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Abstract

In this work we study the existence of periodic solutions for some partial functional differential equa-
tion with infinite delay. We assume that the linear part is not necessarily densely defined and satisfies the
known Hille–Yosida condition. Firstly, we give some estimates of the solutions. Secondly, we prove that the
Poincaré map is condensing which allows us to prove the existence of periodic solutions when the solutions
are ultimately bounded.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Hille–Yosida condition; Integral solutions; Semigroup; Uniform fading memory space; Ultimate
boundedness; Condensing map; Hale and Lunel’s fixed point theorem; Periodic solution

1. Introduction

The aim here is to investigate the existence of a periodic solution for the following partial
functional differential equation with infinite delay:{

d
dt

u(t) = Au(t) + F(t, ut ) for t � 0,

u0 = ϕ ∈ B,
(1.1)
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where A :D(A) ⊂ X → X is not necessarily densely defined linear operator on a Banach
space X, here we assume that A satisfies the Hille–Yosida condition, which means that there
exist M̄ � 1, ω ∈ R such that (ω,+∞) ⊂ ρ(A) and∣∣R(λ,A)n

∣∣ � M̄

(λ − ω)n
for n ∈ N and λ > ω,

where ρ(A) is the resolvent set of A and R(λ,A) = (λ − A)−1. The phase space B is the space
of functions mapping (−∞,0] to X and satisfying some axioms which will be described below.
For every t � 0, the history function ut ∈ B is defined by

ut (θ) = u(t + θ) for θ ∈ (−∞,0].
F is a continuous function from R ×B into X and ω-periodic in t .

For functional differential equations with finite delay, the phase spaces are Lp-spaces, for
1 � p < ∞, or the space of continuous functions from [−r,0] to X, for more details about this
topics we refer to [3,15,23]. When the delay is infinite, the selection of the phase space B plays
a crucial role to study the quantitative behavior of solutions. A large variety of phase spaces B
has been used in the theory of functional differential equation with infinite delay. Usual choice is
normed spaces B satisfying suitable axioms which have been introduced by Hale and Kato [14].
Partial functional differential equations with infinite delay has been the subject of many works,
we refer to [1,2,18] and the references therein. In [1,2], the authors established the existence,
regularity and stability of solutions of Eq. (1.1) where A is not necessarily densely defined and
satisfies the Hille–Yosida condition. In [18], the author proved the existence and regularity of
solutions of Eq. (1.1) where A is the infinitesimal generator of analytic semigroup on X.

Periodic solutions of ordinary and partial functional differential equations are of great interest
in the qualitative analysis of that kind of equations. There is an extensive literature related to this
topics, for instance, we refer to [6–9,11–13,16,17,20–22]. Fixed point theorems is a powerful tool
to investigate this problem. The standard approach to prove the existence of periodic solutions is
to consider the Poincaré map P which is defined by

Pϕ = uω(., ϕ),

where u(., ϕ) is the solution of Eq. (1.1). Since the existence of a periodic solution is equivalent to
the existence of a fixed point of P . In [11], the authors proved the existence of periodic solutions
for partial functional differential equations with finite delay, when the solutions are bounded and
ultimate bounded, they proved the existence of a periodic solution by using Horn’s fixed point
theorem, which requires the compactness of the Poincaré map. In [6], the authors investigated the
existence of periodic solutions for nonhomogeneous partial functional differential equations with
infinite delay, they proved that the existence of a bounded solution on R+ implies the existence
of periodic solutions, when the phase space is uniform fading memory space. In [20], the author
discussed the existence of periodic solutions for nonautonomous partial functional differential
equations with infinite delay, it has been proved that the Poincaré map is condensing on Cg ,
which allows to prove the existence of fixed point of the Poincaré map by using Sadovskii’s fixed
point theorem. The present work is a continuation of papers [12,13,20,21], we use the ultimate
boundedness to prove the existence of a periodic solution of Eq. (1.1) when B is a uniform fading
memory space.

The work is organized as follows, in Section 2 we recall the axioms and properties about the
phase space B and some results on the spectral analysis of linear operators which will be used in
the whole of this work. In Section 3 we give some definitions and results about the solutions of
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Eq. (1.1). In Section 4 we prove the existence of a periodic solution by using Hale and Lunel’s
fixed point theorem when the solutions are ultimate bounded. Finally, we propose to study the
existence of periodic solution for some nonlinear partial differential equations arising in physical
systems.

