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Abstract
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1. Introduction

Stage-structured models had already nee@imuch attention before 1990. But the great
progress on the stage structured models had not been obtained until 1990, when Aiello and
Freedman [1] proposed and studied their, by now well-known, single species model with
time delayed stage structure. In the model of Aiello and Freedman the population has a
life history and is divided into two stages: immature and mature. In particular we have in
mind mammalian populations which exhibit these two distinct stages: the mature species
are the adult animals and the immature represent their babies. The model is formulated
mathematically by the following system of two delay differential equations:

Z—f(r) =ae VTx(t — 1) — px(1),
%(t) =ax(®) —yy@t) —ae " x(t —1), (1.1)

for t > 0, wherex(¢) and y(¢) represent the density of mature and immature species at
timer, respectively. The model is derived under the following hypotheses:

(i) Only mature species can reproduce immatures, and the immature born at-time
that survives to time exit from the immature population and enters the mature pop-
ulation.

(i) The birth of the immature population is proportional to the existing mature population
with proportionality constand.

(iif) The death rate of the immature populatits proportional to the existing immature
population with proportionality constamt

(iv) The death rate of the mature population is of logistic nature, i.e., it is proportional to
the square of the population with proportionality consiant

7 is said to be the constant time to maturity @ng ty is the degree of the stage-structure.

For the model to make sense it is assumed that both mature and immature populations
are known in the interval—t, 0). Aiello and Freedman associate to the systérit) the
following initial data:

x(t)=¢@) 20, y@®)=§@)=>0, —-7<r<0. 1.2)

The model (1.1)—(1.2) predicts a positive steady state as the global attractor (see [1]).
It then suggests that stage-structure doegraerate the sustained oscillations frequently
observed in nature.

In [5], Freedman and Wu constructed a single stage-structured model in a somewhat
complicated environment. They proved therpanence and the global asymptotic stabil-
ity of a positive equilibrium in a multi-patch environment when the species can disperse
between the patches. In particular, they proved that the heterogeneity of the environment
may change the size of the positive equilibrium but cannot change its global asymptotic
stability. We also quote the works of Aiello at [2] in which the time delay to maturity
depends on the population density and that of Freedman et al. [4] which drafts the cases of
cooperation and cannibalism interactions.



S. Liu et al. / J. Math. Anal. Appl. 301 (2005) 187-207 189

Inspired by the work on competitive Lotka—Volterra systems [22], Liu et al. [14] de-
rived a competitive stage-structured model of two species where only mature species can
compete with the other species. This model was extended in [kBtmmpeting species
where only mature species can compete whttmselves for the common resource, so the
competition with the immature species can gedred. They proved that the system with
stage-structure has similar behavior to that without stage-structure. These works unify and
extend those on Lotka—\olterra systems to the case with stage-structure.

All these models are formulated in the autonomous case, i.e., the coefficient parameters
of the model are constant (not depending onefinThis situation is unrealistic since the
parameters of the environment do vary with time in general. It is then very important to
consider models of population interactiomich take into account both the seasonality of
the changing environment and the effects of time delays. These models can provide some
explanation about the often fluctuated bebawf the population densities observed in
nature. Mathematically speaking, to model the fluctuation of the environment it is assumed
that the coefficients of the system are functions of time (see [11]). In this regard, Liu et al.
considered in [16] the nonautonomous vensid their autonomous competitive system in
[15],i.e.,fori =1,...,n,

; — [l di(s)d
95— (= t)e I OV (= 1) — (1) Yy ay (0x5(0), (1.3)
. — " di(s)d '
D = bi ()i (1) — di (i () — by — wye o EO Py 1 — ),

They established sufficient conditions under which the species are permanent. They also
proved that the increase of the stage-structure degree of the spgcies x, can lead to
their extinction. This result shows that stage-structure of the species has negative effect on
its permanence. We refer the reader to the supaper of Liu et al. [13] on stage-structured
population dynamics.

In view of the fact that in real-life competitininteractions, inst@aneous responses
are rare or weak relatively to delayed responses, more realistic models should consist of
delay differential systems instead of systems with instantaneous feedbacks. Some authors
(Volterra [24], Kostitzin [25]) consider conmtuously distributed delays as ecologically and
biologically more realistic than discrete delays to model the species interactions, which is
proved true in 1969 by Caperon [26] who tried discrete and continuous delay models to
fit data obtained when he subjected algae to a variable nitrate environment and obtained a
better fit for his data with a continuously distributed delay. Later, Gopalsamy and He [23]
point out that in several cases of animal popuwliasi, the past dietary and nutritional history
of an animal over a long period plays an influential role in determining the current behav-
ior of the animals and in such cases distributed time delays will be appropriate. We note
that in the previous studied stage-structured systems (see, for instance, [14-16]), delayed
feedback responses in contiien among the mature speciae ignored. Motivated by the
works on competitive Lotka—\Volterra systems with distributed delays (see [7,9,10,12,19]),
it is our goal here in this paper to introduce distributed delay terms inta:tbgecies
nonautonomous competitive stage-structuresdesy (1.3). These nonlocal terms will rep-
resent feedback responses from the past life history of the species. To be precise, we shall
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consider the following nonautonomous compeétstage-structured system with distrib-
uted delays:

