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1. Introduction

The real entire function ψ(x) is said to belong to the Laguerre–Pólya class L P if it can be represented as

ψ(x) = cxme−αx2+βx
∞∏

k=1

(1 + x/xk)e−x/xk ,

where c, β , xk are real, α � 0, m is a nonnegative integer and
∑

x−2
k < ∞. Similarly, the real entire function ψ1(x) is

a function of type I in the Laguerre–Pólya class, written ψ1 ∈ L P I , if ψ1(x) or ψ1(−x) can be represented in the form

ψ1(x) = cxmeσ x
∞∏

k=1

(1 + x/xk), (1)

where c and σ are real, σ � 0, m is a nonnegative integer, xk > 0, and
∑

1/xk < ∞. It is clear that L P I ⊂ L P . The functions
in L P , and only these, are uniform limits on compact subsets of C of polynomials with only real zeros (see, for example,
Levin [10, Chapter 8]). Similarly, ψ ∈ L P I if and only if it is a uniform limit on the compact sets of the complex plane of
polynomials whose zeros are real and are either all positive, or all negative. Thus, the classes L P and L P I are closed under
differentiation; that is, if ψ ∈ L P , then ψ(ν) ∈ L P for every ν ∈ N and similarly, if ψ ∈ L P I , then ψ(ν) ∈ L P I . Pólya and
Schur [13] proved that if the function

ψ(x) =
∞∑

k=0

γk
xk

k! (2)
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belongs to L P and its Maclaurin coefficients γk = ψk(0) are all nonnegative, then ψ ∈ L P I . It is worth mentioning that
the sequences {γk} of Maclaurin coefficients of L P I-functions are called multiplier sequences and these are the sequences
with the property that, for any n ∈ N and every hyperbolic polynomial

∑n
k=0 akγkxk , the polynomial

∑n
k=0 akγkxk is also a

hyperbolic one.
The main reason for the interest in the Laguerre–Pólya class is the fact that it is closely related to the celebrated Riemann

hypothesis. Recall that the Riemann ξ -function is defined by

ξ(iz) = 1

2

(
z2 − 1/4

)
π−z/2−1/4Γ (z/2 + 1/4)ζ(z + 1/2),

where ζ(z) is the Riemann zeta-function and Γ (z) is the gamma-function. It is known that ξ(z) is an entire function of
order one. Moreover, it can be represented in the form

ξ(x/2) = 8

∞∫
0

Φ(t) cos xt dt,

where

Φ(t) =
∞∑

n=1

(
2n4π2e9t − 3n2πe5t)exp

(−n2πe4t).
Then

1

8
ξ(x/2) =

∞∑
k=0

(−1)kβ̂k
x2k

(2k)! with β̂k =
∞∫

0

t2kΦ(t)dt, k = 0,1, . . . .

Setting z = −x2 we obtain the entire function

ξ1(z) =
∞∑

k=0

β̂k
zk

(2k)! =
∞∑

k=0

γ̂k
zk

k! , γ̂k = k!
(2k)! β̂k,

of order 1/2. Thus, the Riemann hypothesis is equivalent to the statement that ξ ∈ L P , or equivalently, that ξ1 ∈ L P I . Then
any new necessary and/or sufficient conditions for a function ψ to belong to L P are of interest.

The simplest necessary conditions for a function (2) to be in L P is that the so-called Turán inequalities

γ 2
k+1 − γkγk+2 � 0, k � 0, (3)

hold. Proofs of this fact can be found in [13,11,12]. The most straightforward proof is based on the relation between func-
tions from L P of the form (2) and their generalized Jensen polynomials, defined by

gn,k(x) = gn,k(ψ; x) :=
n∑

j=0

(
n

j

)
γk+ jx

j, n,k = 0,1, . . . . (4)

It is known (see [3,11]) that ψ ∈ L P if and only if the corresponding Jensen polynomials gn,k(ψ; x) possess real zeros only.
The real polynomials that obey this property are usually called hyperbolic ones. Then the fact that the Jensen polynomials
g2,k(x) must be hyperbolic immediately yields Turán’s inequalities (3). Further extensions and generalizations of (3) were
obtained in [5,2,6] and most of those results were derived as consequences of the fact that gn,k(ψ; x) must be hyperbolic
for certain small values of n.

