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We homogenize a Reynolds equation with rapidly oscillating film thickness function hε ,
assuming a constant compressibility factor in the pressure–density relation. The oscillations
are due to roughness on the bounding surfaces of the fluid film. As shown by previous
studies, homogenization is an effective approach for analyzing the effects of surface
roughness in hydrodynamic lubrication. By two-scale convergence theory we obtain the
limit problem (homogenized equation) and strong convergence in L2 for the unknown
density ρε . By adding a small corrector term, convergence is obtained also in the Sobolev
norm.
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1. Introduction

Lubrication problems involve surfaces in relative motion interacting through a thin film of viscous fluid (lubricant).
Such examples include bearings, hip joints and gearboxes. In order to understand and optimize the effects of lubrication
it is important to describe the flow in the lubricant film. To this end, Reynolds’ lubrication equation, relating pressure
and density, is widely used by engineers today. When the pressure distribution is known it is possible to compute other
fundamental quantities such as the velocity field, friction forces and transversal loads carried by the surfaces. In many
applications the distance between the surfaces is so small that the surface roughness has to be taken into account. The
main focus of this paper is to model and analyze the effects of surface roughness under the assumption that the fluid has
constant compressibility (see relation (2) below).

The fluid film is assumed to be confined between two rigid surfaces. At time t = 0 we assume that the film is bounded
by the surfaces x3 = h+(x1, x2) (the upper surface contained in the region x3 > 0) and x3 = h−(x1, x2) (the lower surface
contained in the region x3 < 0), where h+ and h− are functions defined on R

2. For simplicity it is assumed that the motions
of the surfaces are translational with constant velocities and parallel to the plane x3 = 0. The corresponding velocity vectors
are denoted by V + = (v+

1 , v+
2 ) and V − = (v−

1 , v−
2 ). Given a bounded domain Ω in R

2, we assume that the region in space

Ft = {
(x, x3): x = (x1, x2) ∈ Ω, h−(

x − V −t
)
< x3 < h+(

x − V +t
)}

is filled with fluid for all t ∈ [0, T ]. If the fluid film Ft is thin, the pressure p and density ρ in the fluid film are approxi-
mately governed by the Reynolds equation (named so after O. Reynolds [27]):

∂

∂t
(hρ) + div

(
− h3ρ

12μ
∇p + hρ

2

(
V + + V −)) = 0 in Ω × (0, T ], (1)
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where μ is the viscosity of the fluid and h is the function defined by

h(x, t) = h+(
x − tV +) − h−(

x − tV −)
.

In this sense h describes the thickness of the film. It is assumed that α � h � β for positive constants α and β . For a
derivation of the Reynolds equation see e.g. [19], where it is also shown how the velocity field of the fluid is recovered
from p. Clearly Eq. (1) must be complemented with some relation between the unknowns p and ρ . The simplest case is
obtained if one assumes that ρ is constant throughout the film. This leads to the incompressible Reynolds equation

∂h

∂t
+ div

(
− h3

12μ
∇p + h

2

(
V + + V −)) = 0,

which has only one unknown p.
The present study pertains to a case where ρ is not constant. As a measure of the compressibility of a fluid one can

introduce the compressibility factor β , which is defined as dρ/dp = βρ . In general β depends on both pressure and tem-
perature, but if we assume β is constant we obtain the density–pressure relation

ρ = ρaeβp, (2)

where ρa is the density at ambient pressure. Assuming (2), we can write (1) as a linear equation for ρ:

∂

∂t
(hρ) + div

(−λh3∇ρ + hρΛ
) = 0, (3)

where λ = 1/(12βμ) and Λ = (V + + V −)/2 are constants. As initial–boundary conditions for p we take p(x, t) = pa on
∂Ω × (0, T ], where pa (ambient pressure) is assumed constant, and p(x,0) = pI (x).

Since the functions h+ and h− satisfy transport equations, i.e.

∂

∂t

(
h±(

x − tV ±)) + V ± · ∇h±(
x − tV ±) = 0,

it follows that ∂h/∂t can be represented as

∂h

∂t
= −div G,

where G is the vector field G(x, t) = h+(x − tV +)V + − h−(x − tV −)V − . This observation is important in the analysis.
In the case of rough surfaces we add to h± a rapidly oscillating function. More precisely, for ε > 0 we set

h±
ε (x) = h±(x) + r±(x/ε)

where r± is �-periodic in R
2, � denoting the cell of periodicity. The film thickness function then becomes

hε(x, t) = h(x, t, x/ε, t/ε),

where h denotes the function

h(x, t, ξ, τ ) = h+(
x − tV +) − h−(

x − tV −) + r+(
ξ − τ V +) − r−(

ξ − τ V −)
= h0(x, t) + r0(ξ, τ ). (4)

In other words, ξ and τ correspond to the fast variables x/ε and t/ε. This means that h0(x, t) = h+(x − tV +)− h−(x − tV −)

describes the global film thickness, the periodic functions r0(ξ, τ ) = r+(ξ − τ V +) − r−(ξ − τ V −) represent the roughness
contribution and ε is related to the wavelength of the roughness. For simplicity, we assume that V + and V − are such that
r0, and hence h, are periodic in τ and we denote by T its period (an interval in R). Without loss of generality we assume
that the Lebesgue measure of � and T equals one. It may happen that hε does not depend on t , e.g. if one of the surfaces
is flat and the other one is stationary. We will refer to this a the stationary case. A particular consequence of (4) deserves
special attention. Let G denote the vector field defined by

G(x, t, ξ, τ ) = h+(
x − tV +)

V + − h−(
x − tV −)

V − + r+(
ξ − τ V +)

V + − r−(
ξ − τ V −)

V −. (5)

Then

∂hε

∂t
(x, t) = −div Gε(x, t), (6)

where Gε(x, t) = G(x, t, x/ε, t/ε).
On introducing the unknown uε = ρε − ρa we formulate the following initial–boundary value problem for uε:⎧⎪⎪⎨⎪⎪⎩

∂

∂t
(hεuε) + div

(−λh3
ε∇uε + hεuεΛ

) = fε in Ω × (0, T ],
uε = 0 on ∂Ω × [0, T ], (7)
uε = ρ0 − ρa := u0 on Ω × {0},
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where

fε = −ρa
∂hε

∂t
− ρa div(hεΛ).

