and totally bounded
subset ofv with non-empty interior. Assume that X —— X is a closed or upper semi-
continuous multifunction such th#t(x) is a non-empty and convex subsetXofor each

x € X. Then FIX (F) # ¢ for eache > 0.
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Proof. Assume without loss of generality thatGnt X. Takes > 0 andn > 0. SinceX is
totally bounded there exists € N andxy, ..., x, € X such thatX < (J/_; B(x;, n) (see,
for example, [4]), wheré’%(xi, n) ={yeV|l|y—xl <n}. Moreover, leth = max{||x;|| |
ie{l,...,m}}.If0 <8 <1 the settY = (1—8)X is a non-empty, convex and totally
bounded subset df. SinceY is also closedy is complete and therefore compact.

First, we assume thaf is a closed multifunction and we take<0§ < 1 such that
8(n+ h) < . Then the multifunctior; : Y —— Y, defined byG (x) = (1—8) F(x) for all
x €Y, is closed. This implies by Glicksberg's theorem thapossesses a fixed point.
Then there is a poing € F(x*) such thatc* = (1 — §)z. SinceX < (J/_; B(x;, ), there
existsamn € {1, ..., m} suchthat é(x,, n).So|x*—z|| =8|zl <3Ulz—=x,ll+x 1) <
8(n+ h) < e. Hencex* € FIX®(F).

Assume now thatF" is an upper semicontinuous multifunction. We take:@ < 1
such thats(n + h) < ¢/2. Let G:Y —— Y, defined byG(x) = (1 — §) F(x) for all
x € Y. We claim thatG is upper semicontinuous. Lete Y and assume that is an
open neighbourhood af (x). For eacho > 0, we denote withA, the open sefy € Y |
inf,ecx) Iz —yll < o}. Asin the proof of Theorem 2.2, we obtain ti@is an upper semi-
continuous multifunction at and is also a closed multifunction at In view of Glicks-
berg’s theorem, there exists aopojme Y such thatt* € G(x*) andz € F(x*) §uch that
x* = (1-98)z. SinceX < | J/~; B(xi, n), there exists € {1, ..., m} such that € B(xy, n),
SO|lz—x*|| =8|zl <38z — x5l + x5 1) < 8(n+h) < e/2. Moreover, there exists a point
7 € F(x*) such that|z’ — z|| < /2, S0||z’ — x*| < ¢, thatis,x* € FIXé(F). O

The next theorems deal with the existence of approximate fixed points for multifunc-
tions on convex regions which are not necessarily bounded. Useful here is the notion of a
tame multifunctiopwhich we introduce in

Definition 2.1. Let U be a normed space and C U with 0 € X. A multifunction F:
X —— X is called aame multifunctiorf, for eache > 0, there is arR > 0 such that for
eachx € B(0, R) N X the setF(x) N B(0, R + ¢) is non-empty, wher®(0, R) ={z € U |
llzll < R}.

Example 2.1. The mapF : [0, oo[ —— [0, o[, defined by
Fx)=[x+&x+1 Yoo forallxe [0, ool
is a tame multifunction on the unbounded E&too[. Moreover,F hase-fixed points for

eache > 0 (see Theorems 2.4 and 2.5).

Example2.2. LetU be a normed space. L&t: U —— U be a multifunction with¥ (x) #
¢ for eachx € U. Suppose that the image(U) ={y e U | y € F(x) for somex € U}
of F is a bounded set. TheR is a tame multifunction (for each > 0, takeR =1 +

sudliyll, y € F(U)}).

Remark 2.2. It follows from Example 2.2 that eachi: X —— X, whereX is a bounded
subset of a normed spa€eand F (x) is non-empty for allk € X, is a tame multifunction.
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Example2.3. Let U be a normed linear space. The translaffarU — U given byT (x) =

x + a, wherea € U \ {0}, is not tame and for sma#l > 0, T has noe-fixed points. The
tameproperty for multifunction in the next theorems is a non-superfluous condition for the
existence ot-fixed points.

Theorem 2.4. Let X be a convex subset with non-empty interior, contaiiyaf a reflexive
real Banach space. Assume thfat X —— X is a tame and weakly closed multifunction
such thatF (x) is a non-empty and convex subseXofor eachx € X. Then FIX(F) # ¢
for eache > 0.

Proof. Lete > 0 andR > 0 suchthat"(x) N B(0, R +¢/2) # ¢ foreachx € B(O, R)N X,
and letC = B(0, R) N X. C is a non-empty, bounded and convex set. TGerlC —— C,
defined by

-1
Gx) = R<R n %) F()N B(O, R+ %) forall x € C,
satisfies the conditions of Theorem 2.1. Hence there*iss FIX?/4(G) such that

d(x*, G(x*)) < &/4 < ¢/2 and there exists’ € G(x*) such that|x’ — x*| < /2. More-
over, there exists an element F(x*) such that = R~1(R + £/2)x’. This implies that

‘Rl(R + g)x/ —x'

Sox* eFIXé(F). O

e £
+ X —x* < 2R+ = <e.