In this paper we obtain a new sharp extension of the Turán inequalities involving five consecutive coefficients of a
function in the Laguerre–Pólya class:

Theorem 1. If the real entire function ψ(x) of the form (2), with nonzero Maclaurin coefficients γk, belongs to L P , then the following
inequalities hold

3
(
γ 2

k+1γ
2

k+2 − γ 2
k γ 2

k+3

) − 6γkγ
3

k+2 − 4γ 3
k+1γk+3 + 10γkγk+1γk+2γk+3

− 2γkγk+4
(
γ 2

k+1 − γkγk+2
)
� 0, k = 0,1, . . . , (5)

6γ 4
k+1 − 12γkγ

2
k+1γk+2 + 3γ 2

k γ 2
k+2 + 4γ 2

k γk+1γk+3 − γ 3
k γk+4 � 0, k = 0,1, . . . . (6)
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It is worth mentioning that the inequalities (6) are weaker than (5) and we give geometric interpretation of this fact in
the proof of the theorem.

These are new type inequalities, different from those known in the literature because they reflect the fact that all Appell
polynomials (see the definitions in the next section) associated with ψ(x) are not only hyperbolic, but also that they are
very hyperbolic. Very hyperbolic polynomials are those hyperbolic ones which possess hyperbolic primitives of any integer
order. More precisely, the hyperbolic polynomial pn(z) of degree n is a very hyperbolic one if, for every k ∈ N, there exists a
hyperbolic polynomial Pn+k(z) of degree n +k, such that P (k)

n+k(z) = pn(z). Therefore, though the inequalities (5) involve only
five consecutive Maclaurin coefficients of ψ(x), they contain information not only about hyperbolicity of the corresponding
fourth degree Appell polynomial, but also about the fact that the latter can be integrated arbitrarily many times to obtain
hyperbolic polynomials again. This means that the inequalities (5) are much sharper than those obtained in [2,5], because
the former implicitly contain the structure of the entire function as a whole and not only portions of its power series
expansion (2).

We mention that inequalities (6) were obtained in a different way in a recent paper by Cardon [1]. Indeed, set
f (z) = ψ(k)(z), where ψ(x) is defined by (2), and z = 0, in the expression that represents the polynomial (3/2)A4(x), in
[1, Example 1]. Thus we obtain exactly the quantities which appear on the left-hand side of (6).

In Section 2 we provide a brief information about Jensen and Appell polynomials and in Section 3 we describe the very
hyperbolic polynomials of degree four and an algorithm which allows us to verify if a given fourth degree polynomial is a
very hyperbolic one. Though the algorithm is fundamental for obtaining the inequalities (5), the reader may skip it at first
reading and concentrate directly on Remark 2. The proof of Theorem 1 is furnished in Section 4 and finally, in Section 5,
we show some numerical experiments which illustrate the main result for the function ξ1(z) and make some interesting
observations concerning the behaviour of its Maclaurin coefficients.

2. Jensen, Appell and very hyperbolic polynomials

Consider the real entire function ψ(x) defined by (2). Its Jensen polynomials are

gn(x) = gn(ψ; x) :=
n∑

j=0

(
n

j

)
γ jx

j, n = 0,1, . . . .

Jensen himself proved that ψ ∈ L P if and only if the corresponding Jensen polynomials gn(ψ; x) possess real zeros only
and that the sequence {gn(ψ; x/n)} converges locally uniformly to ψ(x). Observe that, for any fixed k ∈ N, the generalized
Jensen polynomials gn,k(ψ; x), k = 0,1, . . . , are the Jensen polynomials associated with ψ(k)(x); that is,

gn,k(ψ; x) = gn
(
ψ(k); x

)
.

