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a b s t r a c t

Let M be an n-dimensional compact hypersurface without boundary in a unit sphere
Sn+1(1).M is called a linear Weingarten hypersurface if cR+ dH + e = 0, where c, d and e
are constantswith c2+d2 > 0, R andH denote the scalar curvature and themean curvature
of M , respectively. By the Gauss equation, we can rewrite the condition cR + dH + e = 0
as (n− 1)ẽH2 + aH = b, where H2 is the 2nd mean curvature, a, b and ẽ are constants such
that a2 + ẽ2 > 0, when ẽ = 0, it reduces to the constant mean curvature case.

In this paper, we obtain some stability results about linear Weingarten hypersurfaces,
which generalize the stability results about the hypersurfaces with constant mean
curvature orwith constant scalar curvature.We show that linearWeingartenhypersurfaces
satisfying (n−1)H2 + aH = b, where a and b are constants, can be characterized as critical
points of the functional


M(a + nH) dv for volume-preserving variations. We prove that

such a linearWeingarten hypersurface is stable if and only if it is totally umbilical and non-
totally geodesic. We also obtain optimal upper bounds for the first and second eigenvalues
of the Jacobi operator of linear Weingarten hypersurfaces.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that hypersurfaces with constant mean curvature in real space forms (Rn+1, Sn+1(1) or Hn+1(−1)) are
characterized as critical points of the area functional for volume-preserving variations, and hypersurfaces with constant
scalar curvature in real space forms are critical points of the functional


M H dv for volume-preserving variations, where

H is the mean curvature. There exist many results about hypersurfaces with constant mean curvature or constant scalar
curvature in a unit sphere Sn+1(1) (see [1–12] and the refs therein). Among these results, Barbosa et al. (see [5]) proved
that geodesic sphere is the only stable compact hypersurface with constant mean curvature in a sphere. In [1], Alencar et al.
showed that, if a hypersurfaceM has constant scalar curvature n(n−1)r and is contained in an open hemisphere of Sn+1(1)
(which implies that r > 1), then M is stable if and only if it is a geodesic sphere.

In this paper, we prove some stability results about linear Weingarten hypersurfaces, which generalize the stability
results about the hypersurfaces with constant mean curvature or with constant scalar curvature. We also obtain optimal
estimates for the first and second eigenvalues of the Jacobi operator of linear Weingarten hypersurfaces.

The notion of linear Weingarten hypersurfaces in a unit sphere was introduced by Li et al. (see [13]), where they showed
some rigidity results about linear Weingarten hypersurfaces.
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Definition 1.1 ([13]). Let M be a hypersurface in a unit sphere Sn+1(1). We call M a linear Weingarten hypersurface if
cR + dH + e = 0, where c, d and e are constants such that c2 + d2 > 0, R and H denote the scalar curvature and the
mean curvature ofM , respectively.

Remark 1.2. In Definition 1.1, when c = 0,M has constant mean curvature; when d = 0,M has constant scalar curvature.
By the Gauss equation, we can rewrite the condition cR + dH + e = 0 as (n − 1)ẽH2 + aH = b, where H2 is the 2nd mean
curvature, a, b and ẽ are constants such that a2 + ẽ2 > 0, when ẽ = 0, it reduces to the constant mean curvature case, when
ẽ ≠ 0, without loss of generality, we can assume ẽ = 1.

In Section 3, we show that linearWeingarten hypersurfaces satisfying (n−1)H2+aH = b, can be characterized as critical
points of the functional


M(a+nH) dv for volume-preserving variations, where a is a constant and H is the mean curvature.

We obtain the following stability result (see Section 4).

Theorem 1.3. Let M be a compact orientable hypersurface in Sn+1(1),M satisfies that H2 > 0, since H2
≥ H2 > 0, we choose

the orientation such that H > 0, and assume that (n− 1)H2 + aH = b, where a ≥ 0 and b are constants. Then M is stable if and
only if M is totally umbilical and non-totally geodesic.

From the point of view of spectral theory, the spectral behavior of the Jacobi operator associated to the corresponding
variational problem is directly related to the instability of the critical points (submanifolds). There have been many results
(see [2,8,11,14–17,12,18–20] and the refs therein) on the eigenvalue estimates of both the Jacobi operator Jm = −1− S −n
and the Jacobi operator Js = −� − {n(n − 1)H + nHS − f3}, where the spectral behavior of Jm is related to the instability of
minimal hypersurfaces and constant mean curvature hypersurfaces in Sn+1(1), and the spectral behavior of Js is related to
the instability of constant scalar curvature hypersurfaces in Sn+1(1). Here 1 is the Laplacian operator and � is a differential
operator defined in (2.1).

