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We present a proof of the existence of solutions to the continuous coagulation equation
with multiple fragmentation whenever the kernels satisfy certain growth conditions. The
proof relies on weak L1 compactness methods applied to suitably chosen approximating
equations. The question of uniqueness is also considered.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The coagulation-fragmentation equation describes the kinetics of particle growth in which particles can coagulate via
binary interaction to form larger particles or fragment to form smaller ones. These models arise in many applications such
as cluster formation in galaxies, kinetics of phase transformations in binary alloys, aggregation of red blood cells, fluidized
bed granulation processes etc. The non-linear continuous coagulation and multiple fragmentation equation is given by

∂ f (x, t)

∂t
= 1

2

x∫
0

K (x − y, y) f (x − y, t) f (y, t)dy −
∞∫

0

K (x, y) f (x, t) f (y, t)dy

+
∞∫

x

b(x, y)S(y) f (y, t)dy − S(x) f (x, t), (1)

with

f (x,0) = f0(x) � 0 a.e. (2)

where the variables x � 0 and t � 0 denote the size of the particles and time respectively. The number density of particles
of size x at time t is denoted by f (x, t). The coagulation kernel K (x, y) represents the rate at which particles of size x
coalesce with particles of size y. The fragmentation terms have a similar interpretation. The breakage function b(x, y) is the
probability density function for the formation of particles of size x from the particles of size y. It is non-zero only for x < y.
The selection function S(x) describes the rate at which particles of size x are selected to break. The selection function S
and breakage function b are defined in terms of the multiple-fragmentation kernel Γ as
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S(x) =
x∫

0

y

x
Γ (x, y)dy, b(x, y) = Γ (y, x)/S(y). (3)

The breakage function has the following properties
y∫

0

b(x, y)dx = N < ∞, for all y and b(x, y) = 0, for x � y, (4)

and
y∫

0

xb(x, y)dx = y for all y > 0. (5)

The quantity N represents the number of fragments obtained from the breakage of particles of size y. In this work, we
assume that this quantity is size independent, a more general case is not treated here is to let N be a function of y. For
the total mass in the system to remain conserved during fragmentation events, b must satisfy Eq. (5). It states that the total
mass of the fragments equals the original mass when a particle of mass y breaks.

Eq. (1) is usually referred to as the continuous coagulation and multiple-fragmentation equation, or generalized
coagulation-fragmentation equation, as fragmenting particles can split into more than two pieces. However, the continuous
coagulation and binary-fragmentation equation has been investigated, for example in References [22,8]. It can be obtained
as a special case of (1) by setting

S(x) = 1

2

x∫
0

F (y, x − y)dy, b(x, y) = F (x, y − x)/S(y) (6)

where F is assumed to be symmetric. In this binary-fragmentation model, the function F represents the rate at which
particles of size x − y and y are produced from a fragmenting particle of size x.

Many results on the existence and uniqueness of solutions to the various forms of the coagulation-fragmentation equa-
tion have already been established using a number of different methods [22,8,1,18,9,4,5,10,11,6,3,19]. However, the case of
multiple-fragmentation is not discussed too much. The first study of the coagulation equation with multiple fragmenta-
tion has been done by Melzak [18] where the first existence and uniqueness result was proved for bounded coefficients.
McLaughlin et al. [16] established the existence and uniqueness of solutions to the multiple-fragmentation equation under
the condition that

S(x) =
x∫

0

y

x
Γ (x, y)dy � Cn < ∞ for all x ∈ ]0,n], n > 0

where the sequence Cn may be unbounded. This was extended in Reference [17] to the combined coagulation and multiple-
fragmentation Eq. (1) under the assumptions that K is constant and

Γ ∈ L∞(]0,∞[ × ]0,∞[).
Using similar arguments, Lamb [13] discussed the existence and uniqueness of solutions to (1) under the less restrictive
conditions that K is bounded, S satisfies a linear growth condition, and b(x, y) is such that the break-up of a particle of size
y is a mass-conserving process that produces an average number of smaller particles that is finite and independent of y.
But all of them used one particular method that involves the application of the theory of semigroup of operators.

Unlike most previous authors we prove the existence of solutions to (1) which is based on weak L1 compactness methods
applied to suitably chosen approximating equations. This approach originated in the work of Stewart [22] who investigated
the case when both the coagulation kernel K and binary-fragmentation kernel F satisfy growth conditions almost up to
linearity. Existence results for the continuous coagulation equation with multiple fragmentation were also established by
Laurençot [14] by the approach of Stewart, the class of kernels being different but with a non-empty intersection. A more
complete result is available for the discrete coagulation equation with multiple fragmentation in [15].

Here, our aim is to prove the existence of solutions to (1) under the much less restrictive conditions that K is unbounded
and satisfies a certain growth condition as well as that S satisfies almost a linear growth condition. However, to investigate
uniqueness we need some further restrictions on the kernels. The present paper improves [17,13] by relaxing the assumption
of boundedness of the coagulation coefficient, the latter condition being crucial for the use of the semigroup approach.

Let X be the following Banach space with norm ‖ · ‖

X = {
f ∈ L1(0,∞): ‖ f ‖ < ∞}

where ‖ f ‖ =
∞∫
(1 + x)

∣∣ f (x)
∣∣dx.
0
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We also write

‖ f ‖x =
∞∫

0

x
∣∣ f (x)

∣∣dx and ‖ f ‖1 =
∞∫

0

∣∣ f (x)
∣∣dx

and set

X+ = { f ∈ X: f � 0 a.e.}.

Hypotheses 1.1.

