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We study the existence of radially symmetric solutions u ∈ H1(Ω) of the following
nonlinear scalar field equation −�u = g(|x|, u) in Ω . Here Ω = RN or {x ∈ RN | |x| > R},
N � 2. We generalize the results of Li and Li (1993) [13] and Li (1990) [14] in which
they studied the problem in RN and {|x| > R} with the Dirichlet boundary condition.
Furthermore, we extend it to the Neumann boundary problem and we also consider the
nonlinear Schrödinger equation that is the case g(r, s) = −V (r)s + g̃(s).
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1. Introduction

In this paper, we are concerned with the following nonlinear scalar field equation:{
−�u = g

(|x|, u
)

in Ω,

u ∈ H1(Ω).
(1)

Here Ω ⊂ RN is either the whole space Ω = RN or the exterior domain of the ball B R(0) with radius R > 0 (Ω = {x ∈ RN |
|x| > R}) and the function g(r, s) : [R,∞) × R → R is continuous in both variables and odd with respect to s ∈ R. In the case
where Ω is the exterior domain, we consider (1) under the homogeneous Dirichlet or Neumann boundary condition:

u = 0 on ∂Ω or
∂u

∂ν
= 0 on ∂Ω,

where ν is the outward normal vector of ∂Ω . Namely, we consider the following equations:

−�u = g
(|x|, u

)
in RN , u ∈ H1(RN)

, (2a)

−�u = g
(|x|, u

)
in

{|x| > R
}
, u = 0 on |x| = R, u ∈ H1({|x| > R

})
, (2b)

−�u = g
(|x|, u

)
in

{|x| > R
}
,

∂u

∂ν
= 0 on |x| = R, u ∈ H1({|x| > R

})
. (2c)

When Ω = RN and g(r, s) does not depend on r, that is g(r, s) = g(s), (2a) has been studied by many researchers. For
example, we refer to [3–7,9,11,18] and references therein.

On the other hand, when g(r, s) depends on r in a monotone decreasing way, Li and Li [13] and Li [14] studied (2a)
and (2b). They showed the existence of a positive radial solution and infinitely many possibly sign-changing radial solutions
for a suitable class of nonlinearities (see Remark 2.3 for a precise statement).

E-mail address: n.ikoma@suou.waseda.jp.
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.08.032

http://dx.doi.org/10.1016/j.jmaa.2011.08.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:n.ikoma@suou.waseda.jp
http://dx.doi.org/10.1016/j.jmaa.2011.08.032


N. Ikoma / J. Math. Anal. Appl. 386 (2012) 744–762 745
One of the aims of this paper is to deal with the Neumann boundary problem (2c) as well as (2a) and (2b), and
give a generalization of the results of [13,14]. Especially, we relax the condition on the behavior of g(r, s) near s = 0.
In [13,14], the authors assumed lims→0 g(r, s)/s = −1 uniformly with respect to r (see Remark 2.3). However, our main
results (Theorems 2.1 and 2.2 below) enable us to deal with the following case: −∞ < lim infs→0 infr�R g(r, s)/s �
lim sups→0 supr�R g(r, s)/s < 0. Therefore we can treat the following example: −�u = −(V (|x|) + a(|x|) sin2(1/u))u +
b(|x|) f (u) in Ω where V (r), a(r), b(r) are monotone functions and f (s) is superlinear near s = 0.

Another aim of this paper is to deal with nonlinear Schrödinger type problems without the monotonicity assumption on
g(r, s) with respect to r, namely the case g(r, s) = −V (r)s + g̃(s).

When Ω = RN , Azzollini and Pomponio [2] studied (2a) and obtained the existence of at least one positive radial solution.
See also Remark 2.5. We give an extension of their result to the exterior problems (2b) and (2c). Moreover, we show the
existence of infinitely many solutions. See Theorem 2.4 for a precise statement.

We will prove our theorems by variational methods and use the monotonicity method due to Struwe [19], and devel-
oped by Jeanjean [10] and Rabier [16]. With the monotonicity method, a newly developed Pohozaev type inequality (see
Propositions 5.5 and 5.7) will play important roles in our argument.

This paper is organized as follows. We state our main results in Section 2. In Section 3, we introduce an auxiliary
functional J and prepare some lemmas. Proofs of lemmas in Section 3 will be given in Appendix A. In Section 4, we define
minimax values based on the symmetric mountain pass arguments. Section 5 is devoted to proving Theorems 2.1, 2.2, 2.4.
We shall state some open problems in Section 6 and we prove some lemmas in Appendix A.

2. Statement of main results

In this section, we state our main results of this paper.

2.1. Results for Eqs. (2a)–(2c)

First we consider Eq. (1). We assume that g(r, s) : [R,∞) × R → R satisfies the following conditions. In what follows, we
regard R = 0 if Ω = RN .

g ∈ C
([R,∞) × R,R

)
and g(r,−s) = −g(r, s). (3a)

If R � r1 � r2 < ∞ and s � 0, then g(r1, s) � g(r2, s). (3b)

g(r, s) → g∞(s) in L∞
loc(R) as r → ∞. (3c)

There exists an m1 > 0 such that ∞ < lim inf
s→0

inf
r�R

g(r, s)

s
� lim sup

s→0
sup
r�R

g(r, s)

s
� −m1. (3d)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) (N = 2) lim
s→∞ sup

r�R

|g(r, s)|
exp(αs2)

= 0 for any α > 0,

(ii) (N � 3) lim
s→∞ sup

r�R

|g(r, s)|
s2∗−1

= 0 where 2∗ = 2N/(N − 2).

(3e)

There exist ζ0 > 0, R0 � R such that inf
r�R0

G(r, ζ0) > 0 where G(r, s) =
s∫

0

g(r, τ )dτ . (3f)

Except for (3c) and (3d), the above conditions are the same as the ones in [13,14]. As for (3d), this type of condition
is used in [4,5,9,18] when g(r, s) does not depend on r, i.e., g(r, s) = g(s) (cf. (4b) below). We remark that in [13,14], the
authors suppose lims→0 g(r, s)/s = −1 uniformly with respect to r, which is stronger than (3d).

For the Neumann problem (2c), in addition to (3a)–(3f), we assume

−∞ < inf
s∈R

G(R, s). (3g)

Our main results are as follows. First we state a result for (2c).

Theorem 2.1. Suppose that Ω = {|x| > R} and (3a)–(3g) are satisfied. Then (2c) has at least one positive radial solution and infinitely
many possibly sign-changing radial solutions.

For (2a) and (2b), we assume (3a)–(3f) and we do not need (3g).

Theorem 2.2. Suppose that Ω = RN (resp. Ω = {|x| > R}) and (3a)–(3f) are satisfied. Then (2a) (resp. (2b)) has at least one positive
radial solution and infinitely many possibly sign-changing radial solutions.
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Remark 2.3. In [13,14], in addition to (3a), (3b), (3d)–(3f), the authors suppose that the function g has a form g(r, s) =
−s + f (r, s) where f (r, s) = o(1) uniformly with respect to r as s → 0 (cf. (3d)). Under these conditions, they proved
the existence of one positive radial solution and infinitely many possibly sign-changing radial solutions to (2a) and (2b).
However Theorem 2.2 enables us to deal with the following type of equations: −�u = −(V (|x|) + a(|x|) sin2(1/u))u +
b(|x|) f (u) where V ,a,b are monotone functions and f (s) is superlinear near s = 0.

2.2. Results for the equation of Schrödinger type

Next we consider (1) with g(r, s) = −V (r)s + g̃(s) for N � 3 and assume the following conditions:

g̃ ∈ C(R,R), g̃(−s) = −g̃(s). (4a)

There exists m̃1 > 0 such that −∞ < lim inf
s→0

g̃(s)

s
� lim sup

s→0

g̃(s)

s
� −m̃1. (4b)

lim sup
s→∞

g̃(s)

s2∗−1
� 0. (4c)

There exists a ζ̃0 > 0 such that G̃(ζ̃0) > 0 where G(s) =
s∫

0

g̃(τ )dτ . (4d)

−∞ < inf
s∈R

(
−1

2
V (R)s2 + G̃(s)

)
. (4e)

The conditions (4a)–(4d) are the same as the ones in [4,5,9]. The condition (4e) is corresponding to (3g) above and is
only needed for (2c). For V , we assume the following:

V ∈ C1([R,∞)
)

and V (r) � 0 for all r � R, (5a)

lim
r→∞ V (r) = 0, (5b)∥∥(

x · ∇V
(|x|))+∥∥

L
N
2 (|x|>R)

< 2SN (5c)

where

(
x · ∇V

(|x|))+ = max
{

0, x · ∇V
(|x|)} and SN = inf

u∈H1(RN )\{0}

‖∇u‖2
L2(RN )

‖u‖2
L2∗

(RN )

.