When the pressure is found it is possible to compute the stresses on the rigid surfaces. The friction force (due to shear
stresses) gives information about the energy losses while the surfaces are kept in relative motion and the load carrying
capacity (due to normal stresses) is the load carried by the surfaces. The friction force Fε = (F ε

1 , F ε
2 ) on e.g. the lower

surface x3 = h−
ε (x, t) is given by (see e.g. [19, Theorem 9.1, p. 17])

Fε(t) =
∫
Ω

−hε(x, t)

2
∇pε(x, t) + μ

hε(x, t)

(
V + − V −)

dx,

or in terms of uε = ρε − ρa

Fε(t) =
∫
Ω

− hε(x, t)

2β(uε(x, t) + ρa)
∇uε(x, t) + μ

hε(x, t)

(
V + − V −)

dx. (8)

The load carrying capacity Lε is given by

Lε(t) =
∫
Ω

pε(x, t)dx =
∫
Ω

1

β
log

(
uε(x, t)

ρa
+ 1

)
dx. (9)

1.1. Main result

For small values of ε (i.e. the roughness scale is much smaller than the global scale) the film thickness function hε is
rapidly oscillating in both space and time. This means that a direct numerical treatment of Eq. (7) will require an extremely
fine mesh to resolve the surface roughness. Hence some kind of averaging is required. The field of mathematics which
handles this type of averaging is known as homogenization theory, see e.g. [17]. The main idea in homogenization is to
prove that uε → u as ε → 0 (in some sense) and that u solves the so-called homogenized equation. In the present paper it
is proved that uε → u strongly in L2(Q ), u being the solution of the homogenized equation

∂

∂t
(hu) + div(−A∇u + ub) = −ρa div b − ρa

∂h

∂t
, (10)

where A (matrix), b (vector) and h (scalar) do not involve any rapid oscillations. This means that it is much easier to find u
numerically and that u can be used as a good approximation of uε for small values of ε.

1.2. Previous work

We conclude the Introduction by giving a short guide to the literature: In the case of an incompressible fluid there
are numerous studies where homogenization has been used to analyze the effects of surface roughness in hydrodynamic
lubrication. Indeed, the incompressible Reynolds equation (ρ constant) was homogenized in [28] by using two-scale conver-
gence, by G-convergence in [16] and by the formal method of multiple scale expansions in [9] and [22]. The case of several
different length scales (both roughness and texture) was analyzed in [2]. By introducing two parameters, one for the film
thickness and one for the fineness of the roughness, the authors of [7] and [13] studied homogenization of the Stokes flow
and its relation to Reynolds flow. These works rigorously verify that homogenization of Reynolds equation can be used when
the film thickness is small compared to the wavelength of the roughness. If both surfaces are rough, then the distance will,
in addition to the space variable, oscillate rapidly with respect to time. This situation was analyzed by multiple scale expan-
sion in [4] and by two-scale convergence in [8]. Roughness effects, with one rough surface taking cavitation into account by
the Elrod–Adams model [18], have been studied by two-scale convergence in [11] and [26] and by asymptotic expansions
in [10] and [12]. In addition to cavitation, elasto-hydrodynamic phenomenon is taken into account in [12]. Cavitation in the
case that both surfaces are rough was modeled by variational inequalities in [8] and the effects of surface roughness were
analyzed by two-scale convergence.

In the case of a compressible fluid, where the fluid is assumed to have constant bulk modulus, the effects of surface
roughness on one surface have been considered in [1] and with both surfaces rough in [5]. In both of these works the
homogenization results were merely justified by using the formal method of multiple scale expansion. The present work
rigorously proves the homogenization of ρε (density) in the case of two rough surfaces. Some other works devoted to
roughness effects in compressible thin film lubrication are [14,15,21].

There are several papers where the homogenization process is illustrated by numerical investigations, examples are [5,8,
22,26]. Recently a new idea, based on bounds related to the homogenized equation, has been used with success, see [3,6,24].
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2. Weak maximum principle

The pressure–density relation (2) requires some justification, because p is defined only when ρ , the solution of Eq. (3), is
positive. We prove here that p is always defined provided that ρ is sufficiently smooth and takes positive boundary values.

We shall assume that ρ is a solution of the Reynolds equation

∂

∂t
(hρ) + div

(−λh3∇ρ + hρΛ
) = 0 in Ω × (0, T ] (11)

such that ρ ∈ C2,1(Q ) ∩ C(Q ), that is ρ is two times continuously differentiable w.r.t. x, continuously differentiable w.r.t. t
and continuous on Q = Ω ×[0, T ]. The parabolic boundary of the cylinder Q = Ω ×(0, T ) is denoted by Γ = Ω ×{0}∪∂Ω ×
[0, T ]. Here it is more convenient to write (11) as Lρ = 0 where L is a differential operator (acting on some function u) of
the form

Lu =
∑
i, j

ai j Di D ju +
∑

i

bi Diu + cu − h
∂u

∂t
.

For aij = λh3δi j , bi = 3λh2 Dih − hΛi and c = −(∂h/∂t + Λ · ∇h) = (V − − V +) · ∇h/2, it is clear that (11) is equivalent to
Lρ = 0.

The following versions of the maximum principle are valid for any parabolic operator of the form L with smooth coeffi-
cients. The proofs are based on ideas from Lieberman [23, Ch. 2].

Lemma 2.1. Suppose there exists a positive constant k such that c � kh in Q and that u ∈ C2,1(Q ) ∩ C(Q ). If{
Lu � 0 in Q ,

u � 0 on Γ,

then u � 0 in Q .

Proof. This lemma is a special case of [23, Lemma 2.3, p. 8], but we give a simplified proof for the sake clarity. Set v =
e−(k+1)t u. Then

Lv = e−(k+1)t Lu + (k + 1)hv � (k + 1)hv in Q (12)

and v � 0 on Γ . If v has a positive maximum at some q ∈ Q , then ∂v/∂t(q) = 0, Di v(q) = 0 and
∑

i, j ai j Di D j v(q) � 0,
hence

Lv(q) � cv(q) � khv(q),

contradicting (12). There remains the possibility that v attains a positive maximum on Ω × {T }. Suppose this is the case
and choose an increasing sequence of positive numbers t1, t2, . . . converging to T . Set Q i = Ω × (0, ti) and Mi = supQ i

v .
By the continuity of v , v(qi) = Mi for some qi ∈ Q i with Mi > 0 for i sufficiently large. By reasoning as above (on Q i) it
follows that qi ∈ Ω × {ti} with ∂v/∂t(qi) � 0, D j v(qi) = 0 and

∑
j,k a jk D j Dk v(qi) � 0, so

Lv(qi) � cv(qi) � khv(qi)

provided that i is large enough, again contradicting (12). �
The following theorem is also taken from [23, Theorem 2.4, p. 9].