(H1) K is a continuous non-negative function on [0,∞[ × [0,∞[ and Γ is a non-negative locally bounded function,
(H2) K is symmetric, i.e. K (x, y) = K (y, x) for all x, y ∈ ]0,∞[,
(H3) K (x, y) � φ(x)φ(y) for all x, y ∈ ]0,∞[ where φ(x) � k1(1 + x)μ for some 0 � μ < 1 and constant k1.
(H4) S : ]0,∞[ �→ [0,∞[ is continuous and satisfies the bound S(x) � k2(1 + x)γ for all x ∈ ]0,∞[ where 0 � γ < 1 and k2

is a constant.

Definition 1.2. Let T ∈]0,∞]. A solution f of (1)–(2) is a function f : [0, T [ → X+ such that for a.e. x ∈ ]0,∞[ and all
t ∈ [0, T [ the following hold

(i) f (x, t) � 0,
(ii) f (x, .) is continuous on [0, T [,

(iii) the following integrals are bounded

t∫
0

∞∫
0

K (x, y) f (y, s)dy ds < ∞ and

t∫
0

∞∫
x

b(x, y)S(y) f (y, s)dy ds < ∞,

(iv) the function f satisfies the following weak formulation of (1)

f (x, t) = f0(x) +
t∫

0

{
1

2

x∫
0

K (x − y, y) f (x − y, s) f (y, s)dy −
∞∫

0

K (x, y) f (x, s) f (y, s)dy

+
∞∫

x

b(x, y)S(y) f (y, s)dy − S(x) f (x, s)

}
ds.

We know a few specific coagulation kernels which satisfy the hypotheses mentioned above. However, they do not satisfy
the assumptions of previously existing results on coagulation together with multiple fragmentation given in Lamb [13].
These kernels are the following:

(1) Shear kernel (non-linear velocity profile) Aldous [2] or Smit et al. [21] who use the length coordinate λ = x
1
3

K (x, y) = k0
(
x1/3 + y1/3)7/3

.

(2) The modified Smoluchowski kernel, see Koch et al. [12], is given as

K (x, y) = k0
(x1/3 + y1/3)2

x1/3 · y1/3 + c

with some fixed constant c > 0.
(3) Ding et al. [7] used the following kernel in the application of population balance models to activated sludge floccu-

lation

K (x, y) = k0
(x1/3 + y1/3)q

1 + ( x1/3+y1/3

2y1/3
c

)3
, 0 � q < 3.

Here q is the order of the kernel.
Further we point out that the modified Smoluchowski kernel was derived from the Smoluchowski kernel (or Brownian

motion kernel) given as, see Aldous [2] or Smit et al. [21],

K (x, y) = k0
(
x1/3 + y1/3)(x−1/3 + y−1/3)
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which can be rewritten as

K (x, y) = k0
(x1/3 + y1/3)2

x1/3 · y1/3
.

The modification eliminates the singular behavior of this kernel. The original Smoluchowski kernel does not satisfy (H3) in
contrast to the modified one by Koch et al. [12].

Now we take the following type of fragmentation kernels which also satisfy the hypotheses mentioned above

S(x) = xσ (1 + x)γ −σ and b(x, y) = α + 2

y

(
x

y

)α

, 0 < x < y,

where σ � 1 > γ � 0 and α � 0. This is the cut-off version of the classical selection functions S(x) = xγ which have been
studied in Peterson [20] and also in Ziff [25]. If we write it rather as

S(x) = xσ (δ + x)γ −σ .

In the limit δ → 0 one recovers the classical kernel.
The outline of our paper is as follows. In Section 2, we extract a weakly convergent subsequence in L1 from a sequence

of unique solutions for truncated equations to (1)–(2). Then we prove in Theorem 2.3 that the limit function obtained from
weakly convergent subsequence is indeed a solution to (1)–(2). In Section 3, we investigate the uniqueness, motivated by
Stewart [23], of the solutions to (1)–(2) under the following further restrictions on the kernels.

(H3′) K (x, y) � φ(x)φ(y) for all x, y where φ(x) � k(1 + x)
1
2 for some constant k.

(H4′) For all x > 0, there exist m1, m2 > 0 such that

S(x) � m1(1 + x)a

and

x∫
0

(1 + y)
1
2 b(y, x)dy � m2(1 + x)b

where a + b � 1
2 .

2. Existence

2.1. The truncated problem

We prove the existence of solutions to (1)–(2) by taking the limit of a sequence of approximating equations obtained by
replacing the kernel K and selection function S by the ‘cut-off’ kernels Kn and Sn , motivated by Stewart [22], where

Kn(x, y) :=
{

K (x, y) if x + y < n,

0 if x + y � n,

Sn(x) :=
{

S(x) if 0 < x < n,

0 if x � n.

The resulting equations, with solutions denoted by f n , are written as

∂ f n(x, t)

∂t
= 1

2

x∫
0

Kn(x − y, y) f n(x − y, t) f n(y, t)dy −
n−x∫
0

Kn(x, y) f n(x, t) f n(y, t)dy

+
n∫

x

b(x, y)Sn(y) f n(y, t)dy − Sn(x) f n(x, t), (7)

with

f n
0 (x) :=

{
f0(x) if 0 < x < n,

0 if x � n.
(8)

Choose T > 0. Proceeding as in [22, Theorem 3.1] we obtain the following result. For each n = 1,2,3 . . . , (7)–(8) has a
unique solution f n ∈ X+ with f n(x, t) � 0 for a.e. x ∈]0,n[ and t ∈ [0,∞[, see Walker [24] also. Moreover, the total mass
remains conserved, for all t ∈ [0,∞[, i.e.
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n∫
0

xf n(x, t)dx =
n∫

0

xf n
0 (x)dx. (9)

From now on we consider the ‘zero extension’ of each f n on R, i.e.

f̂ n(x, t) :=
{

f n(x, t) if 0 < x < n, t ∈ [0, T ],
0 if x � 0 or x � n.

