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1. The voice transform and the atomic decomposition

In signal processing and image reconstruction the wavelet and Gabor transforms play an important role. Feichtinger and
Grochenig unified the Gabor and wavelet transforms into a single theory. The common generalization of these transforms is
the so-called voice transform (see [1-3]).

In this section we summarize the basic notations and notions used in the definition of voice transform, the most im-
portant properties of this transform and we also present a short description of the Feichtinger and Grochenig theory which
produces atomic decomposition of a large class of Banach spaces (see [1-5]).

In the construction of voice transform the starting point will be a locally compact topological group (G, -). Let m be a left
invariant Haar measure of G. Let f : G — C be a Borel-measurable function which is integrable regarding to the left invariant
Haar measure m, the integral of f will be denoted by fc fdm= fc f(x)dm(x). Because of left-translation invariance of the
measure m it follows that

/f(x)dm(x):/f(a‘l-x)dm(x) (a€G).
G G
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If the left invariant Haar measure of G is at the same time right invariant then G is unimodular group. Such measure will
be called Haar measure of G. It can be proved that if the left Haar measure is invariant under the inverse transformation
G>x— x~1 G, then G is also unimodular.

In the definition of voice transform a unitary representation of the group (G, -) is used. Let us consider a Hilbert space
(H, (-,-)) and let U denote the set of unitary bijections U : H — H. Namely, the elements of ¢/ are bounded linear operators
which satisfy (Uf,Ug) = (f, g) (f, g € H). The set U/ with the composition operation (Uo V) f:=U(Vf) (f € H) is a group,
the neutral element of which is I, the identity operator on H and the inverse element of U € I/ is the operator U~! which
is equal to the adjoint operator of U: U~! = U*. The homomorphism of the group (G, -) on the group (4, o) satisfying

o Uyy=UxolUy, (X ye(),
e G>x— UyfeH iscontinuousforall fe H (1.1)

is called the unitary representation of (G, -) on H. The voice transform of f € H generated by the representation U and by
the parameter p € H is the (complex-valued) function on G defined by

(Vp ) :=(f,Uxp) (x€G, f,peH). (12)

For any representation U :G — U and for each f, p € H the voice transform V f is a continuous and bounded function on
G and V,:H — C(G) is a bounded linear operator.

The set of continuous bounded functions defined on the group G with the norm defined by ||F| := sup{|F(x)|: x € G}
form a Banach space. From the unitarity of Uy: H — H it follows that, for all x € G,

(Vo H®] = [(f, Uxp)| < IFIIUxpN = fIlI A1,

consequently ||V, < llp]l-

Taking as starting point not necessarily commutative locally compact groups we can construct in this way important
transformations in signal processing and control theory. For example, the affine wavelet transform and the Gabor-transform
are all special voice transforms (see [4,5,1]).

The invertibility of V, it is connected to the irreducibility of the representation U. A representation U is called irreducible
if the only closed invariant subspaces of H, i.e., closed subspaces Hy which satisfy UyHy C Hp, are {0} and H. Since the
closure of the linear span of the set

{Uxp: x € G} (1.3)

is always a closed invariant subspace of H, it follows that U is irreducible if and only if the collection (1.3) is a closed
system for any p € H, p #0.
The property of irreducibility gives a simple criterion for deciding when a voice transform is 1-1 (see for example [5]).
A voice transform V, generated by a unitary representation U is 1-1 for all p € H\ {0} if and only if U is irreducible.
The function V,, f is continuous on G but in general is not square integrable. If there exist p € H, p # 0 such that V,p €
L%(G), then the representation U is square integrable and the p is called admissible for U. For a fixed square integrable
U the collection of admissible elements of H will be denoted by 2. Choosing a convenient p € H? the voice transform
Vp:H— L%(G) will be unitary. This is a consequence of the following theorem (see [4,5]):

Theorem A. Let Uy € U (x € G) be anirreducible square integrable representation of G in H. Then the collection of admissible elements
H? is a linear subspace of H and for every p € H? the voice transform of the function f is square integrable on G, namely Vofe L%(G)
if f € H. Moreover there is a symmetric, positive bilinear map B : H% x H? — R such that

