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1. Introduction

The equations of thermoelasticity describe the elastic and the thermal behavior of elastic, heat conductive media, in
particular the reciprocal actions between elastic stresses and temperature differences. This paper is concerned with global
existence, uniqueness, and asymptotic behavior of solutions to the linear inhomogeneous equations of one-dimensional
thermoelasticity that model the second sound effect. Let u = u(t,x), # =0(t,x) and g=q(t,x) fort >0, x€ 2 :=(0,L) CR
for some fixed L > 0, denote the unknown functions representing the displacement, the temperature difference to a fixed
reference temperature, and the heat flux. Then the differential equations for u, 6, q are represented as

Uge — AUy + bOx = f1, (1)
Or + 8qx + duey = f>, (2)
Tq: +q +kbx = f3. (3)

We emphasize that the coefficients are space- and time-dependent, i.e., a =a(t,x), b = b(t,x), g = g(t,x), d =d(t,x),
T =1(t,x), and k =k(t, x). Initial data and boundary conditions are given by

U(O, '):u()a ut(07 ')ZU‘], 9(07 '):907 Q(Oy '):qu (4)
and
au(t,0) +bo(t,0) =0, Ox(t,0) =0, u(t,L)y=46(,L)=0. (5)

The boundary conditions (5) arise in the pulsed laser heating of solids, for instance in laser assisted particle removal from
silicon wafers, cf. Refs. [8,14,16].
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Note that the time-dependent coefficients a and b also appear in the first boundary condition. It is difficult to deal
with such time-dependent boundary conditions because in general they lead to a time-dependent domain of an associated
evolution operator. We succeed in finding a transformation of our problem into an evolution system

Vi+A@®V =F(@1), 0<t<T,
V(0)=Vy

where the domain D(A(t)) of A(t) is independent of t. In view of the fact that we have to introduce certain Sobolev spaces
to present D(A(t)) in detail, we refer to Section 3.2. Utilizing our transformation, we prove the existence of a unique, global
solution to our problem using the classical theory of Kato.! After that we discuss the asymptotic behavior of our solution.
In particular we prove that the solution to (1)-(5) decays exponentially if

A® = (1F11% + | el s + 12205 + [ el Fo + [Fxle + 1312 + [ (e o + [ ()l )

decays exponentially. It will be necessary to construct a certain Lyapunov function and to combine techniques from energy
methods and boundary control, cf. [5,10-12].
For the classical homogeneous equations of thermoelasticity with constant coefficients

Ut — Oy + BOx =0,
Or — KOxx + Uy =0,

it is well known that their solutions are exponentially stable for various types of boundary conditions. The latter equations
result from replacing Cattaneo’s law (3) by Fourier’s law

q+kéx =0, K = gk. (6)

This classical model for example is treated in [2] and [5]. For a discussion of the second sound model see Refs. [3,4,13,15].
In [10] Racke gives a detailed discussion of the problem (1)-(4) with one of the following boundary conditions in the
homogeneous case with constant coefficients.

(i) u(t,0)=u(t,L)y=q(t,0)=q(,L)=0 for t >0;
(ii) u(t,0) =u(t,L)=6(t,0)=06(t, L) =0 for t >0;
(i) ccu(t, 0) + BO(t, 0) =0, Ox(t, 0) =0, u(t,L) = 0(t,L) =0 for t > 0.

A few remarks on notation: we denote by L(X, Y) (X, Y are Banach spaces) the set of all bounded linear operators from
X to Y. The spaces LP(£2), H™(§2) = H™2(£2) and W™(§2) = W™2(£2) denote the standard Lebesgue and Sobolev spaces,
cf. [1]. The standard inner product in L? is denoted by (-,-) and the standard L? norm is denoted by | - || = - || 2.

The organization of this work is as follows: In Section 2 we will give some technical results. In particular we summarize
some of the main results of the theory of Kato. Section 3 is dedicated to the well-posedness of our problem (1)-(5). In
Section 4 we discuss the asymptotic behavior of the solutions.

This work extends a diploma thesis at the University of Konstanz [17] where the homogeneous case of (1)-(5) is dis-
cussed.

2. Some technical results

In this section, we summarize some technical results that we need to prove the well-posedness of our problem (1)-(5).
In particular, we present a theorem of Kato concerning the existence and regularity of solutions to the following abstract
linear evolution system:

Vi+ A()V =F(@t), 0<t<T,
with given initial data
V(0) = Vo,

where T > 0 is an arbitrary but fixed constant.

Definition 2.1. A triple (A; Xp, Y1), consisting of a family A = (A(t); t € [0, T]), and a pair of real separable Banach spaces
Y1 C Xo, is called a CD-system (introduced by Kato [7] see also [5]) if the following conditions are satisfied:

(i) A= (A(t); te€[0,T]) is a stable family of (negative) generators of a Co semigroup on Xp, with stability constants M
and S.

1 Note that these ideas can be generalized to three space-dimensions. This will be the content of a forthcoming paper.
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(ii) The domain D(A(t)) =Y of A(t) is independent of t.
(iii) 9;A € L®([0, T1; L(Y1, X0)).

Lemma 2.2. Let (X, || - ||) be a Banach space. Furthermore let || - ||; (t € [0, T]) be equivalent norms to the given norm on X such that
o xlle clt—s|
dc >0, Vs,t €[0,T], Vx#0: Wge .
Xlls

For each fixed t € [0, T] let A(t) : D(A(t)) C X; — X; be the generator of a Co semigroup S¢(s), s > 0, satisfying || S¢(s)|l; < eP*. Then
the family (A(t)); is stable on (X, || - ||) and also stable in (X, || - ||¢) for arbitrary t € [0, T].

A proof for this result can be found in [6].
Lemma 2.3. Let si(t,-) (i=1,...,4; t €0, T]) be real valued functions defined on §2 such that the following properties hold:

(1) Vt € [0, T]:si(t,-) € L1(2),
(2) 3C1,C2 > 0: ¥t € [0, T, Vx € 2: C2 < si(t, x) < C2.

Define S(t, x) := diag(s1, Sz, 53, S4) and for V., W € (L2(§2))* the inner product (U, V), := (U, SV). Then we have

Q) CLIVI < IVIe < Cal| V] fort € [0, T1and V e (L*(£2))*. In particular (L ($2))*, (-,-)¢) is a Hilbert space.
(ii) (L2(R2)*=CP ) fort € [0, T].

