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1. Introduction

Stage-structured models had already received much attention before 1990. But the gr
progress on the stage structured models had not been obtained until 1990, when Aie
Freedman [1] proposed and studied their, by now well-known, single species mode
time delayed stage structure. In the model of Aiello and Freedman the population
life history and is divided into two stages: immature and mature. In particular we ha
mind mammalian populations which exhibit these two distinct stages: the mature s
are the adult animals and the immature represent their babies. The model is form
mathematically by the following system of two delay differential equations:

dx

dt
(t) = αe−γ τ x(t − τ ) − βx2(t),

dy

dt
(t) = αx(t) − γy(t) − αe−γ τ x(t − τ ), (1.1)

for t > 0, wherex(t) andy(t) represent the density of mature and immature specie
time t, respectively. The model is derived under the following hypotheses:

(i) Only mature species can reproduce immatures, and the immature born at timet − τ

that survives to timet exit from the immature population and enters the mature p
ulation.

(ii) The birth of the immature population is proportional to the existing mature popul
with proportionality constantα.

(iii) The death rate of the immature population is proportional to the existing immatu
population with proportionality constantγ.

(iv) The death rate of the mature population is of logistic nature, i.e., it is proportion
the square of the population with proportionality constantβ.

τ is said to be the constant time to maturity andξ = τγ is the degree of the stage-structu
For the model to make sense it is assumed that both mature and immature popu
are known in the interval(−τ,0). Aiello and Freedman associate to the system(1.1) the
following initial data:

x(t) = ϕ(t) � 0, y(t) = ξ(t) � 0, −τ � t � 0. (1.2)

The model (1.1)–(1.2) predicts a positive steady state as the global attractor (se
It then suggests that stage-structure does notgenerate the sustained oscillations freque
observed in nature.

In [5], Freedman and Wu constructed a single stage-structured model in a som
complicated environment. They proved the permanence and the global asymptotic sta
ity of a positive equilibrium in a multi-patch environment when the species can dis
between the patches. In particular, they proved that the heterogeneity of the enviro
may change the size of the positive equilibrium but cannot change its global asym
stability. We also quote the works of Aiello etal. [2] in which the time delay to maturityτ
depends on the population density and that of Freedman et al. [4] which drafts the c
cooperation and cannibalism interactions.
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Inspired by the work on competitive Lotka–Volterra systems [22], Liu et al. [14]
rived a competitive stage-structured model of two species where only mature spec
compete with the other species. This model was extended in [15] ton-competing specie
where only mature species can compete withthemselves for the common resource, so
competition with the immature species can be ignored. They proved that the system w
stage-structure has similar behavior to that without stage-structure. These works un
extend those on Lotka–Volterra systems to the case with stage-structure.

All these models are formulated in the autonomous case, i.e., the coefficient para
of the model are constant (not depending on time). This situation is unrealistic since th
parameters of the environment do vary with time in general. It is then very importa
consider models of population interactionswhich take into account both the seasonality
the changing environment and the effects of time delays. These models can provid
explanation about the often fluctuated behavior of the population densities observed
nature. Mathematically speaking, to model the fluctuation of the environment it is ass
that the coefficients of the system are functions of time (see [11]). In this regard, Liu
considered in [16] the nonautonomous version of their autonomous competitive system
[15], i.e., fori = 1, . . . , n,




dxi

dt
= bi(t − τi)e

− ∫ t
t−τi

di (s) ds
xi(t − τi) − xi(t)

∑n
j=1 aij (t)xj (t),

dyi

dt
= bi(t)xi(t) − di(t)yi(t) − bi(t − τi)e

− ∫ t
t−τi

di (s) ds
xi(t − τi).

(1.3)

They established sufficient conditions under which the species are permanent. Th
proved that the increase of the stage-structure degree of the speciesx2, . . . , xn can lead to
their extinction. This result shows that stage-structure of the species has negative e
its permanence. We refer the reader to the survey paper of Liu et al. [13] on stage-structur
population dynamics.

In view of the fact that in real-life competition interactions, instantaneous response
are rare or weak relatively to delayed responses, more realistic models should con
delay differential systems instead of systems with instantaneous feedbacks. Some
(Volterra [24], Kostitzin [25]) consider continuously distributed delays as ecologically a
biologically more realistic than discrete delays to model the species interactions, wh
proved true in 1969 by Caperon [26] who tried discrete and continuous delay mod
fit data obtained when he subjected algae to a variable nitrate environment and obt
better fit for his data with a continuously distributed delay. Later, Gopalsamy and He
point out that in several cases of animal populations, the past dietary and nutritional histo
of an animal over a long period plays an influential role in determining the current b
ior of the animals and in such cases distributed time delays will be appropriate. W
that in the previous studied stage-structured systems (see, for instance, [14–16]), d
feedback responses in competition among the mature speciesare ignored. Motivated by th
works on competitive Lotka–Volterra systems with distributed delays (see [7,9,10,12
it is our goal here in this paper to introduce distributed delay terms into then-species
nonautonomous competitive stage-structured system (1.3). These nonlocal terms will re
resent feedback responses from the past life history of the species. To be precise, w



190 S. Liu et al. / J. Math. Anal. Appl. 301 (2005) 187–207

ib-

t
tions

and

s a
s

of dis-
mous
that in
paper

d later.
consider the following nonautonomous competitive stage-structured system with distr
uted delays:


dxi

dt
= bi(t − τi)e

− ∫ t
t−τi

di (s) ds
xi(t − τi) − xi(t)

∑n
j=1 aij (t)xj (t)

− xi(t)
∑n

j=1

∫ 0
−τj

xj (t + s) dhij (s), t > 0,

dyi

dt
= bi(t)xi(t) − di(t)yi(t) − bi(t − τi)e

− ∫ t
t−τi

di (s) ds
xi(t − τi), t > 0,

(1.4)

with the following initial conditions:

xi(t) = ϕi(t), yi(t) = ξi(t), −τi � t � 0. (1.5)

The system(1.4) can be regarded as a generalization of(1.3) since it takes into accoun
both interspecific and intraspecific interactions. We will make the following assump
on the coefficient parameters of the system:

(H1) The functionsbi(t), di(t), aij (t) are assumed to be nonnegative continuous
bounded such that inft>0 aii(t) > 0, i = 1, . . . , n.