It is easy to check that the identities

g(ν)
n (x) = (

n!/(n − ν)!)gn−ν,ν(x)

and

g(ν)

n,k (x) = (
n!/(n − ν)!)gn−ν,k+ν(x) (7)

hold. Hence, if ψ ∈ L P , then all generalized Jensen polynomials (4) are hyperbolic, and by (7), we conclude that L P is
indeed closed under differentiation.

Consider also the corresponding Appell polynomials of ψ(x), defined by

An(x) = An(ψ; x) = xn gn(1/x) =
n∑

j=0

(
n

j

)
γ j x

n− j

as well as its generalized Appell polynomials

An,k(x) = An,k(ψ; x) = xn gn,k(1/x) =
n∑

j=0

(
n

j

)
γk+ jx

n− j, n = 0,1, . . . .

Again, we may easily verify the identities

A(ν)
n (x) = (

n!/(n − ν)!)An−ν(x)

and

A(ν)
(x) = (

n!/(n − ν)!)An−ν,k(x). (8)
n,k
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Fig. 1. The domain of very hyperbolic degree four polynomials.

Then, by Jensen’s result, the entire function ψ(x), with nonzero Maclaurin coefficients, belongs to L P if and only if the
corresponding Appell polynomials An(ψ; x) are hyperbolic. Moreover, the above differential identities imply the following
simple, but important for our purposes, result:

Proposition 1. If the real entire function ψ(x) with nonzero Maclaurin coefficients belongs to the Laguerre–Pólya class, then for every
n ∈ N and k = 0,1, . . . , the generalized Appell polynomials An,k(ψ; x) are very hyperbolic.

It follows immediately from (8) that

An,k(x) = (
n!/(n + ν)!)A(ν)

n+ν,k

which means that Appell polynomials possess hyperbolic primitives of any order. Unfortunately, the corresponding rela-
tions (7) imply only that the Jensen polynomial gn,k(x) has hyperbolic primitives of order up to k, but not necessarily of
higher one. There are simple examples which show that, in general, Jensen polynomials are not very hyperbolic.

3. The domain of very hyperbolic polynomials of degree 4

In the present section we first recall some properties of the domain of very hyperbolic polynomials of degree 4 and
then give an algorithm testing whether a point belongs to that domain. The reader can find all necessary details in [7–9].
Up to an affine transformation of the x-coordinate and a multiplication, a hyperbolic degree 4 polynomial takes the form
x4 − x2 + ax + b, so that we consider the space

P(a,b) := {
p(x) = x4 − x2 + ax + b

}
.

The domain of values of the parameters (a,b) ∈ R
2 for which the polynomials are hyperbolic, is the curvilinear triangle

A Z V having cusps at the vertices A and Z and a finite nonzero angle between the tangent lines at the vertex V with
coordinates (0,1/4), see Fig. 1. This vertex represents the polynomial (x − 1/

√
2 )2(x + 1/

√
2 )2.

Very hyperbolic polynomials are represented by the subdomain 
 ⊂ A Z V resembling a moustache and bounded by the
curve ∂
 := ABC D . . . S . . . W XY Z O A. Consider alongside with the coordinates (a,b) the coordinates (a′,b′), where

a′ = 3
√

6a
, b′ = 6b − 1

.

4 2
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Then we consider the family

Q
(
a′,b′) :=

{
p(x) = x4 − x2 + 4

3
√

6
a′x + 2b′ + 1

12

}
.

The domain 
 has the following properties:
1. It is symmetric with respect to the b-axis.
2. From below it is bounded by the algebraic arc A Z which can be parametrized as follows

a = p3

2
− p, b = 3p4

16
− p2

4
or a′ = 3

√
6p3

8
− 3

√
6p

4
, b′ = 9p4

8
− 3p2

2
− 1

2
, (9)

where p ∈ [−√
6/3,

√
6/3]. Indeed, this (open) arc represents all hyperbolic degree 4 polynomials with a double root in

the middle (see the details in [8]). Hence, the (closed) arc can be parametrized by the roots x1 � x2 � x3 of multiplicity
respectively 1, 2, 1 like this:

x1 + 2x2 + x3 = 0, x2
1 + 2x2

2 + x2
3 = 2, a = −(

2x1x2x3 + x1x2
2 + x2

2x3
)
, b = x1x2

2x3.