Proof. Let t € [0, T] be fixed and V € (L%(£2))* then we have

4 4 4

v 2 =c? Z(Vi,vi):z/C%!Vi(x)|2dx<Z/ci(t,x)|vi(x)|2dx
i=1 i=1 Q i:]g

= V)2 <Z/c§|V’<x>\2dx=C§Z<V',V'><C%||vn2;

2

i=1

in detail C2||V||> < ||V||? < C3|V 2. The second claim is obvious. O
In [9] Pazy gives a proof for the following:

Theorem 2.4. Let (A(t))tcqo0,1] be a stable family of infinitesimal generators with stability constants M and w. Let (B(t))¢c[o,17 be
bounded linear operators on X. If | B(t)|| < K forall 0 <t < T, then (A(t) + B(t))te[0,1] iS a stable family of infinitesimal generators
with stability constants M and w + K M.

Theorem 2.5. Suppose that Xo, Y1 are real, separable Hilbert spaces. Let (A; Xo, Y1) be a CD-system. Let V° € Y1, F € C9([0, T1, Xo)
and F; € L1([0, T1, Xo). Then there exists a unique solution

v eC®([0,T1,Y1)NCY([0, T, Xo),  V(0)=V",

for the initial value problem
Vi+ AV =F(), 0<t<T, V(0)=VO. (7)
A proof for this result is given in [6]. Next we want to gain more regularity of the solution given in Theorem 2.5.
Therefore we introduce a double scale of real Banach spaces X, Y; (0<1i, j<s—1) of the following structure

Xo D X1 D X2 D -+ DO Xs-1
Xo=Yp D Y1 D Y D -+ D Ysq.

Here it is assumed that all the inclusions are continuous and dense and that, if s > 2, Y; is a closed subspace of X; and
Y;j=Y1NX; for 1 <j<s—1. We introduce the following assumptions:

(L1) (Stability) The triple (A; Xp, Y1) is a CD-system with stability constants M and S.
(L2) (Smoothness) We have

A eLip([0, T1, L(Yjtre1: X)), 0<j<s—r—1,

for 0 <r < s— 1. This implies that 8{“/\ € L*°([0, T1, L(Yj4r4+1; X)) for the same range of r and j.
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(L3) (Ellipticity) For a.e. t €[0,T]and 0 < j<s—1,

peY, AeX; = ¢e¥Yjn,

where K > 0 is a constant.

lolly;, < K(HA(t)(bHXj +119llxo)

(L4) Let 9FF € CO([0, T1, Xs_1_), k=0,...,s —1; & F € L' ([0, T1, Xo).

(A1) (Compatibility condition)

r—1

_ r—1 1
Vii=29f 1F(O)—Z( L )(a{‘A)(O)vr =k ey, ,, 0<r<s.

k=0

A proof for the following result is given in [5].

Theorem 2.6. Let X and Y be real separable Hilbert spaces. Let the triple (A, Xo, Y1) be a CD-System such that the conditions (L1)-
(L4) hold. If VO € Ys, then the solution given by Theorem 2.5 belongs to C°([0, T1, Ys) (hence 8KV € C°([0, T1, Ys_x), k=0, ...,5—1)

ifand only if VO and F satisfy the compatibility condition (A1) with respect to the family A and F.

3. Well-posedness

We consider the system of hyperbolic thermoelasticity

Uee — a(t, )uxx +b(t, x)0x = f1,
O + g(t, X)qx +d(t, X)uex = f2,
T(t, X)qr +q + k(t, X)6x = f3,

together with initial conditions

u(0, -) = uy, ur(0,-) =uy, 6(0,-) =6p,

and boundary conditions

(auyx)(t, 0) — (bO)(t,0) =0, u(t,L)=6(,L)=0,

q(0, ) = qo,

q(t,0)=0.

(8)
(9)
(10)

(11)

(12)

Here a=af(t,x),b=b(t,x), g =g(t,x),d=d(t,x), T = t(t,x), and k =k(t, x) are real-valued functions defined on [0, T] x £2.

The given functions f1 = fi(t,x), fo = fa(t,x), and f3 = f3(t, x) are also defined on [0, T] x 2.

3.1. Assumption

Let s> 1 and

dfa(t, ), ab(t, ), d g(t, ), o{d(t, ), afk(t, -), 9{ T (t, ) € L([0, T], H*~"+1(2))

for 0<r<s+1 as well as

A oxa(t, ), 8l dxb(t, -), 8 dxg(t, -), O dxd(t, -) € L([0, T1, H ™" (£2))

for 0 <r<s.

Furthermore, let C4,C%, Cp, CP, Cq, C8, Cq, CY, C, CT, Gk, CX be positive constants such that for all (t,x) € [0, T] x 2

the following inequalities hold:

Ca<a(t,x) <C%  Cp<b(t,x) <CP
Co<glt,x)<CE  Cq<d(t,x)<CY
Ce <k(t,x) <C*,  Cr<t(t,x)<CT.

3.2. Existence

Let (u,6,q) be a solution to (8)-(12) and let

b Ux
Ut
0
£q

V=V(tx =

(t, x), Vo= Vo) =

($)(0, X)ug x(x)
u(x)
Bo(x)

()0, %)q0(x)
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Then V satisfies

Vi+ AV =F, V(0) = Vo, (14)
where A = A(t, x) is defined as A= Q ~1(Ng + N1). Here F, Q, No, and N; are defined as follows:
2
0 —(% 00 0
b
fi (5)xg 00
F=F(t,x) = , No = No(t,x) = t,Xx),
(t, %) f 0 o(t,x) 0 00 _(%)X% (t,x)
&1
dt /3 g\ d?
T 0 00 —(5%p
5 00 0 0 -3 0 0
_ _ 0 b 0O O —dx 0 dx O
Q'=Q'ew=|g 0 4 o |E&D.  Ni=Nitw=| o 3 o0 a [€¥
d
0 0 % 0 0 Oy o*

In the following we will prove an existence theorem for (14) under the assumption in Section 3.1.
In view of (13) we can choose C; > 0 and C, > 0 such that

i < b1 1dr <
YSebd gk S P
holds for arbitrary (t, x) € [0, T] x §2. Now we define for U, V € (L2(£2))* the inner product
(U.V)e:=(U. Q¢ )V).