When Ω = RN , the above conditions (4a)–(4d), (5a)–(5c) are the same as the ones in [2]. Next we give a remark
about (5c). If g(r, s) = −V (r)s + g̃(s) satisfies (3b), then we can see x · ∇V (|x|) � 0, which implies (5c). Therefore, we
can relax the monotonicity condition (3b) by (5c) for the nonlinear Schrödigner type equation.

Now we state a result for the equation of Schrödinger type.

Theorem 2.4. Suppose that N � 3 and g(r, s) = −V (r)s + g̃(s) satisfies (4a)–(4d) and (5a)–(5c). Then the following hold:

(i) (2a) (resp. (2b)) admits at least one positive radial solution and infinitely many possibly sign-changing radial solutions.
(ii) Assume (4e) in addition to (4a)–(4d) and (5a)–(5c). Then (2c) admits at least one positive radial solution and infinitely many

possibly sign-changing radial solutions.

Remark 2.5. In [2], the authors showed the existence of one positive radial solution to (2a) with g(r, s) = −V (r)s + g̃(s)
under the conditions (4a)–(4d) and (5a)–(5c).

In the following, we give an idea of proofs of Theorems 2.1, 2.2, 2.4.
We will prove Theorems 2.1, 2.2, 2.4 by variational methods and find critical points of

I(u) ≡ 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G
(|x|, u

)
dx.

One of difficulties is to show the boundedness of Palais–Smale (for short (PS)) sequences.
In [13,14], the authors introduced the following parametrized functional in order to obtain bounded (PS) sequences: (cf.

Remark 2.3)

Îλ(u) ≡ 1

2

∫
|∇u|2 + u2 dx −

∫
F
(|x|, u

)
dx − λ

∫
q
(|x|)B(u)dx, λ ∈ [0,1].
Ω Ω Ω



N. Ikoma / J. Math. Anal. Appl. 386 (2012) 744–762 747
Here F (r, s) = ∫ s
0 f (r, t)dt , and B(s) and q(r) are suitable penalty functions. The virtue of their penalty functions is that Îλ

satisfies the (PS) condition. However, the construction is rather complicated.
In our proofs, we consider another parametrized functional to obtain bounded (PS) sequences:

Iλ(u) ≡ 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G
(|x|, u

)
dx − λ

∫
Ω

H(u)dx λ ∈ [0,1].

Here H(s) is also a penalty function which is different from B(s) in Îλ and we can construct the function H(s) in a simply
way (see the definition of H(s) in Section 3). To obtain critical points of I , we will apply the monotonicity method to Iλ . In
this paper, we apply a version of Rabier [16] (see Propositions 5.1 and 5.2) and obtain sequences (λk), (uk) such that

λk → 0, −�uk = g
(|x|, uk

) + λkh(uk) in Ω,

where h(s) = H ′(s). To show that (uk) has a strongly convergent subsequence, we use the Pohozaev type inequality (15),
(21), (22). Here we remark that in [13,14] the authors used the Pohozaev Identity (for instance, see (16), (23), (24)) which
includes the term x ·∇G(|x|, u) and they need to approximate g(r, s) with a function of class C1 in r. However, in this paper,
we introduce a new Pohozaev type inequality, which enables us to argue without introducing approximations.

Our proofs can also be applied for the equation of Schrödinger type, namely g(r, s) = −V (r)s + g̃(s) in (1). By virtue of
our proofs of Theorems 2.1 and 2.2, we will be able to show that not only (2a) but also (2b) and (2c) admit at least one
positive radial solution and infinitely many possibly sign-changing radial solutions under the conditions (4a)–(4d), (5a)–(5c)
or (4a)–(4e), (5a)–(5c).

3. Preliminaries

In this section, we introduce an auxiliary functional J and state some lemmas. Proofs of lemmas in this section will be
given in Appendix A.

First, we remark that when we consider (2b) or (2c) under the assumptions of Theorems 2.1, 2.2 or 2.4 we may assume
R = 1 without loss of generality. Indeed, set Ω = {|x| > R}, v(x) ≡ u(Rx) and gR(r, s) ≡ R2 g(Rr, s). Then (1) is equivalent to
the following equation:

−�v = gR(r, v) in
{|x| > 1

}
.

Moreover, it is easily seen that g satisfies (3a)–(3g) in {|x| > R} if and only if gR satisfies (3a)–(3g) in {|x| > 1}. In the case
where g(r, s) = −V (r)s + g̃(s), set V R(r) ≡ R2 V (Rr) and g̃R(s) ≡ R2 g̃(s). Then it is also clear that g̃ and V satisfy (4a)–(4e),
(5a)–(5c), in {|x| > R} if and only if g̃R and V R satisfy (4a)–(4e), (5a)–(5c) in {|x| > 1}. Therefore to prove Theorems 2.1, 2.2
and 2.4, we may assume R = 1 without loss of generality.

Hereafter we mainly consider (2c) and let Ω = {x ∈ RN | |x| > 1}. Furthermore we assume the following condition in this
section:

The conditions (3a) and (3c)–(3e) are satisfied. (6)

In order to obtain radial solutions, we consider the following function space:

E ≡ H1
r (Ω) = {

u ∈ H1(Ω)
∣∣ u is a radial function

}
.

The following properties hold (for (i) and (ii), see Berestycki and Lions [4], Strauss [18]):

(i) There exists a C > 0 such that for all u ∈ E and |x| � 1,∣∣u(x)
∣∣ � C |x|− N−1

2 ‖u‖H1(Ω). (7)

(ii) The embedding E ⊂ Lq(Ω) is continuous for 2 � q � 2∗ if N � 3 and 2 � q < ∞ if N = 2 and it is compact for 2 < q < 2∗ if
N � 3 and 2 < q < ∞ if N = 2.

(iii) For each s ∈ (0,1], we define the extension operator Ts : H1
r ({|x| > s}) → H1

r (RN ) by

(Tsu)(x) = (Tsu)
(|x|) =

{
u(|x|) if |x| � s,
u(2s − |x|) if |x| < s.

(8)

Then, for each s ∈ (0,1] and u ∈ H1
r ({|x| > s}), it holds that

‖Tsu‖L2(RN ) �
√

2‖u‖L2({|x|>s}), ‖∇Tsu‖L2(RN ) �
√

2‖∇u‖L2({|x|>s}). (9)

Using (9), we have that the following Sobolev inequality holds for N � 3:

‖u‖L2∗
({|x|>s}) � C‖∇u‖L2({|x|>s}) for all u ∈ H1

r

({|x| > s
})

, s ∈ (0,1]. (10)
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We define the following functional:

I(u) ≡ 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G
(|x|, u

)
dx : E → R.

We note that I ∈ C1(E,R) under the condition (6) and the functional I corresponds to (2c). So, we will find critical points
of I .

We prepare a penalty function to construct an auxiliary functional. For s � 0, we define f (s) and h(s) as follows:

f (s) ≡ max

{
0,

1

2
m1s + sup

r�1
g(r, s)

}
, h(s) ≡ sp sup

0<τ�s

f (τ )

τ p
.

Here m1 is a constant appearing in (3d) and p is a positive number satisfying 1 < p < (N + 2)/(N − 2) if N � 3 and
1 < p < ∞ if N = 2. Note that by (3c) and (3d), f and h are well defined. We extend h as an odd function on R and set

H(s) ≡
s∫

0

h(t)dt.

Then h and H have the following properties.

Lemma 3.1. (See Lemma 2.1 and Corollary 2.2 in [9].)

(i) h ∈ C(R), 0 � h(s) and h(−s) = −h(s) for all s ∈ [0,∞).
(ii) There exists an s0 > 0 such that h = H = 0 on [−s0, s0].

(iii) For all s ∈ R, it follows that

1

2
m1s2 + sup

r�1
g(r, s)s � h(s)s,

1

4
m1s2 + sup

r�1
G(r, s) � H(s).

(iv) The following hold:

lim
s→∞

h(s)

exp(αs2)
= 0 for all α > 0 if N = 2,

lim
s→∞

h(s)

s2∗−1
= 0 if N � 3.