For the simplicity we drop the .̂ notation for the remainder of the work and the suffixes on the coagulation kernels and
the selection functions.

Lemma 2.1. Assume that (H1), (H2), and (H4) hold. Then the following are true:

(i)

∞∫
0

(1 + x) f n(x, t)dx � L for n = 1,2,3 . . . and all t ∈ [0, T ],

(ii) given ε > 0 there exists an R > 0 such that for all t ∈ [0, T ]

sup
n

{ ∞∫
R

f n(x, t)dx

}
� ε,

(iii) given ε > 0 there exists a δ > 0 such that for all n = 1,2,3 . . . and t ∈ [0, T ]∫
E

f n(x, t)dx < ε whenever λ(E) < δ.

Proof. (i) From (7) and Fubini’s Theorem, for each n � 1 we have by integration with respect to x and t

1∫
0

f n(x, t)dx = −1

2

t∫
0

1∫
0

1−x∫
0

K (x, y) f n(x, s) f n(y, s)dy dx ds −
t∫

0

1∫
0

n−x∫
1−x

K (x, y) f n(x, s) f n(y, s)dy dx ds

+
t∫

0

1∫
0

n∫
x

b(x, y)S(y) f n(y, s)dy dx ds −
t∫

0

1∫
0

S(x) f n(x, s)dx ds +
1∫

0

f n(x,0)dx.

Since the integrands are all non-negative, we may estimate

1∫
0

f n(x, t)dx �
t∫

0

1∫
0

n∫
x

b(x, y)S(y) f n(y, s)dy dx ds +
1∫

0

f n(x,0)dx

=
t∫

0

1∫
0

1∫
x

b(x, y)S(y) f n(y, s)dy dx ds +
t∫

0

1∫
0

n∫
1

b(x, y)S(y) f n(y, s)dy dx ds +
1∫

0

f n(x,0)dx.

Using Fubini’s Theorem, (H4) and (4) in the size independent case, we obtain

1∫
0

f n(x, t)dx �
t∫

0

1∫
0

y∫
0

b(x, y)S(y) f n(y, s)dx dy ds +
t∫

0

n∫
1

1∫
0

b(x, y)S(y) f n(y, s)dx dy ds +
1∫

0

f n(x,0)dx

� k2N

t∫
0

1∫
0

(1 + y)γ f n(y, s)dy ds + k2N

t∫
0

n∫
1

(1 + y)γ f n(y, s)dy ds +
1∫

0

f n(x,0)dx

� k2N

t∫
0

1∫
0

(1 + y) f n(y, s)dy ds + 2k2N

t∫
0

n∫
1

yf n(y, s)dy ds +
1∫

0

f n(x,0)dx. (10)
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From Eq. (9), for s ∈ [0, T ]∥∥ f n(s)
∥∥

x = ∥∥ f n(0)
∥∥

x �
∥∥ f (0)

∥∥. (11)

Using (10) and (11) we obtain

1∫
0

f n(x, t)dx � k2N

t∫
0

1∫
0

f n(y, s)dy ds + 3k2NT ‖ f0‖ + ‖ f0‖ = k2N

t∫
0

1∫
0

f n(y, s)dy ds + ‖ f0‖{3k2NT + 1}.

Applying Gronwall’s Lemma we obtain

1∫
0

f n(x, t)dx � ‖ f0‖{3k2NT + 1}exp{k2NT }.

Thus, by using (9) again we may estimate

∞∫
0

(1 + x) f n(x, t)dx =
1∫

0

f n(x, t)dx +
n∫

1

f n(x, t)dx +
n∫

0

xf n(x, t)dx

�
1∫

0

f n(x, t)dx +
n∫

1

xf n(x, t)dx + ‖ f0‖

� ‖ f0‖
{
(3k2NT + 1)exp(k2NT ) + 2

} := L.

(ii) For ε > 0, let R > 0 be such that R > ‖ f0‖/ε . Then, by (11), for each n = 1,2,3, . . . and for all t ∈ [0, T ] we have

∞∫
R

f n(x, t)dx =
∞∫

R

(x/x) f n(x, t)dx � 1

R

∞∫
R

xf n(x, t)dx � 1

R
‖ f0‖ < ε.

(iii) Choose ε > 0 and let E ⊂ R>0 := ]0,∞[. By part (ii) we can choose m > 1 such that for all n = 1,2,3, . . . and
t ∈ [0, T ]

∞∫
m

f n(x, t)dx < ε/2. (12)

Let χ denotes the characteristic function, i.e.

χE(x) :=
{

1 if x ∈ E,

0 if x /∈ E,

and for n = 1,2,3, . . . and t ∈ [0, T ], define

pn(E, t) = sup
0�z�m

∫
R>0

χE∩]0,m](x + z) f n(x, t)dx.

Set

K0 = sup
0�x�m
0�y�m

1

2
K (x, y).

Consider γ ∈ [0,1[ and k2 as in (H4), N as given by (4). Then one can choose r > m such that

k2NT L(1 + r)γ −1 < ε/
{

8 exp(T LK0)
}

(13)

and set

F0 = sup
0�y�r
0�x�m

Γ (y, x).