Let t € [0, T] be fixed. In view of Lemma 2.3 we conclude that ((L2(§2))%, (-,-);) is a Hilbert space, which we denote by ;.
With the help of the spaces

CP(2):={ueC™(R2)|Ine R: Vxe (0,1): u(x)=0},
CP(R2):={ueC™(R2)|3IneR: Vxe (1, L): u(x)=0}
we define the Sobolev spaces
W)= {u e1%(2) } ueH\(2), Yo e C®(2) NH(2): /uq)/dxz — / u’wdx},
2 2
H{(2) = CF (@ nwi@)!w

and analogously th (£2) and H}(Q). These spaces are Hilbert spaces generalizing one-sided boundary conditions. By using
standard arguments we obtain that W[l(.Q) =H } (£2) and that

W}(.Q):{ueLZ(.Q)‘ueHl(.Q), Vo e Wl (2): /ugo/dx:—/u/tpdx}.
2 2

By utilizing the matrices Q ~! and N; we define the operator
Aq(t) : D(A1(D)) C He > H;
with domain
D(A1(®):={(V!, V2, V3 V) e M VI —V3eH{(2), VL V3 eHl(R2), V' eH](2)}
by
A1Of = Q7' (t, INi(t, ) f. (15)

Our next aim is to show that the operator —A1(t) generates a Co semigroup of contractions on H; for every fixed
t € [0, T]. Then we conclude that —A(t) generates a Cq semigroup of contractions on (L%(£2))* for every fixed t € [0, T].
Finally we show that the family (—A1(¢t)); is a stable family of generators of a Co semigroup on (L2(£2))*.

In order to show that the operator —Aq(t) generates a Cp semigroup of contractions we show that —Aq(t) is densely
defined and closed. Furthermore, we show that both —A(t) and its adjoint operator (—Aq(t))* are dissipative.

Lemma 3.1. Let A1(t) be defined as in (15). Then — A1 (t) is densely defined.
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Proof. It is easy to see that C;°(§2) C D(A1(t)). Thus the density of —A1(t) is a consequence of Lemma 2.3. O
Lemma 3.2. Let A1(t) be defined as in (15). Then —A1(t) is closed.

Proof. Let (Vy)neny C D(A1(t)) be a sequence with V,, - V € H; and A1(t)V,, > W € H; as n — oo. Then we have that

VO e Hp: (—A1(O)Vy, @), — (W, ®); (16)

as n — oo. In other words,

(V2 @)+ (V) — V3, @2) — (3, VE + 3V, 3) — <axv,? + ivg‘, <1>4>

— W1,9q>1 + Wz,lqbz + W3,1<1§3 + W4,d—t 4 (17)
a b d gk

as n — oo.
(a) Choosing @ = (®1,0,0,0) with ®! € L?(£2) we obtain with the help of (17):
(VZ o!)— <W1, §¢1>
as n — oo. Now, choosing @' C5°(£2), we conclude that
—(v2. 8,@!) =~ lim (V7. 8x¢1)=nli)rgo(3xvﬁ,¢1)=<§W1,¢1>-

So, we have V2 € H1(£2) with 3 V? = ng. Choosing @' € H](£2) we obtain V2 € H!(£2). Summarizing results in

b
V2eHl(2) and axv2=aw1.

(b) Choosing @ := (0,0, @3, 0) with @3 e L?(£2) we obtain with the help of (17) that
1
—(0 V2 + &V, @%) - <W3, E¢3>.
Assuming that @3 € C5°(£2) yields
4 3 _[boa, 13 3
(V4 @) =(-W'+-W> &°).
a d
Now, choosing @3 € H!(£2) we get that
1
VieHl(£2) and —3,V*= Ew3 +0,V2.
(c) Now, choosing @ := (0, 0,0, %) with ®* € L%(£2) we obtain with the help of (17) that

d dt
—(0 V34 —vi ot w4, —, o).
< It ) gk
Similarly to (a) and (b) we deduce
d d
VieH!(@2) and —avi=""wiy L4
gk gk
(d) Finally, choosing @ := (0, 2,0, 0) with ®2 € L2(£2) we get with the help of (17) that
1
(V) — 8V, 02) — <w2, E¢>2>.
Summarizing then yields
1.2

VI-V3eH{(2) and &(V'-V3)= oW

Overall we have V € D(A1(t)) and —A1(t)V = W. This completes the proof. O
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Lemma 3.3. Let A (t) be defined as in (15). Then we have that D(—A1(t)) = D((—A1(t))*) and that

0 —d O 0
—a 0 o9 0
* -1 X X
(_Al (t)) =Q 0 O 0 Ox

0 o0 ax—ﬁ

Proof. Similarly to the proof of Lemma 3.2 we obtain this claim. O
Lemma 3.4. Let A{(t) be defined as in (15). Then both —A1(t) and (—A1(t))* are dissipative.
Proof. Let V € D(A1(t)).

(—A1V, V), = ("N (D), V), =(-NiV.V)

= —(—(axvz, VI + (V1 8,V2)+(V3, 8,V2) = (0V2, V3) = (V4 8, V3) + (8, V3, v + <§v4, v4>>.
We conclude that Re(—A;(H)V, V), = — [, %W“l2 dx and the proof is completed. O
This implies

Theorem 3.5. Let t € [0, T] be fixed and

A1(®) : D(A1(1)) C He —> Hy
with

D(A1(D)) =={(V, V2, V3, V) e H: VI = V3 e H{(2), V2, Vi e HI(R2), Ve H{(2)}
be defined as A1 (t) f := Q ~1(t, -)N1(t, -) f. Then the following statements hold:

(i) —Aq(t) is a generator of a Co semigroup of contractions on (Hy, (-, -)¢).
(ii) The family (—A1(t))cefo, 1) is a stable family of generators of a Co semigroup on the Hilbert space ((L2(2)4, (-,-)).

Proof.

(i) This statement is a direct consequence of Lemmas 3.1-3.4.
(i) Let V e (L%(£2))* with V s 0. We consider the function

fv:l0,TI=R,  trIn(|vV]?).
Obviously fy is continuously differentiable. Furthermore, we have

Jo UV + 1@V + 1DV + 1l VA?) dx ¢

0] <
JoQIVIE+ IV + IV + GEIVAR) dx

for a certain constant C > 0. The existence of such a constant follows direct from the assumption in Section 3.1. Now
we conclude for s, t € [0, T] with s <t by using the mean value theorem that

fv@®) — fv(s)
t—s

InIVIi3) —In(VIBI _

3¢ e [s, t]: T

=|fy©)|.