2. Preliminary results

Throughout this work, we assume that B is a normed linear space consisting of functions map-
ping (−∞,0] into X endowed with a norm | · |B , and satisfies the following axioms which have
been introduced at first by Hale and Kato [14]:

(A) There exist a positive constant H and functions K(·),M(·) : [0,+∞) → [0,+∞), with K

is continuous and M is locally bounded, such that for any σ ∈ R and a > 0, if x : (−∞,

σ + a] → X, xσ ∈ B, and x(·) is continuous on [σ,σ + a], then for all t in [σ,σ + a], the
following conditions hold:

(i) xt ∈ B,
(ii) |x(t)| � H |xt |B ,

(iii) |xt |B � K(t − σ) supσ�s�t |x(s)| + M(t − σ)|xσ |B ,
(iv) t → xt is a B-valued continuous function for t in [σ,σ + a].

(B) The space B is complete.

Let C00 be the space of continuous functions mapping (−∞,0] into X with compact supports.
We assume that B satisfies:

(C) If a uniformly bounded sequence (φn)n�0 in C00 converges compactly to φ on (−∞,0],
then φ is in B and |φn − φ|B → 0.

For φ ∈ B, t � 0 and θ � 0, we define the linear operator W(t) by[
W(t)φ

]
(θ) =

{
φ(0), if t + θ � 0,

φ(t + θ), if t + θ < 0.

(W(t))t�0 is exactly the solution semigroup associated to the following equation{
d
dt

u(t) = 0,

u0 = ϕ.

Let

W0(t) = W(t)/B0, where B0 := {φ ∈ B: φ(0) = 0}.
Let BC be the space of bounded continuous functions mapping (−∞,0] into X, provided with
the uniform norm topology.

Proposition 2.1. [19, Proposition 1.5, p. 190] If B satisfies axiom (C), then BC ⊂ B and there
exists a positive constant J such that |φ|B � J |φ|BC . Moreover,

|xt |B � J sup
σ�s�t

∣∣x(s)
∣∣ + (1 + JH)

∣∣W0(t − σ)
∣∣|xσ |B, σ > 0,

for any function x satisfying axiom (A).
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Definition 2.2. B is called a uniform fading memory space if it satisfies axioms (A)–(C) and
|W0(t)| → 0 as t → +∞.

As a consequence of Proposition 2.1, the functions K(.) and M(.) can be chosen as K(t) = J

and M(t) = (1+JH)|W0(t)|. Moreover, if B is a uniform fading memory space, then M(t) → 0
as t → +∞.

In the next, we introduce the Kuratowski’s measure of noncompactness, α(.) of bounded sets
K on a Banach space Y which is defined by

α(K) = inf{ε > 0: K has a finite cover of ball of diameter < ε}.
Some basic properties of α(.) are given in the following lemma.

Lemma 2.3. Let A1 and A2 be bounded sets of a bounded Banach space Y . Then

(i) α(A1) � dia(A1), where dia(A1) = supx,y∈A1
|x − y|,

(ii) α(A1) = 0 if and only if A1 is relatively compact in Y ,
(iii) α(A1 ∪ A2) = max{α(A1), α(A2)},
(iv) if A1 ⊆ A2, then α(A1) � α(A2),
(v) α(A1 + A2) � α(A1) + α(A2).

Let K :Y → Y be a closed linear operator with a dense domain D(K) in a Banach space Y .
We denote by σ(K) the spectrum of K.

Definition 2.4. [23] The essential spectrum σess(K) of K is the set of all λ ∈ C such that at least
one of the following holds:

(i) the range Im(λI −K) is not closed,
(ii) the generalized eigenspace Mλ(K) = ⋃

n�1 ker(λI −K)n of λ is infinite dimensional,

(iii) λ is a limit point of σ(K), that is λ ∈ σ(K)�{λ}.

Theorem 2.5. [10] Let λ ∈ σ(K)�σess(K). Then, λ is a pole of R(λ,K) and the residue is an
operator of finite rank. In particular, λ is an eigenvalue of finite algebraic multiplicity.

For a bounded linear operator K on Y , we define the Kuratowski measure of noncompactness
of K by

|K|α = inf
{
ε > 0: α

(
K(Ω)

)
� εα(Ω) for every bounded subset Ω of Y

}
.

Let (T (t))t�0 be a strongly continuous semigroup on Y and AT its infinitesimal generator.

Definition 2.6. The growth bound of (T (t))t�0 is the real number ω0(T ) defined by

ω0(T ) := inf
{
ω ∈ R: there exists a constant M � 1 such that

∣∣T (t)
∣∣ � Meωt

}
.

Definition 2.7. The essential growth bound ωess(T ) of (T (t))t�0 is defined by

ωess(T ) := lim
1

log
∣∣T (t)

∣∣
α

= inf
1

log
∣∣T (t)

∣∣
α
.

t→+∞ t t>0 t
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Set

s′(AT ) := sup
{
Re(λ): λ ∈ σ(AT ) − σess(AT )

}
.

The following lemma gives the relationship between the growth bound and the essential
growth bound.

Lemma 2.8. [10, Corollary 5.2.11, p. 258]

ω0(T ) = max
(
ωess(T ), s′(AT )

)
.