95— it — e I POV (= 1) — (1) g ay (0% (1)
—xi () Xy [2, %t +9)dhyj(s), 10, (1.4)

dy; - j;t—r,- di(s)ds

ar =bi®)xi(t) —di(t)yi(t) — bi(t —i)e
with the following initial conditions:
xi(0) =¢i(0), yi()=§&@), -u<r<O0. (1.5)

The systen(1.4) can be regarded as a generalizatio1o8) since it takes into account
both interspecific and intraspecific interactions. We will make the following assumptions
on the coefficient parameters of the system:

xi(t—1), t>0,

(H1) The functionsb; (t),d;(t), a;j () are assumed to be nonnegative continuous and
bounded such that infga;; (1) >0,i=1,...,n.

(H2) The functionsh;;(¢) are continuous and of bounded variations ojvet, 0], with
T =maxgi<alti}

(H3) The initial functionsp; (1), &; (¢) are positive continuous and bounded ojet;, 0],
i=1...,n.

For the continuity of the initial conditions we assume that

(H4) 3i(0) = [°, bi(s)gi(s)e™H 4@ gy for anyi =1, ... n.

This paper is organized as follows. In Seat®we prove that system (1.4)—(1.5) has a
positive solution which is ultirately bounded. In Section 3 vabtain sufficient conditions
for permanence and extinction of the species. These conditions extend to the case of dis-
tributed delays those in [16]. In Section 4 we consider system (1.4) into the autonomous
case, i.e., when the coefficients are constants. We establish a similar conditions to that in
[15] assuring the existence of a positive global asymptotic equilibrium. We end the paper
by some concluding remarks.

2. Preliminaries

In this section we make some notations and state some results which will be used later.
Putfor 1< i, j <n,

H;j(r) =Var(hij|[-z,),
1
hij(t) = 5 (Hij = hij)(©),

IMOE 3<H-- + hij)(t)
ij 2 L tj ’
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for t e [—7, 0], wheret = max ;<. {7} and VaKg|—-,.) denotes the total variation of

gon[—t,1]. Itis easy to see that;;, hf; hlfj are nondecreasing functions. Moreover

hij(t) = h?j'.(t) —h;(0), —t<1<0.

Let
0 0
C;;zfdhj;(s), C;:/dhi;(s).
T T

If we denote byB, (1) the expression; (r — r,»)e_f’—fi di(s)ds

rewritten as
% = Bi()x;(t — ) — xi (1) 31 _q aij (1) x; (1)

—xi(0) X O xjt+5)dhfis) +x(0) X [0, xj(t +5)dh(s). (2.1)
=t ' =t '

, then system (1.4) can be

i — by (1)x; (1) — di (D) yi (1) — B (Dxi (1 — ),

fort>0andi=1,...,n.

Denote byC,; = C([—7, 0], R") the Banach space of continuous functions mapping
[—7,0] into R" with the supremum norm. Defin€ = []’_; C;, and the positive cone
Ct={p=(p1,....00) €C: ¢; >0, i=1,...,n}. If A> 0 is a positive real number
andx € C([—1, A], R™), then for each € [0, A] we denote by, the function defined by
x:(s) =x( +s) for —t <5 <O0. If g is areal valued function af, we put

1 R m
=inf g(¢ =supg(t
g t>0g( ), g t>(|?g()

and make the assumption
(H5) al, > Y Cfori=1,...n.

Proposition 1. Under the assumptior{si1l)—(H5), systen{2.1)—(1.5has a unique positive
solution(x; (1), yi ()),i =1, ...,n, for t > 0, which is ultimately bounded.

Proof. Let f = (f1,..., fu), f: R+ x C — R" be defined by

n n 0
filt,$) = Bi(¢i (i) — $i(0) Y a;j()¢;(0) — $;(0) Y / ;i (s)dh(s)

]:l /:1—1']

n 0
+¢:i(0)) / $j(s) dhy; (s).
j:l—r]

It is easy to check thaf is continuous fromR, x C into R". Further denoting by
Dy f; (¢, ¢) the differential off; in ¢ we find
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Dy fi(t, §)(h)n = Bi(1)hi (—7i) — hi(0) Zaij ()¢, (0)

j=1

n n 0
—$i(0) ) aij(h;j(©0) —¢i(0)) /hj(s)dh;;(s)
j=1 j=121,

n 0 n 0
+h,-(o)z /qs,-(s)dh,.;(s)—h,-(O)Z /aﬁj(s)dh;(s)
j=1 .jzl—rj

n 0
+00Y [ 1o,
J=11,

whereh = (h1, ..., h,) € C. Thereforef is continuously differentiable ig. Thus by