By the absolute continuity of integral there exists a δ1 > 0 such that
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pn(E,0) � sup
0�z�m

∫
R>0

χE∩]0,m](x + z) f0(x)dx < ε/
{

4 exp(T LK0)
}

(14)

for all n whenever λ(E) � δ1 for the Lebesgue measure λ. Also, there exists a δ2 > 0 such that

sup
0�z�m

∫
R>0

χE∩]0,m](x + z)dx < ε/
{

8T F0L exp(T LK0)
}

(15)

whenever λ(E) � δ2. Set δ = min{δ1, δ2}. Using the non-negativity of each f n we can use (7)–(8) to prove that for 0 < z < m
and λ(E) < δ∫

R>0

χE∩]0,m](x + z) f n(x, t)dx

� 1

2

t∫
0

∫
R>0

∫
R>0

χE∩]0,m](x + z)χ]0,x]∩]0,m](y)K (x − y, y) f n(x − y, s) f n(y, s)dy dx ds

+
t∫

0

m∫
0

χE∩]0,m](x + z)

n∫
x

b(x, y)S(y) f n(y, s)dy dx ds + pn(E,0).

Using the substitution x′ = x − y, y′ = y and Fubini’s Theorem in the first and second integrals on the right-hand side
respectively we find that

∫
R>0

χE∩]0,m](x + z) f n(x, t)dx � 1

2

t∫
0

∫
R>0

∫
R>0

χE∩]0,m](x + y + z)χ]0,m](y)K (x, y) f n(x, s) f n(y, s)dy dx ds

+
t∫

0

m∫
0

y∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds

+
t∫

0

n∫
m

m∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds + pn(E,0).

By the definition of pn(E, t) and Lemma 2.1(i), this can be rewritten as

∫
R>0

χE∩]0,m](x + z) f n(x, t)dx � K0

t∫
0

m∫
0

f n(y, s) sup
0�v�m

∫
R>0

χE∩]0,m](x + v) f n(x, s)dx dy ds

+
t∫

0

m∫
0

m∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds

+
t∫

0

r∫
m

m∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds

+
t∫

0

∞∫
r

m∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds + pn(E,0),

� K0L

t∫
0

pn(E, s)ds +
t∫

0

r∫
0

m∫
0

χE∩]0,m](x + z)Γ (y, x) f n(y, s)dx dy ds

+
t∫ ∞∫ y∫

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds + pn(E,0). (16)
0 r 0
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We use (15) and Lemma 2.1(i) to obtain the following estimate

t∫
0

r∫
0

m∫
0

χE∩]0,m](x + z)Γ (y, x) f n(y, s)dx dy ds � F0

t∫
0

r∫
0

f n(y, s)dy ds · ε/
{

8T F0L exp(T LK0)
}

� ε/
{

8 exp(T LK0)
}
. (17)

By using (4), (H4), Lemma 2.1(i) and (13) we treat the other integral

t∫
0

∞∫
r

y∫
0

χE∩]0,m](x + z)b(x, y)S(y) f n(y, s)dx dy ds � k2N

t∫
0

∞∫
r

(1 + y)γ f n(y, s)dy ds

� k2NT L(1 + r)γ −1 < ε/
{

8 exp(T LK0)
}
. (18)

It can be deduced from (14), (16), (17) and (18) that

pn(E, t) � K0L

t∫
0

pn(E, s)ds + ε/
{

2 exp(T LK0)
}
.

By using Gronwall’s inequality, we obtain

pn(E, t) � exp(T LK0)ε/
{

2 exp(T LK0)
} = ε/2. (19)

By (12) and (19), we obtain for n = 1,2,3 . . . and t ∈ [0, T ]∫
E

f n(x, t)dx =
∫

χE∩]0,m](x) f n(x, t)dx +
∫

χE∩[m,∞[(x) f n(x, t)dx

� pn(E, t) +
∞∫

m

f n(x, t)dx

<
ε

2
+ ε

2
= ε

whenever λ(E) < δ. �
The above Lemma 2.1 implies that for each t ∈ [0, T ], the sequence of functions ( f n(t))n∈N lies in a weakly relatively

compact set in L1]0,∞[ by the Dunford–Pettis Theorem.

2.2. Equicontinuity in time

Now we proceed in this section to show equicontinuity of the sequence ( f n)n∈N in time. It should be mentioned that
(H3) is now assumed to be satisfied. Choose ε > 0 and φ ∈ L∞]0,∞[. Let s, t ∈ [0, T ] and assume t � s. Choose m > 1 such
that

‖φ‖L∞ 2L/m < ε/2. (20)

For each n, by Lemma 2.1(i),

∞∫
m

∣∣ f n(x, t) − f n(x, s)
∣∣dx � 1

m

∞∫
m

x
{

f n(x, t) + f n(x, s)
}

dx � 2L/m. (21)

By using (7), (20) and (21), we get using t � s∣∣∣∣∣
∞∫

0

φ(x)
{

f n(x, t) − f n(x, s)
}

dx

∣∣∣∣∣ �
∣∣∣∣∣

m∫
0

φ(x)
{

f n(x, t) − f n(x, s)
}

dx

∣∣∣∣∣ +
∞∫

m

∣∣φ(x)
∣∣{∣∣ f n(x, t) − f n(x, s)

∣∣}dx

� ‖φ‖L∞

t∫ [
1

2

m∫ x∫
K (x − y, y) f n(x − y, τ ) f n(y, τ )dy dx
s 0 0
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+
m∫

0

n−x∫
0

K (x, y) f n(x, τ ) f n(y, τ )dy dx +
m∫

0

n∫
x

b(x, y)S(y) f n(y, τ )dy dx

+
m∫

0

S(x) f n(x, τ )dx

]
dτ + ε/2. (22)

Now we consider the first term on the right-hand side of (22), by Fubini’s Theorem, (H1)–(H4) and Lemma 2.1(i)

1

2

m∫
0

x∫
0

K (x − y, y) f n(x − y, τ ) f n(y, τ )dy dx = 1

2

m∫
0

m∫
y

K (x − y, y) f n(x − y, τ ) f n(y, τ )dx dy

= 1

2

m∫
0

m−y∫
0

K (x, y) f n(x, τ ) f n(y, τ )dx dy

= 1

2

m∫
0

m−x∫
0

K (y, x) f n(y, τ ) f n(x, τ )dy dx

= 1

2

m∫
0

m−x∫
0

K (x, y) f n(x, τ ) f n(y, τ )dy dx

� k2
1

1

2

m∫
0

m−x∫
0

(1 + x)μ(1 + y)μ f n(x, τ ) f n(y, τ )dy dx

� 1

2
k2

1L2.