[V/hf! V,Ozg]=B(p15p2)<f!g>v (14)

forall f,g e Hand p1, pp € H?, where [-,-] is the usual inner product in Lzm(G). If the group G is unimodular then B(p, p) = ||Cp||?
(p € H?%), where C > 0 is a constant. In this case if we choose p so that (Cp, Cp) =1 then

[Vof.Vogl=(f.g) (f.geH). (15)

An important consequence of this theorem is the following reproducing formula: if we choose a non-zero g € H2 such
that ||Cg|> =1, then

Vef =VgfxVgg. (1.6)
Suppose that the set of analyzing vectors:
A=|geH: Vege L1 (G)} #{0}, (1.7)

and let define
H':={f eH: Vof eL'(O)}. (1.8)
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Denote by '* the dual of H!. Then the reproducing formula (1.6) can be extended for f € H'* and g € A with
Icgl® =1

/ Ve f®)Veg(xy)dm(x) = Vg f(y). (1.9)
G

Note that the integral operator on the left-hand side is a convolution operator on G.

Feichtinger and Grochenig in [1,6,2,3] described a unified approach to atomic decomposition through integrable group
representations. In what follows we will outline how it can be obtained atomic decomposition results in ! following
the exposition published in [1] for the case when the weight function w = 1. Assume that U is an irreducible unitary
representation of G on H which is integrable, i.e., there is a g € H \ {0} such that [..|Vgg(a)|dm(a) < co, and which is
continuous, i.e., Uyg is a continuous map of G into H for all a € G. For certain spaces Y of functions on G for which the
convolution operator is defined and is continuous for g € A the coorbit spaces are defined in the following way:

Co(Y)={feH"™: VgfeY} (1.10)
and this is independent of the choice of g € A. Place on Co(Y) the norm | f|cocy) = IIVg flly. For example
H=Co(L*(G)), H'=Co(L'(G)).

At the same time it is defined an appropriate sequence space Y, corresponding to Y (for example if Y = LP(G) then
Y4 =4€P(Z)). Let

S={FeY: F=Vf forsome f € Co(Y)}. (1.11)

The above convolution operator (which is the identity on S) can be approximated by a discrete operator, similar to a
Riemann sum using the so-called bounded uniform partition of unity.

Definition 1.1. Given a compact set Q with non-void interior, a countable family X = (x;) in G is said to be Q -dense if
(UxiQ = G. It is separated, if for some compact neighborhood V of the unity we have x;V Nx;V =0, j#i. We say that
¥ = {Y}ren is a bounded uniform partition of unity of size Q (Q -BUPU) if for an open neighborhood Q of unity in G with
compact closure there exist points in x; in G such that

0<vix <1,

supp ¥; C x;Q,,

Y v =1,

o sup#{ieN:zexQ'} <oo forany Q' C G compact. (112)

zeB

In order to approximate by discrete sum V f let write the reproducing formula

/ Ve f()Veg(x'y)dmx) = Vg f(y),

G

as convolution operator on G as follows F = Vg f, and F = F % Vgg. Define the operators TF = F % Vg and Ty on Y
associated to a particular bounded uniform partition of unity ¥, by

Ty (y) =) (F,yi)Veg(x'y). (113)

i

From Lemma 4.3 of [1] it follows that if F € L'(G) the sequence of coefficients A = (1;)ien, given by A; = (F, ¥;) belongs
to ¢!, more precisely, given a fixed compact neighborhood Q of unity there exists a constant Co such that the norms of
the linear operators F — A are uniformly bounded by Cy for all Q -BUPUs. Conversely if g € A and A = (A;)iey € €' then
F:i=3% M Vgg(xi’ly) € L'(G), the sum being absolutely convergent in L'(G) and there is a universal constant C; such that
IFll1 < CqllAllp1. As a consequence the set of operators {Ty}, where ¥ runs through the family of Q -BUPUs acts uniformly
bounded on L'(G).