[8, Theorem 2.3, p. 42] the first equation@1) has a unique solutiotx1(¢), ..., x,(t))

for ¢ > 0. It follows by the classical results on ordinary differential equations that the sec-
ond equation of2.1) has also a unique solutior(r) = (y1(¢), ..., y»(¢)) for t > 0. Now if

¢ € CT with ¢;(0) = 0 for some, thenf; (¢, ¢) = B; (1)¢; (—1;) > 0, so by Proposition 1.2

of [17] we obtain that the solution(t) = (x1(¢), ..., x,(¢)) of system (2.1)—(1.5) satisfies
x;(t) >0forz > 0.

We now prove that () > 0 fort > 0. By (H3) ¢;, & > 0 on[—1;, 0]. Suppose on the
contrary that there ig > 0 such that; (1) = 0 and defingp = inf{r > 0: x;(t) = 0}, then
by (H3) 70 > 0 andx; (r0) = 0. From the first equation of (2.1),

dx

d—ti(fo) = B;(to)x;(to — ;) >0, if 19> 1,

dx,- .
E(IO) =Bi(to)pi(to—1:) >0, ifro<rv.

Clearly in both caseéjT’ (to) > 0. This a contradiction since by the definition gfwe
know that4% (1) < 0.
We now prove the boundedness of solutions of system (2.1)—(1.5). Cikbaseh that
B
M= max{—~r——, sup <p-(s)}. (2.2)
lgign{ all'l' - Z.’;:l C,] se[—1;,0] l

We claim thatx; (1) < M for ¢ > 0 andi =1, ..., n. Otherwise there would existza> 0
andio € {1,...,n} such thatx;,(f) = M, d;—jo(f) >0 andx;(t) < M fort < f andi =

1,...,n. We have from2.1) and(2.2),

dxig - S S 2 R -
W(t) < Big (1)xio (1 — Tig) — @igig (1)}, (1) +xz'o(t)z / xj(t+s)dh; ;(s)

—
J==1j

n
l —
< M{B;g -~ M(a,.o,.o -y Cioj)} <0,
j=1

which is a contradiction. O
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Arguing as in the proof of the Corollaries 3.1 and 3.2 in [16] (see also [14, Corollary 4.1,
p. 133], we can prove the following comparison result.

Lemma 1. a, b, c andd be positive constants and letr) be continuously differentiable
function such that

{fl—’;(t) <bx(t — 1) — ex(t) +dx(t) — ax?(t), t>0, (2.3)
x(1) =), —7<1<0,

where the initial functiorp is assumed to be i@} = {¢ € C;: ¢ > 0}. Then

(1) (i) If b >c—d, then for anye > 0 sufficiently small there exigf, > 0 such that

b— d
x(t)<i+e fort > T,.
a

(ii)y Further if ‘é—f(r) > bx(t — 1) — cx(t) + dx(t) — ax?(@t) for t > 0, then for any
¢ > 0 (sufficiently smajlthere existZ] > 0 such that

b— d
x(t)>i—e fort > T).
a

(2) If b <c —d thenlim,_ o x(¢) =0.

3. Permanence and extinction

In this section we study the permanence and the extinction of the spgcidssys-
tem (2.1). We begin first by the following theorem which gives sufficient conditions for
permanence of the species.

Theorem 1. Assume that the assumptig(ikl)—(H5)hold and
n n
I
B; > Z af;f){/ + ZC;;yj,
J=1, j#i j=1
wherey; is the unique positive solution of the equation
1 n
y,:—l(Bfw-ZCi;y,), i=1,...,n (3.1)
i j=1
Then(x;, y;) are uniformly permanent,=1,...,n.
Proof. Let M be as in(2.2) and choose (@ such thaty® = M + 1. Then there exists
T > 0 such that
xi(t)<y(0), t>T,i=1,...,n. (3.2

From (2.1) and the properties b]; andhj; we see that
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dx; n B

d_tl <BM"xi(t — 1) — a”xlz(t) + x; () Z; / x;j(t +s)dhl.j(s)

< BI'xi(t — 1) — alxP(t) + xi(t) Z Civ© (3.3)
j=1

fort > T + 7, wheret = max<;<,{%}. Picke® > 0, then by(3.3) and Lemma 1 there
is a large time7,"” > T + t such that

1 S
xi<—r (B}" +y©O>° c,.j> +e® =y,
ii

j=1

for any s > T”. Repeating the above procekgimes fore® > ¢@ > ... > ¢® we
obtain two sequencez;(k) and Ti(k) such that