Theorem 2.2. Suppose c and u as in Lemma 2.1. If{
Lu � 0 in Q ,

u � M on Γ,

for some constant M � 0, then u(x, t) � ekt M for all (x, t) ∈ Q .

Proof. Set v = u − ekt M . Then

Lv = Lu − L
(
ekt M

) = Lu + (kh − c)ekt M � 0 in Q

and

v = u − ekt M �
(
1 − ekt)M � 0 on Γ,

since ekt � 1 (k, t � 0). In view of Lemma 2.1, v � 0 in Q . �
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Theorem 2.3. Suppose in addition to the hypotheses of Lemma 2.1 that −kh � c in Q . If{
Lu � 0 in Q ,

u � m on Γ,

for some constant m � 0, then u(x, t) � e−ktm for all (x, t) ∈ Q .

Proof. Set v = e−ktm − u. Then

Lv = L
(
e−ktm

) − Lu = (c + kh)e−ktm − Lu � 0 in Q

and

v = e−ktm − u �
(
e−kt − 1

)
m � 0 on Γ,

since e−kt � 1 (k, t � 0). In view of Lemma 2.1, v � 0 in Q . �
Combining the preceding two theorems we obtain

Corollary 2.4 (Weak maximum principle for the Reynolds equation). Suppose ρ ∈ C2,1(Q ) ∩ C(Q ) is a solution of the compressible
Reynolds equation (1). Set

m = inf
Γ

ρ, M = sup
Γ

ρ, k = sup
Q

|(V − − V +) · ∇h|
2h

.

If m � 0, then

e−ktm � ρ(x, t) � ekt M for all (x, t) ∈ Q .

From Corollary 2.4 we deduce that ρ > 0 in Q provided that ρ > 0 on Γ . Hence p can be recovered from ρ by
inverting (3). This shows that the change of variables is consistent provided the solutions are sufficiently regular. Similarly
we obtain

Corollary 2.5 (Weak maximum principle for the homogenized equation). Suppose ρ ∈ C2,1(Q ) ∩ C(Q ) is a solution of the homoge-
nized Reynolds equation, i.e.

∂

∂t
(hρ) + div(−A∇ρ + ρb) = 0,

where h, A and b are defined in Theorem 5.3. Set

m = inf
Γ

ρ, M = sup
Γ

ρ, k = sup
Q

| ∂h
∂t + div b|

h
.

If m � 0, then

e−ktm � ρ(x, t) � ekt M for all (x, t) ∈ Q .

3. Existence and uniqueness

In this section it is proved that, under general assumptions on the data, an initial–boundary value problem of the form (7)
has a unique solution provided that the film thickness function h is sufficiently smooth. We ignore here any dependence
on ε, since this parameter is irrelevant in this regard.

The standard space for studying parabolic equations is

X = L2(0, T ; H1
0(Ω)

) ∩ H1(0, T ; H−1(Ω)
)
.

It is well known that each u ∈ X has a continuous representative in C([0, T ]; L2(Ω)) in which sense the initial condition for
u(0) is understood. Assume u0 ∈ L2(Ω), ϕ ∈ L2(0, T ; L2(Ω)) and F ∈ L2(0, T ; L2(Ω;R2)) and consider the initial–boundary
value problem for u⎧⎪⎪⎨⎪⎪⎩

∂

∂t
(hu) + div

(−λh3∇u + huΛ
) = ϕ − div F in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],
u = u0 on Ω × {0}.

(13)

We want to define a notion of weak solution u ∈ X for this problem. This can be done in several ways. For our approach to
be successful we must impose some restrictions on the function h, namely
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(i) h ∈ W 1,∞(Q ), where Q = Ω × (0, T ),
(ii) there exist positive constants α and β such that α � h � β .

Assume (temporarily) that u = u(x, t) and h = h(x, t) are smooth functions, for fixed t ∈ (0, T ] and multiply the equation

h
∂u

∂t
+ ∂h

∂t
u + div

(−λh3∇u + huΛ
) = ϕ − div F

with a test function, i.e. a smooth function v = v(x) with compact support in Ω , and integrate by parts. Thus we obtain∫
Ω

h
∂u

∂t
v + ∂h

∂t
uv + (

λh3∇u − huΛ
) · ∇v dx =

∫
Ω

ϕv + F · ∇v dx (14)

for all test functions v . Since h is bounded from below by a positive constant, v(x)/h(x, t) (t fixed) is also admissible as a
test function. Replacing v with v/h in (14), we obtain∫

Ω

∂u

∂t
v + ∂

∂t
(log h)uv + (

λh2∇u − uΛ
) · (∇v − v∇(log h)

)
dx =

∫
Ω

ϕ̃v + F̃ · ∇v dx (15)

for all test functions v , where ϕ̃ = ϕ/h − (F · ∇h)/h2 and F̃ = F/h. The identity (15) leads us to define the bilinear form

R̃(u, v; t) =
∫
Ω

∂

∂t
(log h)uv + (

λh2∇u − uΛ
) · (∇v − v∇(log h)

)
dx

=
∫
Ω

λh2∇u · ∇v − u(Λ · ∇v) − λh2(∇u · ∇(log h)
)

v +
(

Λ · ∇(log h) + ∂

∂t
(log h)

)
uv dx (16)

which makes sense for all u, v ∈ H1(Ω) provided that h ∈ L∞(Q ) and log h ∈ W 1,∞(Q ). (Since α � h � β and log is
Lipschitz continuous on the interval [α,β], for α > 0, we might as well assume h ∈ W 1,∞(Q ).) This motivates the following
abstract definition of weak solution for (13).

We say that u ∈ X is a weak solution of (13) if〈
u′(t), v

〉 + R̃
(
u(t), v; t

) = 〈
f̃ (t), v

〉
(17)

for all v ∈ H1
0(Ω) and a.e. t ∈ (0, T ], where f̃ ∈ L2(0, T ; H−1(Ω)) is defined by〈

f̃ (t), v
〉 = ∫

Ω

ϕ̃(t)v + F̃ (t) · ∇v dx

for all v ∈ H1
0(Ω).