Lemma 4.5 of [1] says that the net {Ty} of Q-BUPUs directed according to inclusions of the neighborhoods Q of unity is
norm convergent to T as operators on L!(G). As consequence it can be obtained the following atomic decomposition result
for H!.
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Theorem B. (See [1].) For any g € A\ {0}, normalized by ||Cg||? = 1, there exist a small neighborhood Q of identity and a constant
Co (both only dependent of g), such that for any collection of points {x;} C G which is Q -dense and V -separated and any bounded
uniform partition of unity ¥ associated to {x;} any f € H! can be written

f=Y " mi(HHUxg. with Y |1i(H)] < Coll fllag (114)

where the sum is absolutely convergent in H!. The coefficients 1;(f) = (T,’I_,1 V¢ f, ;) depend linearly from f.

Thus this gives an atomic decomposition of f € H! with atoms Uy, g which can be seen as generalizations of the frames
to Banach spaces, other than Hilbert spaces.

2. The voice transform generated by a representation of the Blaschke group on the weighted Bergman spaces
2.1. The weighted Bergman spaces AL,

In this section we summarize the basic results connected to the weighted Bergman spaces (see [7-9]). Let denote by A
the set of functions f:ID — C which are analytic in D, denote by

1
dAg(2) = %(1 —121%)% dxdy, z=x+iy

the weighted area measure on D. For all @ > —1 let consider the following subset of analytic functions:

A ::{feA: /\f(z)\pdAa(z)<oo}. (2.11)
D

The set H = Aé is a Hilbert space with the scalar product

(f.8)a = f f(@2)g(2)dAy(2). (212)
D

In the special case when o =0, A® = Ag is the so-called Bergman space (see [7,8]). For 0 < p < oo and —1 < @ < oo the
weighted Bergman space AY is a closed subspace of LP(D, dAy) = LP.
For a function f € A} and for a compact subset K of I there exists a positive constant C = C(n, K, p, @) such that

sup{|f™@)|: ze K} SCIIfll 5.

From this it follows that the point-evaluation map is a bounded linear functional on Af, and the norm convergence in A”
implies the locally uniform convergence on ID.
The weighted Bergman kernel is given by

Ko§,2) = ————., 213
w69 = e (21.3)
and the corresponding weighted Bergman projection is defined by

1
Py f(2) = ———dA . 214
of @ ff(é)(l_sz)a+2 o (€) (214)
D

For —1 < o < 400 the weighted Bergman projection
Py :L*(D,dAy) — A2
is an orthogonal projection operator, which satisfies P, f = f for f € Ai and is a pointwise formula. The projection operator

can be extended to L' (D, dA,) by mapping each f € L'(ID, dAy) to a analytic function in D, and

G- €17) dérdes (f €Ay, 2.E€D, £ =& +if) (215)

1
f@)= ﬂff@)
e (
D

and the integral converges uniformly in z in every compact subset of D (see [8, p. 6]).
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Theorem C. (See [8].) For any —1 < « < +o0 and any real B, let

‘l_ o
lap(@) = /Il( |V|V2|+i+ﬂdA(w), zeD. (216)

Then we have the following estimates:

1, B <0,
lap(2) ~ logl e =0 (21.7)
ey B0

as|zl—1-.

Theorem D. (See [8].) Suppose —1 < a, B < +o0 and 1 < p < +oc. Then Py is a bounded projection from LP (D, dAg) onto AZ if

andonlyif (8+1) < (¢ +1)p.
2.2. The Blaschke group

Let us denote by

Bq(z) :=€ ‘-
a .— 1 =

(zeC,a=(b,e)eB:=DxT, bz#1) (2.2.1)

the so-called Blaschke functions, where
D:={zeC: |zl <1}, T:={zeC:|zI=1}. (2.2.2)

If a € B, then B, is an 1-1 map on T, D, respectively. The restrictions of the Blaschke functions on the set D or on T with
the operation (Bg, o Bg,)(2) := Bg, (Bg,(2)) form a group. In the set of the parameters B :=D x T let us define the operation
induced by the function composition in the following way Bg, o Bg, = Bg,0q,. The group (B, o) will be isomorphic with the
group ({Bg,a € B}, o). If we use the notations a; := (bj, €;), j € {1,2} and a:= (b, €) =:a; o a; then

bi€y + by €2+b152
== € = B(—b]l—lz,€1)(€2)' (2.2.3)

= —— = B(_p,e,,,)(b1), € —
1+ bibyé&; (“h2e2. &) " + €2b1by

The neutral element of the group (B, o) is e := (0, 1) € B and the inverse element of a = (b, €) € B is a~! = (—be, é).
The integral of the function f:B — C, with respect to this left invariant Haar measure m of the group (B, o), is given by

it
/f(a)dm(a) //(f(b“fl ))2 dby db, dt, (2.2.4)
B

where a = (b, e') = (by +iby, ) e D x T.
It can be shown that this integral is invariant under the inverse transformation a — a~!, so this group is unimodular.