(v) h satisfies a global Ambrosetti–Rabinowitz condition:

0 � (p + 1)H(s) � h(s)s for all s ∈ R.

Here p appears in the definition of h.

Next we rewrite the functional I as follows:

I(u) = 1

2
‖∇u‖2

L2 −
∫
Ω

G
(|x|, u

)
dx = 1

2
‖u‖2

E −
∫
Ω

m1

4
u2 + G

(|x|, u
)

dx

where

‖u‖2
E ≡ ‖∇u‖2

L2 + m1

2
‖u‖2

L2 .

We remark that ‖ · ‖E and the standard H1-norm are equivalent.
Next, we define a parametrized functional Iλ (λ ∈ [0,1]) and an auxiliary functional J which gives us lower bounds of

minimax values bn(λ) defined in Section 4:

Iλ(u) ≡ 1

2
‖u‖2

E −
∫
Ω

m1

4
u2 + G

(|x|, u
) + λH(u)dx ∈ C1(E,R),

J (u) ≡ 1

2
‖u‖2

E − 2
∫
Ω

H(u)dx ∈ C1(E,R).

Note that if λ = 0, then I0(u) = I(u). Furthermore, by Lemma 3.1, Iλ and J satisfy the following: for any 0 � λ1 � λ2 � 1
and u ∈ E ,

J (u) � I1(u) � Iλ2(u) � Iλ1(u) � I0(u). (11)

Now we state properties of Iλ, J . Similar properties are obtained in [2,9].
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Lemma 3.2. (See Lemma 3.5 in [2], Lemmas 2.3, 2.5, Proposition 5.3 in [9].) Set K (u) ≡ ∫
Ω

H(u)dx. Then,

(i) K : E → R and K ′ : E → E∗ are weakly continuous.
(ii) Any bounded (PS) sequence (uk) ⊂ E for Iλ has a strongly convergent subsequence.

(iii) J satisfies the (PS) condition.

4. Minimax arguments

In this section, we define minimax values bn(λ) of Iλ based on the arguments of symmetric mountain pass theorem
(cf. [9] and Rabinowitz [17]). In this section, we assume the following conditions:

The conditions (3a) and (3c)–(3f) are satisfied. (12)

First of all, we prove that Iλ and J have a symmetric mountain pass geometry under the condition (12). More precisely,
we have

Lemma 4.1.

(i) There exist δ > 0 and ρ > 0 such that

0 < δ � J (u) for ‖u‖E = ρ, 0 � J (u) for ‖u‖E � ρ.

(ii) For each n ∈ N, there exists an odd continuous map γn : Sn−1 = {σ = (σ1, . . . , σn) ∈ Rn | |σ | = 1} → H1
0,r(Ω) such that

I0
(
γn(σ )

)
< 0 for all σ ∈ Sn−1.

Here H1
0,r(Ω) = {u ∈ E | u(1) = 0}.

Remark 4.2. By (11), we see that Iλ and J have a symmetric mountain pass geometry.

Proof of Lemma 4.1. We only prove (i). (ii) will be proven in Appendix A.
First, we show for N � 3. By Lemma 3.1, there exists a C > 0 such that

H(s) � C |s|2∗
for all s ∈ R.

Using Sobolev’s embedding, we obtain

J (u) � ‖u‖2
E − C‖u‖2∗

L2∗
(Ω)

� ‖u‖2
E

(
1 − C‖u‖2∗−2

E

)
.

Thus (i) holds for N � 3.
Next we consider the case N = 2. By Lemma 3.1, there exists a C1 > 0 such that

H(s) � C1Φ
(
s2/2

)
where Φ(s) = exp(s) − 1 − s.

By Lemma A.2(iii), we have∫
Ω

H(u)dx � C2‖u‖4
E for all u ∈ E with ‖u‖E � 1.

Thus it follows that if ‖u‖E � 1, then

J (u) � ‖u‖2
E − C2‖u‖4

E ,

which completes the proof of (i). �
Next, we define minimax values of Iλ and J using mappings (γn) in Lemma 4.1.

Definition 4.3. For each n ∈ N and λ ∈ [0,1], we define bn(λ) and cn as follows:

bn(λ) ≡ inf
γ ∈Γn

max
σ∈Dn

Iλ
(
γ (σ )

)
, cn ≡ inf

γ ∈Γn
max
σ∈Dn

J
(
γ (σ )

)
,

where Dn = {σ ∈ Rn | |σ | � 1} and

Γn ≡ {
γ ∈ C(Dn, E)

∣∣ γ is odd and γ = γn on Sn−1}.
The values bn(λ) and cn have the following properties.
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Lemma 4.4.

(i) Γn �= ∅ for each n ∈ N.
(ii) bn(λ2) � bn(λ1) for each 0 � λ1 � λ2 � 1.

(iii) 0 < δ � cn � bn(λ) for each n ∈ N and λ ∈ [0,1], where δ appears in Lemma 4.1(i).

Proof. (i) We define γ̃n as follows: for σ ∈ Dn , γ̃n(σ ) = |σ |γn(σ /|σ |). Then γ̃n ∈ Γn .
(ii) By (11), (ii) holds.
(iii) By (11) and (i), it holds cn � bn(λ) for each λ ∈ [0,1]. The property δ � cn follows from the fact{

u ∈ E
∣∣ ‖u‖E = ρ

} ∩ γ (Dn) �= ∅ for all γ ∈ Γn. �
Since J satisfies the (PS) condition by Lemma 3.2, we can show the following lemma as in [9].

Lemma 4.5. (See Lemma 3.2 in [9].)

(i) The value cn is a critical value of J .
(ii) As n → ∞, cn → ∞.

5. Proofs of Theorems 2.1, 2.2 and 2.4

In this section, we prove Theorems 2.1, 2.2 and 2.4 by using the monotonicity method and the Pohozaev type inequality
(Propositions 5.5 and 5.7).

5.1. Monotonicity method

First, we will recall Rabier’s result [16]. Let (X,‖ · ‖) be a Banach space and A : X → R, B : [0,1] × X → R be C1

functionals and set Iλ(u) ≡ A(u) − B(λ, u). We assume that A and B satisfy the following:

B(·, u) is nondecreasing on [0,1] for every u ∈ X, (13a)

lim
B(λ,u)→∞

∂B
∂λ

(λ, u) = ∞, (13b)

lim‖u‖→∞ A(u) = ∞. (13c)

Moreover, we suppose that there exist e1, e2 ∈ X such that

max
{

Iλ(e1), Iλ(e2)
}

< cλ for all λ ∈ [0,1]. (13d)

Here

cλ ≡ inf
γ ∈Γ ∗ max

0�t�1
Iλ

(
γ (t)

)
and Γ ∗ ≡ {

γ ∈ C
([0,1], X

) ∣∣ γ (0) = e1, γ (1) = e2
}
.

Then the following proposition holds.

Proposition 5.1. (See Rabier [16].) Under the conditions (13a)–(13d), for almost every λ ∈ [0,1], Iλ has a bounded (PS) sequence at
level cλ .

We will apply the above proposition for the functional which satisfies the symmetric mountain pass structure. Assume
the following conditions in addition to (13a)–(13c):

A(−u) = A(u) and B(λ,−u) = B(λ, u) for all u ∈ X and λ ∈ [0,1]. (13e){
For all n ∈ N, there exists an odd map γ ∗

n ∈ C(Sn−1, E) such that maxσ∈Sn−1 Iλ(γ
∗

n (σ )) < dn(λ)

where dn(λ) ≡ infγ ∈Γ ∗
n

maxσ∈Dn Iλ(γ (σ )) and Γ ∗
n ≡ {γ ∈ C(Dn, E) | γ is odd and γ = γ ∗

n on Sn−1}. (13f)

The following proposition holds from the arguments in [16].

Proposition 5.2. Suppose (13a)–(13c) and (13e)–(13f). Then, for almost every λ ∈ [0,1], there exists a bounded (PS) sequence of Iλ

at level dn(λ) for all n ∈ N.

Next, we show that we can apply Proposition 5.2 for Iλ to obtain a bounded (PS) sequence of Iλ .
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Lemma 5.3. Under the assumption (12), for almost every λ ∈ [0,1], Iλ has a bounded (PS) sequence at level bn(λ) for all n ∈ N.