By employing standard estimates, one shows that

R̃(v, v; t) � c‖∇v‖L2(Ω) − d‖v‖L2(Ω)

for all v ∈ H1
0(Ω), where c = c(α,λ) and d = d(α,λ,Λ,‖h‖W 1,∞(Q )), are positive constants. From standard existence theory

for parabolic equations (see e.g. Zeidler [29, Corollary 23.26, p. 426]) it then follows that for each (ϕ, F ) and u0 (as above)
there exists a unique u ∈ X satisfying (17).

4. A posteriori estimates

The standard a priori estimates (or energy estimates) that are derived to prove existence (and uniqueness) for an evo-
lution equation of the form (17) will depend on ‖h‖W 1,∞(Q ) . This is bad for homogenization, because when h = hε the
constants will blow up as ε approaches zero. However, knowing that (17) has a solution it is possible to obtain an a posteri-
ori energy estimate, better suited for homogenization, by considering a different formulation of (17) (see (20) below) which
seems more natural. Then we combine (20) with the information that ∂h/∂t = −div G to obtain the desired estimates. To
prove equivalence of the two formulations we need the following lemmas.

Lemma 4.1. For u, v ∈ X, define f : (0, T ) →R by

f (t) =
∫

u(t)v(t)dx.
Ω
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Then f is absolutely continuous and

f (t) − f (s) =
t∫

s

〈
u′(t), v(t)

〉 + 〈
u(t), v ′(t)

〉
dt

for all 0 � s � t � T .

Proof. See Zeidler [29, Proposition 23.23(iv), p. 422]. �
Lemma 4.2. For u ∈ X and h ∈ W 1,∞(Q ), define f by〈

f (t), v
〉 = ∫

Ω

h(t)u(t)v dx

for all v ∈ H1
0(Ω). Then f ∈ H1(0, T ; H−1(Ω)) with〈

f ′(t), v
〉 = 〈

u′(t),h(t)v
〉 + ∫

Ω

∂h

∂t
(t)u(t)v dx (18)

for all v ∈ H1
0(Ω). We write f = hu.

Proof. Put g(t) = h(t)v . Then g ∈ L2(0, T ; H1
0(Ω)) and g′(t) = ∂h/∂t(t)v belongs to L2(Ω) ⊂ H−1(Ω) for a.e. t . Using

Lemma 4.1 (with v = g)

T∫
0

(∫
Ω

h(t)u(t)v dx

)
φ′(t)dt =

T∫
0

(∫
Ω

u(t)g(t)dx

)
φ′(t)dt

= −
T∫

0

(〈
u′(t), g(t)

〉 + 〈
u(t), g′(t)

〉)
φ(t)dt

= −
T∫

0

(〈
u′(t),h(t)v

〉 + ∫
Ω

u(t)
∂h

∂t
(t)v dx

)
φ(t)dt (19)

for all φ ∈ C∞
c (0, T ). This proves that f is weakly differentiable and that (18) holds. From (18) we deduce that f ′ ∈

L2(0, T ; H−1(Ω)). �
In view of Lemma 4.2 and the identity (14) the following result holds.

Theorem 4.3. The weak formulation (17) is equivalent to〈
(hu)′(t), v

〉 + R
(
u(t), v; t

) = 〈
f (t), v

〉
a.e. t ∈ (0, T ] (20)

for all v ∈ H1
0(Ω), where

R(u, v; t) =
∫
Ω

λh3∇u · ∇v − hu(Λ · ∇v)dx

and f ∈ L2(0, T ; H−1(Ω)) is defined by〈
f (t), v

〉 = ∫
Ω

ϕv + F · ∇v dx.

Theorem 4.4. Let h ∈ W 1,∞(Q ) and let u ∈ X be a solution of (20). Suppose there exists a vector field G ∈ L∞(Q ) such that

∂h

∂t
= −div G in Q . (21)

Then there exists a constant C such that

‖u‖C([0,T ];L2(Ω)) + ‖u‖L2(0,T ;H1
0(Ω)) + ∥∥(hu)′

∥∥
L2(0,T ;H−1(Ω))

� C
(∥∥u(0)

∥∥
L2(Ω)

+ ‖ f ‖L2(0,T ;H−1(Ω))

)
. (22)

C depends only on α, β , λ, Λ, ‖G‖L∞(Q ) , T and Ω .
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Proof. Define

η(t) =
∫
Ω

h(t)u(t)2 dx.

In view of Lemmas 4.1 and 4.2, η is absolutely continuous and

η′ = 〈
(hu)′, u

〉 + 〈
u′,hu

〉 = 2
〈
(hu)′, u

〉 − ∫
Ω

∂h

∂t
u2 dx.

Combining this and (20) we obtain

η′ +
∫
Ω

∂h

∂t
u2 dx + 2R(u, u; t) = 2〈 f , u〉 a.e. in (0, T ]. (23)

By standard estimates there exist positive constants γ and θ such that

R(u, u; t) � θ‖∇u‖2
L2(Ω)

− γ ‖u‖2
L2(Ω)

.

Owing to (21),∣∣∣∣ ∫
Ω

∂h

∂t
u2 dx

∣∣∣∣ =
∣∣∣∣ ∫
Ω

G · ∇(
u2)dx

∣∣∣∣ � 2‖G‖L∞(Q )‖u‖L2(Ω)‖∇u‖L2(Ω)

� 2

θ
‖G‖2

L∞(Q )‖u‖2
L2(Ω)

+ θ

2
‖∇u‖L2(Ω).

The free term can be estimated as∣∣2〈 f , u〉∣∣ � 2C‖ f ‖H−1(Ω)‖∇u‖L2(Ω) � 2C2

θ
‖ f ‖2

H−1(Ω)
+ θ

2
‖∇u‖2

L2(Ω)
,

where the constant C depends on Ω . Using these estimates in (23), we obtain

η′ + θ‖∇u‖2
L2(Ω)

� 2C2

θ
‖ f ‖2

H−1(Ω)
+ 2

θ
‖G‖2

L∞(Q )‖u‖2
L2(Ω)

+ γ ‖u‖2
L2(Ω)

. (24)

Since ‖u(t)‖2
L2(Ω)

� β−2η(t) we obtain

η′(t) � λ1
∥∥ f (t)

∥∥2
H−1(Ω)

+ λ2η(t),

for positive constants λ1 and λ2. From Grönwall’s inequality we deduce

η(t) � eλ2t

(
η(0) + λ1

t∫
0

∥∥ f (τ )
∥∥2

H−1(Ω)
dτ

)
.