For the second term we may estimate

m∫
0

n−x∫
0

K (x, y) f n(x, τ ) f n(y, τ )dy dx � k2
1

m∫
0

n−x∫
0

(1 + x)μ(1 + y)μ f n(x, τ ) f n(y, τ )dy dx � k2
1L2.

For n > m, the third term using (4) gives that

m∫
0

n∫
x

b(x, y)S(y) f n(y, τ )dy dx � k2

m∫
0

y∫
0

b(x, y)(1 + y)γ f n(y, τ )dx dy + k2

n∫
m

m∫
0

b(x, y)(1 + y)γ f n(y, τ )dx dy

� k2N

n∫
0

(1 + y)γ f n(y, τ )dy � k2N L.

Similarly we can obtain the above inequality for m > n.
For the fourth term we have

m∫
0

S(x) f n(x, t)dx � k2L.

By using the above inequalities, Eq. (22) reduces to∣∣∣∣∣
∞∫

0

φ(x)
{

f n(x, t) − f n(x, s)
}

dx

∣∣∣∣∣ � ‖φ‖L∞]0,∞[(t − s)

{
3

2
k2

1L2 + k2(N + 1)L

}
+ ε/2 < ε (23)

whenever t − s < δ for some δ > 0. The argument given above similarly holds if s > t . Hence (23) is true for all n and
|t − s| < δ. This implies the time equicontinuity of the family { f n(t), t ∈ [0, T ]} in L1(R>0). Thus, { f n(t), t ∈ [0, T ]} lies in a
relatively compact subset of the gauge space Ω . Details of the gauge space can be found in [22]. So, we may apply refined
version of Arzelà–Ascoli theorem, see [22, Theorem 2.1] to conclude that there exists a subsequence f nk such that
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f nk (t) → f (t) in Ω as nk → ∞
uniformly for t ∈ [0, T ] and for some f ∈ C([0, T ];Ω).

2.3. Convergence of the approximations of the integrals

For simplicity of notation we mostly suppress the dependence on arbitrary but fixed t ∈ [0, T ] when it is not explicitly
needed. Now we have to show that the limit function which we obtained above is indeed a solution to (1)–(2). Define the
operators Q n

i , Q i , i = 1 to 4, to be

Q n
1

(
f n)(x) = 1

2

x∫
0

K (x − y, y) f n(x − y) f n(y)dy, Q 1( f )(x) = 1

2

x∫
0

K (x − y, y) f (x − y) f (y)dy,

Q n
2

(
f n)(x) =

n−x∫
0

K (x, y) f n(x) f n(y)dy, Q 2( f )(x) =
∞∫

0

K (x, y) f (x) f (y)dy,

Q n
3

(
f n)(x) = S(x) f n(x), Q 3( f )(x) = S(x) f (x),

Q n
4

(
f n)(x) =

n∫
x

b(x, y)S(y) f n(y)dy, Q 4( f )(x) =
∞∫

x

b(x, y)S(y) f (y)dy,

where f ∈ L1]0,∞[, x ∈ ]0,∞[ and n = 1,2,3, . . . . Set Q n = Q n
1 − Q n

2 − Q n
3 + Q n

4 and Q = Q 1 − Q 2 − Q 3 + Q 4.

Lemma 2.2. Suppose ( f n)n∈N ⊂ X+ , f ∈ X+ , where ‖ f n‖ � L, and f n ⇀ f in L1]0,∞[ as n → ∞. Then for each m > 0

Q n( f n) ⇀ Q ( f ) in L1]0,m[ as n → ∞.

Proof. Let χ denotes the characteristic function. Choose m > 0 and let φ ∈ L∞]0,∞[. We show that Q n
i ( f n) ⇀ Q i( f ) in

L1]0,m[ as n → ∞ for i = 1,2,3,4.

Case i = 1,2: By proceeding the same computation as in [22, Lemma 4.1], we can easily obtain

Q n
i

(
f n) ⇀ Q i( f ) in L1]0,m[ as n → ∞. (24)

Case i = 3: For a.e. x ∈ ]0,m], by using (H4) we find that∣∣φ(x)S(x)
∣∣ � k2‖φ‖L∞]0,m[(1 + m)γ .

Then

χ]0,m[φS ∈ L∞]0,∞[. (25)

Thus by (25) and since f n ⇀ f in L1]0,∞[ as n → ∞,∣∣∣∣∣
m∫

0

φ(x)
{

Q n
3

(
f n)(x) − Q 3( f )(x)

}
dx

∣∣∣∣∣ =
∣∣∣∣∣

m∫
0

φ(x)S(x)
{

f n(x) − f (x)
}

dx

∣∣∣∣∣ → 0 as n → ∞.