Proof. Set X = E , γ ∗
n = γn ,

A(u) = 1

2
‖u‖2

E , B(λ, u) =
∫
Ω

m1

4
u2 + G

(|x|, u
) + λH(u)dx.

It is easily seen that (13a), (13c) and (13e) are satisfied. Moreover, by Lemmas 4.1 and 4.4, (13f) holds. As to (13b), by
Lemma 3.1, we have

B(λ, u) � (1 + λ)

∫
Ω

H(u)dx.

On the other hand, it follows that

∂B
∂λ

(λ, u) =
∫
Ω

H(u)dx,

which implies (13b). Then by Proposition 5.2, for almost every λ ∈ [0,1], Iλ has a bounded (PS) sequence at level bn(λ) for
all n ∈ N. �

Combining Lemmas 3.2 and 5.3, we have the following:

Proposition 5.4. Suppose that (12) is satisfied. Then for almost every λ ∈ (0,1], there is a critical point uλ,n ∈ E such that Iλ(uλ,n) =
bn(λ) for all n ∈ N.

From Proposition 5.4, it follows that for each n ∈ N, there exist (λn,k) ⊂ [0,1], (un,k) ⊂ E such that λn,k → 0 and

Iλn,k (un,k) = bn(λn,k), I ′λn,k
(un,k) = 0. (14)

5.2. Pohozaev type inequality

To show that (un,k) in (14) is bounded, we introduce the following Pohozaev type inequality.

Proposition 5.5. Assume that the conditions (3a)–(3f) are satisfied. Let uN ∈ E be a solution of

−�u = g
(|x|, u

) + λh(u) in Ω,
∂uN

∂ν
= 0 on ∂Ω,

where ν is the outward normal vector of ∂Ω . Then uN satisfies the following:

N − 2

2
‖∇uN‖2

L2 − N

∫
Ω

Ĝλ

(|x|, uN
)

dx �
∫

∂Ω

Ĝλ

(|x|, uN
)

dS. (15)

Here Ĝλ(|x|, s) ≡ G(|x|, s) + λH(s).

Remark 5.6. If we suppose that g is of class C1 with respect to r in addition to (3a)–(3f), then the Pohozaev Identity holds:

N − 2

2
‖∇uN‖2

L2(Ω)
− N

∫
Ω

Ĝλ

(|x|, uN
)

dx =
∫
Ω

x · ∇G
(|x|, uN

)
dx +

∫
∂Ω

Ĝλ

(|x|, uN
)

dS. (16)

Thus from (16) and (3b), we can see that (15) holds. For a proof of (16), see the end of a proof below or Lemma 1.4 in
Chapter III of Struwe [20].

Proof of Proposition 5.5. Note that under the conditions (3a)–(3f), uN has an exponential decay:∣∣uN(r)
∣∣ + ∣∣u′

N(r)
∣∣ + ∣∣u′′

N(r)
∣∣ � C1 exp(−C2r) for all r � 1.

Therefore x · ∇uN ∈ H1(Ω) and the curve η(t) ≡ uN (tx) : [1,2] → H1(Ω) is of class C1. Since I ′λ(uN ) = 0, we have

d
Iλ

(
η(t)

)∣∣
t=1 = I ′λ

(
uN(x)

)(
x · ∇uN(x)

) = 0. (17)

dt
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On the other hand, it holds that

Iλ
(
η(t)

) = t−N+2

2

∫
|x|�t

∣∣∇uN(x)
∣∣2

dx − t−N
∫

|x|�t

G

( |x|
t

, uN
(|x|)) + λH

(
uN

(|x|))dx. (18)

By (3b), it follows that

Iλ
(
η(t)

)
� Îλ(t) ≡ t−N+2

2

∫
|x|�t

∣∣∇uN(x)
∣∣2

dx − t−N
∫

|x|�t

G
(|x|, uN

(|x|)) + λH
(
uN

(|x|))dx. (19)

Noting that I(η(1)) = Îλ(1), from (19), we infer

Iλ(η(t)) − Iλ(η(1))

t − 1
� Îλ(t) − Îλ(1)

t − 1
for all t ∈ (1,2]. (20)

By (17),

Iλ(η(t)) − Iλ(η(1))

t − 1
→ 0 as t → 1 + 0.

On the other hand, since ∂uN/∂ν = 0 on ∂Ω , it is easily seen that as t → 1 + 0,

Îλ(t) − Îλ(1)

t − 1
→ − N − 2

2
‖∇uN‖2

L2 + N

∫
Ω

G
(|x|, uN

) + λH(uN)dx +
∫

∂Ω

G
(|x|, uN

) + λH(uN)dS.

Thus, from (20), we conclude that∫
∂Ω

G
(|x|, uN

) + λH(uN)dS � N − 2

2
‖∇uN‖2

L2 − N

∫
Ω

G
(|x|, uN

) + λH(uN)dx.

If g(r, s) is of class C1 in r, then we note that the right hand side of (18) below is differentiable with respect to t .
Combining (17), we can obtain (16). �

Here we also state the Pohozaev type inequality for (2a) and (2b).

Proposition 5.7. Assume that (3a)–(3f) are satisfied. Let uD ∈ H1
0,r(Ω) (resp. uRN ∈ H1

r (RN )) be a solution of

−�u = g
(|x|, u

) + λh(u) in Ω, u = 0 on ∂Ω
(
resp. −�u = g

(|x|, u
) + λh(u) in RN)

.

Then uD (resp. uRN ∈ H1
r (RN )) satisfies the following:

N − 2

2
‖∇uD‖2

L2(Ω)
− N

∫
Ω

Ĝλ

(|x|, uD
)

dx � 1

2

∫
∂Ω

(
∂uD

∂ν

)2

dS (21)

(
resp.

N − 2

2
‖∇uRN ‖2

L2(RN )
− N

∫
RN

Ĝλ

(|x|, uRN

)
dx � 0

)
. (22)

Remark 5.8. As in Remark 5.6, if g(r, s) is of class C1 with respect to r, then the following Pohozaev identity holds:

N − 2

2
‖∇uD‖2

L2 − N

∫
Ω

Ĝλ

(|x|, uD
)

dx =
∫
Ω

x · ∇G
(|x|, uD

)
dx + 1

2

∫
∂Ω

(
∂uD

∂ν

)2

dS (23)

(
resp.

N − 2

2
‖∇uRN ‖2

L2(RN )
− N

∫
RN

Ĝλ

(|x|, uRN

)
dx =

∫
RN

x · ∇G
(|x|, uRN

)
dx

)
. (24)

By (3b), we can show (21) and (22) from (23) and (24).

Proof of Proposition 5.7. We only show for uD since a proof for uRN is similar to the one of Proposition 5.5.
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For the Dirichlet problem, critical points of Iλ ∈ C1(H1
0(Ω),R) correspond to solutions. However, for technical reasons,

we regard Iλ ∈ C1(H1(Ω),R) in this proof. We set η̃(t) ≡ uD(tx) ∈ C1([1,2], H1(Ω)) and as in the proof of Proposition 5.5,
we shall calculate

d

dt
Iλ

(
η̃(t)

)∣∣
t=1.

Since uD satisfies −�uD = g(|x|, uD) + λh(uD) in Ω , uD = 0 on ∂Ω , using integration by parts, for any ϕ ∈ H1(Ω) ∩
C1(Ω), we have

I ′λ(uD)ϕ =
∫
Ω

∇uD · ∇ϕ dx −
∫
Ω

(
g
(|x|, uD

) + λh(uD)
)
ϕ dx = −

∫
∂Ω

∇uD · xϕ dS.

Noting η̃′(1) = x · ∇uD(x) ∈ H1(Ω) ∩ C1(Ω), it follows that

d

dt
Iλ

(
η̃(t)

)∣∣
t=1 = −

∫
∂Ω

(
∂uD

∂ν

)2

dS. (25)

On the other hand, set

Ĩλ(t) ≡ t−N+2

2

∫
|x|�t

∣∣∇uD(x)
∣∣2

dx − t−N
∫

|x|�t

G
(|x|, uD

) + λH(uD)dx,

then we have

Ĩ ′λ(1) = − N − 2

2
‖∇uD‖2

L2 − 1

2

∫
∂Ω

(
∂uD

∂ν

)2

dS + N

∫
Ω

G
(|x|, uD

) + λH(uD)dx. (26)

Since I(η̃(t)) � Ĩλ(t) and I(η̃(1)) = Ĩλ(1), by (25) and (26), it follows that

1

2

∫
∂Ω

(
∂uD

∂ν

)2

dS � N − 2

2
‖∇uD‖2

L2 − N

∫
Ω

G
(|x|, uD

) + λH(uD)dx. �

5.3. Proof of Theorem 2.1

Now we prove Theorem 2.1. Suppose that the conditions (3a)–(3g) are satisfied. Let (un,k) be a sequence satisfying (14)
and set

bn,0 ≡ lim
λ→0

bn(λ) = lim
k→∞

Iλn,k (un,k) ∈ [
bn(1),bn(0)

]
.