Since ‖u(t)‖2
L2(Ω)

� α−2η(t) there exists a positive constant C such that

max
0�t�T

∥∥u(t)
∥∥2

L2(Ω)
� C

(∥∥u(0)
∥∥2

L2(Ω)
+ ‖ f ‖2

L2(0,T ;H−1(Ω))

)
.

Next, integrating (24) from t = 0 to T and using the above estimates yields

‖∇u‖2
L2(0,T ;L2(Ω))

� C
(∥∥u(0)

∥∥2
L2(Ω)

+ ‖ f ‖2
L2(0,T ;H−1(Ω))

)
,

where the constant C depends on α, β , λ, Λ, ‖G‖L∞(Q ) , T and Ω .
From (20), with ‖v‖H1

0(Ω) � 1 we obtain∣∣〈(hu)′(t), v
〉∣∣ = ∣∣〈 f (t), v

〉 − R
(
u(t), v; t

)∣∣
�

∥∥ f (t)
∥∥

H−1(Ω)
+ γ1

∥∥∇u(t)
∥∥

L2(Ω)
+ γ2

∥∥u(t)
∥∥

L2(Ω)
.

Hence∥∥(hu)′(t)
∥∥

H−1(Ω)
�

∥∥ f (t)
∥∥

H−1(Ω)
+ γ3

∥∥u(t)
∥∥

H1
0(Ω)

.

By squaring this inequality and integrating from t = 0 to T and using the above estimates we obtain∥∥(hu)′
∥∥2

L2(0,T ;H−1(Ω))
� C

(∥∥u(0)
∥∥2

L2(Ω)
+ ‖ f ‖2

L2(0,T ;H−1(Ω))

)
for some constant C with dependence as above. �
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5. Homogenization

In this section we consider the homogenization of the generalized equation corresponding to (7), i.e. Eq. (20). For each
ε > 0, let uε ∈ X be the unique solution of the evolution equation⎧⎪⎨⎪⎩

〈
(hεuε)

′(t), v
〉 + ∫

Ω

(
λhε(t)

3∇uε(t) − hε(t)uε(t)Λ
) · ∇v dx = 〈

fε(t), v
〉

a.e. in (0, T ],

uε(0) = ρ0 − ρa := u0

(25)

for all v ∈ H1
0(Ω), where fε(t) = −ρa∂hε/∂t(t) − ρa div(hε(t)Λ). We assume that hε(x, t) = h(x, t, x/ε, t/ε) according to

Eq. (4) with h±, r± ∈ W 1,∞(Q × � × T) and that α � h � β for positive constants α and β . Recall also the relation (6).
Under these assumptions we conclude that there exists a constant C such that

‖Gε‖L∞(Q ),
∥∥uε(0)

∥∥
L2(Ω)

, ‖ fε‖L2(0,T ;H−1(Ω)) � C

for all ε > 0. Owing to the estimates in Theorem 4.4, there exists a constant C (independent of ε) such that

‖uε‖C([0,T ];L2(Ω)) + ‖uε‖L2(0,T ;H1
0(Ω)) + ∥∥(hεuε)

′∥∥
L2(0,T ;H−1(Ω))

� C . (26)

Since the above bound is independent of ε, we can apply the compactness theorem of two-scale convergence in
the parabolic setting (see e.g. Holmbom, Svanstedt and Wellander [20, Proposition 1] and Lukkassen, Meidell and Wall
[25, Theorem 3]). Thus we can extract a subsequence (still denoted by ε) such that uε two-scale converges to u(x, t, τ ) ∈
L2((0, T ) × T; H1

0(Ω)) and ∇uε two-scale converges to ∇xu(x, t, τ ) + ∇ξ u1(x, t, ξ, τ ), where u1 ∈ L2(Q × T; H1
per(�)). Here

it can be noted that the energy estimate does not involve the time derivative of uε so we can not draw the standard con-
clusion that the limit function u does not depend on τ . However, by taking into account that h is given by (4), one can
conclude as demonstrated below that u = u(x, t), i.e. u does not depend on the variable τ .

Lemma 5.1. Suppose that

• h has the special form (4),
• uε two-scale converges to u = u(x, t, τ ) ∈ L2((0, T ) ×T; H1

0(Ω)),
• qε = (hεuε)

′ converges weakly to q in L2(0, T ; H−1(Ω)).

Then

(i) u = u(x, t) belongs to L2(0, T ; H1
0(Ω)),

(ii) q = (hu)′ ,

where h = h(x, t) ∈ W 1,∞(Q ) denotes the average of h over �.

Proof. On the one hand, since qε = (hεuε)
′ is bounded in L2(0, T ; H−1(Ω)) it follows that

lim
ε→0

T∫
0

〈
qε(t), v

〉
εφ1(t)φ2(t/ε)dt = 0

for all v ∈ H1
0(Ω), φ1 ∈ C1

c (0, T ) and φ2 ∈ C1(T). On the other hand

T∫
0

〈qε, v〉εφ(t, t/ε)dt = −
T∫

0

(∫
Ω

hεuε v dx

)(
εφ′

1(t)φ2(t/ε) + φ1(t)φ
′
2(t/ε)

)
dt,

by integration by parts. Passing to the limit in this equality, and using the definition of two-scale convergence for the
right-hand side yields

0 =
∫
Ω

( T∫
0

(∫
T

h(x, t, τ )u(x, t, τ )φ′
2(τ )dτ

)
φ1(t)dt

)
v(x)dx,

where h(x, t, τ ) = ∫
� h(x, t, ξ, τ )dξ . Since v , φ1 and φ2 are arbitrary we conclude that the product h(x, t, τ )u(x, t, τ ) does

not depend on τ . But using the translation invariance of the periodic cell � and the special form (4) of h, we see that
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h(x, t, τ ) = h0(x, t) +
∫
�

r+(
ξ − τ V +) − r−(

ξ − τ V −)
dξ

= h0(x, t) +
∫
�

r0(ξ)dξ

is in fact independent of τ . Hence u does not depend on τ .
If qε = (hεuε)

′ , an integration by parts shows that

T∫
0

〈qε, v〉φ dt = −
T∫

0

(∫
Ω

hεuε v dx

)
φ′ dt

for all v ∈ H1
0(Ω) and φ ∈ C1

c (0, T ). By weak and two-scale convergence we obtain in the limit as ε → 0

T∫
0

〈q, v〉φ dt = −
T∫

0

(∫
Ω

huv dx

)
φ′ dt.