With the same hypothesis as in Theorem 1.3, we prove that the Jacobi operator Jw (see (3.3)) associated to the variational
problem for linear Weingarten hypersurfaces is elliptic (see Lemma 4.1). In the last two sections, we get optimal estimates
for the first and second eigenvalues of the Jacobi operator Jw . More precisely, under the same assumptions of Theorem 1.3,
we have the following theorem.

Theorem 1.4. The first eigenvalue λ
Jw
1 of the Jacobi operator Jw satisfies:

λ
Jw
1 ≤ an2H2

min − [2bn2
+ 4n(n − 1) − a2n]Hmin +

2bn(b + 1)
Hmin

− 3an(b + 1),

and the equality holds if and only if M is totally umbilical and non-totally geodesic, or M is a Riemannian product Sm(c) ×

Sn−m(
√
1 − c2), 1 ≤ m ≤ n − 1 with H2 > 0.

Wehave the following estimate for the second eigenvalue of Jw = −(2�+a1)−2[S1S2−3S3+(n−1)S1]−a[(S21−2S2)+n]
(see (3.3)).

Theorem 1.5. Let M be a compact orientable hypersurface in Sn+1(1),M satisfies that H2 > 0, we choose the orientation such
that H > 0. Assume n ≥ 5, a ≥ 0, then Jw is elliptic and the second eigenvalue λ

Jw
2 of Jw satisfies:

λ
Jw
2 ≤ 0,

and λ
Jw
2 = 0 if and only if M is totally umbilical and non-totally geodesic.

Remark 1.6. We note that in Theorem 1.5, we have weaker assumptions than in Theorem 1.3 and in Theorem 1.4. Here
(n − 1)H2 + aH = b is not assumed.

2. Preliminaries

Let x : M → Sn+1(1) be an n-dimensional hypersurface in a unit sphere Sn+1(1). We assume that all manifolds are
smooth and connected without boundary. We make the following convention on the range of indices:

1 ≤ i, j, k, . . . ≤ n.

We denote the principal curvatures of M by k1, . . . , kn. Let H,H2 and H3 denote the mean curvature, the 2nd mean
curvature and the 3rd mean curvature ofM respectively, namely,

H =
1
n
S1 =

1
n

n
i=1

ki, H2 =
2

n(n − 1)
S2 =

2
n(n − 1)


1≤i1<i2≤n

ki1ki2 ,

H3 =
6

n(n − 1)(n − 2)
S3 =

6
n(n − 1)(n − 2)


1≤i1<i2<i3≤n

ki1ki2ki3 .
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We choose a local orthonormal frame {e1, . . . , en, en+1} and the dual coframe {ω1, . . . , ωn, ωn+1} such that when
restricted on M, {e1, . . . , en} is a local orthonormal frame on M . Hence we have ωn+1 = 0 on M and we have the following
structure equations (see [21,22,10,18]):

dx =


i

ωiei,

dei =


j

ωijej +


j

hijωjen+1 − ωix,

den+1 = −


i,j

hijωjei,

where hij denote the components of the second fundamental form ofM .
The Gauss equations are (see [22,10])

Rijkl = δikδjl − δilδjk + hikhjl − hilhjk,

Rik = (n − 1)δik + nHhik −


j

hijhjk,

R = n(n − 1)r = n(n − 1) + n2H2
− S,

where R is the scalar curvature of M, r is the normalized scalar curvature of M and S =


i,j h
2
ij is the norm square of the

second fundamental form, H =
1
n


i hii is the mean curvature ofM .

The Codazzi equations are given by (see [22,10])

hijk = hikj.

Let f be a smooth function onM , we define its gradient and Hessian by (see [22,10])

df =

n
i=1

fiωi,

n
j=1

fijωj = dfi +
n

j=1

fjωji.

Let φ =


i,j φijωi ⊗ ωj be a symmetric tensor defined onM , where

φij = nHδij − hij.

We introduce Cheng–Yau’s operator � associated to φ acting on any smooth function f by (see [9])

�f =


i,j

(nHδij − hij)fij, (2.1)

where fij are the components of the Hessian of f . The Laplacian of f is defined by

1f = tr(Hess(f )) =


i

fii. (2.2)

3. The variation problem for linear Weingarten hypersurfaces

Let x : M → Sn+1(1) be an immersion of an n-dimensional compact, connected, orientablemanifoldM without boundary
into a unit sphere Sn+1(1).

Definition 3.1 (Cf. [1,5]). Let X : (−ε, ε) × M → Sn+1(1), ε > 0, be a differentiable map. We call X a variation of x if

(1) for each t ∈ (−ε, ε), Xt(p) = X(t, p), p ∈ M , is an immersion.
(2) X0 = x.