From the first equation of this system one eliminates x2, then one sets x1 + x3 = p, x1x3 = q. The second equation becomes
3p2 − 4q = 4 which allows to express q via p. The third and fourth equations then become the first two of Eqs. (9).
For p = ±√

6/3 the polynomial has a triple root ∓1/
√

6 and a simple one ±√
3/2. Thus the points A and Z represent

respectively the polynomials u(x) := (x − 1/
√

6 )3(x + 3/
√

6 ) and u(−x).
3. The domain 
 is bounded from above by countably many algebraic arcs AB, BC, C D, . . . , W X, XY , Y Z . We call the

arcs AB , BC , etc. (respectively Y Z , XY , etc.) the first, the second, etc. arcs from the left (respectively from the right). The
sth arc from the left is parametrized as follows

−a′ = θ3 + sψ3, −b′ = θ4 + sψ4, where 0 � θ � ψ, θ2 + sψ2 = 1. (10)

For the arcs from the right just change a′ to −a′ .
4. The (a′,b′)-coordinates of the left endpoint of the sth arc from the left are equal to (−1/

√
s,−1/s). They belong to

the parabola P : b′ = −a′ 2.
This leads to the following result on which inequalities (5) and (6) are based:

Proposition 2. For a very hyperbolic polynomial from the family Q(a′,b′) one has b′ � −(a′)2 and, in particular, b′ � 0.

5. The points B and Y belong to the line b = 0. They represent respectively the polynomials u(x) := x(x − 1/
√

3 )2 ×
(x + 2/

√
3 ) and u(−x). The curvilinear triangle A O B (respectively Z O Y ) consists of all polynomials with one negative and

three nonnegative roots (respectively with one positive and three nonpositive roots).
6. The concavities of all arcs building up ∂
 are towards the interior of the domain 
.
7. The tangent lines to all these arcs are nowhere vertical, this applies also to their left and right limits at their endpoints

A, B, . . . , Y , Z .
8. The point S is the common limit of the left and right endpoints of the arcs when s → ∞. Its coordinates are a = a′ = 0,

b = 1/12, b′ = 0.
9. When a point from ∂
 tends to the point S , then in the limit the tangent lines become horizontal.
10. The slopes of the tangent lines and their limits at the endpoints are everywhere positive for a < 0 and everywhere

negative for a > 0. This means that each arc AB, BC, . . . , XY , Y Z and the left and right halves of the arc A Z (i.e. the open
arcs A O and O Z ) can be considered at the same time as graphs of C1-functions b = b(a) or b′ = b′(a′) and as graphs of
C1-functions a = a(b) or a′ = a′(b′).

The last property implies that one can find out whether a point with (a′,b′)-coordinates (a′
0,b′

0) belongs to the domain

 using the algorithm given below. It is based on the idea to check whether the point belongs to the intersection of 
 with
the horizontal strips b′

0 ∈ [−1/s,−1(s + 1)), s ∈ N
∗ , defined by the b′

0-coordinates of two consecutive endpoints of arcs.

Algorithm.

Step 1. If b′
0 ∈ [−1,0], then go to Step 2. If b′

0 /∈ [−1,0], then (a′
0,b′

0) /∈ 
. Stop.
Step 2. If a′

0 = 0, then go to Step 3. If not, then go to Step 4.
Step 3. ((a′

0,b′
0) ∈ 
) ⇔ (b′

0 ∈ [−1/2,0]). Stop.
Step 4. Find the unique positive integer s such that b′

0 ∈ [−1/s,−1/(s + 1)). Go to Step 5.
Step 5. If s = 1, then go to Step 9. If s > 1, then find the unique solution (θ,ψ) to the system

θ2 + sψ2 = 1, θ4 + sψ4 = −b′
0, 0 � θ � ψ. (11)

Go to Step 6.
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Step 6. If a′
0 < 0, then go to Step 7. If a′