This proves q = (hu)′ . �
Theorem 5.2 (Parabolic two-scale compactness). Let uε be a sequence in X satisfying the bound (26). Then, on passing to a subse-
quence, there exist u ∈ X and u1 ∈ L2(Q ×T; H1

per(�)) such that

(i) uε two-scale converges to u(x, t) in L2(Q × � ×T),
(ii) ∇uε two-scale converges to ∇u(x, t) + ∇ξ u1(x, t, ξ, τ ) in L2(Q × � ×T;R2),

(iii) hεuε converges to hu weakly in H1(0, T ; H−1(Ω)).

Proof. (i) and (ii) with u ∈ L2(0, T ; H1
0(Ω)) follow from the bound (26), standard compactness results of two-scale conver-

gence (see Holmbom, Svanstedt and Wellander [20] and the references therein for the details) and Lemma 5.1.
(iii) follows from Lemma 5.1. To prove that u ∈ X , set u = hu. By (iii), u′ ∈ L2(0, T ; H−1(Ω)) and since h ∈ W 1,∞(Q ) we

have u ∈ X . By our assumptions on h it follows that 1/h ∈ W 1,∞(Q ). Applying Lemma 4.2 (with h = 1/h and u = u) we
conclude that u = u/h ∈ X . �
Theorem 5.3 (Homogenization). The whole sequence uε of solutions to (25) in X converges weakly in L2(0, T ; H1

0(Ω)) to the unique
solution u ∈ X of an evolution equation of the form⎧⎪⎪⎨⎪⎪⎩

〈
(hu)′(t), v

〉 + ∫
Ω

(
A∇u(t) − ub(t)

) · ∇v dx =
∫
Ω

−ρa
∂h

∂t
(t)v + ρab(t) · ∇v dx a.e. in (0, T ],

u(0) = ρ0 − ρa,

(27)

where h = h0 + ∫
� r0(ξ)dξ , the matrix function A is defined by (38) and the vector field b is defined by (39) in terms of solutions to

the local problems (35)–(37). In other words, ρ = u + ρa is a generalized solution of the initial–boundary value problem⎧⎪⎪⎨⎪⎪⎩
∂

∂t
(hρ) + div(−A∇ρ + ρb) = 0 in Ω × (0, T ],

ρ = ρa on ∂Ω × [0, T ],
u = ρ0 on Ω × {0}.

(28)

Moreover the whole sequence ∇uε two-scale converges to ∇u +∇ξ u1 , with u1 ∈ L2(Q ×T; H1
per(�)). The function u1 can be written

as

u1(x, t, ξ, τ ) = ∂u

∂x1
(x, t)χ1(x, t, ξ, τ ) + ∂u

∂x2
(x, t)χ2(x, t, ξ, τ ) + (

u(x, t) + ρa
)
χ3(x, t, ξ, τ ), (29)

where χ1 , χ2 and χ3 are unique ξ -periodic solutions of

divξ

(
λh3(∇ξχ1 + e1)

) = 0,

divξ

(
λh3(∇ξχ2 + e2)

) = 0,

∂h

∂τ
+ divξ

(−λh3∇ξχ3 + hΛ
) = 0

in Q × � ×T, where e1 = (1,0), e2 = (0,1) are vectors in R
2 .
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Proof. Extract from uε a subsequence (also denoted by uε) with the properties of Theorem 5.2 converging to u ∈ X .
Multiplying (25) with φ ∈ C1

c (0, T ) and integrating by parts we obtain∫
Q

−hε(uε + ρa)vφ′ + (
λh3

ε∇uε − hε(uε + ρa)Λ
) · ∇vφ dx dt = 0. (30)

Passing to the limit as ε → 0 and using the definition of two-scale convergence we obtain∫
Q

∫
�×T

−h(u + ρa)vφ′ + (
λh3(∇u + ∇ξ u1) − h(u + ρa)Λ

) · ∇vφ dξ dτ dx dt = 0, (31)

or on integrating by parts with respect to t∫
Q

〈
(hu)′, v

〉
φ + ρa

∂h

∂t
vφ +

( ∫
�×T

(
λh3(∇u + ∇ξ u1) − h(u + ρa)Λ

)
dξ dτ

)
· ∇vφ dx dt = 0 (32)

for all v ∈ H1
0(Ω) and all φ ∈ C1

c (0, T ).
Next replace v(x) and φ(t) in (30) with vε(x) = εv1(x, x/ε) and φε(t) = φ1(t, t/ε), where v1 = v1(x, ξ) belongs to a

set of smooth ξ -periodic functions that is dense in L2(Ω; H1
per(�)); and φ1 ∈ C1

c (0, T ; C1
per(T)). On passing to the limit we

obtain∫
Q

∫
�×T

−h(u + ρa)v1
∂φ1

∂τ
+ (

λh3(∇u + ∇ξ u1) − h(u + ρa)Λ
) · ∇ξ v1φ1 dξ dτ dx dt = 0.

Integrating by parts and using that u does not depend on τ , we obtain∫
Q

∫
�×T

(u + ρa)
∂h

∂τ
v1φ1 + (

λh3(∇u + ∇ξ u1) − h(u + ρa)Λ
) · ∇ξ v1φ1 dξ dτ dx dt = 0.

As linear combinations of functions of the form v1(x, ξ)φ1(t, τ ) are dense in L2(Q ×T; H1
per(�)) we conclude that∫

Q

∫
�×T

(u + ρa)
∂h

∂τ
v1 + (

λh3(∇u + ∇ξ u1) − h(u + ρa)Λ
) · ∇ξ v1 dξ dτ dx dt = 0 (33)

for all v1 ∈ L2(Q × T; H1
per(�)). The integral identities (32) and (33) define a coupled system of equations for u and u1.

One can prove energy estimates for this system, similarly to what was done in Section 4. From these energy estimates one
infers that u and u1 are uniquely determined by (32) and (33). Since the limit functions u and u1 are unique we must then
have convergence for the whole sequence uε .