— (k-1 k
(Bm * ZC,, 4 )> el =y,

forr > Ti(k). Moreover, we have

k) _ (k H_ k=1 _ (k 2) (k) (k—1)
Y Y; T ZC,] )+ e, (3.4)
aii j=1

sinces® — ¢*=D < 0, it suffices to prove that,” — y© < 0 to conclude by induction

thatyl.(k) — yi(k_l) <0, foranyk > 1. We have by definition o;‘/l.(l) that

Vi(l) —y©@= - |:Bm (Z C;— ) a:l'ig(l):| <0
24

Therefore, the sequeno;é )is decreasing ik. So there ig/; > 0 such that
kILmooyi(k) =y, i=1...,n.
It follows that

limsupx; (1) <y, i=1...,n, (3.5)

t—0o0

with

1 N
vi= a—z(BZ” +Zcij7’j)~ (3.6)
ii

j=1
By the assumption of Theorem 1 we can sekest0 so that

n n
Bl— Y ai(yj+e)—) Clyj+e >0. (3.7)
J=1, j#i j=1
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For thise we entail from(3.5) that there ard; > 0 such that
xi()<yi+e t>T.

PutT’ = maxg;<, T;. We have then by (2.1),

dx n n
—— 2 Blxit—w)—xi Y aj(yj+e)—xiy Chlyj+e) —ajxf, (3.8)

dt . ;
=1, j# j=1

forr > T'4 1. Lete’ > 0 be small. By Lemma 13.7) and(3.8) there existg}” > T’ such
that

1 n n
xi 2 E<Bf Y alyi+e) =Y Ciy +s)> — ¢,
123

Jj# j=1
for anys > T/”. Sincee and¢’ are arbitrarily small then taking the limit as— oo, we
obtain

) ) 1 ; n n .
|Itrnlol’gfx,'>ﬁ(3i — Z a;’}y;—ZCijyj =4; > 0.
J=1, j#i j=1
We now turn to prove the permanenceyfr). From the second equation{@.1) we have
d .
= —di0yi(0) + fi(0). (3.9)

wheref; (1) = b; (t)x; (1) — bi (t — Ti)e—/;_,,. di(s)ds

on (0, r), we obtain (as in [15])

i(t — 1;). Integrating both sides @B.9)

'
yi(t) = y,-(O)eifé di(s)ds 4. ( / bi (s)x; (s)efé di () du ds) x e~ Jo di(s)ds (3.10)

-1
we deduce that
liminf y; (1) > blz;8;e 54" > 0.
11— 00

Consequentlyy; (¢), i =1, ..., n, are permanent. 0

ﬁwepmN=4c;m;u1<Lj<nxﬂmnby&wy

1 n

N|| = max | — (o 1, 3.11

INI Kign(al..z ,,,>< (3.11)
i j=1

the matrix(/ — N) is then invertible, if we denote big;;) (1 <i, j <n) its elements, then

a;j = 0fori, j=1,...,n and we can expliciy; as

n Bl‘n
vi=D e
=1 ¢

The following theorem gives sufficient conditions for the extinction of the species.

fori=1,...,n.
Ji
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Theorem 2. Assume thatH1)—(H5)hold and

0] B! > Z Clj +a11) - Ciin.
j=2
B"+Cyyn Bl —Cin
(ii) Lo mll fori=2,...,n.
a;q an

Then(x; (¢), yi (1)) — (0,0) ast — oo fori =2, ..., n while (x1(¢), y1(¢)) gets permanent.

Proof. The proof is divided into several steps. Define two sequemcﬁé@)m>o and
"™),,>1 as follows:

1
"D = (B'" al u(’"+1)+ZCU 5’")+C,-1y1),

aii =2

1 n
et = 7 (Bi =2 (€ +ayu)” - cfm), (3.12)
j=2

for m > 0 with vfo) =y;, wherey; is defined in Theorem 1. We have far> 1,

1
1 1
b= 3 (o i - ),

ii

1 n
-1
pmtD g m) —a—Tl< E (CI“] + allj)(vlg.m) — vlgm ))>, (3.13)
j=2

fori=2,...,n.

Claim 1. There isig, 2 < ig < n andm;, > 1 such that

(mig)
v, 0
io

<0 and v 750 fori=2....n. (3.14)

By assumption (i) of the theorem,

1 n
u® = —r (Bi > (¢t +al)y Clly1> >0,

j=2

hence

1 1

l
a.
v® @ =—#llu(1) <0 fori=2,...,n,

ii

1 n
P C R (Z(Cf,- Fal) - v;‘”)) -0

a
11 \j=2
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By induction we conclude that the sequen(zéé”),n;o and(u(m))m>1 are respectively
decreasing and increasing. There are then two cases to distinguish.

