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1. Introduction and main results

Let f (z) be a meromorphic function in DR = {z | |z| < R}, where 0 < R � ∞. We adopt the standard notations of Nevan-
linna’s value distribution theory (see [1] or [2]), such as T (r, f ), N(r, f ) and m(r, f ). Suppose that f (z) and g(z) are two
nonconstant meromorphic functions in DR , a ∈ C∞ (C∞ denotes the extended complex plane) and X ⊆ DR . We say that
f (z) and g(z) share a CM (counting multiplicities) in X provided that f (z) − a and g(z) − a have the same zeros with
the same multiplicities in X. Similarly, we say that f (z) and g(z) share a IM (ignoring multiplicities) in X provided that
f (z) − a and g(z) − a have the same zeros in X. When a = ∞ the zeros of f (z) − a mean the poles of f (z).

In 1929, R. Nevanlinna [3] proved that for two nonconstant meromorphic functions f (z) and g(z) in the complex
plane C, if they share five distinct values IM in C, then f (z) ≡ g(z) (five-value theorem); if they share four distinct values
CM in C, then f is a Möbius transformation of g (four-value theorem). After his very work, many results on uniqueness
of meromorphic functions concerning shared values in the complex plane have been obtained (see [4]). In 2003, J.H. Zheng
firstly took into account the uniqueness of meromorphic functions sharing values in an angular domain and extended five-
value theorem and four-value theorem in the complex plane to an angular domain (see [5,6]). Since then, the uniqueness of
meromorphic functions in an angular domain attracted many investigations (see [7–9], etc.). In fact, he proved the following
theorems on the basis of the relation between the Pólya peaks and deficiencies of meromorphic functions.

Theorem A. (See [5].) Let f (z) and g(z) be both transcendental meromorphic functions in C and for some a ∈ C∞ and an integer
p � 0, δ = δ(a, f (p)) > 0. Assume that for q radii arg z = α j (1 � j � q) satisfying

−π � α1 < α2 < · · · < αq < π, αq+1 = α1 + 2π,
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f (z) and g(z) share five distinct values IM in X = C \ ⋃q
j=1{z | arg z = α j}. If

max

{
π

α j+1 − α j
: 1 � j � q

}
< ρ,

where ρ , and in the sequel, denotes the order of f , then f (z) ≡ g(z).

Theorem B. (See [6].) Let f (z) and g(z) be both transcendental meromorphic functions in C and let f (z) be of the finite lower order
λ and for some a ∈ C∞ , δ = δ(a, f ) > 0.

Given one angular domain X = {z | α < arg z < β} with 0 � α < β � 2π and

β − α > max

{
π

σ
,2π − 4

σ
arcsin

√
δ

2

}
,

where λ � σ � ρ and σ < ∞, we assume that f (z) and g(z) share four distinct values a j ( j = 1,2,3,4) IM in X and a j �= a
( j = 1,2,3,4), then f (z) ≡ g(z).

In 2009, Q.C. Zhang [9] proved the following theorems under giving some restrictions on the angular characteristic
functions of meromorphic functions.

Theorem C. (See [9].) Let f (z) and g(z) be two meromorphic functions of finite order in C, a j ∈ C∞ ( j = 1,2, . . . ,5) be five distinct
values, and let 	δ = {z | |arg z − θ0| � δ} (0 < δ < π) be an angular domain satisfying

lim
ε→0+ lim

r→+∞
log T (r,	δ−ε, f )

log r
> ω, (1.1)

where ω = π
2δ

, T (r,	δ−ε, f ) denotes the Ahlfors characteristic function of f in 	δ−ε . If f (z) and g(z) share a j ( j = 1,2, . . . ,5) IM
in 	δ , then f (z) ≡ g(z).

Theorem D. (See [9].) Let f (z) and g(z) be two meromorphic functions of finite order in C, a j ∈ C∞ ( j = 1,2,3,4) be four distinct
values, and let 	δ = {z | |arg z − θ0| � δ} (0 < δ < π) be an angular domain satisfying (1.1). If f (z) and g(z) share a j ( j = 1,2,3,4)

CM in 	δ , then f (z) is a linear fractional transformation of g(z).

In this paper, we investigate uniqueness of meromorphic functions in the unit disc and consider the relation between
the Borel points and shared-values of meromorphic functions in an angular domain.

Let f (z) be meromorphic in the unit disc D1 and 	(θ0, δ) denote the domain {z | |z| < 1} ∩ {z | |arg z − θ0| < δ}, where
0 � θ0 � 2π , 0 < δ < π . We use n(r,	(θ0, δ), f (z) = a) to denote the number of zeros of f (z) − a in 	(θ0, δ) ∩ {z | |z| < r}
counting multiplicities.