This implies
2 2 2 2
In(IVII7) —=In(IV1IZ) < [In(IVII7) — In(IV1I#)| < Clt — |
for s,t € [0, T]. Since the exponential function is monotone we deduce

”V”? < clt—s|
2 S¢€
VIS

for s,t € [0, T]. Applying Lemma 2.2 the claim follows. O
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Our next aim is to show that (—A(t))¢e(o,1) is also a stable family of generators of a Co semigroup. For this purpose we
intend to apply Theorem 2.4. Thus, we have to show that

Ao(t, %) := Q ~1(t, X)No(t, x) (18)

is a bounded linear operator for every fixed t € [0, T] and that the family (Ao (t))¢e[o, 1) is uniformly bounded in t.

Lemma 3.6. For every fixed t € [0, T] the operator Ay(t, x) as defined above is bounded. Furthermore, there exists a constant K > 0
such that ||Ao(t)|| < K forevery t € [0, T].

Proof. Let t € [0, T] be fixed. Obviously we have that

—-@x2 00 0
2
G2 00 0
Ao(t,x) = o @
0 00 —(5n%
g\ d
0 00 —(fig

Choosing & € (L2(£2))* we obtain

faucoor=|(8) 2a ] + | (5) Za +|(5) Laf +](2) &
ool =|(5) zef +|(5) Ta +|(2) Fel +[(5) 5

Observe, that here the constant C can be chosen independently of t in view of the assumption in Section 3.1. Setting
K :=2C, we obtain ||Ag(t, )&l < K|&. O

2
<AC|E )2

We define for

V.WeD:={(V, V3 V3 v et VI —VieH{(2), VL V3 eHI(R), V'eH(2)}
the inner product (V, W)p as

4
(U.V)p:=Y (U, v")Hl(m,
i=1

Lemma 3.7. (D, (-,-)p) is a Hilbert space.

Proof. Note that for V € D the norm ||V ||p is given by
2 2 2 2
V1D =V o) + 1Vl ) + 1V o) + 1V i oy

Let (Vp)nen be a Cauchy sequence in D. Then the (V,ﬂ)neN for i =2, 3 are Cauchy sequences in HE(Q), (V,?)neN is a Cauchy
sequence in H}(Q), and (V,} — Vg)neN is a Cauchy sequence in H}(Q). This implies the convergence of (Vy)nen in D. O

Employing Lemma 2.5 we obtain the existence of a solution of our problem, if we assume that A € Lip([0, T]; L(Y1, Xo)).
We will discuss this point later. First we want to gain more regularity for our solution. To this end we define for s > 2,

4 4 4 _ 4
Xo:=(1%(2)",  Xi:=(H'®), X2:=(H*)", ..., Xeo1:=(HT'(2)",
and
Yo := Xo, Y1:=D aswellas Yj:=Y1NX; for1<j<s—1.
It is clear that

Xso1 C---C Xy C X1 CXp

and

Y 1C---CYyCY1CYo=Xp

and that all the inclusions are continuous.
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Lemma 3.8. For arbitraryi=1,...,s — 1 we have

Xioi =X and vy =¥

Proof. The first claim is obvious. In order to see the second claim we define

D> = {(VI, VL V3, v v —v3ec @), V2, VielX ), VieC )}
We easily deduce that D® C Y; fori=1,...,s—1.Let 1<i<s—1 be fixed and (V', V2, V3, V%) € Y;. Obviously there ex-
ists a sequence (V1), C C7°(£2) with V! — i V1 — V3, and sequences (V2), C C2°(£2), (V3)n CCX(£2) and (V;H, C CX(R2)
with V2 — ;i V2, V3 — i V3 and Vi — i VA For (V) + V3, v2, v3 V), we have that (V) + V3, V2, V3, vh), c D>,
that (V) + V3, v2, V3 vh - (v, vEv3 v O
Lemma 3.9. Let s > 1 and 0 < r < s — 1. Then we have

HTTA € L®([0, T1, L(Yjurs1; X)), forO<j<s—r—1.

Proof. Observe that

~(fub —fx 0 0
ay b?
r1 gy gt | Bx@ D0 bk 0
A = o @
0 dox 0 —(5)e% +dox
0 0 K —5i+i

In the following we prove that there is a constant C > 0 such that

[ AOV 5 < CIV Iy, (19)

for all t € [0,T] and arbitrary V € Yj;,41. In the next estimate we order the terms with respect to the order of the
derivatives, i.e., first we write the ones with lowest order, then the ones with second lowest order, a.s.0. Note that the
terms that are not written explicitly can be treated in a similar way.
1 2
ak|:3r+1|: Haz ky4

prmonti <55 0) e () 2T [+ 5 5 ()

=0 k: 1=0 k=0

i1 i1
I
krar+1 I—k+1y,1 krar+1 [—k+1y,4
+>°0) ()||a [ 1pJal M VTP o 1) (k>||a [or+1d]al v,

=0 k= =0 k=

No we distinguish the following two cases:

(i) The case r > 0. Here we have V; € Hi*2(22) for i =1, ..., 4. Therefore in the terms above there appear only derivatives
of order less or equal to j+ 1. So, relation (19) follows by Sobolev’s imbedding theorem.

(ii) The case r = 0. In the case that j # s—1 we can estimate the derivatives of the coefficients again by Sobolev’s imbedding
theorem. In the case that j =s+ 1 the derivatives of V' in the terms with highest order derivatives of the coefficients
only have order one. Hence they also can be estimated by Sobolev’s imbedding theorem. 0O

Lemma 3.10. For t € [0, T] and 0 < j < s — 1 we have the following statement: Let V € Y1 and A(t)V € X;. Then we have V € Y q
and that

Vil <K([A@V ]y, +1VIixo)-

Proof. The first claim is obtained successively. We prove the estimate by induction over j.