(H2) The functionshij (t) are continuous and of bounded variations over[−τ,0], with
τ = max1�i�n{τi}.

(H3) The initial functionsϕi(t), ξi (t) are positive continuous and bounded over[−τi,0],
i = 1, . . . , n.

For the continuity of the initial conditions we assume that

(H4) yi(0) = ∫ 0
−τi

bi(s)ϕi(s)e
− ∫ 0

s di (u) du ds for anyi = 1, . . . , n.

This paper is organized as follows. In Section 2 we prove that system (1.4)–(1.5) ha
positive solution which is ultimately bounded. In Section 3 weobtain sufficient condition
for permanence and extinction of the species. These conditions extend to the case
tributed delays those in [16]. In Section 4 we consider system (1.4) into the autono
case, i.e., when the coefficients are constants. We establish a similar conditions to
[15] assuring the existence of a positive global asymptotic equilibrium. We end the
by some concluding remarks.

2. Preliminaries

In this section we make some notations and state some results which will be use
Put for 1� i, j � n,

Hij (t) = Var(hij |[−τ,t ]),

h−
ij (t) = 1

2
(Hij − hij )(t),

h+
ij (t) = 1

(Hij + hij )(t),

2
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for t ∈ [−τ,0], whereτ = max1�i�n{τi} and Var(g|[−τ,t ].) denotes the total variation o
g on [−τ, t]. It is easy to see thatHij ,h

+
ij , h

−
ij are nondecreasing functions. Moreover

hij (t) = h+
ij (t) − h−

ij (t), −τ � t � 0.

Let

C+
ij =

0∫
−τj

dh+
ij (s), C−

ij =
0∫

−τj

dh−
ij (s).

If we denote byBi(t) the expressionbi(t − τi)e
− ∫ t

t−τi
di (s) ds

, then system (1.4) can b
rewritten as



dxi

dt
= Bi(t)xi(t − τi) − xi(t)

∑n
j=1 aij (t)xj (t)

− xi(t)
n∑

j=1

∫ 0
−τj

xj (t + s) dh+
ij (s) + xi(t)

n∑
j=1

∫ 0
−τj

xj (t + s) dh−
ij (s),

dyi

dt
= bi(t)xi(t) − di(t)yi(t) − Bi(t)xi(t − τi),

(2.1)

for t > 0 andi = 1, . . . , n.

Denote byCτ = C([−τ,0],Rn) the Banach space of continuous functions mapp
[−τ,0] into Rn with the supremum norm. DefineC = ∏n

i=1 Cτi and the positive con
C+ = {φ = (φ1, . . . , φn) ∈ C: φi � 0, i = 1, . . . , n}. If A > 0 is a positive real numbe
andx ∈ C([−τ,A],Rn), then for eacht ∈ [0,A] we denote byxt the function defined by
xt (s) = x(t + s) for −τ � s � 0. If g is a real valued function oft , we put

gl = inf
t�0

g(t), gm = sup
t�0

g(t)

and make the assumption

(H5) al
ii >

∑n
j=1 C−

ij for i = 1, . . . , n.

Proposition 1. Under the assumptions(H1)–(H5), system(2.1)–(1.5)has a unique positive
solution(xi(t), yi(t)), i = 1, . . . , n, for t > 0, which is ultimately bounded.

Proof. Let f = (f1, . . . , fn), f :R+ × C → Rn be defined by

fi(t, φ) = Bi(t)φi(−τi) − φi(0)

n∑
j=1

aij (t)φj (0) − φi(0)

n∑
j=1

0∫
−τj

φj (s) dh+
ij (s)

+ φi(0)

n∑
j=1

0∫
−τj

φj (s) dh−
ij (s).

It is easy to check thatf is continuous fromR+ × C into Rn. Further denoting by
Dφfi(t, φ) the differential offi in φ we find
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Dφfi(t, φ)(h)n = Bi(t)hi (−τi) − hi(0)

n∑
j=1

aij (t)φj (0)

− φi(0)

n∑
j=1

aij (t)hj (0) − φi(0)

n∑
j=1

0∫
−τj

hj (s) dh+
ij (s)

+ hi(0)

n∑
j=1

0∫
−τj

φj (s) dh−
ij (s) − hi(0)

n∑
j=1

0∫
−τj

φj (s) dh+
ij (s)

+ φi(0)

n∑
j=1

0∫
−τj

hj (s) dh+
ij (s),

whereh = (h1, . . . , hn) ∈ C. Thereforef is continuously differentiable inφ. Thus by
[8, Theorem 2.3, p. 42] the first equation of(2.1) has a unique solution(x1(t), . . . , xn(t))

for t > 0. It follows by the classical results on ordinary differential equations that the
ond equation of(2.1) has also a unique solutiony(t) = (y1(t), . . . , yn(t)) for t > 0. Now if
φ ∈ C+ with φi(0) = 0 for somei, thenfi(t, φ) = Bi(t)φi(−τi) � 0, so by Proposition 1.2
of [17] we obtain that the solutionx(t) = (x1(t), . . . , xn(t)) of system (2.1)–(1.5) satisfie
xi(t) � 0 for t > 0.