In the proof of theorems in [5–9], Nevanlinna theory in an angular domain plays a key role (see [10]). In this paper, we
adopt a proof method which is different from that of [5–9], and obtain

Theorem 1.1. Let f (z) and g(z) be two meromorphic functions in D1 , a j ∈ C∞ ( j = 1,2, . . . ,5) be five distinct values, and 	(θ0, δ)

(0 < δ < π) be an angular domain such that for some a ∈ C∞ ,

lim
r→1

logn(r,	(θ0, δ/2), f (z) = a)

log 1
1−r

:= τ > 1. (1.2)

If f (z) and g(z) share a j ( j = 1,2, . . . ,5) IM in 	(θ0, δ), then f (z) ≡ g(z).

Remark 1.1. Let f (z) be a meromorphic function in the unit disc. If for arbitrary small ε > 0, we have

lim
r→1

logn(r,	(θ0, ε), f (z) = a)

log 1
1−r

= τ

for all but at most two a ∈ C∞ , then eiθ0 is called a Borel point of order τ of f (z). In [11], G. Valiron proved that every
meromorphic function of finite order ρ in the unit disc must have at least one Borel point of order ρ + 1.

Theorem 1.2. Let f (z) and g(z) be two meromorphic functions in D1 , a j ∈ C∞ ( j = 1,2,3,4) be four distinct values, and 	(θ0, δ)

(0 < δ < π) be an angular domain satisfying (1.2). If f (z) and g(z) share a j ( j = 1,2,3,4) CM in 	(θ0, δ), then f (z) is a linear
fractional transformation of g(z).
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2. Lemmas

A meromorphic function f (z) in the unit disc D1 is called admissible if and only if

lim
r→1

T (r, f )

log 1
1−r

= ∞. (2.1)

Furthermore, f (z) is called non-admissible if and only if (2.1) is not valid. To shorten the notations, it is often convenient
to use a quantity S(r, f ) satisfying

S(r, f ) = O

{
log

1

1 − r

}
+ O

{
log+ T (r, f )

}
as r → 1 possibly outside a set E such that

∫
E

dr
1−r < ∞.

Lemma 2.1. (See [12].) Let f (z) be meromorphic in D1 and k be a positive integer. Then

m

(
r,

f (k)(z)

f (z)

)
= S(r, f ).

If f (z) is of finite order, then

m

(
r,

f (k)(z)

f (z)

)
= O

{
log

1

1 − r

}
(r → 1).

Lemma 2.2. (See [12].) Let h1(r) and h2(r) be monotonically increasing and real valued functions on [0,1) such that h1(r) � h2(r)
possibly outside an exceptional set E ⊂ [0,1), for which

∫
E

dr
1−r < ∞. Then there exists a constant b ∈ (0,1) such that if s(r) =

1 − b(1 − r), then h1(r) � h2(s(r)) for all r ∈ [0,1).

Lemma 2.3. (See [1].) Let f (z) and g(z) be two admissible meromorphic functions in D1 , and a j ∈ C∞ ( j = 1,2, . . . ,5) be five
distinct values. If f (z) and g(z) share a j ( j = 1,2, . . . ,5) IM in D1 , then f (z) ≡ g(z).

Lemma 2.4. Suppose that f (z) and g(z) are distinct meromorphic functions in D1 and share four distinct values a j ∈ C∞
( j = 1,2,3,4) IM in D1 . If f (z) is admissible, then g(z) is also admissible.

Proof. By the assumption of Lemma 2.4 and the second fundamental theorem in D1 (see Theorems 2.1 and 2.2 in [1]), we
get

2T (r, f ) �
4∑

j=1

N

(
r,

1

f − a j

)
+ S(r, f )

=
4∑

j=1

N

(
r,

1

g − a j

)
+ S(r, f )

�
4∑

j=1

T

(
r,

1

g − a j

)
+ S(r, f )

� 4T (r, g) + S(r, f ).

Hence

T (r, f ) � 4T (r, g) + O

{
log

1

1 − r

}

as r → 1 possibly outside a set E such that
∫

E
dr

1−r < ∞. Then by Lemma 2.2 we get g(z) is admissible. �
Lemma 2.5. Suppose that f (z) and g(z) are distinct admissible meromorphic functions in D1 . If f (z) and g(z) share four distinct
values a j ∈ C∞ ( j = 1,2,3,4) CM in D1 , then f (z) is a linear fractional transformation of g(z).
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Proof. We divide our proof into two steps.
Step 1. We prove that S(r, g) = S(r, f ) and at least two among N(r, 1

f −a j
) ( j = 1,2,3,4) are not S(r, f ).