2.3. The representation of Blaschke group on the Hilbert space Aé

In [10,11] the voice transform induced by a representation of the Blaschke group on the weighted Bergman spaces was
studied. We summarize the basic properties of this special voice transform which we will need. Let consider the following

set of functions
Ve —1b?)
1—-bz

For every power o (o > 0), F; induce a unitary representation of Blaschke group on the space Aé. Namely, let define

Fa(z) := (a=(b,e) B, zeD). (2.3.1)

USf:=[F, 11" foB;' (aeB, a>0, feAl). (2.3.2)

It can be proved that for all « >0, UY (a € B) is a unitary representation of the group B on the Hilbert space Aé which is
irreducible.
The representation has the following explicit form

o sz, (1= DT (1 z-b "
(UL f)@)=e"2Y RREYe f(e‘/’] —Bz> (a=(b,e") eB) (23.3)
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and the unitarity means that

(f.8)={f.8a= f f(28@) dAa(2) = (U f. Ug),. (2.3.4)
D

It is simpler to take the expression of the representation for a~! e B, correspondingly it is easier to study the voice transform
inaleB (a=(b,e¥)eB, f,pcAl):

(Vef) (@)= (Vgf)(~be, &) == (f,Us18)a- (23.5)

From the general theory (see [5,4]) it follows that: the voice transform generated by representation U, (a € B) is one to
one. The function V, f is continuous and bounded on B. It can be shown that every element from Aé is admissible. Taking
in consideration that the Blaschke group is unimodular Theorem A implies that for f, g € A(zx such that g#0 and |Cg| =1
the following reproducing formula is valid:

Vef =VefxVeg, ie,Vgf(y™)= / Ve f(x )Veg(xoy™t)dm(x). (2.3.6)
B

3. New results

In this section we show that in the Blaschke group there exist right bounded uniform partitions of the unity, we will
study the integrability of the voice transform given by (2.3.5). It turns out that the constant function f =1 and every
function from the minimal Mobius invariant space Bq satisfies the integrability condition. It is shown that in the case of
the weighted Bergman spaces, where the weight is generated by « > 0, the general theory of atomic decomposition can be
applied and in this way we can fide new atoms for these spaces.

3.1. Bounded uniform partition on Blaschke group

As we have seen before in the unified approach of the atomic decomposition the Q -density, the V-separated property
and the bounded uniform partitions of the unity are the basic starting points.

Our aim is to show that in the Blaschke group there exist Q -dense V-separated sequences. As we will see it is easier
to show the Q -density from right i.e., there is a sequence (x;);en in B such that [ J Qx; =B, and separated from right (for
some compact neighborhood V of the unity we have Vx; N Vx; =, j#1i) and there exist also bounded uniform partitions
of the unity.

The description of the Q-density from the left (as it is given in Definition 1.1) in general it is not same with the Q-
density from right, which is the case when a group is IN-group.

A group G is an IN-group if there exists a compact neighborhood of the unity which is invariant under all inner auto-
morphisms. Our conjecture is that the Blaschke group is not an IN-group.

Recall that the hyperbolic distance of two points from the unit disc is given by

1+ p(z,w)

1
plz.w) = 2 log 1—p(z,w)

zZ—w
, plz,w)= 172 = |Bw, 1@, (3.11)

and the hyperbolic disc or Bergman disc of radius r > 0 and center b is

D(b,r)={zeD: B(z,b) <r}. (3.1.2)

Lemma 3.1.1. Let consider r > 0 and Q = Q1 x T, where Q1 = {z € D: |z| < tanhr}. Then there exists a sequence x, = (b,, —1) € B
which is Q -dense from the right, i.e. | ] Qx, = B and V -separated from right, i.e. Vx, N Vxm = @, and there is also a corresponding
right bounded uniform partition of the unity corresponding to {x;}.