Definition 2.9. [15] A continuous mapping P :Y → Y is said to be an α-contraction if P maps
bounded sets into bounded sets and if there exists a constant k ∈ (0,1) such that

α
(
P(Ω)

)
� kα(Ω)

for every bounded subset Ω of Y .

Definition 2.10. [15] A continuous mapping P :Y → Y is condensing on Y if P maps bounded
sets into bounded sets and

α
(
P(Ω)

)
< α(Ω)

for every bounded subset Ω of Y such that α(Ω) > 0.

3. Existence and estimation of solutions

Throughout this work, we suppose that:

(H0) A satisfies the Hille–Yosida condition.

The following results are taken from [1,2].

Definition 3.1. A function u : (−∞, T ] → X with T > 0, is said to be an integral solution of
Eq. (1.1) if the following conditions hold:

(i) u : [0, T ] → X is continuous,
(ii)

∫ t

0 u(s) ds ∈ D(A) for t ∈ [0, T ],
(iii) u(t) = ϕ(0) + A

∫ t

0 u(s) ds + ∫ t

0 F(s,us) ds for t ∈ [0, T ],
(iv) u0 = ϕ.

Remark 3.2. From the closedness property of A, one can see that if u is an integral solution
of Eq. (1.1), then u(t) ∈ D(A) for all t ∈ [0, T ]. In particular, ϕ(0) ∈ D(A). It has been proved
in [1] and [2], that the condition ϕ(0) ∈ D(A) is enough for the existence of the integral solutions
of Eq. (1.1).

Let A0 be the part of the operator A in D(A) which is defined by{
D(A0) = {x ∈ D(A): Ax ∈ D(A)},
A0x = Ax for x ∈ D(A0).
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Lemma 3.3. [5, Lemma 3.3.12, p. 140] A0 generates a strongly continuous semigroup (T0(t))t�0

on D(A).

For the existence of the integral solutions, we suppose that:

(H1) F is continuous and Lipschitzian with respect to the second argument, there exists a posi-
tive constant μ such that∣∣F(t,φ) − F(t,ψ)

∣∣ � μ|φ − ψ |B for φ,ψ ∈ B and t � 0.

Theorem 3.4. [1, Theorem 19] Assume that (H0) and (H1) hold. Then, for any ϕ ∈ B such that
ϕ(0) ∈ D(A), Eq. (1.1) has a unique integral solution u on (−∞,+∞). Moreover, u is given by

u(t) = T0(t)ϕ(0) + lim
λ→+∞

t∫
0

T0(t − s)λR(λ,A)F (s,us) ds for t � 0.

In the whole of this work, the integral solutions of Eq. (1.1) will be called solutions.
The phase space B0 of Eq. (1.1) is defined by

B0 = {
ϕ ∈ B: ϕ(0) ∈ D(A)

}
.

For each t � 0, we define the linear operator U(t) on B0 by

U(t)ϕ = xt (., ϕ),

where x(., ϕ) is the solution of the following equation:{
d
dt

u(t) = Au(t) for t � 0,

u0 = ϕ.
(3.1)

Proposition 3.5. [6] (U(t))t�0 is a linear strongly continuous semigroup on B0, that is:

(i) for all t � 0, U(t) is a bounded linear operator on B0,
(ii) U(0) = I ,

(iii) U(t + s) = U(t)U(s) for all t, s � 0,
(iv) for all ϕ ∈ B0, U(t)ϕ is a continuous function of t � 0 with values in B0,
(v) (U(t))t�0 satisfies for t � 0 and θ ∈ (−∞,0] the translation property:[

U(t)φ
]
(θ) =

{ [U(t + θ)φ](0), if t + θ � 0,

φ(t + θ), if t + θ < 0.

Without loss of generality, we assume that:

(H2) (T0(t))t�0 is exponentially stable, which means that there exist α0 > 0 and M0 � 1 such
that ∣∣T0(t)

∣∣ � M0e
−α0t for t � 0.

Otherwise, we can replace A by A−δI , where δ > 0 is chosen such that the semigroup generated
by the part of A − δI in D(A) is exponentially stable.

In the following, we suppose that:
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(H3) T0(t) is compact on D(A), whenever t > 0.

The following fundamental lemma plays an important role for the existence of periodic solutions.

Proposition 3.6. Assume that (H0), (H2) and (H3) hold. If B is a uniform fading memory space,
then (U(t))t�0 is an exponentially stable semigroup on B0, that is there exist η > 0 and M̃ � 1
such that:∣∣U(t)

∣∣ � M̃e−ηt for t � 0.

For the proof, we need the following fundamental lemma.

Lemma 3.7. [6] Assume that (H0) and (H3) hold. If B is a uniform fading memory space. Then,
for any ε > 0, there exists a positive constant Cε such that∣∣U(t)

∣∣
α

� CεM(t − ε) for t > ε.