Without loss of generality, we may assume that all a j ( j = 1,2,3,4) are finite. The second fundamental theorem in D1
implies

2T (r, f ) �
4∑

j=1

N

(
r,

1

f − a j

)
+ S(r, f ), (2.2)

2T (r, g) �
4∑

j=1

N

(
r,

1

g − a j

)
+ S(r, g). (2.3)

Since f (z) and g(z) share a j ( j = 1,2,3,4) IM in D1,

4∑
j=1

N

(
r,

1

f − a j

)
=

4∑
j=1

N

(
r,

1

g − a j

)
� N

(
r,

1

f − g

)
� T (r, f ) + T (r, g) + O (1). (2.4)

Then by (2.2)–(2.4) we get

T (r, f ) � T (r, g) + S(r, f ),

T (r, g) � T (r, f ) + S(r, g).

Hence S(r, g) = S(r, f ). From (2.2) we see that at least two among N(r, 1
f −a j

) ( j = 1,2,3,4) are not S(r, f ). Otherwise, we

have T (r, f ) � S(r, f ). Then by Lemma 2.2 we get f is non-admissible. This is impossible.
Step 2. We prove that f (z) is a linear fractional transformation of g(z).
By Step 1, without loss of generality, we may assume that

N

(
r,

1

f − a1

)
�= S(r, f ), N

(
r,

1

f − a2

)
�= S(r, f ). (2.5)

Firstly, we assume that a1 = ∞. Set

H = f ′

( f − a2)( f − a3)( f − a4)
− g′

(g − a2)(g − a3)(g − a4)
. (2.6)

If H �≡ 0, then by Lemma 2.1 we get

m(r, H) � m

(
r,

4∑
j=2

f ′

f − a j

)
+ m

(
r,

4∑
j=2

g′

g − a j

)
+ O (1) = S(r, f ).

Since f (z) and g(z) share a j ( j = 1,2,3,4) CM in D1, H has no poles in D1. Hence H is analytic in D1 and T (r, H) =
m(r, H) = S(r, f ). Suppose z0 is a pole of f (z) and g(z) with multiplicity p. It follows from (2.6) that z0 is a zero of H with
multiplicity at least 3p − (p + 1) = 2p − 1. Therefore

N(r, f ) � N

(
r,

1

H

)
� T (r, H) + O (1) = S(r, f ),

which contradicts (2.5). Hence H ≡ 0.
Set

Q = f ′( f − a2)

( f − a3)( f − a4)
− g′(g − a2)

(g − a3)(g − a4)
. (2.7)

If Q �≡ 0, then by Lemma 2.1 we get

m(r, Q ) � m

(
r,

4∑
j=3

f ′

f − a j

)
+ m

(
r,

4∑
j=3

g′

g − a j

)
+ O (1) = S(r, f ).

Since f (z) and g(z) share a1, a3, a4 CM in D1, Q has no poles in D1. Hence Q is analytic in D1 and T (r, Q ) = m(r, Q ) =
S(r, f ). Suppose z0 is a zero of f (z) − a2 and g(z) − a2 with multiplicity p. It follows from (2.7) that z0 is a zero of Q with
multiplicity at least p + (p − 1) = 2p − 1. Therefore
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N

(
r,

1

f − a2

)
� N

(
r,

1

Q

)
� T (r, Q ) + O (1) = S(r, f ),

which contradicts (2.5). Hence Q ≡ 0.
From H ≡ 0 and Q ≡ 0 we get ( f − a2)

2 = (g − a2)
2. Hence f = −g + 2a2 and the conclusion is proved.

If a1 �= ∞, set F = 1
f −a1

, G = 1
g−a1

and b j = 1
a j−a1

( j = 2,3,4). Then F and G share ∞,b2,b3,b4 CM in D1. By the above

proof we get F = −G + 2b2. Hence f (z) is also a linear fractional transformation of g(z). �
Lemma 2.6. Set

u = u(z) = z
π
δ + 2z

π
2δ − 1

z
π
δ − 2z

π
2δ − 1

.

Then u(z) maps conformally {z | |arg z| < δ, |z| < 1} onto the unit disc {u | |u| < 1}, where 0 < δ < π .

Proof. Note that

φ(z) =
(

z + 1

z − 1

)2

(2.8)

maps conformally {z | Im z > 0, |z| < 1} onto the upper half-plane and

ϕ(z) = i ·
(

z − i

z + i

)
(2.9)

maps conformally the upper half-plane onto the unit disc. Since ω(z) = (zeiδ)
π
2δ maps {z | |arg z| < δ, |z| < 1} onto

{ω | Imω > 0, |ω| < 1}, then combining (2.8) and (2.9) we can get the conclusion. �
3. Proofs of Theorems 1.1 and 1.2

Proof. We want to prove Theorem 1.2. Without loss of generality, we may assume θ0 = 0. Set

u = u(z) = z
π
δ + 2z

π
2δ − 1

z
π
δ − 2z

π
2δ − 1

. (3.1)

Let z = z(u) denote its inverse function. Then by Lemma 2.6 we know that u maps conformally 	(0, δ) onto the unit disc
{u | |u| < 1}.