We now prove thatx(t) > 0 for t > 0. By (H3) φi, ξi > 0 on [−τi,0]. Suppose on th
contrary that there ist1 > 0 such thatxi(t1) = 0 and definet0 = inf{t > 0: xi(t) = 0}, then
by (H3) t0 > 0 andxi(t0) = 0. From the first equation of (2.1),

dxi

dt
(t0) = Bi(t0)xi(t0 − τi) > 0, if t0 > τi,

dxi

dt
(t0) = Bi(t0)ϕi(t0 − τi) > 0, if t0 < τi.

Clearly in both casesdxi

dt
(t0) > 0. This a contradiction since by the definition oft0 we

know thatdxi

dt
(t0) � 0.

We now prove the boundedness of solutions of system (2.1)–(1.5). ChooseM such that

M = max
1�i�n

{
Bm

i

al
ii − ∑n

j=1 C−
ij

, sup
s∈[−τi ,0]

ϕi(s)

}
. (2.2)

We claim thatxi(t) � M for t > 0 andi = 1, . . . , n. Otherwise there would exist ãt > 0

and i0 ∈ {1, . . . , n} such thatxi0(t̃ ) = M,
dxi0
dt

(t̃ ) � 0 andxi(t) � M for t � t̃ and i =
1, . . . , n. We have from(2.1) and(2.2),

dxi0

dt
(t̃ ) � Bi0(t̃ )xi0(t̃ − τi0) − ai0i0(t̃ )x2

i0
(t̃ ) + xi0(t̃ )

n∑
j=1

0∫
−τj

xj (t̃ + s) dh−
i0j

(s)

� M

{
Bm

i0
− M

(
al
i0i0

−
n∑

j=1

C−
i0j

)}
< 0,

which is a contradiction. �



S. Liu et al. / J. Math. Anal. Appl. 301 (2005) 187–207 193

4.1,

e

for
Arguing as in the proof of the Corollaries 3.1 and 3.2 in [16] (see also [14, Corollary
p. 133], we can prove the following comparison result.

Lemma 1. a, b, c andd be positive constants and letx(t) be continuously differentiabl
function such that{

dx
dt

(t) � bx(t − τ ) − cx(t) + dx(t) − ax2(t), t > 0,
x(t) = ϕ(t), −τ � t � 0,

(2.3)

where the initial functionϕ is assumed to be inC+
τ = {φ ∈ Cτ : φ � 0}. Then

(1) (i) If b > c − d, then for anyε > 0 sufficiently small there existTε > 0 such that

x(t) <
b − c + d

a
+ ε for t > Tε.

(ii) Further if dx
dt

(t) � bx(t − τ ) − cx(t) + dx(t) − ax2(t) for t > 0, then for any
ε > 0 (sufficiently small) there existT ′

ε > 0 such that

x(t) >
b − c + d

a
− ε for t > T ′

ε.

(2) If b < c − d thenlimt→∞ x(t) = 0.

3. Permanence and extinction

In this section we study the permanence and the extinction of the speciesxi of sys-
tem (2.1). We begin first by the following theorem which gives sufficient conditions
permanence of the species.

Theorem 1. Assume that the assumptions(H1)–(H5)hold and

Bl
i >

n∑
j=1, j �=i

am
ij γj +

n∑
j=1

C+
ij γj ,

whereγi is the unique positive solution of the equation

γi = 1

al
ii

(
Bm

i +
n∑

j=1

C−
ij γj

)
, i = 1, . . . , n. (3.1)

Then(xi, yi) are uniformly permanent,i = 1, . . . , n.

Proof. Let M be as in(2.2) and chooseγ (0) such thatγ (0) = M + 1. Then there exists
T > 0 such that

xi(t) < γ (0), t > T , i = 1, . . . , n. (3.2)

From (2.1) and the properties ofh− andh+ we see that
ij ij
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dxi

dt
� Bm

i xi(t − τi) − al
iix

2
i (t) + xi(t)

n∑
j=1

0∫
−τj

xj (t + s) dh−
ij (s)

� Bm
i xi(t − τi) − al

iix
2
i (t) + xi(t)

n∑
j=1

C−
ij γ (0), (3.3)

for t > T + τ, whereτ = max1�i�n{τi}. Pick ε(1) > 0, then by(3.3) and Lemma 1 there

is a large timeT (1)
i > T + τ such that

xi � 1

al
ii

(
Bm

i + γ (0)

n∑
j=1

C−
ij

)
+ ε(1) = γ

(1)
i > 0,

for any t > T
(1)
i . Repeating the above processk-times for ε(1) > ε(2) > · · · > ε(k), we

obtain two sequencesγ (k)
i andT

(k)
i such that

xi � 1

al
ii

(
Bm

i +
n∑

j=1

C−
ij γ

(k−1)
i

)
+ ε(k) = γ

(k)
i ,

for t > T
(k)
i . Moreover, we have

γ
(k)
i − γ

(k−1)
i = 1

al
ii

n∑
j=1

C−
ij

(
γ

(k−1)
i − γ

(k−2)
i

) + ε(k) − ε(k−1), (3.4)

sinceε(k) − ε(k−1) < 0, it suffices to prove thatγ (1)
i − γ (0) < 0 to conclude by induction

thatγ (k)
i − γ

(k−1)
i < 0, for anyk � 1. We have by definition ofγ (1)

i that

γ
(1)
i − γ (0) = 1

al
ii

[
Bm

i +
(

n∑
j=1

C−
ij − al

ii

)
γ (0) − al

iiε
(1)

]
< 0.

Therefore, the sequenceγ (k)
i is decreasing ink. So there isγi > 0 such that

lim
k→∞γ

(k)
i = γi, i = 1, . . . , n.

It follows that

lim sup
t→∞

xi(t) � γi, i = 1, . . . , n, (3.5)

with

γi = 1

al
ii

(
Bm

i +
n∑

j=1

C−
ij γj

)
. (3.6)

By the assumption of Theorem 1 we can selectε > 0 so that

Bl
i −

n∑
am
ij (γj + ε) −

n∑
C+

ij (γj + ε) > 0. (3.7)

j=1, j �=i j=1
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For thisε we entail from(3.5) that there areTi > 0 such that

xi(t) � γi + ε, t > Ti.