Proof of Proposition 3.6. Since B is a uniform fading memory space, then the function M(.)

can be chosen such that M(t) → 0 as t → +∞. Let ε > 0 and t0 > 0 such that CεM(t0 − ε) < 1.
Then, by Lemma 3.7, we have

ωess(U) � 1

t0
log

∣∣U(t0)
∣∣
α

< 0.

Let λ ∈ σ(AU ) − σess(AU ). By Theorem 2.5, λ ∈ σp(AU ) and there exists φ ∈ D(AU ), φ 
= 0
such that AUφ = λφ, which implies that

U(t)φ = eλtφ for t � 0.

Let t � 0 and θ � 0 such that t + θ � 0. By the translation property of (U(t))t�0, we get that

eλtφ(θ) = (
U(t)φ

)
(θ) = (

U(t + θ)φ
)
(0) = eλ(t+θ)φ(0).

Then it follows

φ(θ) = eλθφ(0) with φ(0) 
= 0,

consequently

T0(t)φ(0) = eλtφ(0) for t � 0 and φ(0) 
= 0.

Assumption (H2) gives that

eRe(λ)t � M0e
−α0t for t � 0,

we deduce that

Re(λ) � −α0,

and

s′(AU ) < 0.

By Lemma 2.8 we get ω0 < 0, and we conclude that the semigroup (U(t))t�0 is exponentially
stable. �
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For any ϕ ∈ B0, we introduce the new norm on B0 by

|ϕ|η = sup
t�0

eηt
∣∣U(t)ϕ

∣∣
B,

where η is the positive constant obtained in Proposition 3.6. Clearly,

|ϕ|B � |ϕ|η � M̃|ϕ|B,

which implies that |.|η and |.|B are equivalent norms in B0.
As an consequence, we obtain the following corollary.

Corollary 3.8. Assume that (H0), (H2) and (H3) hold. Then,∣∣U(t)
∣∣
η

� e−ηt for t � 0.

Proof. Since for every t � 0, we have∣∣U(t)ϕ
∣∣
η

= sup
s�0

eηs
∣∣U(s)U(t)ϕ

∣∣
B = e−ηt sup

s�0
eη(t+s)

∣∣U(s + t)ϕ
∣∣
B

� e−ηt sup
s�0

eηs
∣∣U(s)ϕ

∣∣
B = e−ηt |ϕ|η,

which implies that∣∣U(t)
∣∣
η

� e−ηt for all t � 0. �
Theorem 3.9. [6, Proposition 5] Assume that (H0)–(H3) hold. Then, the solution u(., ϕ) of
Eq. (1.1) is decomposed as follows:

ut (., ϕ) = U(t)ϕ +W(t)ϕ for t � 0,

where W(t) is a compact operator in B0 for each t � 0.

4. Boundedness, ultimate boundedness and periodicity

To discuss the existence of periodic solutions of Eq. (1.1), we use the concept of boundedness
and ultimate boundedness of solutions.

Definition 4.1. The solutions of Eq. (1.1) are locally bounded if for each N0 > 0 and T > 0,
there exists a constant N0 > 0 such that |ϕ|B � N0 implies |u(t, ϕ)| � N0 for t ∈ [0, T ].

Definition 4.2. The solutions of Eq. (1.1) are bounded if for each N1 > 0, there exists a constant
N1 > 0 such that |ϕ|B � N1 implies |u(t, ϕ)| � N1 for t � 0.

Definition 4.3. The solutions of Eq. (1.1) are ultimate bounded if there is a bound N > 0 such
that for each N2 > 0, there exists a constant k > 0 such that |ϕ|B � N2 and t � k imply that
|u(t, ϕ)| � N .

The following proposition gives the relationship between the local boundedness, bounded and
ultimate boundedness.
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Proposition 4.4. The local boundedness and the ultimate boundedness of solutions of Eq. (1.1)
imply the boundedness of solutions.

Proof. Let N be given by the ultimate boundedness, then for any N1 > 0, there exists a constant
k > 0 such that |ϕ|B � N1 and t � k imply that |u(t, ϕ)| � N . From local boundedness of solu-
tions we get that there exists a constant N2 > N such that |ϕ|B � N1 implies that |u(t, ϕ)| < N2,
for t ∈ [0, k]. It follows that for any positive constant N1, there exists a constant N2 > N such
that |ϕ|B � N1 implies that |u(t, ϕ)| < N2 for t � 0. �

The next result gives the local boundedness of solutions of Eq. (1.1).

Proposition 4.5. Assume that (H0) and (H1) hold. Then, the solutions of Eq. (1.1) are locally
bounded.

The proof is an immediate consequence of the following proposition.