Moreover, the linearity of Eq. (33) implies that u1 can be written in the form

u1 = ∂u

∂x1
χ1 + ∂u

∂x2
χ2 + (u − ρa)χ3, (34)

where χi ∈ L2(Q ×T; H1
per(�)), i = 1,2,3, solve the local problems∫

�

λh3(∇ξχ1 + e1) · ∇ϕ dξ = 0, (35)

∫
�

λh3(∇ξχ2 + e2) · ∇ϕ dξ = 0, (36)

∫
�

(
λh3∇ξχ3 − hΛ

) · ∇ϕ − ∂h

∂τ
ϕ dξ = 0 (37)

for all ϕ ∈ H1
per(�). Define

A(x, t) =
∫

λh3
(1 + ∂χ1

∂ξ1

∂χ2
∂ξ1

∂χ1
∂ξ2

1 + ∂χ2
∂ξ2

)
dξ dτ , (38)
�×T
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b(x, t) =
∫

�×T

hΛ − λh3∇ξχ3 dξ dτ

= hΛ −
∫

�×T

λh3∇ξχ3 dξ dτ . (39)

Then we see that (32) becomes∫
Q

〈
(hu)′, v

〉
φ + ρa

∂h

∂t
vφ + (

A∇u − (u + ρa)b
) · ∇vφ dx dt = 0. (40)

This in turn implies that u ∈ X is a solution of the evolution equation (27) or equivalently ρ = u + ρa is a generalized
solution of the initial–boundary value problem (28).

It remains to show that the limit function u satisfies the initial condition u(0) = ρ0 − ρa . To this end, multiply (25) with
φ ∈ C1(0, T ) such that ϕ(0) = 1, ϕ(T ) = 0 and integrate by parts. Thus we obtain∫

Ω

hεuε(0)v dx +
∫
Q

−hε(uε + ρa)vφ′ + (
λh3

ε∇uε − hε(uε + ρa)Λ
) · ∇vφ dx dt = 0. (41)

Letting ε → 0 yields∫
Ω

h(0)(ρ0 − ρa)v dx +
∫

Q ×�×T

−h(u + ρa)vφ′ + (
λh3(∇u + ∇ξ u1) − h(u + ρa)Λ

) · ∇vφ dξ dτ dx dt = 0. (42)

From (32) it follows that∫
Ω

hu(0)v dx +
∫

Q ×�×T

−h(u + ρa)vφ′ + (
λh3(∇u + ∇ξ u1) − h(u + ρa)Λ

) · ∇vφ dξ dτ dx dt = 0 (43)

for all φ ∈ C1(0, T ) such that φ(0) = 1 and φ(T ) = 1. Subtracting (42) from (43) gives∫
Ω

h
(
u(0) − ρ0 + ρa

)
v dx = 0

for all v ∈ H1
0(Ω). Since h > 0 this implies u(0) = ρ0 − ρa a.e. in Ω . �

6. A corrector result

According to Theorem 5.3 uε → u weakly in L2(0, T ; H1
0(Ω)). Here it is proved that the convergence is actually strong

provided that a small corrector term is added to uε . The key result is

Lemma 6.1. Let uε be the sequence of solutions of (25). Then

lim
ε→0

∫
Q

ϕεuε + Fε · ∇uε dx dt = 0

for all ϕε ∈ L2(Q ) and all Fε ∈ L2(Q ;R2) two-scale converging to zero.

To prove this lemma we introduce a new function qε that solves a “dual problem” (cf. (46)). By homogenizing the dual
problem, we analyze

d

dt

∫
Ω

hεuεqε dx

as ε → 0. Then Lemma 6.1 follows, if qε is chosen in the right way.
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6.1. A dual problem

Let uε ∈ X be the generalized solution of the Reynolds equation, i.e.⎧⎪⎨⎪⎩
〈
(hεuε)

′(t), v
〉 + Rε

(
uε(t), v; t

) =
∫
Ω

ρa
∂hε

∂t
(t)v + ρahε(t)Λ · ∇v dx a.e. in (0, T ],

uε(0) = u0

(44)

for all v ∈ H1
0(Ω), where Rε is the bilinear form defined by

Rε(u, v; t) =
∫
Ω

(
λhε(t)

3∇u − hε(t)Λ
) · ∇v dx

for all u, v ∈ H1
0(Ω).

Consider now the following problem{ 〈
w ′

ε(t),hε(T − t)v
〉 + Rε

(
v, wε(t), v; T − t

) = 〈
fε(T − t), v

〉
a.e. in (0, T ],

wε(0) = 0,
(45)

where fε is chosen later on. For the time being we shall assume that fε converges weakly in L2(0, T ; H−1(Ω)). It can
be shown that under the same assumptions that existence for (44) was proved, (45) has a unique solution wε ∈ X . Set
qε(t) = −wε(T − t). Then q′

ε(t) = w ′
ε(T − t) and therefore qε solves{〈

q′
ε(t),hε(t)v

〉 − Rε

(
v,qε(t), v; t

) = 〈
fε(t), v

〉
a.e. in (0, T ],

qε(T ) = 0.
(46)

6.2. Homogenization of the dual problem

Choose fε to be of the form〈
fε(t), v

〉 = ∫
Q

ϕε(t)v + Fε(t) · ∇v dx, (47)

where ϕε ∈ L2(Q ) and Fε ∈ L2(Q ;R2) both two-scale converge to zero.
With this definition of fε we find the homogenized equations for (46). An energy estimate of the type

‖qε‖C([0,T ];L2(Ω)) + ‖qε‖L2(0,T ;H1
0(Ω)) + ∥∥(hεqε)

′∥∥
L2(0,T ;H−1(Ω))

� C (48)

can be derived in a similar fashion to that for uε . Thus we can apply Theorem 5.2 and homogenize Eq. (46). In the limit we
obtain a system of equations for q ∈ X with q(T ) = 0 and q1 ∈ L2(Q ×T; H1

per(�)).
Note that in view of Lemma 4.2 and relation (6) we can write〈

q′
ε(t),hε(t)v

〉 = 〈
(hεqε)

′(t), v
〉 − ∫

Ω

∂hε

∂t
qε(t)v dx

= 〈
(hεqε)

′(t), v
〉 − ∫

Ω

Gε · ∇qε(t)v + qε(t)Gε · ∇v dx. (49)

We rewrite (46) using (49), multiply with φ ∈ C1
c (0, T ) and integrate by parts, thus obtaining∫