PutT ′ = max1�i�n Ti. We have then by (2.1),

dxi

dt
� Bl

i xi(t − τi) − xi

n∑
j=1, j �=i

am
ij (γj + ε) − xi

n∑
j=1

C+
ij (γj + ε) − am

ii x
2
i , (3.8)

for t > T ′ + τ . Let ε′ > 0 be small. By Lemma 1,(3.7) and(3.8) there existsT ′′
i > T ′ such

that

xi � 1

am
ii

(
Bl

i −
n∑

j �=i

am
ij (γj + ε) −

n∑
j=1

C+
ij (γj + ε)

)
− ε′,

for any t > T ′′
i . Sinceε andε′ are arbitrarily small then taking the limit ast → ∞, we

obtain

lim inf
t→∞ xi � 1

am
ii

(
Bl

i −
n∑

j=1, j �=i

am
ij γj −

n∑
j=1

C+
ij γj

)
= δi > 0.

We now turn to prove the permanence ofyi(t). From the second equation in(2.1) we have

dyi

dt
= −di(t)yi(t) + fi(t), (3.9)

wherefi(t) = bi(t)xi(t)−bi(t − τi)e
− ∫ t

t−τi
di (s) ds

xi(t − τi). Integrating both sides of(3.9)

on (0, t), we obtain (as in [15])

yi(t) = yi(0)e− ∫ t
0 di(s) ds +

( t∫
t−τi

bi(s)xi(s)e
∫ s

0 di(u) du ds

)
× e− ∫ t

0 di(s) ds, (3.10)

we deduce that

lim inf
t→∞ yi(t) � bl

iτiδie
−τid

m
i > 0.

Consequently,yi(t), i = 1, . . . , n, are permanent.�
If we putN = (C−

ij /al
ii ) (1 � i, j � n), then by (H5),

‖N‖ = max
1�i�n

(
1

al
ii

n∑
j=1

C−
ij

)
< 1, (3.11)

the matrix(I −N) is then invertible, if we denote by(αij ) (1� i, j � n) its elements, then
αij � 0 for i, j = 1, . . . , n and we can explicitγi as

γi =
n∑

j=1

αij

Bm
j

al
jj

for i = 1, . . . , n.

The following theorem gives sufficient conditions for the extinction of the species
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Theorem 2. Assume that(H1)–(H5)hold and

(i) Bl
1 >

n∑
j=2

(
C+

1j + al
1j

)
γj − C+

11γ1,

(ii)
Bm

i + C−
i1γ1

al
i1

<
Bl

1 − C+
11γ1

am
11

for i = 2, . . . , n.

Then(xi(t), yi(t)) → (0,0) ast → ∞ for i = 2, . . . , n while(x1(t), y1(t)) gets permanent

Proof. The proof is divided into several steps. Define two sequences(v
(m)
i )m�0 and

(u(m))m�1 as follows:

v
(m+1)
i = 1

al
ii

(
Bm

i − al
i1u

(m+1) +
n∑

j=2

C−
ij v

(m)
j + C−

i1γ1

)
,

u(m+1) = 1

am
11

(
Bl

1 −
n∑

j=2

(C+
1j + al

1j )v
(m)
j − C+

11γ1

)
, (3.12)

for m � 0 with v
(0)
i = γi , whereγi is defined in Theorem 1. We have form � 1,

v
(m+1)
i − v

(m)
i = 1

al
ii

(
−al

i1(u
(m+1) − u(m)) +

n∑
j=2

C−
ij

(
v

(m)
j − v

(m−1)
j

))
,

u(m+1) − u(m) = − 1

am
11

(
n∑

j=2

(
C+

1j + al
1j

)(
v

(m)
j − v

(m−1)
j

))
, (3.13)

for i = 2, . . . , n.

Claim 1. There isi0, 2 � i0 � n andmi0 � 1 such that

v
(mi0)

i0
< 0 and v

(mi0−1)

i > 0 for i = 2, . . . , n. (3.14)

By assumption (i) of the theorem,

u(1) = 1

am
11

(
Bl

1 −
n∑

j=2

(
C+

1j + al
1j

)
γj − C+

11γ1

)
> 0,

hence

v
(1)
i − v

(0)
i = −al

i1

al
ii

u(1) < 0 for i = 2, . . . , n,

u(2) − u(1) = − 1

am
11

(
n∑(

C+
1j + al

1j

)(
v

(1)
j − v

(0)
j

))
> 0.
j=2
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e

By induction we conclude that the sequences(v
(m)
i )m�0 and(u(m))m�1 are respectively

decreasing and increasing. There are then two cases to distinguish.

Case 1. limm→∞ u(m) = +∞, we have by the first equation of (3.12) limm→∞ v
(m)
i = −∞

for any i = 2, . . . , n. Sincev
(0)
i > 0 for i = 2, . . . , n we can definei0 and mi0 � 1 as

follows:

mi0 = min
2�i�n

(
mi = min

{
m � 1: v

(m)
i < 0

})
. (3.15)

Case 2. limn→∞ u(m) = u < ∞. Since‖N‖ < 1 (see(3.11)), the linear map

v = (v2, . . . , vn) →
(

1

al
ii

n∑
j=2

C−
ij vj

)T

2�i�n

is a contraction and by the first equation of(3.12) the sequencev(m)
i converges to som

finite numbervi asm → ∞. Substituting the second equation of(3.12) into the first one
we find

v
(m+1)
i = Bm

i + C−
i1γ1

al
ii

− al
i1

al
ii

[
Bl

1 − C+
11γ1

am
11

− 1

am
11

n∑
j=2

(
C+

1j + al
1j

)
v

(m)
j

]

+ 1

al
ii

n∑
j=2

C−
ij v

(m)
j

= al
i1

al
ii

(
Bm

i + C−
i1γ1

al
ii

− Bl
1 − C+

11γ1

am
11

)

+
n∑

j=2

(
al
i1

al
ii

C+
1j

am
11

+ al
i1

al
ii

al
1j

am
11

+ C−
ij

al
ii

)
v

(m)
j . (3.16)

Denote by

β =
(

al
i1

al
ii

(
Bm

i + C−
i1γ1

al
ii

− Bl
1 − C+

11γ1

am
11

))T

2�i�n

,

C =
(

al
i1

al
ii

C+
1j

am
11

+ al
i1

al
ii

al
1j

am
11

+ C−
ij

al
ii

)
2�i,j�n

,

v(m) = (
v

(m)
2 , . . . , v(m)

n

)T for m � 0.