Case 1. lim,, .o u™ = 400, we have by the first equation of (3.12) im o v\ =
foranyi =2,...,n. Sincevl.(o) >0 fori=2,...,n we can defingg andm;, > 1 as
follows:

mi, = Zgﬁiign(mi =min{m >1: v <0}). (3.15)

—0o0

Case 2. lim,_ oo u™ =u < co. Since|N| < 1 (see(3.11)), the linear map

T
1
v=(v2,...,V,) > (a_lzcijvj>

i j=2 2<i<n

is a contraction and by the first equation(@f12) the sequence,.(m) converges to some

finite numbery; asm — oco. Substituting the second equation(@12) into the first one
we find

B"™ 4+ C: Y1 al' Bl -C V1 1 "
(m+1) 1 1 1 11 + I (m)
v; — % — ;l T - = (Clj +alj)vj

aj; aj; 11 -2

1 n
_
+ Gy

ii j=2
l - I +
_ E(Bim +Cann By - Cllyl)
aj; aj; ary
n 1 C+. 1 al ) c-
i1 -1 | 4171 ij ), (m)
j=2 N4 “11 i 11 ii
Denote by
l - I + T
B= 9i1 B'+Cin B -Cin
= al al am ) 9
ii ii 11 2<i<n
1 ct I 4l =
_ (m& 4 91 &)
aj aiy - af 4ty a Jogij<n
pm — (vg"), e v,(lm))T form > 0.
Then inequality (3.16) can be rewritten as
v = g+ cv™  form > 0. (3.17)
Sov™ — D — cpm=D _ ymy — ... = cm O — yD) for m > 0. Sincev™ —

v™ D 5 0 asm — oo, thenC” (v © —vD) — 0 asm — co. Pute = 0@ —v@W)T > 0
elementwise. Sinc€™¢ — 0 asm — oo, then by the matrix theory (see [3})(C) < 1,
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whereos (C) denote the spectral radius 6f thusC™¢ — 0 asm — oo for any positive
vectorz € R"~1. From (3.17) we have by induction
v =g+ o™V =g+ CB+CHMD=...
=B+CB+ -+ C" 1B+ C™O,
and sincaC* g < 0 (recall that8 < 0) elementwise for any > 1, we obtain
m < B+ C" @, (3.18)

for anym > 1. Now sincev™ — v andC™v©® — 0 asm — oo, we obtain from(3.18)
thatv < 8 < 0. We can then defing, 2 <io < n andm;, > 1 as in(3.15) such thai3.14)
holds.

Claim 2. lim;_ « x;,(t) = 0. By assumption (i) of the theorem we can select 0 such
that

Bl>2 L +ay) v +e) — CHh+e), (3.19)

therefore there ig7 such that for > 71,

dxl

— lel(r—n)—leal,(y, +e)—xlzc (i +e

j=2 j=2
allxl xlclj(yl+s)

from Lemma 1 and (3.19) there afe > 71 ande1 > 0 small enough such that

1 - _
x1(t) > a (Bl Z(Cf] +ay;)(yj+&) — CH+ s)) —e1 fort> Tn,
j=2

thus

liminf x1() > u® > 0.
—o0

Now if v > O foranyi =2, ..., n, picke’ > 0 such that

uD

—¢' >0,
n
m l / — / _ ’
B; _ail(u_g)—i_zcij(yj +8)+C,-1(J/1+8)>0,
j=2

@ such that

foranyi =2,...,n. ThereisT;
dx,

n Bmx,(t—t,)—alx,(u(l)—e)—i—x,ZC”()/,—i—e)

j=2

+ x; ,1(V1+5)_a“ 125
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fort > T,.(l). By Lemma 1 once again thered$ > 0 small enough and_ri(l) > Tl.(l) such
that

1 =~ _
xi(0) < — (B;" —ajyu—e)+ Y Cr(yi+&)+Ciiin+ e’)) +e,
ii j=2

fort > Ti(l), we infer that
1)

limsupx; (1) < v, fori=2,...,n.

t—00
Continuing in this way until the ste@n;, — 1), wherem,, is given in Claim 1, we obtain
. (mig—1) L (i) .
limsupx; () < v, and liminfx¢(t) > u'™o’ fori=2,...,n.
t—>00 =00
Now sincevl.(:”f’) < 0, we can select,,, > 0 such that

n
B —al g (™ —epg) + Y Cr (0" + emg) + Croy(v1+ emp) < 0. (3.20)
j=2

Then there isr,.g'"") such that

dxj, m / (mg) o (mo—1)
i S Big xig(f = Tig) — aj51%io (™ — &mo) + i Z Cioi (¥ + &mo)
j=2
+ XigC 1 (Y1 + €mg) — afoiox,»zo,

fort > Tigm"). Lemma 1(2) and (3.20) leads to

lim x,'O(t) =0.
11— 00
Claim 3.lim;—_ s x;(t) =0 foranyi =2, ...,n.