Since φ is arbitrary

Q n
3

(
f n) ⇀ Q 3( f ) in L1]0,m[ as n → ∞. (26)

Case i = 4: Choose ε > 0. By (H4) we have 0 � γ < 1 and we can therefore choose r > m such that for N given by (4)

2k2N‖φ‖L∞]0,m[L(1 + r)γ −1 < ε. (27)

Then by Fubini’s Theorem, (H4) and (27)∣∣∣∣∣
m∫

0

∞∫
r

φ(x)b(x, y)S(y)
{

f n(y) − f (y)
}

dy dx

∣∣∣∣∣ =
∣∣∣∣∣

∞∫
r

m∫
0

φ(x)b(x, y)S(y)
{

f n(y) − f (y)
}

dx dy

∣∣∣∣∣
� k2N‖φ‖L∞]0,m[

∞∫
r

(1 + y)γ
{

f n(y) + f (y)
}

dy

� 2 k2N‖φ‖L∞]0,m[L(1 + r)γ −1 < ε. (28)
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Also, for a.e. x ∈ ]0,m] the function

χ]x,r](·)φ(x)S(·)b(x, ·) = χ]x,r](·)φ(x)Γ (·, x) ∈ L∞]0,∞[.
Thus, since f n ⇀ f in L1]0,∞[, for a.e. x ∈ ]0,m]

φ(x)

r∫
x

S(y)b(x, y)
{

f n(y) − f (y)
}

dy → 0 as n → ∞. (29)

For a.e. x ∈ ]0,m] we take k3 = sup x<y�r
0<x�m

Γ (y, x) and by using Lemma 2.1(i)

∣∣φ(x)
∣∣∣∣∣∣∣

r∫
x

S(y)b(x, y)
{

f n(y) − f (y)
}

dy

∣∣∣∣∣ = ∣∣φ(x)
∣∣∣∣∣∣∣

r∫
x

Γ (y, x)
{

f n(y) − f (y)
}

dy

∣∣∣∣∣
� k3‖φ‖L∞]0,m[

r∫
x

{∣∣ f n(y)
∣∣ + ∣∣ f (y)

∣∣}dy

� k3‖φ‖L∞]0,m[ · 2L. (30)

As a function of x this belongs to L1]0,m]. Hence by (29), (30) and the dominated convergence theorem∣∣∣∣∣
m∫

0

r∫
x

φ(x)S(y)b(x, y)
{

f n(y) − f (y)
}

dy dx

∣∣∣∣∣ → 0 as n → ∞.

Thus, by using Lemma 2.1(i), (4), and (27) in the third integral on right-hand side, we obtain for n � m∣∣∣∣∣
m∫

0

φ(x)
{

Q n
4

(
f n)(x) − Q 4( f )(x)

}
dx

∣∣∣∣∣
=

∣∣∣∣∣
m∫

0

r∫
x

φ(x)S(y)b(x, y)
{

f n(y) − f (y)
}

dy dx

+
m∫

0

∞∫
r

φ(x)b(x, y)S(y)
{

f n(y) − f (y)
}

dy dx −
m∫

0

∞∫
n

φ(x)S(y)b(x, y) f n(y)dy dx

∣∣∣∣∣
�

∣∣∣∣∣
m∫

0

r∫
x

φ(x)S(y)b(x, y)
{

f n(y) − f (y)
}

dy dx

∣∣∣∣∣ + ε

+ k2N‖φ‖L∞]0,m[L(1 + n)γ −1 → ε as n → ∞.

By the arbitrariness of φ and ε , we obtain from above inequality

Q n
4

(
f n) ⇀ Q 4( f ) in L1]0,m[ as n → ∞. (31)

Lemma 2.2 follows from (24), (26) and (31). �
2.4. The existence theorem

Now we are in a position to state and prove the main result.

Theorem 2.3. Suppose that (H1), (H2), (H3) and (H4) hold and assume that f0 ∈ X+ . Then (1) has a solution f on ]0,∞[.

Proof. Choose m > 0, T > 0, and let ( f n)n∈N be the subsequence of approximating solutions obtained above. We have from
Section 2.1, for t ∈ [0, T ]

f n(t) ⇀ f (t) in L1]0,m[ as n → ∞. (32)

For any l > 0, since we know f n ⇀ f in L1]0,∞[, we obtain
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l∫
0

xf (x, t)dx = lim
n→∞

l∫
0

xf n(x, t)dx � ‖ f0‖x < ∞ (33)

using (9), the non-negativity of each f n and f , and then l → ∞ implies that f ∈ X+ . Let φ ∈ L∞]0,m[. From Lemma 2.2 we
have for each s ∈ [0, t]

m∫
0

φ(x)
{

Q n( f n(s)
)
(x) − Q

(
f (s)

)
(x)

}
dx → 0 as n → ∞. (34)

Also, for s ∈ [0, t], using Young’s Theorem for convolutions and Lemma 2.1(i)

m∫
0

∣∣φ(x)
∣∣∣∣Q n( f n(s)

)
(x) − Q

(
f (s)

)
(x)

∣∣dx

� ‖φ‖L∞]0,m[

{
1

2

m∫
0

x∫
0

K (x − y, y)
{

f n(x − y, s) f n(y, s) + f (x − y, s) f (y, s)
}

dy dx

+
m∫

0

n−x∫
0

K (x, y) f n(x, s) f n(y, s)dy dx +
m∫

0

∞∫
0

K (x, y) f (x, s) f (y, s)dy dx

+
m∫

0

S(x)
{

f n(x, s) + f (x, s)
}

dx

+
m∫

0

n∫
x

S(y)b(x, y) f n(y, s)dy dx +
m∫

0

∞∫
x

S(y)b(x, y) f (y, s)dy dx

}

� ‖φ‖L∞]0,m[
{

3k2
1L2 + 2k2(N + 1)L

}
. (35)

Since the left-hand side of (35) is in L1]0, t[ we have by (34), (35) and the dominated convergence theorem∣∣∣∣∣
t∫

0

m∫
0

φ(x)
{

Q n( f n(s)
)
(x) − Q

(
f (s)

)
(x)

}
dx ds

∣∣∣∣∣ → 0 as n → ∞. (36)