Proposition 4.6. [2, Proposition 2] Assume that (H0) and (H1) hold. Let u and v be solutions of
Eq. (1.1) on (−∞, T0] for some T0 > 0. Then, there exist positive constants ρ and ρ̃ such that:

|ut − vt |B � ρ̃eρt |u0 − v0|B for t ∈ [0, T0].

In the following we study the existence of periodic solutions of Eq. (1.1). To achieve this goal,
we use the Poincaré map P which is defined by

P :B0 → B0

ϕ → uω(., ϕ),

where u(., ϕ) is the solution of Eq. (1.1).

Proposition 4.7. Assume that (H0)–(H3) hold. Then the Poincaré map P is an α-contraction
map on B0.

Proof. By Theorem 3.9, P is decomposed as follows

Pϕ = U(ω)ϕ +W(ω)ϕ,

where W(ω) is a compact operator on B0. Let Ω a bounded set in B0. It follows that

α
(
P(Ω)

)
� α

(
U(ω)(Ω)

)
.

Corollary 3.8 implies that

α
(
P(Ω)

)
< exp(−ηω)α(Ω) for any bounded set Ω in B0,

which gives that P is an α-contraction map on B0. �
In the following, we assume that:

(H4) F is ω-periodic in t .

Theorem 4.8. Assume that (H0)–(H4) hold. If B is a uniform fading memory space and the
solutions of Eq. (1.1) are ultimately bounded. Then Eq. (1.1) has an ω-periodic solution.
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We use Hale and Lunel’s fixed point theorem which is an extension of Horn’s fixed point
theorem for condensing maps.

Theorem 4.9. [15, Hale and Lunel’s fixed point theorem] Suppose S0 ⊆ S1 ⊆ S2 are convex
bounded subsets of a Banach space Y , such that S0, S2 are closed and S1 is open in S2. Let P

be a condensing map on Y such that P j (S1) ⊆ S2 for j � 0, and there is a number N(S1) such
that P k(S1) ⊆ S0, for k � N(S1), then P has a fixed point.

Proof of Theorem 4.8. Let N be the bound from the ultimate boundedness. By the boundedness
of solutions, there exists a constant N1 > N = max(1, J )N +1 such that for |ϕ|B � N and t � 0,
one has |u(t, ϕ)| < N1, where J is the constant given in Proposition 2.1. Moreover, there exists
a constant N2 > N1 such that for |ϕ|B � N1 and t � 0, one has |u(t, ϕ)| < N2. By the ultimate
boundedness, we can see that there exists a positive integer m = m(N1) such that for |ϕ|B � N1
and t � mω, one has |u(t, ϕ)| < N . On the other hand,

Pkϕ = ukω(., ϕ) for k ∈ N.

Since B is a uniform fading memory space, then for t � σ∣∣ut (., ϕ)
∣∣
B � J sup

s∈[σ,t]
∣∣u(s)

∣∣ + M(t − σ)
∣∣uσ (., ϕ)

∣∣
B, where M(t) → 0 as t → +∞.

Let M1 = supt∈R+ M(t). Then for ϕ ∈ B0 such that |ϕ|B � N1 and k � 0 we have∣∣Pk(ϕ)
∣∣
B = ∣∣ukω(., ϕ)

∣∣
B � J sup

s∈[0,kω]

∣∣u(s)
∣∣ + M1|ϕ|B

� max(1, J )N2 + max(1,M1)N1. (4.1)

Since M(t) → 0 as t → +∞, there exists an integer m1 � m such that

M(t) � 1

M1N1 + JN2
for t � m1ω. (4.2)

For ϕ ∈ B0 such that |ϕ|B � N1 and k � 2m1, one has∣∣Pk(ϕ)
∣∣
B = ∣∣ukω(., ϕ)

∣∣
B � J sup

s∈[m1ω,kω]
∣∣u(s)

∣∣ + M
(
(k − m1)ω

)∣∣um1ω(., ϕ)
∣∣
B.

Since |um1ω(., ϕ)|B � M1N1 + JN2, it follows from (4.2) that∣∣Pk(ϕ)
∣∣
B � max(1, J )N + 1 = N. (4.3)

Let N2 = max(1, J )N2 + max(1,M1)N1. Define the following sets:

S0 = {
ϕ ∈ B0: |ϕ|B � N

}
,

S1 = {
ϕ ∈ B0: |ϕ|B < N1

}
,

S2 = {
ϕ ∈ B0: |ϕ|B � N2

}
.