Q

−hεqε vφ′ + (−(
λh3

ε∇qε + qεGε

) · ∇v + (hεΛ − Gε) · ∇qε v
)
φ dx dt =

∫
Q

(ϕε v + Fε · ∇v)φ dx dt. (50)

Sending ε → 0 yields∫
Q

hqvφ′ +
( ∫

�×T

−(
λh3(∇q + ∇ξ q1) + qG

) · ∇v + (hΛ − G) · (∇q + ∇ξ q1)v dξ dτ

)
φ dx dt = 0 (51)

for all v ∈ H1
0(Ω) and φ ∈ C1

c (0, T ). By using test functions of the second form we obtain∫ ∫
−hqv1

∂φ1

∂τ
− (

λh3(∇q + ∇ξ q1) + qG
) · ∇ξ v1φ1 dξ dτ dx dt = 0 (52)
Q �×T
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or equivalently∫
Q

∫
�×T

q
∂h

∂τ
v1 − (

λh3(∇q + ∇ξ q1) + qG
) · ∇ξ v1 dξ dτ dx dt = 0 (53)

for all v1 ∈ L2(Q ×T; H1
per(�)). One checks that the unique solution of the system (51) and (53) is q = q1 = 0.

6.3. Proof of Lemma 6.1

By the product rule

d

dt

∫
Ω

hεuεqε dx = 〈
(hεuε)

′,qε

〉 + 〈
q′
ε,hεuε

〉
= −Rε(uε,qε; t) +

∫
Ω

ρa
∂hε

∂t
qε + ρahεΛ · ∇qε dx + Rε(uε,qε; t) − 〈 fε, uε〉

=
∫
Ω

ρa
∂hε

∂t
qε + ρahεΛ · ∇qε dx − 〈 fε, uε〉. (54)

Integrating this equality from t = 0 to T yields

∫
Ω

hεuεqε dx

∣∣∣∣T

t=0
=

∫
Q

ρa
∂hε

∂t
qε + ρahεΛ · ∇qε dx dt −

T∫
0

〈 fε, uε〉dt. (55)

Taking into account that uε(0) = u0, qε(T ) = 0 and relation (6) we obtain

T∫
0

〈 fε, uε〉dt =
∫
Ω

hε(0)u0qε(0)dx +
∫
Q

ρa(Gε + hεΛ) · ∇qε dx dt. (56)

Passing to the limit in (56) proves Lemma 6.1.

Theorem 6.2. Let uε be the sequence of solutions to (25) and let u and u1 be the solutions of the homogenized system (32) and (33).
Suppose that the vector field ∇ξ u1(x, t, x/ε, t/ε) is measurable on Q and two-scale converges to ∇ξ u1(x, t, ξ, τ ), this is for example
the case if ∇ξ u1 ∈ L2(Q ; Cper(� ×T)). Then

(i) limε→0 ‖u − uε‖L2(Q ) = 0,
(ii) limε→0 ‖∇u + ∇ξ u1(x, t, x/ε, t/ε) − ∇uε‖L2(Q ) = 0,

(iii) limε→0 ‖u + εu1(x, t, x/ε, t/ε) − uε‖L2(0,T ;H1
0(Ω)) = 0.

Proof. One verifies that ϕε(x, t) = u(x, t)− uε(x, t) two-scale converges to 0 in L2(Q ×�×T) and that Fε(x, t) = ∇u(x, t)+
∇ξ u1(x, t, x/ε, t/ε) − ∇uε(x, t) two-scale converges to 0 in L2(Q × � ×T;R2). Thus (i) and (ii) follow from Lemma 6.1 and
the identity

‖u − uε‖2
L2(Q )

+ ∥∥∇u + ∇ξ u1(x, t, x/ε, t/ε) − ∇uε

∥∥2
L2(Q )

=
∫
Q

ϕε(u − uε) + Fε · (∇u + ∇ξ u1(x, t, x/ε, t/ε) − ∇uε

)
dx dt.

(iii) is a direct consequence of (i) and (ii). �
7. Remarks on convergence of pressure, friction and load

Recall that the pressure is defined as

pε = 1
log

(
ρε

)
, ρε = uε + ρa,
β ρa
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which makes sense only if ρε > 0. By Corollary 2.4 it is clear that this is the case provided that Lemma 2.1 holds. This
maximum principle was proved for ρε ∈ C(Q ) ∩ C2,1(Q ) and it is not known to the authors if it remains true under
weakened regularity assumptions. Taking into account the special dependence of hε on ε leads to

ρε(x, t) � K1e−K2t/ε (x, t) ∈ Q .

This information, however, is not sufficient to conclude that pε is bounded, let alone converges, in L2(Q ), as shown by the
following example:

For ε > 0, define

ρε(t) =
{

e−1/ε 0 � t < ε,

1 ε � t � 1.

Then lim‖ρε − 1‖L2(0,1) = 0, although ‖ logρε‖L2(0,1) = ε−1/2.

Since the maximum principle for the homogenized equation (Corollary 2.5) asserts that ρ � α in Q for some positive
constant, ρ = u + ρa being the strong limit in L2(Q ) of ρε , the problem seems to be that the maximum principle does not
take into account the averaging effect of the oscillations upon ρε . It should be noted that

lim
ε→0

‖pε − p‖L2(Q ′) = 0, p = 1

β
log

(
ρ

ρa

)
,

for all Q ′ ⊂ Q where the sequence ρε is uniformly bounded from below by a positive constant, say ρε � α a.e. in Q ′ . Thus
the present analysis is inconclusive, inasmuch as the question of existence of such a set Q ′ is not resolved.

Not being able to prove the convergence of pε , the present analysis is consequently also inconclusive in regard to the
convergence of the load carrying force Lε defined by (9). Nevertheless, one would expect, as confirmed by the numerical
experiments in [5], that at least

Lε(t) → L(t) =
∫
Ω

1

β
log

(
u + ρa

ρa

)
weakly in L2(0, T ). As to the convergence of friction force Fε , defined by (8), one would expect that

Fε(t) → F (t, τ ) =
∫
Ω

∫
�

− h

2β(u + ρa)
(∇u + ∇ξ u1) + μ

h

(
V + − V −)

dξ dx

in the two-scale sense, but due to the above stated reasons it is not even clear that

∇pε = 1

βρε
∇ρε

is bounded in L2(Q ).
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