By a permutation of the indicg, ..., n} we can suppose that = n. So lim,_, o x, (t)
= 0. Define the new sequences

-1
1 — _ .
vl{(m+l) = (Bzm _ alllu/(m+1) + Z Cuv/‘(m) + Cily]-)’ i=2,...,n,

ijoi
i j=2

-1

1 n

+1) _ 1 + 1 /(m) +

e )_a_Tl<Bl_Z(Clj+alj)vj —Cllyl).
j=2

We can prove as in Claim 1 that the sequenxz:l'é@ and '™ are respectively nonin-
creasing and nondecreasing and that theréa(2 < iy < n — 1) andm;, > 1, such that

/(mi; —1) /(miy)
Y; i

>0fori=2,...,n—1andv < 0. We also prove as in Claim 2 that

/(m,-l—l)
i

limsupx; (1) <v

t—0o0

fori=2,....n—-1
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and

liminf x1(t) > '™ > 0.
11—

Now arguing as in Claim 2 we deduce that fi;y, x;, (t) = 0. Continuing in this way, we
obtain after a finite number of steps that limy, x; (r) =0 foranyi =2, ..., n.

Now by (3.10) we obtain lim_  y;(t) =0 fori =2,...,n and liminf_ o y1(t) >
biriu®e=74 > 0. The proof of the theorem is completer

Consider the limit system of system (2.1),

4 (1) = By(n)x(t — 11) — ans(0x%(0) +x(t) [°_ x(t + 5)dhiy(s)
—x(t) f?rlx(t +5)dhiy(s), >0, (3.21)
9 (1) = b1(O)x (1) — dr(O)y(t) — Bi(Ox(t — 1), 1> 0.

Corollary 1. Assume that the coefficiertis(t), d1(7), a11(t) are periodic functions with
the same period > 0. Then under the hypotheses of Theogitine solution(x; (¢), y; (¢))
of system(2.1) is such thatx1(r) — x*(r) — 0 and y1(r) — y*(¢r) — 0 ast — oo while
(x; (1), yi (1)) go to extinction ag — oo fori =2,...,n, where(x*(), y*()), t > 0, is
some positive solution of syst€@21)

Proof. Define a sequence of functions as follows:
X (1) =x1(t + mw), t>0 m>1

Since% are uniformly in(m) bounded for > 0, the sequencex,, (t)),>1 is equicon-
tinuous on compact sub-intervals@ oc). Thus by the Ascoli-Arzéla theorem, there is a

sub-sequencex,, (1)r>1 such thate,, (1) — x*(t), dx’:/;(t) — dx;t(’) uniformly forz > 0
ask — oo. Taking the limit in systen{2.1) ask — oo, by the fact that; (t + myw) — 0
ask — oo fori =2,...,n and the periodicity oB1(¢), a11(z) we obtain thak*(¢) is some
positive solution of (3.21).

Let e > O be given; there isy, > 1 so thatlx1(t + mrw) — x* ()| < & for my > my,

andr > 0. Then ifr > T, = my, w, we have

‘xl(t) —x*(t)| <g, t>T,,

thusxy(t) — x*(t) — 0 ast — oo.
Arguing as in the proof of Theorem 4.1 in [15] we can prove that lim (y1(t) — y*(¢))
= 0. This completes the proof of the corollarya

Remark 1. If Cj;. =C;; =0, thenby@31), yi = Bl.’”/afl.. Assumption of Theorem 1 is
reduced to

B> Y ail—-. i=1...n, (3.22)

and those of Theorem 2 are reduced to
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n Bm
I 12
By > Zalj a0
j=2 Ji
m l
5 _ 5 j =2 3.23
i > 1=2,...,n. ( . )
a;;  d11

Under (3.22) we have that the speciest), y; (¢)) are permanentfar=1,...,n and un-

der (3.23) we obtain the extinction of the speadiesr), y; (t)) ast > oo fori=2,...,n

while (x1(¢), y1(¢)) gets permanent. In this sense our Theorems 1 and 2 extend Theo-
rems 2.1 and 2.2 of [16].

Remark 2.If C; = C;; = 0, itis easy to check that the conditions of Theorem 8 in [20] are
satisfied and by this Theorem we obtain that the limit system (3.21) has a unique positive
periodic solution which is globally attractive. Thus in this case and by Corollary 1, the
solution(x1, y1) is attracted by the periodic solution of the limit system (3.21). Corollary 1
extends in this case Theorem 2.2 in [16]. Note here that conditions of Theorem 8 of [20]
are not satisfied by our limit system (3.21) in general.

4. Global attractivity of a positive equilibrium

In this section we intend to study existence and global attractivity of a positive equilib-
rium for the autonomous case of systéhi7), namely
D = bieTixy(t — 1) — xi (1) Y1y aijx (1)

0
—xi() Yy f_rj xj(t+s) dh;;(s)
0 Z
+xi (1) Yoy [2,, %t + ) dhi(s),
Dy (6) + bixi () — bie™ ;1 — 1),
for + > 0, with the initial data(1.5). The coefficients;, d;, a;; are assumed to be nonneg-
ative such that;; >0,i=1,...,n. If a;; > ijl Ci; we can defing; as in Theorem 1
by

(4.1)

1 =~ .