Proof. Due to Lemma 2.13 from [8, p. 39], for every fix r, 0 <r < +00, and N positive integer there exists a sequence
{bn}nen € D such that the disc is covered by the hyperbolic discs {D (b, )}nen, and if m #n then B(by, by) > % and every
z € D belongs to at most N hyperbolic discs D(b,, ). We observe that z € D(b, r) is equivalent with ze€ {ze D: p(z,b) <
tanhr <1} =B _1)({z e D: |z| < tanhr}) = B¢ —1)(Q1) (see [7, p. 40]). Then for

Qxn={xoxn: x=(b,€) € Q} = {(Bp,,-1)(b), B_pj- ,(~=1): be Q1, € €T} = {D(bn, N} x T, (313)

from this we obtain that | J Q x, = B. If we take V =V x T with V; ={zeD: |z| < tanh ﬁ}, then Vx, N Vxy = ¢ for m #n.
Now we are ready to give an example of right bounded uniform partition of unity. Due to Lemma 2.28 from [9, p. 63], there
exists a Borel set Dy satisfying the following conditions:
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° D(bk, 2) C Dy € D(bg, 1),
° Dm ﬂDn :¢a
. D= UDk- (3.14)

Then B, —1y({z € D: |z| < tanh %}) C Dk C Bp,,—1)({z € D: |z| < tanhr}). Let consider ¥y = xp,xT the characteristic func-
tion of the set Dy x T then ¥ = {yy}ken is @ bounded uniform partition of unity from right of size Q. Indeed, for all
ieN

0<yix) <1

e suppy; C Qx;,
o D ¥iw=1 xeB,
i
o sup#{ieN:zeQ'xj} <oo forany Q' C Bcompact. O (3.1.5)
zeB

We shall consider the set of Q -bounded uniform partitions of unity from right (Q -RBUPUs) as a net directed by inclusion
of the associated neighborhoods, and write ¥ — oo if these neighborhoods run trough a neighborhood base of identity. In
the general theory of atomic decomposition it is used the Q -density from the left, this is the reason why in Section 3.3 we
will make a small modification in the discretizing operator which corresponds to the Q -density from the right in order to
obtain atomic decomposition in the weighted Bergman spaces.

3.2. New properties of the voice transform of the Blaschke group
We observe that the voice transform of the Blaschke group generated by the representation of this group on the weighted

Bergman space Aé given by formula (2.3.5) can be expressed by the weighted Bergman projection operator in the following
way:

_ a+2 at2 - .
Vef(@')=(f.Us18a=e2"(1—-1b]*) * Po(f-g(Ba)) (a=(b.e")eB, f.geA;). (3:21)
First we will study the integrability of the voice transform, i.e. we show that there exist an element g Aé, g # 0 such that
/|vgg(a—1) |dm(a) < oo. (322)
B

Theorem 3.2.1. If o« > 0, then the representation U;",l is integrable.

Proof. Let consider g=1¢€ Aé, using (3.2.1) we get:

Veg(a ") =e TV (1 - 1b12) T Pug- g(Ba>)
:e#w — Ib] )%/ _-b)aﬂ dAq(2)=e TV (1 b]?) > *+ (32.3)
D
Then
a+2
f Veg(a™)|dm@ = / (1—1bp%) 2 W‘“(b) / (1-n%" 1dr—— <o, (3.2.4)
B D
Thus we have that
A={geAl: Vogel'!®}#(0). O (3.2.5)

From Theorem A and (3.2.3) it follows that the value of the constant C in Theorem A for the voice transform of the
Blaschke group given by (3.2.1) is /7 /(o + 1).

We will show that the integrability condition is also satisfied by every g from the minimal Mobius invariant space of
analytic functions (see [12,13]), denoted by B1, which contains exactly the analytic functions on the unit disc which admit
the representation

g2 = ZA,

o0
_f Cobil<T ) Il < oo (3.2.6)
bjz =
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It is easy to prove that for 1< p and —1 < « the space B is included in AJ.
Theorem 3.2.2. For o > 0 the space By is a subset of A.