1. j =0. Note that by

ARG

bV + (D2 V1 +bd, V3
3 V2 +doxV* — (8), ﬁv“
gkaxVB_( ) dv4+ V4

AV =
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we can estimate

2 , a\ b, 2
<L2[A0V| +2 )2V
t

2
a\ b a a\ b
=|(=) =vi——av2—(=) -V
H(b)fa b (b)ta

3K > 0: [ axV2|* < K (JAOV |+ 1VIPR). (20)

a
v

This implies

Furthermore,

42 2 4 g\ & 4 2 g\ & 42
X = X X - - - - X 5 -
[daxv " = |da V2 +dayv — (5 ) —v4—dav? + 27

d

X

2 2
<2|A@V | +4]do,v?|® +4H (%) Ty
X g

which yields

3Ky > 0: [aV4? < K (JAOV|* + IVIP). (21)

Next we estimate

I Z ek d 1 d 1 407
a3 = [ Eawv3—(8) Svay Zva(8) Sya 4
dt dt d/.g T d). g T
I d 14 d 1 407
<2|Eav3 (&) Svag Zva| |(8) Sveo ve
dt d/. g T d/cg T
and obtain
3112 2 2
3Kz > 0: ||V |" < K3(|AOV "+ IVI%). (22)
Finally, by

2

b2 b2

9) —v1+baxv3—<9> Z vl _payv3

b/,a b/,
b2 2 b? 2

<2Hbaxv1+<9) TVl 4o v3| 42 —(9) 2yt _pav3
b),a b/,a
we may conclude that
2 2
IKs >0 V" <Ka(JAOV ]+ 1VI2). (23)

By the estimates (20)-(23) we obtain the existence of a constant K > 0 such that

IVIE: <K(JAOV >+ 1VIP).

. For the step j ~» j+ 1 we assume that ||V |gm < K(JJA@®)V||gm-—1 + V) for all 0 < m < j. First we conclude the

following identity:

o (Y L, okl v - gak v

S (Dakbad ™V bV S Akl
+ Y00, ()akpal V3 4 ba 3

al(A0V) = | Ti_, ()okdad v +dalT v+ 0] (D)akdal T vA
+dof VA= ok Lad v

T DGRV = Do (ko v

k o j+1 i (i j—k
+ER TV (akha v
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We can estimate with the help of the induction hypothesis

21:003’(( ) b>3’{_kV1_,§<k)ak<b)8] vz faltve
S (e((G) -

j .
a\ i
SOy
This implies the existence of a constant K; > 0 with

a_ iyt 2
ity
b X

+2

k=1

165 V2P < ki (| A7 + [AOV e +1VIP). (24)

Furthermore, we have

i . i o, J 2
. - . o . d .
Jdod VAP < | <’]<)a,’§daxf K2 papd vz 4 3 (i)a}fda,{ kilya 4 galtlye Za,’g((%) —)a,{ ky4
k=1 k=1 k=0 x &
! J i—k i+1 ! J i—k+1 J g\ d*\ . i
+> (k)a,’jdag‘ v pdgltvie (k)afda){‘<+ VA — Z"’f((g) E)a,{“v‘1 .
k=1 k=1 k=0 X

By (24) and the induction hypothesis we therefore obtain the existence of a constant K, > 0 such that

[ vA” < k(| A + [AOV [0+ 1VI2). (25)
Next observe that

k i 2
Hg_a{ﬂva

d
o L (e e A 6

k=0

S Q- 5 (0 (5) v £ (L) (2o

Again the induction hypothesis implies that

+

[ V22 < Ks (|l AO | + [AQV [ + 1V I2) (26)

for a fixed K3 > 0. Finally we consider the estimate

bt v

i i 2 i

. . b . . .
Z(i)f),’fba){ k+1v]+b3’{+1vl+2</]<)a§(<g> E>3){ ’(V]+Z<]]<)3”‘cb3’{ "+1V3+b3,{+1v3
k=1 k=0 X k=1
J

b2\ I i . :
Z(k) kbaJ k11,1 +Z( >8k<<b) ?>3; ’<V]+Z<i>8§ba){ k+lV3+b8,{+1V3
k=1

k=1
and obtain by the induction hypothesis and (26) the inequality

+

[V < Ka(lod A + [A@V [ +1V12) 27)
for a fixed K4 > 0. Altogether we obtain using (24), (25), (26) and (27) the claim. O

This implies the following result.

Theorem 3.11. Let s > 2. Furthermore let A and V be defined as in (14) and Vg € Ys. Suppose that condition (L4) holds. Then there
is a unique solution V to

Vi+AV=F, V(@O =
with

#V eC®([0,T), Ysk), k=0,...,s—1,
if and only if Vg and F satisfy the compatibility condition (A1).
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4. Asymptotic behavior

In this part we want to discuss the asymptotic behavior of solutions to the system (8)-(12). Our aim is to find a
Lyapunov function G for which there exist positive constants C1, C; and dg such that C1E(t) < G(t) < C2E(t) and %G(t) <
—doE(t) + ||F(t)|\i for some norm || - ||«.

Definition 4.1. Let (u, 6, q) be a solution to (8)-(12) and V := (%ux, ue, 0, %q)f. We define

1 (a 1 1 gT
E1() = o (V. V) =+ / el + 3 el + 107+ 57 a2 d

2
kos

Ex(t) = 2 (V V)—lfb i
2 '_2 ts [f_z a bXt
2

The following assumption will be made in this section.

1
2

and

2 2

dz dx.

+1|u |2+]|9|2+
i gttt T g

(),

Assumption 4.2. There exists a positive constant . > 0, such that all the functions

ar(t, x), age (t, x), axe (t, x), be(t, %), by (t, %), by (£, %), de(t, %), dee (t, %), dxe (£, %),
g, x),  gu(t,x),  gu(t,X),  ke(t,x),  T(t,%) (28)
are uniformly bounded by ;. > 0 on [0, T] x £2.

Lemma 4.3. There exist constants K1 = Ky(a,b,d, g,k, t), K = K»(a, b, d, g, k, T) such that

4 o= [ Ea2dxsreNov.v)+ v (Lo )v)s2rer. oV
Eu)——/mm X+Re(=NoV, V) + (V. (1.0 )V) +2Re(F. QV)
2

g 1
< —/ g917 (el + el + 101+ lall®) + ZIFN - (€2 0)
and

2
dx + Ko (Jluel® + 1612 + llg?

EE (t)<—/i(§>
ar 2OS7 a\a?),
2

1
+||utx||2+||un||2+||9t||2+||qt||2+||ux||2)+;|\Ftn2 (t>0).