0 > 0, then go to Step 8.
Step 7. Set a′

1 := −(θ3 + sψ3) where (θ,ψ) is the solution to system (11). One has ((a′
0,b′

0) ∈ 
) ⇔ (a′
0 � a′

1). Stop.
Step 8. Set a′

1 := θ3 + sψ3 where (θ,ψ) is the solution to system (11). One has ((a′
0,b′

0) ∈ 
) ⇔ (a′
0 � a′

1). Stop.
Step 9. If a′

0 < 0, then set a′
2 := 3

√
6p(p2 − 2)/8, where p is the unique solution to the system

9p4

8
− 3p2

2
− 1

2
− b′ = 0, a′

2(p) < 0 (12)

belonging to the interval [−√
6/3,

√
6/3]. One has ((a′

0,b′
0) ∈ 
) ⇔ (a′

1 � a′
0 � a′

2). Stop.
If a′

0 > 0, then set a′
2 := 3

√
6p(p2 − 2)/8, where p is the unique solution to the system

9p4

8
− 3p2

2
− 1

2
− b′ = 0, a′

2(p) > 0 (13)

belonging to the interval [−√
6/3,

√
6/3]. One has ((a′

0,b′
0) ∈ 
) ⇔ (a′

2 � a′
0 � a′

1). Stop.

The algorithm is justified by the above properties of 
 and by the following two lemmas:

Lemma 1. For each positive integer s system (11) in which

b′
0 ∈

[
−1

s
,− 1

s + 1

)
(14)

has a unique solution (θ,ψ).

Indeed, set σ := θ2, τ := ψ2. One has σ + sτ = 1, σ 2 + sτ 2 = −b′
0, 0 � σ � τ , hence, τ is solution to the equation

(1 − sτ )2 + sτ 2 = −b′
0, i.e.

τ =
s ±

√
s2 − (s2 + s)(1 + b′

0)

s2 + s
, σ =

1 ∓
√

s2 − (s2 + s)(1 + b′
0)

s + 1
.

One has s2 − (s2 + s)(1 + b′
0) � 0 and (for both possible choices of the signs) σ � 0; this follows from (14). One has to

choose the upper signs in order to have σ � τ . Hence, the solution exists and is unique.

Lemma 2. For b′ ∈ [−1,−1/2) each of the two systems (12) and (13) has a unique solution p belonging to the interval I :=
[−√

6/3,
√

6/3].

Indeed, the equations from systems (12) and (13) are the same. Their solutions are p = ±
√

2(1 ± √
2 + 2b′ )/3. Inside the

external square root one has to choose the sign “−” in order to have p ∈ I . Outside one chooses the sign “+” (respectively
“−”) to obtain the solution to system (12) (respectively (13)) because a′

2 and p have opposite signs.

Remark 1. One could also consider an algorithm based on the slicing of 
 not horizontally, but vertically, the borders of
the vertical strips being defined by the a′-coordinates of the endpoints A, B, C, . . . , X, Y , Z , see property 10. We prefer
horizontal slicing for two reasons:

– for horizontal slicing only for s = 1 (see Steps 5 and 9 of the algorithm) does one have to consider the parametrization
of the arc A Z ;

– for vertical slicing in the analog of Step 5 one would have to consider the system θ2 + sψ2 = 1, θ3 + sψ3 = −b′
0,

0 � θ � ψ instead of system (11), and solving the latter involves more cumbersome formulas.

Remark 2. In the present paper we approximate 
 by the domain between the parabola P and the arc A Z . By doing so we
gain the simplicity of the description of the domain. Our loss in the precision of this description is small – we add to 
 the
union of domains defined by the couples of arcs AB, BC, . . . , W X, XY , Y Z . In each couple there is an arc from P and an
arc from ∂
. From these domains only the ones defined by the couples of arcs AB and Y Z consist of points not from the
hyperbolicity domain, i.e. not from the curvilinear triangle A Z V .