Then S0, S1 and S2 are convex bounded subsets of B0. Moreover, S0 ⊆ S1 ⊆ S2, S0 and S2 are
closed and S1 is open in S2. Moreover, inequality (4.1) gives that

P k(S1) ⊆ S2 for k � 0,

and by (4.3), we deduce that there exists a positive integer m2 = m2(S1) such that

P k(S1) ⊆ S0 for k � m2.
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By Proposition 4.7, P is an α-contraction map on B0. Consequently, fixed point Theorem 4.9
gives that the Poincaré map P has at least one fixed point which gives an ω-periodic solution of
Eq. (1.1). �
5. Applications

To illustrate the previous results, we consider the following Lotka–Volterra model with diffu-
sion: ⎧⎨⎩

∂
∂t

v(t, x) = ∂2

∂x2 v(t, x) + ∫ t

−∞ g(t, s, v(s, x)) ds + h(t, x) for t � 0 and x ∈ [0,π],
v(t,0) = v(t,π) = 0 for t � 0,

v(θ, x) = ϕ0(θ, x) for θ ∈ R− and x ∈ [0,π],
(5.1)

where g :Δ × R → R, ϕ0 : R− × [0,π] → R and h : R × [0,π] → R are given functions, here
Δ = {(t, s) ∈ R2: t � s}.

In order to rewrite Eq. (5.1) in the abstract form we introduce the space X = C([0,π];R) of
continuous functions from [0,π] to R endowed with the uniform norm topology and the linear
operator A :D(A) ⊂ X → X defined by{

D(A) = {y ∈ C2([0,π];R): y(0) = y(π) = 0},
Ay = y′′.

Lemma 5.1. [6]

(0,+∞) ⊂ ρ(A) and
∣∣(λI − A)−1

∣∣ � 1

λ
for λ > 0.

Lemma 5.1 implies that assumption (H0) is satisfied. Moreover, one can see that

D(A) = {
y ∈ X: y(0) = y(π) = 0

}
.

The part A0 of A in D(A) is given by{
D(A0) = {y ∈ C2([0,π];R): y(0) = y(π) = y′′(0) = y′′(π) = 0},
A0y = y′′.

Lemma 5.2. [6] A0 generates a compact strongly continuous semigroup (T0(t))t�0 on D(A).
Moreover,∣∣T0(t)

∣∣ � e−t for t � 0.

Consequently, (H2) and (H3) hold.
Let γ > 0. We introduce the following phase space:

B = Cγ (X) :=
{
φ ∈ C

(
(−∞,0];X)

: lim
θ→−∞ eγ θφ(θ) exists in X

}
,

provided with the norm

|φ|γ = sup
−∞<θ�0

eγ θ
∣∣φ(θ)

∣∣.
Lemma 5.3. [19, Proposition 1.4.2, p. 22] The space Cγ (X) satisfies axioms (A)–(C) with H =
K(t) = 1 and M(t) = e−γ t for t � 0. Moreover, Cγ (X) is a uniform fading memory space.
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We introduce the following notations:

u(t)(x) = v(t, x) for t � 0, x ∈ [0,π],
ϕ(θ)(x) = ϕ0(θ, x) for θ � 0, x ∈ [0,π],

and define the function F : R ×B → X by

F(t,φ)(x) =
0∫

−∞
g
(
t, t + s,φ(s)(x)

)
ds + h(t, x) for t ∈ R, x ∈ [0,π] and φ ∈ B.

Then, Eq. (5.1) takes the abstract form:{
d
dt

u(t) = Au(t) + F(t, ut ) for t � 0,

u0 = ϕ.
(5.2)

We assume that g :Δ × R → R and h : R × [0,π] → R are continuous functions such that:

(H5) |g(t, s,0)| � β(s − t) for (t, s) ∈ Δ,
(H6) |g(t, s, ξ) − g(t, s, ζ )| � χ(s − t)|ξ − ζ | for (t, s) ∈ Δ and ξ, ζ ∈ R,

where β,χ : (−∞,0] → [0,+∞) are two measurable functions such that β(.) and e−γ.χ(.) are
integrable on (−∞,0].

Under the above conditions, F : R ×B → X satisfies condition (H1). In fact, for given t ∈ R,
φ ∈ B and sequences (tn)n�0 of R and (φn)n�0 of B such that tn → t and φn → φ as n → +∞,
we have∣∣F(tn,φn) − F(t,φ)

∣∣ = sup
x∈[0,π]

∣∣F(tn,φn)(x) − F(t,φ)(x)
∣∣

� sup
x∈[0,π]

0∫
−∞

∣∣g(
tn, tn + s,φn(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ds

+ sup
x∈[0,π]

∣∣h(tn, x) − h(t, x)
∣∣.