Proof. First we estimate the time-derivative of the first energy term with the help of the dissipative character of the
operator (—Aq)(t). This gives us

2%51(0 =(=NoV, V) + (=N1V, V) +(V, =NoV) +(V, =N1 V) +<V, (%Q>V>+ (F,QV)+(V,QF)

=2Re(—N1V, V) +2Re(—NgV, V) +<v, (%Q>V>+2Re(F, QV)

=— %lqlzdx—i—ZRe(—NoV, V) +<v, <%Q)V>+2Re(F, QV).
2

The calculation of the time-derivative of the second energy term will be more complicated since we have to apply the
product rule more than one time. So we will get more perturbation terms than above

dVV =2R d AV V V d V 2R dF 1%
a(t, the = ea(— ), QVe)+( Ve, aQ ¢)+ ea,Qt-

In view of the fact that we need a term that is equivalent to —(q;, q;), it makes sense to apply the dissipativity of (—A1)(t)
again. We obtain



0. Weinmann / J. Math. Anal. Appl. 350 (2009) 81-99 93

Re<%(—AV), Qv[> = —Re<%(Q‘1NoV), Qvt> + Re<%(—Q‘1N1v), QVt> (29)
and
Re<3(—Q*‘N1 v), Qvt> = —Re<(£Q’1)N1 v, er> + Re<—3(N1 V), Vr>~ (30)
dt dt de

Using the dissipativity of the operator —A1(t), we get

Rel— L NV V) < /d £
dr 1V ), Vi) x gk dqt

2
By virtue of Assumption 4.2 and the boundedness of the coefficients there exists a constant C1(a, b, d, g, k, t) such that

2
dx+ uC(g, d, k) (Ilgl* + llgell?). (31)

d
_ Re<<— <yl>1\1l v QVt> < UC1(@,b,d, gk, ) (sl + Nuxl® + 1612 + sl + e

dt
+ lueel® + 16612 + llgell® + llqll?). (32)
Furthermore, we have that
—Re i(Q—lz\lov) QV:)=—Re iQ—1 NoV,QV:)—Re g(NOV) Vi (33)
dt ’ dt ’ dt ’
and that
d _
—Re<<aQ 1>Nov, Qvt> < uCa(a,b,d, g k, ) (Iuxll® + 1g® + lluexll® + llueel® + 1612 + llgel1?) (34)
where Cy(a,b,d, g, k, T) > 0 is a constant. We obtain
d
—Re<a<NOV>, vt> < uCs(a,b,d, gk, ) (luexl® + luxll® + llueell® + 16c12 + g1 + e ll?) (35)
where C3(a,b,d, g,k, T) > 0 is a constant. There also exists a constant C4(a, b, d, g,k, T) > 0 such that
d
<vt, (a Q), vf> < 1uCa(a, b,d, gk, ) (luel® + luxl® + el + 16617 + llqll® + llqel1%).- (36)

Combining (29)-(36) we get

EE(t)<—/i g
dr 2 S gk dqt
2

1
+ Nl Nl + Nueel® + 1661% + llgell®) + ﬁnﬂnz,

2
dx + Ko (Jluxl? + luell® + 1017 + 16x11% + llqli® + llgx]I®

where K5 > 0 is a constant. O
Multiplying (8) by iiyx we obtain
Ugelyx — a|uxx|2 + bbxilxx = f1lxx
and we may conclude that

1 _ d
lluwell? < o Re([unux]é = ¢ (oo ux) + lluexll® + (BB, txe) — (f1, uxx>)

a
1 d 3 1 3 1
< — Re| [ugeiix]s — — (Uey, U U2 ) + == [1bOx |12 + = lugll® + — 24 uwll?.
S ([ trlixlg dt< txs Ux) + [Uex|l >+2C§” x|l +6|| x|l +2C§”f1” +6|| x|l
Consequently

3

e (16611 + 1 £111%). (37)

2 el + Red<u ) < — 2 Re(uniiy) (0) + — fucell® +
3 XX Ca dt txs Ux/) X Ca ttUx Ca tx

Multiplication of (9) by i, yields

(Br, urx) + (8qx, Utx) + (durx, Urx) = (f2, Utx)-
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Next we consider (gqy, Utx). Because of the boundary condition on q in (12) we obtain

_ _ d
(80x, Utx) = (Gx, EUex) = (q8TUex) (L) — (. (gUex)x) = (q&1ex) (L) — (4, Exllex) — (@ 8ux) + (gt xx)-

Furthermore, we have
_ d
(Or, Uex) = —(Orttr)(0) — a(gx, ur) + (Ox, Uer)

and we obtain

d d _ _
{duc, tex) = 3 O o) + 30 8tlax) = B Uee) + (0 Gxtiex) — ((@2)r. uxx) — (@€l (L) 4 (Brilr) (0) + (f2, gx). (38)

From (38), we get

2 d = = 1 2, Ca 2, 1 2, G 2
Calluexll <Rea(<9x,ut)+(q,gum)—Re(qgu[x)(L)+Re(9tut)(0)+C—dllgqul + 7 el +C—d||fz|| + 7 el

+ |{@8)e, txx)| + |(Ox, aux)| + [(6x, bbx)| + | (Bx. f1)]- (39)

The four latter terms we treat as follows:

[{@8)e, uxx)| + [(Ox, auxx)| + |(6x. bbx)| + | (Ox. f1)]

CaCy 2 24 2. 9 24 2 5 12 2 p 1 , 1 5
< u —(C# —(C® —(C® C’+ = )le - . 40
S92 lluxxll +Cacd( ) liqll +Cacd( ) llgell® + CaCd( )+ +2 4] +2||f1|| (40)
Combining (37), (39) and (40), we conclude that
Re d(1 (Ugx, Ux) 4 (O, Ug) 4 (q, Suxx)
a\ G, tx> Ux CaCa x» Ut CaCa q, 8Uxx
1 P 1 2 3 2 4 2 96 2 2 96 2 5
< == lluwll® = = lluxll® + = b6« 1I* + + cé + cs
2|| x|l c, luexll 22 lI1bOx |l CuC2 llgxall cgcg( ) lal C&Cﬁ( )" lgell
+( 48 (C“)2+ 4 + 2 )||9 12 ! Re(ugiy) (0) 4 Re(qgiix) (L) + 4 Re(6yil¢) (0)
ac CaCa ' CoCq )" g et T TSR T e ReTH e
2 2 3 2 4 2
+— + + . 41
CaCq I fall 2C Il fall G2 Il f21l (41)

The differential equations (8) and (10) together with the Poincaré inequality yield

lueell® + lluel? + 110117 = llauxe — bbx + f1lI* + lluell® + 110112
< 2llauxl® + K3 (lueel® + 1g12 + Igell® + 1 f111% + 11 £311%) (42)
where K3 > 0 is a constant. Multiplying (8) by i, we get
(fr.u) = (uee, u) + ((aux — bo), Ux) + {axux — bx0, u).
We conclude

(auy, ux) < llueelllull + 16O uxll + llaxuxliull + [bx@Hull + Il f1llull.