Proof. For g € By we have the following estimate

o+2 a+t2 —_— ars
Vagla™)| = [eFY (1 - )7 Pa(g - 8Ba)| < (1-16P)F /<Z'A l) ‘b|a+z dAa(2)

D
(1—1b%) (Zw) lo0(b). (3.2.7)

Due to Theorem C, when |b| — 1~ we have Iy o(b) ~ log 1—1W' Fora >0

b2 Jog 1
0= 10) % o8 a0
D

1 1

2
—/(1—r)%1og(1—r)dr:—[3(1 — )5 log(1— y) — <3> (1—y)%] :iz. (3.2.8)
o (07 o

0
0
From this it follows that

[|Vgg )|dm(@) <+4oc0. O

From now on we choose the parameter function g always from the space Bj U {1}, we also restrict the domain of the
definition of the voice transform for a = (b, 1) € B. We show that the voice transform Vg f can be defined not only for f
belonging to A§ but under some assumptions on the parameters Vg f has sense for f e AP and we will study some growth
properties of the voice transform.

Theorem 3.2.3. Let fix the function g from ByU{1}.If -1 <, 8 <400, 1 < p, (B+ 1) < (o + 1)p, then for every f € AZ the voice
transform is well defined. If a = (b, 1) € B, then

at2
2

Vef(a™)=Vgf(=b,1)=(1—1b]*) 2 F1(b), (3.2.9)
where F(b) € A%, and
B2 _ai2
‘b}irr%i(l —b?) P T |Vgf(b)|=0. (3.2.10)

Proof. The proof for g =1 is trivial. If g € By, then

o0 o0 o0
g(Z):ZAjlz__ijz:ijB(bj71)(Z), bjl<1, > Irjl<oo. (3.211)
=0 i j=0 j
This implies that
o0 o0
2(Ba@) =) 1jBv;10a(2) €B1, Y IAjl < o0, (3.212)
j=0 j=0

We show that if f € A2, then f - g(Bg) € LP(ID, dAg). This follows immediately from the following inequality:

p 400 p
f22(B.2)]” < |f(2) (ZM B, an(z)!) <|f(z>|"(2|x,-|> :
j=1

j=1
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Using Theorem D, we obtain that if —1 <a, 8 <+00, 1<p and (8+ 1) < (@ + 1)p, then P, is a bounded projection from
LP(D,dAg) onto Ag, which implies that, for every g€ By and f € AZ the voice transform

at+2
2

Vef(a™") ="V (1= b2) 7 Pu(f - £(B0),
is well defined. If we consider a = (b, 1) and denote by
F1(b) = Po(f - g(By-1)).
then Fy € A}. For all Fi € Ag, if —1 < 8 < 400, p >0, then we have (see [9])

Fi|l 4p
Il ||Aﬁ

B2
P

|F1(b)| < beD, (3.213)

(1—1bP?)
the exponent of (1 — |b|?) is best possible, and it can be obtained the following improved behavior of F; near the boundary:
B+2

P —

‘b‘lirr%7|F1 b)|(1-1b1*) 7 =o0. (3.2.14)

This implies that

Jim (1=12) * T v f 0.

For « = 8 and p =2 it follows that, if f € Atzx, then
lim |Vgf(b)|=0. (3.2.15)
Ib|—1-
The next theorem gives information about the set
H' ={feAl: Vgf el'B)}. (3.2.16)

BH1 4+2p

Theorem 3.24.letg € B1U{1},a >0,p>1andp > max{aH, o

ie, Vgf e L'(B).

}, then for every f € AZ the voice transform V¢ f is integrable,

As an immediate consequence of this theorem we get that fora =8>0, p > 2+ g we have that AL c H'.
Proof. We have to show that if the assumptions of the theorem are satisfied, then

/|ng(a’])]dm(a) < 4o00.
B

Using Theorem 3.2.3 and (3.2.13) we obtain that

/Ivgf(a”)!dmm):f(l —1b2) 7 |F1(b)|dA) < |IF a2 /(1 —1b1%)
B

D D

a—2_ 2+
2 p

dA(b)

g\ @52 2t8 1
:||F1||Ag/(1—r) z 2rdr:||F]||Agm<+oo. O
D 2 p

3.3. Application of the Feichtinger-Grichenig theory

Now we are ready to apply the general theory of Feichtinger and Grochenig to obtain atomic decompositions in weighted
Bergman spaces. From this result, as a special case, we reobtain some well-known atomic decompositions in the weighted
Bergman spaces, but also we get new atomic decompositions for this spaces. As we have mentioned earlier in the Blaschke
group it is easier to give Q -RBUPU, it is more convenient to compute the voice transform given by (2.3.5) in a~! € B, also
the reproducing formula (2.3.7), taking into account that the Blaschke group is unimodular, can be written as follows