Proposition 5.9. There exists a Cn > 0 such that ‖un,k‖E � Cn for all k ∈ N.

Proof. First, we prove that (∇un,k)
∞
k=1 is bounded in L2(Ω). Since I ′λn,k

(un,k) = 0, by Proposition 5.5, we have

−
∫
Ω

G
(|x|, un,k

) + λn,k H(un,k)dx � − N − 2

2N
‖∇un,k‖2

L2(Ω)
+ 1

N

∫
∂Ω

G(1, un,k) + λn,k H(un,k)dx. (27)

From (27), we obtain

bn(λn,k) = 1

2
‖∇un,k‖2

L2(Ω)
−

∫
Ω

G
(|x|, un,k

) + λn,k H(un,k)dx

� 1

N
‖∇un,k‖2

L2(Ω)
+ 1

N

∫
∂Ω

G(1, un,k) + λn,k H(un,k)dx. (28)

Noting that H(s) � 0 for all s ∈ R, limk→∞ bn(λn,k) = bn,0 � bn(0) and (3g), we deduce from (28) that there exists a Cn > 0
such that ‖∇un,k‖L2(Ω) � Cn for all k ∈ N.

Next, we show ‖un,k‖E � Cn for all k ∈ N. First, we consider the case N � 3. By Lemma 3.1, it holds
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bn(λn,k) = Iλn,k (un,k) = 1

2
‖un,k‖2

E −
∫
Ω

m1

4
u2

n,k + G
(|x|, un,k

) + λn,k H(un,k)dx

� 1

2
‖un,k‖2

E − (1 + λn,k)

∫
Ω

H(uk)dx � 1

2
‖un,k‖2

E − C‖un,k‖2∗
L2∗

(Ω)
. (29)

From (10) and (29), it holds that

bn(λn,k) � 1

2
‖un,k‖2

E − C‖∇un,k‖2∗
L2(Ω)

. (30)

Since bn(λn,k) and (‖∇un,k‖L2(Ω))
∞
k=1 are bounded, taking Cn sufficiently large, ‖un,k‖E � Cn follows from (30).

Next we consider the case N = 2. Following the arguments in [13] (cf. proof of Proposition 5.5 in Jeanjean and Tanaka
[12]), we prove indirectly. Assume that rk ≡ ‖un,k‖−1

L2(Ω)
→ 0. Set

vk(x) ≡ (Trk ṽk)(x), ṽk(x) ≡ un,k

(
x

rk

)
, Ωk ≡ {

x
∣∣ |x| > rk

}
,

where Trk defined by (8). From ‖∇ ṽk‖L2(Ωk)
= ‖∇uk‖L2(Ω) , ‖ṽk‖L2(Ωk)

= 1 and (9), (vk) is bounded in H1(R2). Therefore, we
may assume

vk ⇀ v0 weakly in H1(R2) and vk(x) → v0(x) a.a. x ∈ R2.

Next, we show v0 = 0. We remark that since vk(x) = ṽk(x) in Ωk , vk satisfies⎧⎪⎨
⎪⎩

−r2
k �vk = g

( |x|
rk

, vk

)
+ λn,kh(vk) in Ωk,

v ′
k(rk) = 0.

(31)

By the boundedness of (vk) in H1(R2), for any ϕ ∈ C∞
0 (R2) with suppϕ ⊂ R2\{0}, we can show∫

Ωk

h(vk)ϕ dx →
∫
R2

h(v0)ϕ dx,

∫
Ωk

g

( |x|
rk

, vk

)
ϕ dx →

∫
R2

g∞(v0)ϕ dx. (32)

By (31) and (32), we obtain∫
R2

g∞(v0)ϕ dx = 0 for any ϕ ∈ C∞
0

(
R2) with suppϕ ⊂ R2\{0},

which implies

g∞
(

v0(x)
) = 0 a.a. x ∈ R2. (33)

Since v0 ∈ H1
r (R2) ⊂ C(R2\{0}), (3d) and (33), we infer that v0 ≡ 0.

On the other hand, by (31), we have

r2
k

∫
Ωk

|∇vk|2 dx =
∫
Ωk

g

( |x|
rk

, vk

)
vk + λn,kh(vk)vk dx. (34)

Therefore it follows from (34), 1 = ‖ṽk‖L2(Ωk)
= ‖vk‖L2(Ωk)

and Lemma 3.1 that

0 <
m1

2
= m1

2
‖vk‖2

L2(Ωk)
� r2

k ‖∇vk‖2
L2(Ωk)

+ m1

2
‖vk‖2

L2(Ωk)

=
∫
Ωk

m1

2
v2

k + g

( |x|
rk

, vk

)
vk + λkh(vk)vk dx � (1 + λn,k)

∫
Ωk

h(vk)vk dx.

Since λn,k � 1 and h(s)s � 0 for all s ∈ R, we obtain

m1

2
� 2

∫
R2

h(vk)vk dx. (35)

On the other hand, since vk ⇀ 0 weakly in H1(R2), by Lemma 3.2(i), we have∫
R2

h(vk)vk dx → 0.

This contradicts (35), therefore it holds that ‖un,k‖L2(Ω) � Cn , which completes the proof. �
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By virtue of Proposition 5.9, we have

Corollary 5.10. The sequence (un,k)
∞
k=1 is a bounded (PS) sequence at level bn,0 for I0 .

Proof. We remark that it holds that∣∣I0(un,k) − Iλn,k (un,k)
∣∣ � λn,k K (un,k),

∣∣I ′(un,k)ϕ − I ′λn,k
(un,k)ϕ

∣∣ � λn,k
∥∥K ′(un,k)

∥∥
E∗‖ϕ‖E .

By Lemma 3.2 and λn,k → 0, we can prove I0(un,k) → bn,0 and I ′0(un,k) → 0 as k → ∞. Thus (un,k)
∞
k=1 is a bounded (PS)

sequence at level bn,0 for I . �
Now we complete the proof of Theorem 2.1.

Proof of Theorem 2.1. For each n ∈ N, by Corollary 5.10, there exists a bounded sequence (un,k)
∞
k=1 ⊂ E

I0(un,k) → bn,0, I ′0(un,k) → 0 as k → ∞.

Thus by Lemma 3.2(ii), there exists a un,0 ∈ E such that

I0(un,0) = bn,0, I ′0(un,0) = 0.

On the other hand, by Lemmas 4.4 and 4.5, bn,0 → ∞ as n → ∞. Therefore we show the existence of infinitely many radial
solutions.

In order to obtain positive solutions, we modify g(r, s) as follows:

g+(r, s) =
{

g(r, s) if s � 0,

0 if s � 0.

Then any nontrivial radial solution of

−�u = g+
(|x|, u

)
in Ω, u′(1) = 0

is positive on {|x| � 1} by the maximum principle. Thus we will find a critical point of

I+(u) = 1

2
‖∇u‖2

L2 −
∫
Ω

G+
(|x|, u

)
dx.

We can prove that I+ has a mountain pass geometry as in Lemma 4.1. Moreover, using the monotonicity method as before,
we can show that I+ has a nontrivial critical point. Thus we complete the proof. �
5.4. Outline of proof of Theorem 2.2

In this subsection, we give an outline of proof of Theorem 2.2. Throughout this subsection, we assume the conditions
(3a)–(3f).

As in the Neumann case, we define the following functionals: for each λ ∈ [0,1],

I D,λ(v) ≡ 1

2
‖∇v‖2

L2(Ω)
−

∫
Ω

G
(|x|, v

) + λH(v)dx ∈ C1(H1
0,r(Ω),R

)
,

IRN ,λ(w) ≡ 1

2
‖∇w‖2

L2(RN )
−

∫
RN

G
(|x|, w

) + λH(w)dx ∈ C1(H1
r

(
RN)

,R
)
,

JRN (w) ≡ 1

2
‖∇w‖2

L2(RN )
− 2

∫
RN

H(w)dx ∈ C1(H1
r

(
RN)

,R
)
.