The differential equation (10) together with the Poincaré inequality yields

1 1 1 1 1
2
Ux|l® < —lugellllull + = [1bO | luxll + — llaxuxllull + = |bxO || lu]l + — u
[l G [leee N el C, 16O [ux|l C, laxuxl{lull C, [1bxO [ [|ull C, I flllull

ax

1 1 cC
< C@)lueel* + gnuxn2 +C(a,b) |16k + Enuxn2 + lluxll?

Ca

1 1
+C(a, by 101I* + 3 luxll® + C@|l f1 1% + % lluxll?

1
< Sl + Ka(lal® + lgell® + luee | + 1112 + 11 f51%).

Observe that here we had to assume

1 (43)
Ca 8
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where the constant C arises from the Poincaré inequality. Thus we obtain

1
S lusll® < Ka(lal® + el + Hueel® + 1102+ 1 f317)-
The estimates (42) and (44) yield
1 1
5||un||2 + fluel® + mnuxn2 + 110117 < Ks(luxell® + lluexl® + gl + lgel + 11111 + 11 f311%)
where K5 is a constant. Multiplying (9) by éét, we obtain
1 1 1
Or, —6¢ ) + (qx, Or) + {duex, —6r ) ={ f2, =6 ).
g g g
In other words,
1 d 1 1
Or, =0 ) — —(q, Ox) + (qr, Ox) + (duex, =60 ) ={ f2, =6
g dt g g

and we can estimate

d d 1
6¢11* — CERe E(CI,@x) < —CERe(qr, 6x) — C Re<§um, 9t> + Cg<f2, §9t>

c® ce c\? 1
< —116x? + = llqell® + €8 =) lluexll® + = 1612 + C(@) | f211%
2 2 Cg 2

This implies

d cd\?
16e11% — 208 -.(a,60) < CE116xl1% + CEllqell + 2cg<c—) luell? +2C ()1 211
g
The boundary terms arising in (41) are dealt with as follows. Using (9) we obtain
4 Re(qiing)D) < 2C (1+ L)H 24 1652, o)
T e o T A AL~ o T P
32(C8)28 | dug |*  32(C%)2% . T
—= —5 5 I1f2l” + Callum|*(L).
caciL |l g cciL
We have that
! Re(uyiiy) (0) < ! bu 61(0) < 1é|u 120y + (c? 1612 (0)
Ca ttUx X Ca a tt X 2 tt Cf}é‘

(CH2ck, 7)

1, 2
< =€lu 0
2|tt|()+ iz

(lgl® + ael® + 11 f31%).
The differential equation (10) and the Poincaré inequality yield

2 Re@iin)(0) < d 8Ck, 7)
CaCa 7 T CaCq dt c2c

1.
(Re 1) (0) + Ee|un|2<0> + (g2 + llgeli* + 11 f311%).

By differentiating (8) with respect to t and multiplying by ¢y, where ¢ : R — R, ¢(x) := L — 2x, we obtain

(Ugee, QUix) — ((@Ux)e, PUex) + ((BO)e, PUix) = (f1, PUx).

This is equivalent to

d
((FD)es Quex) = — (Uee, QUL) — (Ure, PUeex) — (AUpxx, PUex) + (DOrx, PULx) — (Arlix, PUex) + (beby, PULx).

dt
Furthermore, we have

L
—(use@, Ugex) = —[lutt|2§0]0 + (Urtx . re) — 2l|uge]|®

and we conclude

L
—Re(uixp, uy) = §(|Utt|2(L) + |utt|2(0)) — llugl®

95

(44)

(45)

(46)

(47)

(48)

(50)

(51)
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We have that

L
—(QUexx, QUex) = —[@alupl®]g — 2(aUex, Uex) + (Uex, PAUL) + (Uex, PaxUex)

and we conclude that
L ) ) 1
—Re(augx, Quy) = 5((a|utx| J(L) + (alue|*)(0)) — (@uex, ure) + 5 (Uex, @axliex). (52)
Combining (50)-(52) yields
d L
Re( f1, uiex) = Re - (ure, o) + 5 (luee (L) + [t (©)) = llue |

L 1
+ 5((a|utx|2)<L> + (alul?)(0)) — (Quex, ugy) + 5 {tex, @axtiey)
-+ Re(bOx, puix) — Re(aruxx, puex) + Re(bebyx, pux). (53)

Multiplying (9) by —go%@tx yields

b b b b
—<9t, waem> - <gqx, <p59[x> - <dUrx, wa@x) = —<fz, wa@x).

We have that

6, be = b|9|2L2b99+9b 9+9b 6,
t#’dtx— d§0t o PR txdﬁl’,t [dxq)’t'

Here we may conclude that

R9b9 L bezL b920 bee 19b 6,
— e< "‘pE tx>—§((a| | )( )+<E| al )( )>_<E ts t>+5< t(a)x(/’, t>~

The differential equation (9) yields

o=E((Za Yo+ (2162) ) —re( 266+ Lrela (2) 0.6.) — Re L(&2 g, 0
=5 q'% g% gl 5 tdx%t dt dWIx,x
gb b
+ Re Fgﬂqx s Ox ) — Re(uex, pbbix) + f27(/759tx . (54)
t

We conclude from (10) that

gb _[( &b gbh /1 gb [k gb (1
(o), ) =((F) o) =(7 (o) o0 =07 o) oo (7 (20) o) =)

Finally we get

k gb k gb k gb
—[=6x) ,0=06x)=—(| = ) Ox, 0=-6x) — { —Oxx, p=—0x).
((Fo) o0 = () o) (o )