ng(f])=fng(xfl)Vgg(Xoy*)dm(X), f.geA, g#0, |Cgl=1. (331)
B
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From Theorem 3.24 fora=8>0,p>2+ g, g € By U {1} we have the following inclusion AL c !, where
H' ={feAl: Vif el'B)}.

and [|fll41 = IV fllpm < C2llF1 ||A§. Let denote F(y™ 1) = Vgf(y™"), G(y~") = Vgg(y~ 1), then the reproducing formula

(3.3.1) is a convolution operator T, TF = F % G, to discretize this for F, G e L'(B) by means of Q-RBUPU we will use the
modified version of the operator (1.13) given by

TyF(y ') =) (F.ydLG(y™')., F.Gel'(B), (332)

1
which is composed of a coefficients mapping F — (Aj)jeny With A; = (F, ¢;) = fB F(y~"Yvi(y)dm(y) and a convolution
operator (Aj)ieny — D ; AL 1G = & Ai8,—1) * G. Our aim is to approximate the convolution operator TF = F x G by the

modified operator (3.3.2). Analogous to Lemma 4.3 from [1] it can be proved that:

i) For F € L'(B) the sequence of coefficients (1;)ien given by A; = (F, ¥i) = [ F(y~)i(y) dm(y) belongs to ¢!, and the
norms of the linear operators F — (A;)jcy are uniformly bounded.

ii) Given G € L'(B), (A)ien € £! and any family X = (x;)ien in the group one has

F(y ™) =D nLG(y™") el'®), (33.3)

the sum being absolutely convergent in L' (B), and there is a universal constant C; such that ||F|l; < Cq||(A)ienll1-
There is valid also the analogue of Lemma 4.5 from [1] the only differences in the proof arise because of Q-RBUPU.

Lemma 3.3.1. The net set {Ty } of Q -RBUPU, directed according to inclusions of the neighborhoods Q to {e = (0, 1)}, is norm conver-
gent as operators on L' (B): limy 0 ||Te — T|||1 =0.

Proof. The proof follows the steps of the proof of Lemma 4.5 from [1], the only difference occurs when we decompose the
integral over the group using the R-BUPUs. For a given F € L' (B) we can give the following estimate:

‘(Z(Fwi — (F.¥i)8,-1) *G) H] <X

1

ITF—TyFl1=

‘/ F(y ") i(Ly1G — L1G)dy
! 1
Qxi

<X [ IOl ty 16 = 12Ol dy < 3 suplhy 1,46 = LA O F1 v
; o i ; ueQ i i
<sup | (Ly1G =G|, D(IFL i) < wq (G)Col . (334)

ue i
where wq (G) =sup,cq I(L;-1G — G)|l1. Since Q = Qq x T is invariant under the inverse operation i.e., u € Q if and only

if u=! € Q, we have that ®q (G) = supyeq [1(Ly-1G — G)|l1 = supyeq II(LyG — G)|l1 is the modulus of continuity of G with
respect to ||.|[1. Thus from G € L'(B) we have that

1Ty =TI, < Cowq (G) >0 forQ —fe}. O

Now, taking in consideration that
Vg(USL f) =Lg1Vef,

from Lemma 3.3.1 we get in analogous way as in [1, Theorem 4.7] that Ty has an inverse and:

Consequence 3.3.1. For any g € A, g # 0 and ||Cg|| = 1 there exists a neighborhood Q of the identity and a constant C1 > 0 both
depending only on g such that for every Q -dense family (x;)ien from right of the Blaschke group any f € H! can be written as

f@ = %V g)@ with Ykl < Cill fllyer, (335)
i i
the series is absolutely convergent in H!. The coefficients depend linearly on f, namely A; = fu)) Tq,_,l (ng(y*1 NYi(y)dA(Y).