Set z0 = peiϕ ∈ 	(0, δ), by (3.1) we get

1 − ∣∣u(z0)
∣∣ = 1 −

√
A2 + B2

C2 + D2

= C2 + D2 − A2 − B2

C2 + D2 + √
(A2 + B2)(C2 + D2)

= 8p
π
2δ (1 − p

π
δ ) cos πϕ

2δ

C2 + D2 + √
(A2 + B2)(C2 + D2)

, (3.2)

where

A = p
π
δ cos

πϕ

δ
+ 2p

π
2δ cos

πϕ

2δ
− 1,

B = p
π
δ sin

πϕ

δ
+ 2p

π
2δ sin

πϕ

2δ
,

C = p
π
δ cos

πϕ

δ
− 2p

π
2δ cos

πϕ

2δ
− 1,

D = p
π
δ sin

πϕ

δ
− 2p

π
2δ sin

πϕ

2δ
.

Since

C2 + D2 = p
2π
δ + 2p

π
δ + 1 + 4p

π
2δ

(
1 − p

π
δ
)

cos
πϕ

2δ
+ 2p

π
δ

(
1 − cos

πϕ

δ

)
,

we get
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1 � C2 + D2 � C2 + D2 +
√(

A2 + B2
)(

C2 + D2
)
� 2

(
C2 + D2) � 20. (3.3)

Note that limp→1
1−p

π
δ

1−p = π
δ

, so there exists b ∈ (( 1
2 )

2δ
π ,1) such that for all p satisfying b < p < 1, we have

1

2
< p

π
2δ < 1, (3.4)

π

2δ
(1 − p) < 1 − p

π
δ <

3π

2δ
(1 − p). (3.5)

By (3.2)–(3.5) we get

min

{
1 − ∣∣u(

peiϕ)∣∣ ∣∣∣ b < p < r, |ϕ| < δ

2

}
>

π

20δ
(1 − r) (3.6)

for all r ∈ (b,1).
Note that we have got two meromorphic functions f (z(u)) and g(z(u)) in the unit disc {u | |u| < 1}. Now we prove that

f (z(u)) is admissible in the unit disc {u | |u| < 1}. Let τ1 and τ2 satisfy τ > τ1 > τ2 > 1, by (1.2), there exists a sequence
{rn} of positive numbers such that rn → 1 for n → ∞ and such that for τ1 we have

n

(
rn,	

(
0,

δ

2

)
, f (z) = a

)
>

(
1

1 − rn

)τ1

(3.7)

for n sufficiently large.
Set tn = 1 − π

20δ
(1 − rn), (3.6) and (3.7) yield

n
(
tn, f

(
z(u)

) = a
)
> n

(
rn,	

(
0,

δ

2

)
, f (z) = a

)
− O (1)

>

(
1

1 − rn

)τ2

> A

(
1

1 − tn

)τ2

(3.8)

for n sufficiently large.
Set t′

n = tn + 1
2 (1 − tn), then by (3.8) we get

T
(
t′
n, f

(
z(u)

))
> N

(
t′
n, f

(
z(u)

) = a
) − B

>

t′n∫
tn

n(t, f (z(u)) = a)

t
dt − B

> n
(
tn, f

(
z(u)

) = a
)

log
t′
n

tn
− B

> A(1 − tn)

(
1

1 − tn

)τ2

= A

(
1

1 − tn

)τ2−1

, (3.9)

where A and B are two positive constants, they are not necessarily the same at each occurrence. Hence by (3.9) we get

lim
t→1

T (t, f (z(u)))

log 1
1−t

� lim
t′n→1

T (t′
n, f (z(u)))

log 1
1−t′n

� lim
tn→1

A( 1
1−tn

)τ2−1

log 2
1−tn

= ∞.

So f (z(u)) is admissible in the unit disc {u | |u| < 1}.
Since f (z) and g(z) share a j ( j = 1,2,3,4) CM in 	(0, δ), f (z(u)) and g(z(u)) share a j ( j = 1,2,3,4) CM in {u | |u| < 1}.

Then by Lemmas 2.4 and 2.5, we get f (z(u)) is a linear fractional transformation of g(z(u)). Hence the restriction f |	(0,δ)

is a linear fractional transformation of g|	(0,δ) . Then by the identity principle, we prove Theorem 1.2.
The proof of Theorem 1.1 is similar to that of Theorem 1.2, we only need to replace Lemma 2.5 with Lemma 2.3. �
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