On the other hand observe that
k gb keb 1% _[keb k gb k  gb
—(| =6« | ,0o=6x)=—| — |6 —2( ——6x, 0. —6, — 16 —0x, ©—0xx ).
<(TX>X(de> |:‘Kd¢|X|o dTXX+TX(deX+TX(deX
This yields
k gb L({(kgb kgb =~ kgb
—R —bOx) ,0=0x)==| —1|6O L —16 0)) —(—6k, 0
e<<rx>x(pdx> 2<<m|x| L)+ rd|X| 0) 7 (0

1/k gb 1//k gb
+5<?9*"”(7)f*>‘ 5<(?)X‘)X""79X>‘ (50)
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Combining (54)-(56) we obtain

L{/b b b b
0= §(<E|9t|2>(L) + <E|9t|2) (0)> <d9t, 9[> + - R6<9t<a>xfp’ 9t>

d/gb b
—Rea ??’Qx»ex — Re(utx, bby) + Re wqx,ex + fz,w—Gm

b /1
—Re<%<;q)x,<p9x>+—((%W)(LH<—|9x|2)<0>) < ( f3> ¢9x>
kgb 1 g k gb
—R<—d€x,9X>+ R< Ox, @ F) 0X>——R<( )0 ¢d9> (57)
We also have
<f25¢getx>

Combining (53), (57) and (58), we obtain

d d/gb kgb kgb
Re - (tieg, ie) — Re a(%m, 9x> +2 ((iw)(u + (%W)(m)

L L
+ 5((a|u[x|2)(L) + (aluxl?)(0)) + §(|Utt|2(l~) + uee 12 (0))

:Re<29[ 9t>— 1Re<9t<9) % 9t>+Re(Utx @bOtx) —Re<<g—b> Pqx 9x>
a’ 2 i) : FIAS
+Re<g<lq> <p9x>+Re<kgb0X 9x>— 1Re<’iex w(gb) ex>+ ! pe <<k> 0, <pgbex>
d\t"/)/ d™ 2\t 7 7\d 2 ), T d

+ ||utt||2 + Re(augy, urx) — Re(Uex, Qaxley) — Re(bOrx, Quix) + Re(artix, @urx) — Re(beby, @urx)

b b (1 L
+Re<f1,<purx>—Re<fz,¢30fx>—Re<g?<;fa> (ﬂ9x>——< 16| )(0)

< Ko (Iltell + 1612 + luexl® + 16617 + gl + 1112 + 1202 + [ Fo)x|* + 16302 + | Fa)x]) (59)

for a certain constant K¢ = Kg(a, b, g,d, 7, k).
Now we define:

1/b
<Cb,d, by, d) (1217 + | (F)e|* + 16e1?) + 3 <EL|0f|2><0>. (58)

1 4 4 R
W) := Re<c—a<um, Ux) — mwx, Ug) — E(q, Suxx) — 2C8 [1(6x, q)

L
Then we conclude from (41), (46)-(49), and (59) that

d 1 2Kgé 1 32(C8¢c™H28 . _/ci\? 2KgE
WO < | =+ 2 fuwl 4 |-+ T A0 )+ 2 el
2 Ca Cq L

— 2 a0 + Z g und - (L pga.0
CaC t L tt P, Utx (PQxy X

3022
dt cicic
'16(cg)2A . 21<65] [3(cb)2 48 2 4ch 2 R 21@9}
Y eeat ™ 0 + C) 4+ —+——+AC%+ 9
|aca 16e1° + | = Cgcg() ot th 165112
+-4(ng)2+ 96 (C ) (chH2ck, v) 8(Cg)2( L) 8C(k, 1) 2K6é]H 2
| CuC3  Cac; Caé Cacae &2 cacae P
r 96 2 (C2Cck, 1) 8C(k,r)} ) [2 ] ) [21(68]
+ C&) + —— - +ac¢+ +| =+ —=
aa @ cr TR g |1l | e o 1A+ lcroe)?
[ 4 32(C8)2¢ ] 2, [169}
+ +=——""+cC +
et aa (& I f211* + H(fz)x”
[(CP)2C(k, T) 2K68 21(65
+ iz Il 3% + ||(f3)x||
a

1 1
<—7u 2—*“ 2_7"92 I< 2 2
7 11l 2C, uexll® = 5 211811 + 7(lg1* + qell®)

+ K (1112 + [ e |+ R0 + [ x|+ 102 + [ (FxP), (60)
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R 1 Cq)?
M <Ho: <i)

4, \ C8(C9)2
and
5 B — min 1 L 1 /32(C8cH?  2Kg\ ™' 1./16(C8% 2Kg\ !
< B Ao Ar \  ~3,2,-2 — [ I .
0 42Ks 4c,\ ciczcz 1) 2"\t

Without loss of generality we assume C, < 1. Now we are able to define our desired Lyapunov function as

1
Ge(t) == g(151(t) + E2()) + W ().
Using (45) and (60) as well as Lemma 4.3 we obtain

th—1 dEt dEt th
a s()—g i@ 1()+a 2(t) +a ®)

1,8 5 1/ d|(g g

<— | -+ dx—— | —|[| = =
S/dqul X eJ) gki\d [q+dqt
Q Q

+ Nueel® + 1612 + llgell® + lluxll?) +

2
w
de+ = (K1 + K2) (Iluell® + 10117 + 11q11? + lluex]l

1 1 3 1
. F 2 F 2 _ 2__ 2__" 9 2
/w(” I+ I1Fell®) g ltall” = S llueel® = S el

1 1
llux||> — %nen2 + <1<7 + g)(nqu2 +llge 1)

1 2 1 2
— e ll” — o lluell” —
16Ks 8Ks 32K4Ks5

+ Ko (ILF1 1%+ [ e > + 1202 + [ x| + 1512 + [ F2)x]) ).

Choosing ¢ and w sufficiently small we obtain the estimate

%Gg(t) < —doE(t) + K A1),
where

A®) = (LA 12+ |G+ 112+ G + [ GxlP + 15012+ [ e + [ Fe]?)-

It is easy to see that E(t) and G¢(t) are equivalent. Using Gronwall’s lemma we obtain

Theorem 4.4. Let (u, 0, q) be the solution of (8)-(12) given in Theorem 3.11. Suppose condition (43) is satisfied. Then there exist
constants C, dg, K > 0 such that

t

E(t) < Ce%¢ (E(O) + / I(A(t)edofdt),
0
if condition (28) holds for sufficiently small . > 0.

In particular, if f =0 then the energy E(t) decays exponentially. The energy E(t) also decays exponentially, if A(t)
decays exponentially.
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