Thus this gives an atomic decomposition of f € H! with atoms Uz‘,lg, g € B1. From Theorem 3.2.5 it follows that for

p>2+ g we have AP c H!, consequently the previous atomic decomposition is true also for Af, under the mentioned
restrictions to the parameters.
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The Q -density from right of the set {x; = (b;, —1)}ien in the language of the complex analysis is equivalent to the e-net
property of {b;}icn, with € = tanhr (see [8, p. 172]). From Lemma 8 [7, p. 188] we have that the lower density of the set
{bi}

_ (1 —tanhr)?
D™ ({bi}) >
2tanh“r
Using Theorem 5.23 from [8, p. 161], we have that a separated sequence {b;} is a sampling sequence for A% if and only if
_ oa+1
D ({bl}) > .
p
Let choose r so small that
(1—tanhr)? a+1
5 >
2tanh“r p
then {b;} is a sampling sequence for AP.
Then for the special case g =1 we obtain the following atomic decomposition: if f € A}, « >0, and p > 2+ g,

)

o (1= [bi>)
f:Z}»i(f)Uxﬂl:Z)\i(f)W, (3.3.6)

holds, which is very similar to the atomic decompositions obtained with complex analysis techniques (see [9, p. 69]), the
difference is that in our case we have ¢! information about the coefficients instead of ¢P information and the convergence is
in ! norm instead of A%. Using the classical techniques of the complex analysis in the atomic decomposition of a function
fe AZ, the atoms are of form (see [9, p. 69])

(1 — %"
(1-x2)>
Applying the Feichtinger-Grochenig theory we obtain more general atoms for the weighted Bergman spaces, i.e., every
function g € B; generates an atomic decomposition for f € A2 with atoms of the form

U}‘:‘Tlg.

Acknowledgments

This paper was developed during a fruitful stay at NuHAG group at the University of Vienna as Marie Curie fellow FP7-People-IEF-2009. I express my
gratitude to all NuHAG members for their very warm welcome. Especially, I thank Prof. Hans G. Feichtinger for very interesting discussions. I thank the
referees for reading carefully and correcting the manuscript.

References

[1] H.G. Feichtinger, K. Grochenig, A unified approach to atomic decompositions via integrable group representations, Lecture Notes in Math. 1302 (1988)
52-73.
[2] H.G. Feichtinger, K. Grochenig, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (2-3)
(1989) 129-148.
[3] K. Grochenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (3) (1991) 1-41.
[4] C. Heil, D.F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989) 628-666.
[5] F. Schipp, W. Wade, Transforms on Normed Fields, Leaflets in Mathematics, Janus Pannonius University, Pecs, Hungary, 1995.
[6] H.G. Feichtinger, K. Grochenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (2)
(1989) 307-340.
[7] P. Duren, A. Schuster, Bergman Spaces, Math. Surveys Monogr., vol. 100, American Mathematical Society (AMS), Providence, RI, 2004.
[8] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
[9] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., vol. 226, Springer, New York, NY, 2005.
[10] M. Pap, The voice transform generated by a representation of the Blaschke group on the weighted Berman spaces, Ann. Univ. Sci. Budapest. Sect.
Comput. 33 (2010) 321-342.
[11] M. Pap, E. Schipp, The voice transform on the Blaschke group III, Publ. Math. Debrecen 75 (1-2) (2009) 263-283.
[12] J. Arazy, S. Fisher, ]. Peetre, Mobius invariant function spaces, J. Reine Angew. Math. 363 (1985) 110-145.
[13] J. Arazy, Some aspects of the minimal, Mobius-invariant space of analytic functions on the unit disc, in: Interpolation Spaces and Allied Topics in
Analysis, Proc. Conf., Lund, Sweden, 1983, in: Lecture Notes in Math., vol. 1070, 1984, pp. 24-44.



	Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces
	1 The voice transform and the atomic decomposition
	2 The voice transform generated by a representation of the Blaschke group on the weighted Bergman spaces
	2.1 The weighted Bergman spaces Apα
	2.2 The Blaschke group
	2.3 The representation of Blaschke group on the Hilbert space Aα2

	3 New results
	3.1 Bounded uniform partition on Blaschke group
	3.2 New properties of the voice transform of the Blaschke group
	3.3 Application of the Feichtinger-Gröchenig theory

	Acknowledgments
	References