It follows that∣∣g(
tn, tn + s,φn(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣
�

∣∣g(
tn, tn + s,φn(s)(x)

) − g
(
tn, tn + s,φ(s)(x)

)∣∣
+ ∣∣g(

tn, tn + s,φ(s)(x)
) − g

(
t, t + s,φ(s)(x)

)∣∣,
by assumption (H6), we get that∣∣g(

tn, tn + s,φn(s)(x)
) − g

(
t, t + s,φ(s)(x)

)∣∣ � χ(s)e−γ s |φn − φ|γ
+ ∣∣g(

tn, tn + s,φ(s)(x)
) − g

(
t, t + s,φ(s)(x)

)∣∣.
Then

sup
x∈[0,π]

0∫ ∣∣g(
tn, tn + s,φn(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ds
−∞
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�
( 0∫

−∞
χ(s)e−γ s ds

)
|φn − φ|B

+ sup
x∈[0,π]

0∫
−∞

∣∣g(
tn, tn + s,φ(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ds.

Since for s ∈ R−, {φ(s)(x): x ∈ [0,π]} is a compact set in R, it follows from the continuity of g

that

lim
n→+∞ sup

x∈[0,π]

∣∣g(
tn, tn + s,φ(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ = 0 for s ∈ R−.

Assumptions (H5) and (H6) imply that∣∣g(τ, τ + s,ψ(s)(x)
∣∣ � β(s) + χ(s)e−γ s |ψ |γ for τ ∈ R, s ∈ R− and ψ ∈ B,

and

sup
x∈[0,π]

∣∣g(
tn, tn + s,φ(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ � 2
(
β(s) + χ(s)e−γ s |φ|γ

)
.

Lebesgue’s dominated convergence theorem gives that

lim
n→+∞

0∫
−∞

sup
x∈[0,π]

∣∣g(
tn, tn + s,φ(s)(x)

) − g
(
t, t + s,φ(s)(x)

)∣∣ds = 0,

we deduce that

lim
n→+∞

∣∣F(tn,φn) − F(t,φ)
∣∣ = 0.

Then F is continuous on R ×B with values in X. We claim that F is Lipschitz continuous with
respect to the second argument. In fact, let φ,ψ ∈ B and t � 0. Then,∣∣F(t,φ) − F(t,ψ)

∣∣ = sup
x∈[0,π]

∣∣F(t,φ)(x) − F(t,ψ)(x)
∣∣

� sup
x∈[0,π]

( 0∫
−∞

∣∣g(
t, t + s,φ(s)(x)

) − g
(
t, t + s,ψ(s)(x)

)∣∣ds

)
.

By assumption (H6), we obtain

∣∣F(t,φ) − F(t,ψ)
∣∣ �

0∫
−∞

χ(s) sup
x∈[0,π]

∣∣φ(s)(x) − ψ(s)(x)
∣∣ds

�
0∫

−∞
χ(s)e−γ seγ s sup

x∈[0,π]

∣∣φ(s)(x) − ψ(s)(x)
∣∣ds

� a|φ − ψ |γ , (5.3)

where a = ∫ 0
−∞ e−γ sχ(s) ds.

Consequently F is Lipschitz continuous with respect to the second argument.
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If we assume that ϕ0 ∈ C((−∞,0]×[0,π];R) such that limθ→−∞ supeγ θ supx∈[0,π] |ϕ0(θ, x)|
exists and ϕ0(0,0) = ϕ0(0,π) = 0, then ϕ ∈ B0 and by Theorem 3.4, we conclude that Eq. (5.2)
has a unique solution.

To discuss the existence of periodic solutions of Eq. (5.2), we suppose that:

(H7) g is ω-periodic in the first and second variables and h is ω-periodic in the first variable.

Proposition 5.4. Assume that (H5)–(H7) hold and
∫ 0
−∞ e−γ sχ(s) ds < 1. Then, the solutions of

Eq. (5.2) are ultimately bounded.

The following technical lemma is needed for the proof.

Lemma 5.5. [4, p. 89] If f , h and y are positive continuous functions on [t0, t1] such that

y(t) � f (t) +
t∫

t0

h(s)y(s) ds for t0 � t � t1.

Then for t0 � t � t1

y(t) � f (t) +
t∫

t0

f (s)h(s) exp

( t∫
s

h(μ)dμ

)
ds.

Proof. Let u(., ϕ) be the solution of Eq. (5.2), then

u(t, ϕ) = T0(t)ϕ(0) + lim
λ→+∞

t∫
0

T0(t − s)BλF
(
s, us(., ϕ)

)
ds for t � 0.

It follows from (5.3) that for t ∈ R+ and φ ∈ B∣∣F(t,φ)
∣∣ < a|φ|γ + b,

where b = supt∈[0,ω] |F(t,0)|.
Since |T0(t)| � e−t for t � 0, then

∣∣u(t, ϕ)
∣∣ � e−t |ϕ|γ +

t∫
0

e−(t−s)
[
a
∣∣us(., ϕ)

∣∣
γ

+ b
]
ds for t � 0.