Then, noting H1
0,r(Ω) ⊂ H1

r (RN ), we can see that

JRN (v) � I D,λ(v), JRN (w) � IRN ,λ(w)

for all λ ∈ [0,1], v ∈ H1
0,r(Ω), w ∈ H1

r (RN ). Furthermore I D,λ , IRN ,λ satisfy (11).

Let γn ∈ C(Sn−1, H1
0,r(Ω)) appear in Lemma 4.1. Then γn ∈ C(Sn−1, H1

r (RN )) and we can define minimax values for I D,λ ,
IRN ,λ and JRN :
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bn,D(λ) ≡ inf
γ ∈Γn,D

max
σ∈Dn

I D,λ

(
γ (σ )

)
, bn,RN (λ) ≡ inf

γ ∈Γn,RN
max
σ∈Dn

IRN ,λ

(
γ (σ )

)
,

cn,RN ≡ inf
γ ∈Γn,RN

max
σ∈Dn

JRN

(
γ (σ )

)
,

where

Γn,D ≡ {
γ ∈ C

(
Dn, H1

0,r(Ω)
) ∣∣ γ = γn on Sn−1},

Γn,RN ≡ {
γ ∈ C

(
Dn, H1

r

(
RN)) ∣∣ γ = γn on Sn−1}.

It is easily seen that all lemmas in Sections 3 and 4 hold if we replace Iλ , J , bn(λ), cn by I D,λ , IRN ,λ , bn,D(λ), bn,RN (λ), cn,RN .
Moreover, we can apply the monotonicity method for I D,λ and IRN ,λ (cf. Lemma 5.3). Therefore for each n ∈ N there are
sequences (λn,k) ⊂ [0,1], (vn,k) ⊂ H1

0,r(Ω), (wn,k) ⊂ H1
r (RN ) such that λn,k → 0 and

I D,λn,k (vn,k) = bn,D(λn,k), I ′D,λn,k
(vn,k) = 0,

IRN ,λn,k
(wn,k) = bn,RN (λn,k), I ′RN ,λn,k

(wn,k) = 0.

As in the Neumann case, it is sufficient to show that (vn,k)
∞
k=1 (resp. (wn,k)

∞
k=1) is bounded in H1

0,r(Ω) (resp. H1
r (RN )). Using

(21) and (22) instead of (15), it is easily seen that (vn,k)
∞
k=1 (resp. (wn,k)

∞
k=1) is bounded in H1

0,r(Ω) (resp. H1
r (RN )) in a

similar way as in the proof of Proposition 5.9.
The remaining part of the proof of Theorem 2.2 is the same as the proof of Theorem 2.1, so we omit it.

5.5. Proof of Theorem 2.4

In this subsection, we prove Theorem 2.4 and let g(r, s) = −V (r)s + g̃(s). We only consider (3c), since proofs in other
cases are similar. As mentioned in Section 3, we can suppose Ω = {x ∈ RN | |x| > 1}. Furthermore, as in [2,4,5,9], instead
of (4c), we can assume

lim
s→∞

g̃(s)

s2∗−1
= 0. (4c′)

Indeed, set ζ̃1 ≡ inf{s ∈ [ζ̃0,∞) | g̃(s) = 0} where ζ̃0 > 0 appearing in (4d). If g̃(s) > 0 for all s � ζ̃0, then we set ζ̃1 = ∞.
We define ḡ(s) as follows:

ḡ(s) =
{

g̃(s) if |s| � ζ̃1,

0 if |s| > ζ̃1.

Then ḡ satisfies (4a), (4b), (4c′) and (4d). Moreover, any solution of

−�u + V
(|x|)u = ḡ(u) in Ω,

∂u

∂ν
= 0 on ∂Ω, (36)

satisfies ‖u‖L∞(Ω) � ζ̃1 by the maximum principle. Therefore any solution of (36) satisfies (4c) with g(r, s) = −V (r)s + g̃(s),
which implies that we can assume (4c′) instead of (4c) without loss of generality.

As stated in the above, we prove Theorem 2.4 under

N � 3, the conditions (4a), (4b), (4c′), (4d), (4e), (5a)–(5c) are satisfied. (37)

Under the condition (37) we will find infinitely many critical points of

Ĩ(u) ≡ 1

2
‖∇u‖2

L2(Ω)
+ 1

2

∫
Ω

(
V

(|x|) + m̃1

2

)
u2 dx −

∫
Ω

m̃1

4
u2 + G̃(u)dx

= 1

2
‖u‖2 −

∫
Ω

m̃1

4
u2 + G̃(u)dx,

where m̃1 appears in (4b) and G̃(s) = ∫ s
0 g̃(t)dt .

In this case, we can define h ∈ C(R) satisfying Lemma 3.1. Thus we define an auxiliary functional J̃ and parametrized
functional Ĩλ for each λ ∈ [0,1]. We note that all lemmas and propositions in Section 4 hold for these functionals. Moreover,
noting V (r) → 0 as r → ∞ and a proof of Proposition A.1 (in Appendix A), we can also prove that Ĩλ , J̃ have a symmetric
mountain pass structure and define b̃n(λ) and c̃n as in Definition 4.3. Furthermore, we see that all lemmas in Section 3
hold. By Proposition 5.2, for each n ∈ N there exist (λ̃n,k)

∞
k=1 and (ũn,k)

∞
k=1 ⊂ H1

r (Ω) such that λ̃n,k → 0 as k → ∞ and

Ĩ λ̃n,k
(ũn,k) = b̃n(λ̃n,k), Ĩ ′

λ̃n,k
(ũn,k) = 0.

Next, we show that (ũn,k)
∞ is bounded in H1

r (Ω).
k=1
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Lemma 5.11. There exists a Cn > 0 such that ‖ũn,k‖ � Cn for all k � 1.

Proof. As in Proposition 5.9, firstly we show that (∇ũn,k)
∞
k=1 is bounded in L2(Ω). By Remark 5.6, ũn,k satisfies

1

2

∫
Ω

V
(|x|)ũ2

n,k dx −
∫
Ω

G̃(ũn,k) + λ̃n,k H(ũn,k)dx = − 1

2∗ ‖∇ũn,k‖2
L2(Ω)

− 1

2N

∫
Ω

x · ∇V
(|x|)ũ2

n,k dx

+
∫

∂Ω

−1

2
V (1)ũ2

n,k + G̃(ũn,k) + λ̃n,k H(ũn,k)dS.

By (4e) and Hölder’s inequality, there exists a C > 0 such that

Ĩ λ̃n,k
(ũn,k) = 1

2
‖∇ũn,k‖2

L2(Ω)
+ 1

2

∫
Ω

V
(|x|)ũ2

n,k dx −
∫
Ω

G̃(ũn,k) + λ̃n,k H(ũn,k)dx

= 1

N
‖∇ũn,k‖2

L2(Ω)
− 1

2N

∫
Ω

x · ∇V
(|x|)ũ2

n,k dx +
∫

∂Ω

−1

2
V (1)û2

n,k + G̃(ũn,k) + λ̃n,k H(ũn,k)dS

� 1

N
‖∇ũn,k‖2

L2(Ω)
− 1

2N

∥∥(
x · ∇V

(|x|))+∥∥
L

N
2 (Ω)

‖ũn,k‖2
L2∗

(Ω)
− C .

We extend ũn,k as follows:

ûn,k(x) =
{

ũn,k(|x|) if |x| � 1,

ũn,k(1) if |x| < 1.

Then it is clear that ûn,k ∈ H1
r (RN ), ‖∇ûn,k‖L2(RN ) = ‖∇ũn,k‖L2(Ω) and ‖ũn,k‖L2∗

(Ω) � ‖ûn,k‖L2∗
(RN ) . Furthermore, since

‖ûn,k‖2
L2∗

(RN )
� ‖∇ûn,k‖2

L2(RN )
/SN holds, we obtain ‖ũn,k‖2

L2∗
(Ω)

� ‖∇ũn,k‖2
L2(Ω)

/SN . Here, from (5c), we can take an ε0 > 0

such that∥∥(
x · ∇V

(|x|))+∥∥
L

N
2 (Ω)

< 2SN − ε0.