*
- <
llz ="l > >

Theorem 2.5. Let X be a convex subset with non-empty interior, contaifiyaf a reflexive
and separable real Banach space. Assume thak —— X is a tame and weakly upper
semicontinuous multifunction such th&tx) is a non-empty and convex subsetXofor
eachx € X. Then FIX (F) # ¢ for eache > 0.

Proof. Using the same arguments of the proof of Theorem 2.4, we can show that the
multifunctionG, defined onB(0, R) N X by

-1
G(x)=R<R+ %) F(x)m3<o,R+ %)

satisfies the conditions of Theorem 2.2 and the conclusion follows as in Theorent?.4.

3. Approximate Nash equilibria for strategic games

In Nash [20], Nash equilibria for-person non-cooperative games have been introduced
and using Kakutani's fixed point theorem it has been shown that mixed extensions of finite
n-person non-cooperative games possess at least one Nash equilibrium. The aggregate best
response multifunction on the Cartesian product of the strategy spaces constructed with
the aid of the best response multifunctions for each player possesses fixed points which
coincide with the Nash equilibria of the game.
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Of course, for many non-cooperative games Nash equilibria do not exist. Interesting are
games for whickz-Nash equilibria exist for each> 0. Here a strategy profile is called an
e-Nash equilibrium if unilateral deviation of one of the players does not increase his payoff
with more thans. One can try to derive the existence of approximate equilibrium points
following the next scheme:

(i) develope-fixed point theorems and find conditions on strategy spaces and payoff
functions of the game such that the aggregabest response multifunction satisfies
conditions in are-fixed point theorem;

(i) add extra conditions on the payoff-functions, guaranteeing that points in the Cartesian
product of the strategy spaces nearby each other have payoffs sufficiently nearby.

We will derive in this section a key proposition, which gives the possibility to find
various approximate equilibrium theorems.

First we recall some definitions. Arrperson strategic gamis a tuplel” = (X3, ..., X,,
ui, ..., u,) where for each playet e N = {1,...,n} X; is the set of strategies and
u; [ l;en Xi — R is the payoff function. If players,1..,n choose strategies, ..., x,,
thenui(x1,...,xn), ..., u,(x1, ..., x,) are the resulting payoffs for the players. 1, n,
respectively. Let > 0. Then we say thaic);cny € [[;cy Xi is ane-Nash equilibriurif

ui(xi, x*;) <uj(x*)+e¢ forallx; € X; and foralli € N.

Herex*; is a shorthand fo(xj)jeN\{i} and we will denote bNE® (I") the set ofs-Nash
equilibria for the gamd". Note that for anx* € NE° (I"), a unilateral deviation by a player
does not improve the payoff with more thanUseful will be for each € N the ¢-best
response multifunctioB; : [ ;.\ X; —— X; defined by

Bf (x_j) = {xi € X |ui(xi,x—;) = supu;(ti, x—;) — 8}
tieX;

and theaggregates-best response multifunctiadf : X —— X defined by

B*(x) =[] Bf (-
ieN

Obviously, ifx* € B¢(x*), thenx* € NE?(I"), and conversely. So iB° has a fixed point,
then we have an-Nash equilibrium. If we do not know wheth&® has a fixed point but
we know thatB® hasgs-fixed points for eacld > 0, then this leads under extra continuity
conditions to the existence of approximate Nash equilibria for the game as we will see.

The nextresult is called the key proposition because it opens the door to obtain different
g-equilibrium point theorems, using as inspiration source the existing literature on Nash
equilibrium point theorems. Many of them contain collections of sufficient conditions on
the strategy spaces and payoff functions, guaranteeing that the aggregate best response
multifunction has a fixed point. To guarantee the existence-fafed points one has to
modify, often in an obvious way, the conditions guaranteeing the existerdefaid points
for the aggregate-best response multifunction and to replace the condition (iii) in the key
proposition by the obtained conditions.
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Key proposition. Let I' = (X1, ..., X, u1, ..., u,) be ann-person strategic game with
the following three properties

(i) foreachi e N ={1,...,n}, the strategy spac¥; is endowed with a metrig;;
(i) the payoff functionss, ..., u, are uniform continuous functions ax = [/"_; X;,
whereX is endowed with the metri¢ defined by

n
d(x,y)=) di(xi,y) forallx,yeX;
i=1

(iii) for eache > 0 andé > 0, the aggregate-best response multifunctiaB® possesses
at least one-fixed point, i.e., FIX(B?) # 4.

Then, NE(I') # ¢ for eache > 0.

Proof. Takes > 0. By (ii) we can findy > 0 such that for alk, x’ € X with d(x,x") <7
we havelu; (x) — u; (x")| < ¢/2 for eachi € N. We will prove that

x* e FIX"?(B*/?) = x*eNE'(I).