Moreover, since∣∣ut (., ϕ)
∣∣
γ

� sup
s∈[0,t]

∣∣u(s,ϕ)
∣∣ + e−γ t |ϕ|γ for t � 0,

one has

∣∣u(t, ϕ)
∣∣ � e−t |ϕ|γ + b

(
1 − e−t

) + ae−t

t∫
0

sup
ξ∈[0,s]

eξ
∣∣u(ξ,ϕ)

∣∣ds + ae−t

t∫
0

e(1−γ )s ds|ϕ|γ

and
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et
∣∣u(t, ϕ)

∣∣ �
(

1 + a

t∫
0

e(1−γ )s ds

)
|ϕ|γ

+ b
(
et − 1

) + a

t∫
0

sup
ξ∈[0,s]

eξ
∣∣u(ξ,ϕ)

∣∣ds for t � 0.

Let g(t) = sups∈[0,t] es |u(s,ϕ)|. Then,

g(t) �
(

1 + a

t∫
0

e(1−γ )s ds

)
|ϕ|γ + b

(
et − 1

) + a

t∫
0

g(s) ds for t � 0. (5.4)

If γ = 1, we get

g(t) � (1 + at)|ϕ|γ + b
(
et − 1

) + a

t∫
0

g(s) ds for t � 0.

By Lemma 5.5 we obtain that

g(t) � (1 + at)|ϕ|γ + b
(
et − 1

) + a

t∫
0

[
(1 + as)|ϕ|γ + b

(
es − 1

)]
ea(t−s) ds for t � 0,

which gives that

g(t) �
(
2eat − 1

)|ϕ|γ + b
(
et − eat

) + ab

1 − a

(
et − eat

)
for t � 0.

We arrive at∣∣u(t, ϕ)
∣∣ �

(
2e(a−1)t − e−t

)|ϕ|γ + b + ab

1 − a

− be(a−1)t − ab

1 − a
e(a−1)t for t � 0. (5.5)

If γ 
= 1, then by (5.4), we get that

g(t) �
(

1 − a

1 − γ
+ a

1 − γ
e(1−γ )t

)
|ϕ|γ + b

(
et − 1

) + a

t∫
0

g(s) ds for t � 0.

By Lemma 5.5 we obtain that

g(t) �
(

1 − a

1 − γ
+ a

1 − γ
e(1−γ )t

)
|ϕ|γ + b

(
et − 1

)
+ a

t∫
0

[(
1 − a

1 − γ
+ a

1 − γ
e(1−γ )s

)
|ϕ|γ + b

(
es − 1

)]
ea(t−s) ds for t � 0,

which gives that
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g(t) �
(

eat − a

1 − γ
eat + a

1 − γ
e(1−γ )t + a2

1 − γ
eat

t∫
0

e(1−γ−a)s ds

)
|ϕ|γ

+ b
(
et − eat

) + ab

1 − a

(
et − eat

)
for t � 0. (5.6)

If γ + a = 1, then

g(t) �
(

eat − a

1 − γ
eat + a

1 − γ
e(1−γ )t + a2

1 − γ
teat

)
|ϕ|γ

+ b
(
et − eat

) + ab

1 − a

(
et − eat

)
for t � 0.

Consequently, for t � 0∣∣u(t, ϕ)
∣∣ �

(
e(a−1)t − a

1 − γ
e(a−1)t + a

1 − γ
e−γ t + a2

1 − γ
te(a−1)t

)
|ϕ|γ + b + ab

1 − a

− be(a−1)t − ab

1 − a
e(a−1)t . (5.7)

If γ + a 
= 1, by (5.6), we obtain that

g(t) �
(

eat − a

1 − γ
eat + a

1 − γ
e(1−γ )t + a2

(1 − γ )(1 − γ − a)

(
e(1−γ )t − eat

))|ϕ|γ

+ b
(
et − eat

) + ab

1 − a

(
et − eat

)
for t � 0,

and ∣∣u(t, ϕ)
∣∣ �

(
e(a−1)t − a

1 − γ
e(a−1)t + a

1 − γ
e−γ t

+ a2

(1 − γ )(1 − γ − a)

(
e−γ t − e(a−1)t

))|ϕ|γ

+ b + ab

1 − a
− be(a−1)t − ab

1 − a
e(a−1)t for t � 0. (5.8)

From (5.5), (5.7), (5.8) and the fact that a < 1, we conclude that for all ϕ ∈ B0

lim
t→+∞

∣∣u(t, ϕ)
∣∣ < b + ab

1 − a
+ ε for all ε > 0,

which implies that the solutions of Eq. (5.2) are ultimately bounded. �
As a direct consequence of Theorem 4.8 and Proposition 5.4, we obtain the following result.

Proposition 5.6. Assume that (H5)–(H7) hold and
∫ 0
−∞ e−γ sχ(s) ds < 1. Then, Eq. (5.2) has an

ω-periodic solution.
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