One could use the concavity of the arcs from ∂
 (see property 6) to approximate 
 by a domain bounded by a
piecewise-linear curve (say, Y Z O AB) and by a part of the parabola P (say, the one between the points B and Y ). Such
an approximation is more precise from above, less precise and simpler from below and less elegant as a whole.
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Fig. 2. The points (ak,bk) corresponding to the function ξ1(z) and the parabola B.

4. Proof of Theorem 1

Let

ψ(x) =
∞∑

k=0

γk
xk

k!
be an entire function in the Laguerre–Pólya class with nonzero Maclaurin coefficients γk . Consider its generalized Appell
polynomials

A4,k(x) = γkx4 + 4γk+1x3 + 6γk+2x2 + 4γk+3x + γk+4. (15)

We perform an affine transformation of the independent variable x which is a superposition of the following three consec-
utive changes:

Q k(x) = A4,k(x − γk+1/γk)/γk,

Hk(x) = Q k

(√
6(γ 2

k+1 − γkγk+2)

γk
x

)
,

Rk(x) = (
6
(
γ 2

k+1 − γkγk+2
)
/γ 2

k

)−2
Hk(x).

We obtain

Rk(x) = x4 − x2 + akx + bk,

where

ak =
√

2

3

2γ 3
k+1 − 3γkγk+1γk+2 + γ 2

k γk+3

3(γ 2
k+1 − γkγk+2)

3/2
,

bk = γ 3
k γk+4 − 4γ 2

k γk+1γk+3 + 6γkγ
2

k+1γk+2 − 3γ 4
k+1

36(γ 2
k+1 − γkγk+2)

2
.

Recall that a′
k = 3

√
6ak/4 and b′

k = 6bk − 1/2. Thus

a′
k = 2γ 3

k+1 − 3γkγk+1γk+2 + γ 2
k γk+3

2(γ 2
k+1 − γkγk+2)

3/2
,

b′
k = γ 3

k γk+4 − 4γ 2
k γk+1γk+3 − 3γ 2

k γ 2
k+2 + 12γkγ

2
k+1γk+2 − 6γ 4

k+1

6(γ 2
k+1 − γkγk+2)

2
.

By Proposition 1, if ψ(x) is a real entire function in the Laguerre–Pólya class with nonzero Maclaurin coefficients, then
for every k ∈ N the polynomial Rk(x) is very hyperbolic. On the other hand, by Proposition 1, the parameters a′

k and b′
k

must satisfy the inequalities b′ � −(a′ )2 and b′ � 0. These are equivalent to (5) and (6), respectively.
k k k
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Fig. 3. The points (ak,bk) for k = 300, . . . ,900,996, a detailed view.

5. Numerical experiments about the Riemann ξ function

Observe that the proof of the main result is based on the following idea. With every fourth degree polynomial A4,k(x)
of the form (15) we associate a point (ak,bk). If A4,k(x) is very hyperbolic, then (ak,bk) must belong to the moustache
region described in Section 3. Moreover, the corresponding point (ak,bk) lies on the upper curve which bounds this region
if and only if the inequality (5) reduces to an equality for the coefficients of A4,k(x). Similarly, (ak,bk) lies on the lower
curve which bounds the moustache region if and only if the inequality (6) reduces to an equality for the coefficients of
A4,k(x). In this section we show the results of some numerical experiments which we have performed. Based on precise
numerical calculations of the moments β̂k due to Norfolk, Ruttan and Varga [4], we compute the Maclaurin coefficients γ̂k
of the function ξ1(z). Then the coefficients ak and bk of the corresponding polynomial Rk(x) are found for k = 3, . . . ,100,
and also for k = 200,300, . . . ,900 and 996. We have observed empirically that the points (ak,bk) fit very well the parabola
B with equation b = 1

12 − 17
24 a2. Fig. 2 represents the right half of the moustache region described in Section 3 together with

the aforementioned points (ak,bk) and the parabola B.
It seems that the corresponding points converge (very slowly) to (0,1/12). Needless to say, it would be of interest to see

if such a convergence holds indeed. Fig. 3 represents a detailed part of the previous one where only the coefficients (ak,bk)

are shown for k = 300,400, . . . ,900 and 996.
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