Then inequality (3.16) can be rewritten as

v(m+1) = β + Cv(m) for m � 0. (3.17)

So v(m) − v(m+1) = C(v(m−1) − v(m)) = · · · = Cm(v(0) − v(1)) for m � 0. Sincev(m) −
v(m+1) → 0 asm → ∞, thenCm(v(0) − v(1)) → 0 asm → ∞. Putξ = (v(0) − v(1))T > 0
elementwise. SinceCmξ → 0 asm → ∞, then by the matrix theory (see [3])σ(C) < 1,
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whereσ(C) denote the spectral radius ofC, thusCmζ → 0 asm → ∞ for any positive
vectorζ ∈ Rn−1. From (3.17) we have by induction

v(m) = β + Cv(m−1) = β + Cβ + C2v(m−2) = · · ·
= β + Cβ + · · · + Cm−1β + Cmv(0),

and sinceCkβ < 0 (recall thatβ < 0) elementwise for anyk � 1, we obtain

v(m) < β + Cmv(0), (3.18)

for anym � 1. Now sincev(m) → v andCmv(0) → 0 asm → ∞, we obtain from(3.18)
thatv < β < 0. We can then definei0, 2 � i0 � n andmi0 � 1 as in(3.15) such that(3.14)
holds.

Claim 2. limt→∞ xi0(t) = 0. By assumption (i) of the theorem we can selectε > 0 such
that

Bl
1 >

n∑
j=2

(
C+

1j + al
1j

)
(γj + ε) − C+

11(γ1 + ε), (3.19)

therefore there isT1 such that fort > T1,

dx1

dt
� Bl

1x1(t − τ1) − x1

n∑
j=2

am
1j (γj + ε) − x1

n∑
j=2

C+
1j (γj + ε)

− am
11x

2
1 − x1C

+
1j (γ1 + ε),

from Lemma 1 and (3.19) there areT̄1 > T1 andε1 > 0 small enough such that

x1(t) � 1

am
11

(
Bl

1 −
n∑

j=2

(
C+

1j + al
1j

)
(γj + ε) − C+

11(γ1 + ε)

)
− ε1 for t > T̄1,

thus

lim inf
t→∞ x1(t) � u(1) > 0.

Now if v
(1)
i > 0 for anyi = 2, . . . , n, pick ε′ > 0 such that

u(1) − ε′ > 0,

Bm
i − al

i1(u − ε′) +
n∑

j=2

C−
ij (γj + ε′) + C−

i1(γ1 + ε′) > 0,

for anyi = 2, . . . , n. There isT (1)
i such that

dxi

dt
� Bm

i xi(t − τi) − al
i1xi(u

(1) − ε′) + xi

n∑
j=2

C−
ij (γj + ε′)

+ xiC
−(γ1 + ε′) − al x2

i ,
i1 ii
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-

for t > T
(1)
i . By Lemma 1 once again there isε′′ > 0 small enough and̄T (1)

i > T
(1)
i such

that

xi(t) � 1

al
ii

(
Bm

i − al
i1(u − ε′) +

n∑
j=2

C−
ij (γj + ε′) + C−

i1(γ1 + ε′)
)

+ ε′′,

for t > T̄
(1)
i , we infer that

lim sup
t→∞

xi(t) � v
(1)
i for i = 2, . . . , n.

Continuing in this way until the step(mi0 − 1), wheremi0 is given in Claim 1, we obtain

lim sup
t→∞

xi(t) � v
(mi0−1)

i and lim inf
t→∞ x1(t) � u(mi0) for i = 2, . . . , n.

Now sincev
(mi0)

i0
< 0, we can selectεm0 > 0 such that

Bm
i0

− al
i01(u

(m0) − εm0) +
n∑

j=2

C−
i0j

(
v

(m0−1)
j + εm0

) + C−
i01(γ1 + εm0) < 0. (3.20)

Then there isT (m0)
i0

such that

dxi0

dt
� Bm

i0
xi0(t − τi0) − al

i01xi0(u
(m0) − εm0) + xi0

n∑
j=2

C−
i0j

(
v

(m0−1)
j + εm0

)
+ xi0C

−
i01(γ1 + εm0) − al

i0i0
x2
i0
,

for t > T
(m0)
i0

. Lemma 1(2) and (3.20) leads to

lim
t→∞xi0(t) = 0.

Claim 3. limt→∞ xi(t) = 0 for anyi = 2, . . . , n.

By a permutation of the indices{2, ..., n} we can suppose thati0 = n. So limt→∞ xn(t)

= 0. Define the new sequences

v
′(m+1)
i = 1

al
ii

(
Bm

i − al
i1u

′(m+1) +
n−1∑
j=2

C−
ij v

′(m)
j + C−

i1γ1

)
, i = 2, . . . , n,

u′(m+1) = 1

am
11

(
Bl

1 −
n−1∑
j=2

(
C+

1j + al
1j

)
v

′(m)
j − C+

11γ1

)
.