Then we have

Ĩ λ̃n,k
(ũn,k) � 1

N
‖∇ũn,k‖2

L2(Ω)
− 1

N

2SN − ε0

2SN
‖∇ũn,k‖2

L2(Ω)
− C � ε1‖∇ũn,k‖2

L2(Ω)
− C

for some ε1 > 0. Thus there exists a Cn > 0 such that ‖∇ũn,k‖L2(Ω) � Cn for all k ∈ N.
Since a proof of the boundedness of (ũn,k)

∞
k=1 in L2(Ω) is similar to the one of Proposition 5.9, we omit it. �

Now we complete the proof of Theorem 2.4.

Proof of Theorem 2.4. From Lemma 5.11, we see that (ũn,k)
∞
k=1 is a bounded (PS) sequence for Ĩ as in Corollary 5.10.

Therefore we can show the existence of infinitely many solutions and at least one positive solution as in Theorem 2.1,
which completes the proof. �
6. Open problems

Lastly, we state some open problems concerning (1):

(i) Can we relax the monotonicity condition (3b)?
(ii) Does the sequences (bn(λ)) (resp. (bD,n(λ)), (bRN ,n(λ))) converge to bn(0) (resp. bD,n(0),bRN ,n(0))?

(i) In the case where g(r, s) = −V (r)s + g̃(s) namely the Schrödinger type equation, we could replace (3b) by the weaker
condition (5c). Can we replace (3b) by a weaker condition in general? We note that by Proposition 5.4, we can construct
a sequence of approximate solutions to (2c) without (3b) (see (12)). Hence the problem is whether we can prove the
boundedness of the approximate solutions without the monotonicity condition.

(ii) In the previous section, we showed that limλ→0 bn(λ) =: bn,0 � bn(0) is a critical value of I0 for each n ∈ N. In
particular, b1,0 corresponds to a positive solution of (2c). If the uniqueness of positive radial solution to (2c) holds or b1(0)

is equal to the least energy value of (2c), then we have b1(0) � b1,0, which implies b1(λ) → b1(0). Hence, the natural
question is that we can prove whether bn(λ) → bn(0) holds or not in general.
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Appendix A

In this appendix, we prove Lemma 4.1(ii), Lemmas 3.1 and 3.2. Moreover, we state a useful lemma. Firstly, we give a
proof of Lemma 4.1(ii).

A.1. Proof of Lemma 4.1(ii)

In this subsection, we prove the following proposition.

Proposition A.1. Let Ω = {x ∈ RN | |x| > 1} and (12) be satisfied. Then for each n ∈ N, there exists a continuous odd map γn : Sn−1 →
H1

0,r(Ω) such that

I
(
γn(σ )

)
< 0 for all σ ∈ Sn−1.

Before proving Proposition A.1, we introduce some notations. Firstly, we define G(s) for s � 0 as follows:

G(s) ≡ inf
r�R0

G(r, s),

where R0 appears in (3f). By (3c) and (3f), G(s) is well defined and satisfies G(ζ0) > 0. We also set

I(u) ≡ 1

2
‖∇u‖2

L2(RN )
−

∫
RN

G(u)dx ∈ C
(

H1
r

(
RN)

,R
)
.

Note that if u ∈ H1
r (Ω) and supp u ⊂ {|x| > R0}, then I(u) � I(u). Therefore it is sufficient to prove that there exists a

continuous odd map γn : Sn−1 → H1
r (Ω) such that

I
(
γn(σ )

)
< 0, suppγn(σ ) ⊂ {|x| > R0

}
for all σ ∈ Sn−1. (38)

Proof of Proposition A.1. By the arguments of Theorem 10 in [5], for each n ∈ N, there exists a πn ∈ C(Sn−1, H1
r (RN )) such

that

πn(−σ) = −πn(σ ),
∥∥πn(σ )

∥∥
L∞(RN )

= ζ0,

∫
RN

G
(
πn(σ )

)
dx � 1 for all σ ∈ Sn−1.

We modify πn to obtain γn satisfying the property (38). Let ϕ ∈ C∞([0,∞)) be a cut-off function such that

0 � ϕ(t) � 1, ϕ(t) =
{

0 if t � 1,

1 if t � 2,

and set ϕk(t) ≡ ϕ(kt) and ηk(σ )(x) ≡ ϕk(|x|)πn(σ )(x) for k ∈ N. Then it holds suppηk(σ ) ⊂ {|x| � 1/k} for all σ ∈ Sn−1 and∫
RN

G
(
ηk(σ )

)
dx →

∫
RN

G
(
πn(σ )

)
dx as k → ∞ uniformly w.r.t. σ ∈ Sn−1,

since πn(Sn−1) is uniformly bounded in L∞(RN ). Therefore for a large k0 ∈ N, we have∫
RN

G(ηk0)dx � 1

2
for all σ ∈ Sn−1. (39)

We consider ηk0(σ )(x/t) for t � 1. By (39), we see that suppηk0 (σ )(·/t) ⊂ {|x| � t/k0} and

I
(
ηk0(σ )(·/t)

) = tN−2
(

1

2

∥∥∇ηk0(σ )
∥∥2

L2(RN )
− t2

∫
RN

G(ηk0)dx

)

� tN−2
(

1∥∥∇ηk0(σ )
∥∥2

L2(RN )
− t2 )

.

2 2
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Since ‖∇ηk0 (σ )‖L2(RN ) is uniformly bounded with respect to σ ∈ Sn−1, we can choose a t0 � 1 satisfying t0/k0 > R0 and

I
(
ηk0(σ )(·/t0)

)
< 0 for all σ ∈ Sn−1.

Set γn(σ )(x) = ηk0 (σ )(x/t0), then γn satisfies (38). The oddness and continuity of γn follows from the ones of ηk0 , which
completes the proof. �
A.2. Proofs of Lemmas 3.1 and 3.2

Next we give proofs of Lemmas 3.1 and 3.2. Firstly we show Lemma 3.1.

Proof of Lemma 3.1. By (3c) and (3d), it is clear that (i)–(iii) hold.
We prove (iv) for N � 3. The case N = 2 can be proven in a similar way. From (3e), for any ε > 0, we can choose s0 > 0

such that if s � s0, then f (s)/s2∗−1 � ε. By the definition of h, if s � s0, then

h(s)

s2∗−1
= 1

s2∗−p−1
sup

0�τ�s

f (τ )

τ p
� 1

s2∗−p−1

(
sup

0�τ�s0

f (τ )

τ p
+ sup

s0�s�s

f (τ )

τ 2∗−1

)
.

Thus we can show that there exists an s1 � s0 such that if s � s1, then

1

s2∗−p−1
sup

0�τ�s0

f (τ )

τ p
� ε,

which implies that h(s)/s2∗−1 � 2ε. Therefore (iv) holds.
(v) By the definition of h and H , we have

(p + 1)H(s) − h(s)s =
s∫

0

(p + 1)h(t) − h(s)dt

=
s∫

0

(
(p + 1)t p sup

0�τ�t

f (τ )

τ p
− sp sup

0�τ�s

f (τ )

τ p

)
dt

� sup
0�τ�s

f (τ )

τ p

s∫
0

(p + 1)t p − sp dt = 0.

Thus (v) holds. �
Next we show Lemma 3.2.

Proof of Lemma 3.2. (i) Firstly we show that K is weakly continuous. Let uk satisfy uk ⇀ u0 weakly in E . Without loss of
generality, we may assume

uk(x) → u0(x) a.a. x ∈ Ω, ‖uk‖E � M.

Since (uk) is bounded, by (7) and Lemma 3.1, there exists an R1 > 0 such that if |x| � R1, then H(uk(x)) = H(u0(x)) = 0 for
all k � 1. Therefore, it is sufficient to show∫

Ω∩B R1

∣∣H(uk) − H(u0)
∣∣dx → 0.

We set Q (s) = |s|2∗
(N � 3), Q (s) = exp(s2/(2M2)) − 1 − s2/(2M2) (N = 2). Then by Lemma 3.1, for each ε > 0 there exists

an sε � 0 such that if |s| � sε , then H(s) � εQ (s). Then we define Ĥ(s) as follows:

Ĥ(s) =
{

H(s) if |s| � sε,
H(sε) if |s| > sε.

Since Ĥ is bounded, it is easy to see that

Ĥ(uk) → Ĥ(u0) in L1(Ω ∩ B R1).