Since φ is arbitrary, and Eq. (36) holds for all φ ∈ L∞]0,m[, by the application of Fubini’s Theorem we obtain

t∫
0

Q n( f n(s)
)

ds ⇀

t∫
0

Q
(

f (s)
)

ds in L1]0,m[ as n → ∞. (37)

From the definition of Q n and Eq. (7) we have for t ∈ [0, T ]

f n(x, t) =
t∫

0

Q n( f n(s)
)
(x)ds + f n(x,0),

and thus it follows from (37) and (32) that

m∫
0

φ(x) f (x, t)dx =
t∫

0

m∫
0

φ(x)Q
(

f (s)
)
(x)dx ds +

m∫
0

φ(x) f (x,0)dx, (38)

for any φ ∈ L∞]0,m]. Therefore it holds for all φ ∈ C∞
0 (]0,m]). This implies for almost any x in ]0,m] we have

f (x, t) =
t∫

0

Q
(

f (s)
)
(x)ds + f (x,0). (39)

It now follows from the arbitrariness of T and m that f is a solution to (1) on [0,∞[. This completes the proof of Theo-
rem 2.3. �
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3. Uniqueness

Theorem 3.1. If (H1), (H2), (H3′) and (H4′) hold then solutions to (1)–(2) are unique.

Proof. Let f and g be two solutions to (1)–(2) on [0, T [ where T > 0, with f (0) = g(0), and set Y = f − g . For n = 1,2,3 . . . ,
we define

un(t) =
n∫

0

(1 + x)
1
2
∣∣Y (x, t)

∣∣dx.

Multiplying |Y | by (1 + x)
1
2 and applying Fubini’s Theorem to Definition 1.2(iv) above, we obtain for each n and 0 < t < T ,

un(t) =
t∫

0

n∫
0

(1 + x)
1
2 sgn

(
Y (x, s)

)[1

2

x∫
0

K (x − y, y)
{

f (x − y, s) f (y, s) − g(x − y, s)g(y, s)
}

dy

−
∞∫

0

K (x, y)
{

f (x, s) f (y, s) − g(x, s)g(y, s)
}

dy

+
∞∫

x

b(x, y)S(y)
{

f (y, s) − g(y, s)
}

dy − S(x)
{

f (x, s) − g(x, s)
}]

dx ds. (40)

Using the substitution x′ = x − y, y′ = y in the first integral on the right-hand side of (40) we find that

un(t) =
t∫

0

n∫
0

n−x∫
0

[
1

2
(1 + x + y)

1
2 sgn

(
Y (x + y, s)

) − (1 + x)
1
2 sgn

(
Y (x, s)

)]
× K (x, y)

{
f (x, s) f (y, s) − g(x, s)g(y, s)

}
dy dx ds

−
t∫

0

n∫
0

∞∫
n−x

(1 + x)
1
2 sgn

(
Y (x, s)

)
K (x, y)

{
f (x, s) f (y, s) − g(x, s)g(y, s)

}
dy dx ds

+
t∫

0

n∫
0

∞∫
x

(1 + x)
1
2 sgn

(
Y (x, s)

)
b(x, y)S(y)

{
f (y, s) − g(y, s)

}
dy dx ds

−
t∫

0

n∫
0

(1 + x)
1
2 sgn

(
Y (x, s)

)
S(x)

{
f (x, s) − g(x, s)

}
dx ds. (41)

By interchanging the order of integration and interchanging the roles of x and y, the symmetry of K yields the identity

n∫
0

n−x∫
0

(1 + x)
1
2 sgn

(
Y (x, s)

)
K (x, y)

{
f (x, s) f (y, s) − g(x, s)g(y, s)

}
dy dx

=
n∫

0

n−x∫
0

(1 + y)
1
2 sgn

(
Y (y, s)

)
K (x, y)

{
f (x, s) f (y, s) − g(x, s)g(y, s)

}
dy dx. (42)

For x, y > 0 and t ∈ [0, T [ we define the function r by

r(x, y, t) = (1 + x + y)
1
2 sgn

(
Y (x + y, t)

) − (1 + x)
1
2 sgn

(
Y (x, t)

) − (1 + y)
1
2 sgn

(
Y (y, t)

)
.

Using (42) we can show that (41) can be rewritten as



84 A. Kumar Giri et al. / J. Math. Anal. Appl. 374 (2011) 71–87
un(t) = 1

2

t∫
0

n∫
0

n−x∫
0

r(x, y, s)K (x, y) f (x, s)Y (y, s)dy dx ds + 1

2

t∫
0

n∫
0

n−x∫
0

r(x, y, s)K (x, y)g(y, s)Y (x, s)dy dx ds

+
t∫

0

n∫
0

∞∫
x

(1 + x)
1
2 sgn

(
Y (x, s)

)
b(x, y)S(y)Y (y, s)dy dx ds −

t∫
0

n∫
0

(1 + x)
1
2 sgn

(
Y (x, s)

)
S(x)Y (x, s)dx ds

−
t∫

0

n∫
0

∞∫
n−x

(1 + x)
1
2 sgn

(
Y (x, s)

)
K (x, y)

{
f (x, s)Y (y, s) + g(y, s)Y (x, s)

}
dy dx ds. (43)

Since the fourth integral and the last term in the fifth integral on the right-hand side of (43) are non-negative. We may
omit them. Thus we obtain, by interchanging the order of integration for the third integral,

un(t) � 1

2

t∫
0

n∫
0

n−x∫
0

r(x, y, s)K (x, y) f (x, s)Y (y, s)dy dx ds + 1

2

t∫
0

n∫
0

n−x∫
0

r(x, y, s)K (x, y)g(y, s)Y (x, s)dy dx ds

+
t∫

0

n∫
0

y∫
0

(1 + x)
1
2 b(x, y)S(y)

∣∣Y (y, s)
∣∣dx dy ds +

t∫
0

n∫
0

∞∫
n

(1 + x)
1
2 b(x, y)S(y)

∣∣Y (y, s)
∣∣dy dx ds

−
t∫

0

n∫
0

∞∫
n−x

(1 + x)
1
2 sgn

(
Y (x, s)

)
K (x, y) f (x, s)Y (y, s)dy dx ds

=:
t∫

0

5∑
i=1

Sn
i (s)ds. (44)

Here Sn
i , for i = 1, . . . ,5, are the corresponding integrands in the preceding lines.