We can prove as in Claim 1 that the sequencesv
′(m)
i and u′(m) are respectively nonin

creasing and nondecreasing and that there arei1 (2 � i1 � n − 1) andmi1 � 1, such that

v
′(mi1−1)

i > 0 for i = 2, . . . , n − 1 andv
′(mi1)

i1
< 0. We also prove as in Claim 2 that

lim supxi(t) � v
′(mi1−1)

i for i = 2, . . . , n − 1

t→∞
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s a

s

and

lim inf
t→∞ x1(t) � u′(mi1) > 0.

Now arguing as in Claim 2 we deduce that limt→∞ xi1(t) = 0. Continuing in this way, we
obtain after a finite number of steps that limt→∞ xi(t) = 0 for anyi = 2, . . . , n.

Now by (3.10) we obtain limt→∞ yi(t) = 0 for i = 2, . . . , n and lim inft→∞ y1(t) �
bl

1τ1u
(1)e−τ1dm

1 > 0. The proof of the theorem is complete.�
Consider the limit system of system (2.1),


dx
dt

(t) = B1(t)x(t − τ1) − a11(t)x
2(t) + x(t)

∫ 0
−τ1

x(t + s) dh−
11(s)

− x(t)
∫ 0
−τ1

x(t + s) dh+
11(s), t > 0,

dy
dt

(t) = b1(t)x(t) − d1(t)y(t) − B1(t)x(t − τ1), t > 0.

(3.21)

Corollary 1. Assume that the coefficientsb1(t), d1(t), a11(t) are periodic functions with
the same periodω > 0. Then under the hypotheses of Theorem2 the solution(xi(t), yi(t))

of system(2.1) is such thatx1(t) − x∗(t) → 0 and y1(t) − y∗(t) → 0 as t → ∞ while
(xi(t), yi(t)) go to extinction ast → ∞ for i = 2, . . . , n, where(x∗(t), y∗(t)), t > 0, is
some positive solution of system(3.21).

Proof. Define a sequence of functions as follows:

xm(t) = x1(t + mω), t > 0, m � 1.

Sincedxm(t)
dt

are uniformly in(m) bounded fort > 0, the sequence(xm(t))m�1 is equicon-
tinuous on compact sub-intervals of(0,∞). Thus by the Ascoli–Arzéla theorem, there i

sub-sequence(xmk (t))k�1 such thatxmk (t) → x∗(t), dxmk
(t)

dt
→ dx∗(t)

dt
uniformly for t > 0

ask → ∞. Taking the limit in system(2.1) ask → ∞, by the fact thatxi(t + mkω) → 0
ask → ∞ for i = 2, . . . , n and the periodicity ofB1(t), a11(t) we obtain thatx∗(t) is some
positive solution of (3.21).

Let ε > 0 be given; there ismkε � 1 so that|x1(t + mkω) − x∗(t)| < ε for mk � mkε

andt > 0. Then if t > Tε = mkεω, we have∣∣x1(t) − x∗(t)
∣∣ < ε, t > Tε,

thusx1(t) − x∗(t) → 0 ast → ∞.

Arguing as in the proof of Theorem 4.1 in [15] we can prove that limt→∞(y1(t)−y∗(t))
= 0. This completes the proof of the corollary.�
Remark 1. If C+

ij = C−
ij = 0, then by(3.1), γi = Bm

i /al
ii . Assumption of Theorem 1 i

reduced to

Bl
i >

n∑
j=1, j �=i

am
ij

Bm
j

al
jj

, i = 1, . . . , n, (3.22)

and those of Theorem 2 are reduced to
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Theo-

are
ositive
, the
ry 1
f [20]

uilib-

g-

,

Bl
1 >

n∑
j=2

al
1j

Bm
j

al
jj

,

Bm
i

al
i1

<
Bl

1

am
11

, i = 2, . . . , n. (3.23)

Under (3.22) we have that the species(xi(t), yi(t)) are permanent fori = 1, . . . , n and un-
der (3.23) we obtain the extinction of the species(xi(t), yi(t)) ast → ∞ for i = 2, . . . , n

while (x1(t), y1(t)) gets permanent. In this sense our Theorems 1 and 2 extend
rems 2.1 and 2.2 of [16].

Remark 2. If C−
11 = C+

11 = 0, it is easy to check that the conditions of Theorem 8 in [20]
satisfied and by this Theorem we obtain that the limit system (3.21) has a unique p
periodic solution which is globally attractive. Thus in this case and by Corollary 1
solution(x1, y1) is attracted by the periodic solution of the limit system (3.21). Corolla
extends in this case Theorem 2.2 in [16]. Note here that conditions of Theorem 8 o
are not satisfied by our limit system (3.21) in general.

4. Global attractivity of a positive equilibrium

In this section we intend to study existence and global attractivity of a positive eq
rium for the autonomous case of system(1.7), namely



dxi

dt
= bie

−diτi xi(t − τi) − xi(t)
∑n

j=1 aij xj (t)

− xi(t)
∑n

j=1

∫ 0
−τj

xj (t + s) dh+
ij (s)

+ xi(t)
∑n

j=1

∫ 0
−τj

xj (t + s) dh−
ij (s),

dyi

dt
= −diyi(t) + bixi(t) − bie

−diτi xi(t − τi),

(4.1)

for t > 0, with the initial data(1.5). The coefficientsbi, di, aij are assumed to be nonne
ative such thataii > 0, i = 1, . . . , n. If aii >

∑n
j=1 C−

ij we can defineγi as in Theorem 1
by

γi = 1

aii

(
Bi +

n∑
j=1

C−
ij γj

)
, i = 1, . . . , n,

and let the matricesA,C+, C− be defined byA = (aij ), C+ = (C+
ij ), C− = (C−

ij ) for
1 � i, j � n.