On the other hand, since |Ĥ(s) − H(s)| � εQ (s) we have
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∫
Ω∩B R1

∣∣H(uk) − H(u0)
∣∣dx �

∫
Ω∩B R1

∣∣H(uk) − Ĥ(uk)
∣∣ + ∣∣Ĥ(uk) − Ĥ(u0)

∣∣ + ∣∣Ĥ(u0) − H(u0)
∣∣dx

� ε

∫
Ω∩B R1

Q (uk) + Q (u0)dx + ∥∥Ĥ(uk) − Ĥ(u0)
∥∥

L1(Ω∩B R1 )
.

Thus to prove the weak continuity of K , it is sufficient to prove

sup
k�1

∫
Ω

Q (uk)dx < ∞. (40)

In the case N � 3, (40) follows from Sobolev’s inequality and in the case N = 2, (40) holds by Lemma A.2(iii). Therefore
K is weakly continuous.

Next we prove that K ′(uk) → K ′(u0) strongly in E∗ . Since

K ′(uk)ϕ =
∫
Ω

h(uk)ϕ dx for all ϕ ∈ E,

if we can show

h(uk) → h(u0) strongly in LpN (Ω), pN =
{

2 if N = 2,

2N/(N + 2) if N � 3,
(41)

then K ′(uk) → K ′(u0) strongly in E∗ .
We prove (41). As in the above, there exists an R1 � 1 such that if |x| � R1, then h(uk(x)) = h(u0(x)) = 0 for all k � 1.

Therefore we only show

h(uk) → h(u0) strongly in LpN (Ω ∩ B R1).

Set Q (s) = exp(s2/(8M2)) − 1 − s2/(8M2) if N = 2 and Q (s) = |s|(N+2)/(N−2) if N � 3. By Lemma 3.1, for each ε > 0, there
exists an sε � 0 such that if |s| � sε , then |h(s)| � εQ (s). Then define ĥ(s) as follows:

ĥ(s) =
{h(s) if |s| � sε,

h(sε) if s > sε,
h(−sε) if s < −sε.

Then we have ĥ(uk) → ĥ(u0) strongly in L pN (Ω ∩ B R1 ). Therefore, to prove (41), it is sufficient to show

sup
k�1

∫
Ω

Q (uk)
pN dx < ∞. (42)

In the case N � 3, by Sobolev’s inequality and pN (2∗ −1) = 2∗ , (42) holds. In the case N = 2, we remark that Q (s)2 � Q (2s)
for all s ∈ R. By Lemma A.2(iii), we have

sup
k�1

∫
Ω

Q (uk)
2 dx � sup

k�1

∫
Ω

Q (2uk)dx � C sup
k�1

‖uk‖4
E < ∞,

which implies (42). Therefore K ′(uk) → K ′(u0) strongly in E∗ .
(ii) Let (uk) ⊂ E be a (PS) sequence at level c for Iλ and ‖uk‖E � M . Since (uk) is bounded, there exist u0 ∈ E and

subsequence (uk�
) such that

uk�
⇀ u0 weakly in E, uk�

(x) → u0(x) a.a. x ∈ Ω.

Let ϕ ∈ C∞
0,r({|x| � 1}) = {φ ∈ C∞({|x| � 1}) | φ(x) = φ(|x|) and suppφ is compact}. Set pN = 2 if N = 2 and pN = 2N/(N +2)

if N � 3. Applying similar arguments as in the above, we can show

g
(|x|, uk�

) → g
(|x|, u0(x)

)
strongly in LpN (Ω ∩ B R̂),

h(uk�
) → h(u0) strongly in LpN (Ω)

for all R̂ > 1. Therefore we obtain∫
g
(|x|, uk�

)
ϕ dx →

∫
g
(|x|, u0

)
ϕ dx,

∫
h(uk�

)uk�
dx →

∫
h(u0)u0 dx. (43)
Ω Ω Ω Ω
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Noting that I ′λ(uk�
) → 0, by (43), we see that I ′λ(u0)ϕ = 0 for all ϕ ∈ C∞

0,r({|x| � 1}). Since C∞
0,r({|x| � 1}) is dense in E , it

holds I ′λ(u0)u0 = 0, that is,

‖u0‖2
E =

∫
Ω

m1

2
u2

0 + g
(|x|, u0

)
u0 + λh(u0)u0 dx. (44)

On the other hand, since (uk�
) is bounded, we have I ′λ(uk�

)uk�
→ 0, which implies

‖uk�
‖2

E −
∫
Ω

m1

2
u2

k�
+ g

(|x|, uk�

)
uk�

+ λh(uk�
)uk�

dx → 0. (45)

Next, we rewrite∫
Ω

m1

2
u2

k�
+ g

(|x|, uk�

)
uk�

+ λh(uk�
)uk�

dx = (1 + λ)

∫
Ω

h(uk�
)uk�

dx −
∫
Ω

h(uk�
)uk�

− m1

2
u2

k�
− g

(|x|, uk�

)
uk�

dx.

By Lemma 3.1 and Fatou’s lemma, we have

lim inf
�→∞

∫
Ω

h(uk�
)uk�

− m1

2
u2

k�
− g

(|x|, uk�

)
uk�

dx �
∫
Ω

h(u0)u0 − m1

2
u2

0 − g
(|x|, u0

)
u0 dx. (46)

By (43)–(46), we obtain

lim sup
�→∞

‖uk�
‖2

E � (1 + λ)

∫
Ω

h(u0)u0 dx −
∫
Ω

h(u0)u0 − m1

2
u2

0 − g
(|x|, u0

)
u0 dx

=
∫
Ω

m1

2
u2

0 + g
(|x|, u0

)
u0 + λh(u0)u0 dx = ‖u0‖2

E .

Thus uk�
converges to u0 strongly in E , which completes the proof.

(iii) Next we prove that J satisfies the (PS) condition. Let (uk) ⊂ E be a (PS) sequence at level c of J , i.e., J (uk) → c and
J ′(uk) → 0 strongly in E∗ . Since h(s) satisfies a global Ambrosetti–Rabinowitz condition, we can infer that (uk) is bounded.
Indeed, the boundedness of (uk) in E comes from

J (uk) − J ′(uk)uk

p + 1
=

(
1 − 2

p + 1

)
‖uk‖2

E −
∫

|x|>1

H(uk) − 1

p + 1
h(uk)uk dx

�
(

1 − 2

p + 1

)
‖uk‖2

E .

Thus we may assume that taking a subsequence if necessary,

uk ⇀ u0 weakly in E.

By (i), we have K ′(uk) → K ′(u0) strongly in E∗ . Therefore by standard arguments we can conclude that (uk) has a strongly
convergent subsequence and this completes the proof. �
A.3. A technical lemma

The following lemma is useful and we use it in proofs of Lemmas 3.2 and 4.1.

Lemma A.2. (See Adachi and Tanaka [1], Byeon, Jeanjean and Tanaka [8], Ogawa [15].)

(i) Let Φ(s) = exp(s) − 1 − s and β ∈ (0,4π). Then there exists a C̃β > 0 such that∫
R2

Φ

(
β

u2

‖∇u‖2
L2(R2)

)
dx � C̃β

‖u‖4
L4(R2)

‖∇u‖4
L2(R2)

for all u ∈ H1(R2)\{0}.

(ii) For any M > 0 and β ∈ (0,4π), there exists a C̃β,1 > 0 such that∫
R2

Φ

(
βu2

M2

)
dx � C̃β,1

‖u‖4
L4(R2)

M4
for all u ∈ H1(R2) with ‖∇u‖L2(R2) � M.
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(iii) For any M > 0 and β ∈ (0,4π), there exists a C̃β,2 > 0 such that∫
Ω

Φ

(
βu2

2M2

)
dx � C̃β,2

‖u‖4
E

M4
for all u ∈ H1

r (Ω) with ‖∇u‖L2(Ω) � M,

where Ω = {x ∈ R2 | |x| > 1}.

Proof. The inequality in (i) can be proven in the same way as in [1]. (ii) is a direct consequence of (i). Indeed, since for
each x ∈ RN it follows that

M4Φ

(
βu2(x)

M2

)
= M4

∞∑
j=2

(βu2(x)) j

j!M2 j
=

∞∑
j=2

(βu2(x)) j

j!M2 j−4

�
∞∑
j=2

(βu2(x)) j

j!‖∇u‖2 j−4
L2

= ‖∇u‖4
L2Φ

(
βu2(x)

‖∇u‖2
L2

)
,

(ii) holds by (i). As to (iii), using the operator T1 (see (8)), by (ii) and Sobolev’s inequality, we can easily obtain (iii). �
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