Takex* e FIX"/2(B¢/2), which is possible by (iii). Then there existse B¢/2(x*) such
thatd (x*, ¥) < n, and, consequently, for ea¢le N, d((x}, x*,), (x;, x*,)) < n. Thisim-
plies that

1
wi(x[, xX) > ui(xi, x*) — 5¢ foralli e N. (1)
Furthert € B#/2(x*) implies
1
ui (X, x*;) > supu;(t;, x*;) — ¢ foralli e N. (2)
tieX;
Combining (1) and (2) we obtain
ui(x;,x*;) > supu;(t;,x*;) —e forallieN, 3)
tieX;

thatis,x* e NE*(I"). O

It will be clear that using the key proposition many approximate Nash equilibrium the-
orems can be obtained. We restrict ourselves here in giving three examples.

Example 3.1 (Games on the open unit square). I}, 1[, 10, 1[, u1, u2) be a game with
uniform continuous payoff functions; andu,. Suppose that; is concave in the first
coordinate ana is concave in the second coordinate. Then for eastD, the game has
ane-Nash equilibrium point. In fact, apply the key proposition to the above game and note
that (i) and (ii) are satisfied by taking the standard metrig@ri[. Further, (iii) follows

from Theorem 2.1 applied to the set-valued funct®n
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Example 3.2 (Completely mixed approximate Nash equilibria for finite games) A-enhd
B be (m x n)-matrices of real numbers. Consider the two-person gatpe A, u1, u2),
where

m
A‘)m:{peRm |pl >0f0|’eaCh€{l,,m}, Zpl:l}’
i=1

n
A°n = {q eR"|qj>0foreachj e{l,...,n}, qu :1},
j=1

ui(p,q) = pTAq, u2(p,q) = pTBq forall pe Ay, q € A,

Then for eacte > 0 this game has asn-Nash equilibrium. Such an-Nash equilibrium

is calledcompletely mixedbecause both players use each of their pure strategies with a
positive probability. The proof follows from the key proposition and Theorem 2.1 taking
the standard Euclidean metric.

Example 3.3. Let X be a normed linear space such that there existsX \ {0}. Let
I' = (X, X, u1,u2) be the two-person game with (x1, x2) = —||x1 — x2||, u2(x1, x2) =
—llx1 —x2 —a/(@+ ||x1|D] for all (x1,x2) € X x X. ThenB1(x2) = {x2} and B2(x1) =
{x1—a/1+ [[xalD}. S0B(x1, x2) = {(x2, x1 —a/(1+ [xa]))} for each(x1, x2) € X x X.
Hence FIX(B) = #. However, for each > 0, FIX®(B) # ) since one can take e X with
x|l = 81a|l and, then(x, x) € FIX?(B) because

a lall

a
(.X,)C)—()C,.X— > = X X0
1+ x|l T+l flxll

Moreover,u1 andus2 are uniform continuous functions ofi x X. In fact,

|uz(x1, x2) —u2(y1, y2)| < || (x1 — y1) — (x2— y2) +

I+ flxalD @+ [lyalD
< (llxr — yall + llxz = y2ll) (1 + llall).-
Therefore, in light of the key proposition we can conclude tN&t (I") # ¢ for each

e > 0. In fact, for|x| sufficiently large,(x, x) € NE*(I"), sinceua(x, x2) — u2(x, x) <
lall/ A+ lxI).

llxall — lyall aH

4. Concluding remarks

In Section 2 we developed five new approximate fixed point theorems in infinite dimen-
sional Banach spaces. In Theorem 2.1-2.3 bounded and totally bounded convex regions
in Banach spaces are considered, while Theorems 2.4 and 2.5 treat possible unbounded
convex regions. Theorems 2.1 and 2.2, and Theorems 2.4 and 2.5, respectively, differ only
in that in Theorems 2.1 and 2.4 the multifunction is required to be weakly closed, while
in Theorems 2.2 and 2.5 it is required to be weakly upper semicontinuous. Theorem 2.3
considers the situations in Theorems 2.1 and 2.2 in the context of the strong topology in-
stead of the weak topology. It seems important to find more sophisticated approximate
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fixed point theorems, especially for (tame) multifunctions on unbounded sets. In Section 3
we have indicated, via the key proposition, how approximate fixed point theorems can play
a role in non-cooperative game theory to prove the existence of approximate Nash equilib-
ria. For a survey of techniques to prove the existence-9fYash equilibria see Tijs [21].
For approximate equilibrium theorems using approximations of games with smaller sub-
games see Lucchetti et al. [14]. Also we refer to Lignola [10] for the existence of Nash
equilibria for games with non-compact strategy sets and to Lignola and Morgan [11] for
convergence of Nash equilibria. The importance-dfash equilibria is also motivated by
well-posedness for Nash equilibria (cf. Lignola and Morgan [13], Margiocco et al. [17]),
convergence properties of approximate Nash equilibria (cf. Morgan and Raucci [18]) and
approximate solutions for hierarchical games (cf. Mallozzi and Morgan [15,16] for approx-
imate mixed strategies).

Also finding new applications of approximate fixed point theorems in economic theory
and in the study of well-posed fixed point problems (Lemaire et al. [9]) could be interesting.
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