)/l:a—”<Bl+ZCUy]>s l:]-s"'sns
j=1

and let the matricest, C*, C~ be defined byA = (4;j), CT = (Cj;.), C™ = (C}) for

1<i, j<n. '

Theorem 3. Assume that the assumptigiiil)—(H5)hold. Assume further that

n n

B; > Z a,'.,')/j-l-ZCi—;)/j, 1<i<n. 4.2)
J=1, j#i j=1

Then systerf4.1) has a unique positive equilibriugx*, y*) which is globally attractive,

ie.,

(xi(0),yi(®)) = (x}.yF), i=1....n,

lim
11— 00
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wherex is the unique positive solution of the equation

a;iX; =B — Z a,]x ZCU ]—i—ZCU X7, i=1...,n. (4.3)

=1 j#

Proof. Let wf‘” =y andglgo) =§;, wherey; ands; are as in Theorem 1. Choos® > 0
such that

n n
Bi— Y ai(@?+e@) =Y @ +:0)>0 i=1..n (4.4
J=1j# =

This is possible by assumption (4.2). By Theorem 1 there eij@fs> 0 such that
QEO) —eO<xm< 12)}0) +¢©,

fort > T,.(O). These relations allow us to derive that

d n
= > Bixi(t —17) — a,,xz X; ‘ Z 'a,-] (w(o) —i—e(o))
J=L j#
n n
— X Z CI.Jr w(o) + 8(0)) + xi Z Cij (QEO) - 8(0)) (4.5)
and
dx; n
— - < Bixit =) - aix?—x; Y ai(w? —&®)
J=L j#i
n n
Xy o (w;o) —e@)+x ) C; ( w(O) +O), (4.6)

fort >T© = maXlg,'gn(T[(O)) + 7. Let ¢ > 0 be small. Using Lemma 1 we deduce
from (4.4)—(4.6) that there isrl.(l) > T such that

n n
Xi 2 <Bi - > a (w(o) +e@) =Y w(o) +6©@)
j=1

=L j#i
+ ZC (0) (0)))/%_ _ @

and

n
<<Bi— Z aij( (O) ZC+ ©_ (0))

j=1j#i

n
+ Z Ci w(O) + 8(0)))/01',' + 8(1),
j=1
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fort > T.(l). Taking the limit ag — oo and since(@, ¢ are arbitrarily small we obtain

< liminfux; (1) < lim supx; (1) < o

11— 00
where
w® = (B__ 2: aiy1'® §:C+-wx+§:c wwv:>,
dii j=1, j#i
_(l) (B — Z ajjw ZC w(o)—l—ZC w(o)>>0,
J=L j#i Jj=1

(1

fori =1,...,n. Furthermore, from the definition a'”, w'" y; ands; we may write

n
@ —o_ 1
i i aii( 1'212‘;75, l/ Z >

w® —w® = Z}%@>o (4.8)
] =1

Repeatmg the above procdstimes we obtain two sequencwg‘) M such that

I|m|nfx,(t) limsupx; (t) < (k) (4.9)
—>00
where

_ 1 - -

w;k>=f(3,-- S ajut? Zc D LS e 1>)
dii j=1, j#i j=1
1 n

1¢“=_7<B,- Y ayulY - }:c ‘“1ﬁ+§:c wklj, (4.10)
i j=1 j#i j=1

fori =1,...,n. Further we have

w;k)_wlgk—l):_i( i iy (! *k=1) _ (k 2) +ZC (k 1) Ek 2)))

aijj

j=1, j#i
1 @'1> 5%2
+ - 2:‘@ w5 ) (4.11)
j=1
and

1 n
*) _ k=D () _ -2 BE
w—w; :_;( Z a’/( j +ZC “ ))
1 n
~ (w*D _ k=2
—i—a—”(ZCij(wj - w! )). (4.12)
j=1
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The inequalities (4.7)(4.8), (4.11), (4.12) and the induction process allow us to con-

clude that the sequencew%(k and w(k are respectively decreasing and increasing, so
(k)

from (4.9) we deduce that these sequences are convergent; Patim;_. w,”’ and
Bi =limg_ o w ) then from(4.9),
a; < liminf x; (¢) <limsupx; (1) < Bi,
—>00 —00
wherew; andg; are given by
1 n
Bi = ;(Bi - Z ajjoj — ZC T +ZCU,31)
" J=1j#i j=1
1 n
o = ;(Bi - Z aijBj — ZC Bj +ZCU°‘1)
" J=1, j#i j=1
If we putw; = B, — «; we obtain that
( Z ajjw;j +ZC W +ZC wj>
G\ j=1, i
Define the matrixM = (M;;) by
ai—Ct—c;, i=},
M" — 123 123 . . .
&l {—a,'j—C;;—Cij, i#],
then
Mw =0,
wherew = (w1, ..., w,)’. Using (3.6),
n
aiyi — y_Cvi=Bi,
i=1
which with the relation(4.2) yields
n n n n
ZMijJ/j =4ajiyi — ZC,;V;‘ - ZCJJ/J' - Z aijyj
j=1 j=1 j=1 J=1, j#i
n
ZCU vi— Y. aijy;>0. (4.13)