We now consider each Sn
i individually. Noting that for all q,q1,q2 ∈ R, we have sgn(q1) sgn(q2) = sgn(q1q2) and |q| =

q sgn(q). We find that

r(x, y, s)Y (y, s) �
[
(1 + x + y)

1
2 + (1 + x)

1
2 − (1 + y)

1
2
]∣∣Y (y, s)

∣∣
�

[
(1 + x)

1
2 + (1 + y)

1
2 + (1 + x)

1
2 − (1 + y)

1
2
]∣∣Y (y, s)

∣∣
� 2(1 + x)

1
2
∣∣Y (y, s)

∣∣. (45)

Now, by using (H3′) we consider

t∫
0

Sn
1(s)ds = 1

2

t∫
0

n∫
0

n−x∫
0

r(x, y, s)K (x, y) f (x, s)Y (y, s)dy dx ds

�
t∫

0

n∫
0

n−x∫
0

(1 + x)
1
2 K (x, y) f (x, s)

∣∣Y (y, s)
∣∣dy dx ds

� k2

t∫
0

n∫
0

n−x∫
0

(1 + x)(1 + y)
1
2 f (x, s)

∣∣Y (y, s)
∣∣dy dx ds

� R1

t∫
0

un(s)ds, where R1 = k2 sup
s∈[0,t]

∥∥ f (s)
∥∥. (46)

Similarly, there is a constant R2 such that

t∫
Sn

2(s)ds � R2

t∫
un(s)ds. (47)
0 0
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Now, we consider

t∫
0

Sn
3(s)ds =

t∫
0

n∫
0

y∫
0

(1 + x)
1
2 b(x, y)S(y)

∣∣Y (y, s)
∣∣dx dy ds. (48)

By interchanging the role of x and y in (48) and using (H4′) we obtain

t∫
0

Sn
3(s)ds =

t∫
0

n∫
0

x∫
0

(1 + y)
1
2 b(y, x)S(x)

∣∣Y (x, s)
∣∣dy dx ds

� m1m2

t∫
0

n∫
0

(1 + x)a+b
∣∣Y (x, s)

∣∣dx ds

� R3

t∫
0

un(s)ds, where R3 = m1m2. (49)

Next, using Fubini’s Theorem and hypothesis (H4′) we have for each s ∈ [0, t]
n∫

0

∞∫
n

(1 + x)
1
2 b(x, y)S(y)

∣∣Y (y, s)
∣∣dy dx =

∞∫
n

n∫
0

(1 + y)
1
2 b(y, x)S(x)

∣∣Y (x, s)
∣∣dy dx

�
∞∫

n

x∫
0

(1 + y)
1
2 b(y, x)S(x)

[
f (x, s) + g(x, s)

]
dy dx

� m1m2

∞∫
n

(1 + x)a+b[ f (x, s) + g(x, s)
]

dy dx. (50)

The right-hand side of (50) is always bounded by the constant m1m2 sups∈[0,t][‖ f (s)‖+‖g(s)‖] and therefore the dominated
convergence theorem leads to

t∫
0

Sn
4(s)ds → 0 as n → ∞. (51)

To consider Sn
5 we first observe that∣∣∣∣∣

∞∫
0

∞∫
0

(1 + x)
1
2 sgn

(
Y (x, s)

)
K (x, y) f (x, s)Y (y, s)dy dx

∣∣∣∣∣ � k2

∞∫
0

∞∫
0

(1 + x)(1 + y)
1
2 f (x, s)

∣∣Y (y, s)
∣∣dy dx < ∞.

Thus, we obtain

t∫
0

Sn
5(s)ds → 0 as n → ∞. (52)

The sequence un is bounded and monotone. Thus, from (44), (46), (47), (49), (51), (52) and taking R = R1 + R2 + R3 we
obtain

u(t) :=
∞∫

0

(1 + x)
1
2
∣∣Y (x, t)

∣∣dx = lim
n→∞ un(t)

� lim
n→∞

t∫ 5∑
i=1

Sn
i (s)ds
0
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� lim
n→∞ R

t∫
0

un(s)ds + lim
n→∞

t∫
0

[
Sn

4(s) + Sn
5(s)

]
ds

= R

t∫
0

∞∫
0

(1 + x)
1
2
∣∣Y (x, s)

∣∣dx ds.

This gives the inequality

u(t) � R

t∫
0

u(s)ds. (53)

Then by applying Gronwall’s inequality to (53), we obtain

u(t) =
∞∫

0

(1 + x)
1
2
∣∣Y (x, t)

∣∣dx = 0 for all t ∈ [0, T [.

Therefore,

f (x, t) = g(x, t) for a.e. x ∈ ]0,∞[. �
4. Conclusions

A detailed study on the existence of weak solutions to the continuous coagulation equation with multiple fragmentation
has been given for a large class of kernels. The uniqueness of the weak solutions has also been established under more
stringent assumptions on the coagulation and fragmentation kernels. An interesting open question is how one can include
μ,γ = 1 in the hypotheses made in this paper to improve the existence result. Furthermore, it would also be of great
interest to enlarge the classes of kernels for the uniqueness of solutions.
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