Theorem 3. Assume that the assumptions(H1)–(H5)hold. Assume further that

Bi >

n∑
j=1, j �=i

aij γj +
n∑

j=1

C+
ij γj , 1 � i � n. (4.2)

Then system(4.1)has a unique positive equilibrium(x∗
i , y∗

i ) which is globally attractive
i.e.,

lim
(
xi(t), yi(t)

) = (
x∗
i , y∗

i

)
, i = 1, . . . , n,
t→∞
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ce
wherex∗
i is the unique positive solution of the equation

aiix
∗
i = Bi −

n∑
j=1, j �=i

aij x
∗
j −

n∑
j=1

C+
ij x∗

j +
n∑

j=1

C−
ij x∗

j , i = 1, . . . , n. (4.3)

Proof. Let w̄(0)
i = γi andw

(0)
i = δi , whereγi andδi are as in Theorem 1. Chooseε(0) > 0

such that

Bi −
n∑

j=1, j �=i

aij

(
w̄

(0)
j + ε(0)

) −
n∑

j=1

C+
ij

(
w̄

(0)
j + ε(0)

)
> 0, i = 1, . . . , n. (4.4)

This is possible by assumption (4.2). By Theorem 1 there existsT
(0)
i > 0 such that

w
(0)
i − ε(0) � xi(t) � w̄

(0)
i + ε(0),

for t > T
(0)
i . These relations allow us to derive that

dxi

dt
� Bixi(t − τi) − aiix

2
i − xi

n∑
j=1, j �=i

aij

(
w̄

(0)
j + ε(0)

)

− xi

n∑
j=1

C+
ij

(
w̄

(0)
j + ε(0)

) + xi

n∑
j=1

C−
ij

(
w

(0)
j − ε(0)

)
(4.5)

and

dxi

dt
� Bixi(t − τi) − aiix

2
i − xi

n∑
j=1, j �=i

aij

(
w

(0)
j − ε(0)

)

− xi

n∑
j=1

C+
ij

(
w

(0)
j − ε(0)

) + xi

n∑
j=1

C−
ij

(
w̄

(0)
j + ε(0)

)
, (4.6)

for t > T (0) = max1�i�n(T
(0)
i ) + τ. Let ε(1) > 0 be small. Using Lemma 1 we dedu

from (4.4)–(4.6) that there isT (1)
i > T (0) such that

xi �
(

Bi −
n∑

j=1, j �=i

aij

(
w̄

(0)
j + ε(0)

) −
n∑

j=1

C+
ij

(
w̄

(0)
j + ε(0)

)

+
n∑

j=1

C−
ij

(
w

(0)
j − ε(0)

))/
aii − ε(1)

and

xi �
(

Bi −
n∑

j=1, j �=i

aij

(
w

(0)
j − ε(0)

) −
n∑

j=1

C+
ij

(
w

(0)
j − ε(0)

)

+
n∑

C−
ij

(
w̄

(0)
j + ε(0)

))/
aii + ε(1),
j=1
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for t > T
(1)
i . Taking the limit ast → ∞ and sinceε(0), ε(1) are arbitrarily small we obtain

w
(1)
i � lim inf

t→∞ xi(t) � lim sup
t→∞

xi(t) � w̄
(1)
i ,

where

w
(1)
i = 1

aii

(
Bi −

n∑
j=1, j �=i

aij w̄
(0)
j −

n∑
j=1

C+
ij w̄

(0)
j +

n∑
j=1

C−
ij w

(0)
j

)
> 0,

w̄
(1)
i = 1

aii

(
Bi −

n∑
j=1, j �=i

aijw
(0)
j −

n∑
j=1

C+
ij w

(0)
j +

n∑
j=1

C−
ij w̄

(0)
j

)
> 0,

for i = 1, . . . , n. Furthermore, from the definition of̄w(1)
i , w

(1)
i , γi andδi we may write

w̄
(1)
i − w̄

(0)
i = 1

aii

(
−

n∑
j=1, j �=i

aij δj −
n∑

j=1

C+
ij δj

)
� 0, (4.7)

w
(1)
i − w

(0)
i = 1

aii

n∑
j=1

C−
ij δj � 0. (4.8)

Repeating the above processk-times we obtain two sequencesw
(k)
i , w̄

(k)
i such that

w
(k)
i � lim inf

t→∞ xi(t) � lim sup
t→∞

xi(t) � w̄
(k)
i , (4.9)

where

w̄
(k)
i = 1

aii

(
Bi −

n∑
j=1, j �=i

aijw
(k−1)
j −

n∑
j=1

C+
ij w

(k−1)
j +

n∑
j=1

C−
ij w̄

(k−1)
j

)
,

w
(k)
i = 1

aii

(
Bi −

n∑
j=1, j �=i

aij w̄
(k−1)
j −

n∑
j=1

C+
ij w̄

(k−1)
j +

n∑
j=1

C−
ij w

(k−1)
j

)
, (4.10)

for i = 1, . . . , n. Further we have

w̄
(k)
i − w̄

(k−1)
i = − 1

aii

(
n∑

j=1, j �=i

aij

(
w

(k−1)
j − w

(k−2)
j

) +
n∑

j=1

C+
ij

(
w

(k−1)
j − w

(k−2)
j

))

+ 1

aii

(
n∑

j=1

C−
ij

(
w̄

(k−1)
j − w̄

(k−2)
j

))
(4.11)

and

w
(k)
i − w

(k−1)
i = − 1

aii

(
n∑

j=1, j �=i

aij

(
w̄

(k−1)
j − w̄

(k−2)
j

) +
n∑

j=1

C+
ij

(
w̄

(k−1)
j − w̄

(k−2)
j

))

+ 1

aii

(
n∑

C−
ij

(
w

(k−1)
j − w

(k−2)
j

))
. (4.12)
j=1
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on-
, so
The inequalities (4.7), (4.8), (4.11), (4.12) and the induction process allow us to c
clude that the sequences̄w(k)

i and w
(k)
i are respectively decreasing and increasing

from (4.9) we deduce that these sequences are convergent. Putαi = limk→∞ w
(k)
i and

βi = limk→∞ w̄
(k)
i then from(4.9),

αi � lim inf
t→∞ xi(t) � lim sup

t→∞
xi(t) � βi,

whereαi andβi are given by

βi = 1

aii

(
Bi −

n∑
j=1, j �=i

aijαj −
n∑

j=1

C+
ij αj +

n∑
j=1

C−
ij βj

)
,

αi = 1

aii

(
Bi −

n∑
j=1, j �=i

aij βj −
n∑

j=1

C+
ij βj +

n∑
j=1

C−
ij αj

)
.