Jj=1j#i

Now sinceM;; < O fori 7& jandy; >0 =1,...,n) we conclude by4.13) that M is an
M-matrix (see [6, Proposition 3.6.13, p. 228]). Consequently)tet0 and thenv = 0.
Thismeansthas; = «; fori=1,...,n

To prove the uniqueness af it suffices to prove that the matrix + C™ — C~ is
nonsingular. To this end note th@t 13) imply

n
(@i —CF=C)vi> Y. (aij+Ch+C)y,
Jj=1,j#i
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and hence

n
(a,',' -|-C;l-r — C;)y,' > (a,',' — C;ir — C;)y,' > Z (a,'.,' +C;jr- +Ci;))/j
J=1, j#i

n
> Z ‘a,-j +Cﬁ; — Ci;|)/j,
Jj=1,j#i
(A 4+ C*T — C7) is then a diagonally dominant matrix, consequently- C* — C~ is
nonsingular.
We now prove thay; (¢) also has a positive equilibrium. Noticing from the second equa-
tion of (4.1) that

. —d,“L’,‘ k
. —bie X;

lim fi ()= lim (bix; (1) — bie™ T x;(t — w)) = bix}
11— 00 11— 00
=bix/(1— ety > 0,
and by the well-known theory of ODE thereyi$ > 0 such that
lim yi(r) = y/,
11— 00

fori=1....,n. O

Remark 3. If C;; = C;% = 0 then system (4.1) is reduced to the well-known autonomous
stage-structured system in [15]. Thssumption of Theorem 3 is reduced to

n —dit;

o bi:e 4t

bie %t > E aijija“ ,
J=1j# H

which is the well-known hypothesis stated in [15]. We extend Theorem 2.2 of [15].

5. Discussion

In this paper, we extend the model in Liu et al. [16] to the case of a nonautonomous
multispecies competitive stage-structured system with distributed delays. Biologically, this
case would embody delayed feedback (rather than instantaneous feedback) of the compe-
tition among the mature species from their past life history. Using the method of repeated
replace we obtained sufficient conditions for their permanence and extinction. These re-
sults extend those in [16] to the case of distributed delays. We also proved that under some
assumptions similar to those in [16, Theorem 2.2 ] the(last 1) species go to extinction
while the first species converge to some positive solution of the limit system. This result is
weaker than the one in [16] but it is obtaid under weaker conditions. Then we consid-
ered the autonomous case and we build sefficconditions for the global attractivity of
the positive equilibrium, which déctly extends the analogous one in [15].

The sufficient conditions of permanence in nonautonomous case, i.e., Theorem 1 require
that the maximum effect of the distributed dele(ﬁf; + Ci;) (i,j=1,...,n) be small
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and that the below boundary of intgecific competitio coefficients;zfl. i=1,...,n) be
large compared with the upper boundary of thterspecific competition coeﬁicien&%’.
(j=1,....n,andj #i). For the global attractivity of positive equilibrium in autonomous
case, sufficient conditions of Theorem 3 reqirat the maximum effect of the distributed
delays(CiJ; + Cl.;), i,j=1,...,n, be small and that the intraspecific competition coeffi-
cientsa;; (i =1,...,n) be large compared with the interspecific competition coefficients
aij (j=1,...,n, andj # i). Our conclusions are very similar to those for two species
Lotka—Volterra delay differential equation by Gopalsamy and He [23].

Although much has been done in this domain some questions remain unsolved. In par-
ticular we mention the following two questions: Is the solution of ospecies competitive
nonautonomous stage-structured system with distributed delays globally attractive? Does
stage-structure affect the dynamics of the system?

Recently, Xu and Zhao [21] considered an asymptotically periodic competitive model
with stage-structure, which extended those stage-structured systems in Liu et al. [15,16]
but again they ignored the delayed feedbickompetition among # mature species. By
appealing to the theory of autonomous and nonautonomous semiflows (see [16,18]), they
established sufficient conditions for the existence of periodic solutions, coexistence, global
persistence and extinction in terms of spdatidii of Poincaré mapassociated with linear
periodic delay equations. The methods in [21] gives us an insight on the kind of problems
we are treating. This will be the subject of one of our future work.
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