If we putwi = βi− αi we obtain that

wi = 1

aii

(
n∑

j=1, j �=i

aijwj +
n∑

j=1

C+
ij wj +

n∑
j=1

C−
ij wj

)
.

Define the matrixM = (Mij ) by

Mij =
{

aii − C+
ii − C−

ii , i = j ,
−aij − C+

ij − C−
ij , i �= j ,

then

Mw = 0,

wherew = (w1, . . . ,wn)
T . Using (3.6),

aiiγi −
n∑

i=1

C−
ij γj = Bi,

which with the relation(4.2) yields
n∑

j=1

Mij γj = aiiγi −
n∑

j=1

C−
ij γj −

n∑
j=1

C+
ij γj −

n∑
j=1, j �=i

aij γj

= Bi −
n∑

j=1

C+
ij γj −

n∑
j=1, j �=i

aij γj > 0. (4.13)

Now sinceMij � 0 for i �= j andγi > 0 (i = 1, . . . , n) we conclude by(4.13) thatM is an
M-matrix (see [6, Proposition 3.6.13, p. 228]). Consequently, detM > 0 and thenw = 0.

This means thatβi = αi for i = 1, . . . , n.

To prove the uniqueness ofx∗
i it suffices to prove that the matrixA + C+ − C− is

nonsingular. To this end note that(4.13) imply

(
aii − C+

ii − C−
ii

)
γi >

n∑ (
aij + C+

ij + C−
ij

)
γj
j=1, j �=i
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and hence

(
aii + C+

ii − C−
ii

)
γi >

(
aii − C+

ii − C−
ii

)
γi >

n∑
j=1, j �=i

(
aij + C+

ij + C−
ij

)
γj

>

n∑
j=1, j �=i

∣∣aij + C+
ij − C−

ij

∣∣γj ,

(A + C+ − C−) is then a diagonally dominant matrix, consequentlyA + C+ − C− is
nonsingular.

We now prove thatyi(t) also has a positive equilibrium. Noticing from the second eq
tion of (4.1) that

lim
t→∞fi(t) = lim

t→∞
(
bixi(t) − bie

−diτi xi(t − τi)
) = bix

∗
i − bie

−diτi x∗
i

= bix
∗
i (1− e−diτi ) > 0,

and by the well-known theory of ODE there isy∗
i > 0 such that

lim
t→∞yi(t) = y∗

i ,

for i = 1, . . . , n. �
Remark 3. If C−

ij = C+
ij = 0 then system (4.1) is reduced to the well-known autonom

stage-structured system in [15]. Theassumption of Theorem 3 is reduced to

bie
−diτi >

n∑
j=1, j �=i

aij

bj e
−dj τj

ajj

,

which is the well-known hypothesis stated in [15]. We extend Theorem 2.2 of [15].

5. Discussion

In this paper, we extend the model in Liu et al. [16] to the case of a nonautono
multispecies competitive stage-structured system with distributed delays. Biologicall
case would embody delayed feedback (rather than instantaneous feedback) of the
tition among the mature species from their past life history. Using the method of rep
replace we obtained sufficient conditions for their permanence and extinction. The
sults extend those in [16] to the case of distributed delays. We also proved that unde
assumptions similar to those in [16, Theorem 2.2 ] the last(n− 1) species go to extinctio
while the first species converge to some positive solution of the limit system. This re
weaker than the one in [16] but it is obtained under weaker conditions. Then we cons
ered the autonomous case and we build sufficient conditions for the global attractivity o
the positive equilibrium, which directly extends the analogous one in [15].

The sufficient conditions of permanence in nonautonomous case, i.e., Theorem 1
that the maximum effect of the distributed delays(C+ + C−) (i, j = 1, . . . , n) be small
ij ij
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and that the below boundary of intraspecific competition coefficientsal
ii (i = 1, . . . , n) be

large compared with the upper boundary of the interspecific competition coefficientsam
ij

(j = 1, . . . , n, andj �= i). For the global attractivity of positive equilibrium in autonomo
case, sufficient conditions of Theorem 3 requirethat the maximum effect of the distribute
delays(C+

ij + C−
ij ), i, j = 1, . . . , n, be small and that the intraspecific competition coe

cientsaii (i = 1, . . . , n) be large compared with the interspecific competition coeffici
aij (j = 1, . . . , n, andj �= i). Our conclusions are very similar to those for two spec
Lotka–Volterra delay differential equation by Gopalsamy and He [23].

Although much has been done in this domain some questions remain unsolved.
ticular we mention the following two questions: Is the solution of ourn-species competitiv
nonautonomous stage-structured system with distributed delays globally attractive
stage-structure affect the dynamics of the system?

Recently, Xu and Zhao [21] considered an asymptotically periodic competitive m
with stage-structure, which extended those stage-structured systems in Liu et al.
but again they ignored the delayed feedbackin competition among the mature species. B
appealing to the theory of autonomous and nonautonomous semiflows (see [16,18
established sufficient conditions for the existence of periodic solutions, coexistence,
persistence and extinction in terms of spectral radii of Poincaré maps associated with linea
periodic delay equations. The methods in [21] gives us an insight on the kind of pro
we are treating. This will be the subject of one of our future work.
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