Let X be a variation of x and W (p) =
∂X
∂t |t=0 be the variational vector of X . We denote by N the unit normal vector along

the immersion x and define the volume function V : (−ε, ε) → R of X by

V (t) =


[0,t]×M

X∗dw,

where dw is the volume element on Sn+1(1). X is called a normal variation of x if W is parallel to N . X is called a volume-
preserving variation of x if V (t) = V (0) for all t ∈ (−ε, ε).

Set u = ⟨W ,N⟩, which is the normal projection of the variation vector field. We have the following lemmas.
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Lemma 3.2 (Cf. [4,5,1]).

dV
dt


t=0

=


M

udv.

Lemma 3.3 (Cf. [17,3,21]). Let M be an n-dimensional compact hypersurface in Sn+1(1). We have

dS1
dt

= 1u + (S21 − 2S2)u + nu +


i

WiS1,i;

dS2
dt

= �u + (S1S2 − 3S3)u + (n − 1)S1u +


i

WiS2,i;

d(dvt)

dt
=


−S1u + div


i

Wiei


dvt ,

where W =


i Wiei + uN is the variational vector field of x : M → Sn+1(1), Sr,i is the first covariant derivative of Sr in the ei
direction, r = 1, 2.

For constant a, we consider the following functional

F =


M
(a + S1) dv. (3.1)

Proposition 3.4 (First Variation Formula). Let M be an n-dimensional compact hypersurface in Sn+1(1). For any variation of
x : M → Sn+1(1), we have

F ′(0) =


M
[−2S2 + n − aS1]u dv.

Proof. We use the same notations as in Lemma 3.3. From Lemma 3.3, we have

F ′(0) =


M
(a + S1)


−S1u + div


i

Wiei


dv +


M


1u + (S21 − 2S2 + n)u +


i

WiS1,i


dv

=


M
[(−2S2 + n) − aS1]u dv +


M

1u dv +


M

div


i

(S1 + a)Wiei


dv

=


M
[(−2S2 + n) − aS1]u dv. �

For volume-preserving variations, by Lemma 3.2, we have
M
u dv = 0, (3.2)

by using Proposition 3.4, we get that the critical points of volume-preserving variational problem are the immersions x for
which S2 + aS1 is constant, namely,

(n − 1)H2 + aH = b,

where a and b are constants. Hence, the critical points of each volume-preserving variation X : (−ε, ε)×M → Sn+1(1), are
the linear Weingarten hypersurfaces satisfying (n − 1)H2 + aH = b, where a and b are constants; vice versa.

As a direct application of Lemma 3.3, Proposition 3.4 and Eq. (3.2), after a long but direct computation, we have the
following.

Proposition 3.5 (Second Variation Formula). Let x : M → Sn+1(1) be an isometric immersion for which (n − 1)H2 + aH = b,
where a and b are constants. For each volume-preserving variation, the second derivative of F at t = 0 is given by

F ′′(0) = −


M
u{(2� + a1)u + 2[S1S2 − 3S3 + (n − 1)S1]u + a(S21 − 2S2 + n)u} dv.

Definition 3.6. Let x : M → Sn+1(1) be a linear Weingarten hypersurface satisfying (n− 1)H2 + aH = b, where a and b are
constants. The immersion x is called stable if F ′′(0) ≥ 0 for all volume-preserving variations of x.



662 H. Chen, X. Wang / J. Math. Anal. Appl. 397 (2013) 658–670

We denote the operators L and the Jacobi operator Jw respectively by

L = 2� + a1,

Jw = −L − 2[S1S2 − 3S3 + (n − 1)S1] − a(S21 − 2S2 + n).
(3.3)

It have been proved (see [9]) that � is self-adjoint; hence we have that L and Jw are both self-adjoint.
Let U be the set of all differentiable functions u : M → R satisfying


M udv = 0. Then a linear Weingarten hypersurface

satisfying (n−1)H2+aH = b is stable if and only if

M uJwu dv ≥ 0 for all u ∈ U. This can be proved after a similar argument

as in [5], we omit the details here.

Proposition 3.7. Let M be an n-dimensional totally umbilical and non-totally geodesic sphere in Sn+1(1). Since M has constant
positive principal curvatures, M can be regarded as a linear Weingarten hypersurface satisfying (n− 1)H2 + aH = b. We choose
the orientation such that H > 0 and a ≥ 0. Then M is stable.

Proof. Assume M is totally umbilical, we only have to prove that

M uJwu dv ≥ 0 for all u satisfying


M u dv = 0.

SinceM is totally umbilical, H is constant, we have

S2 =
n(n − 1)

2
H2, S3 =

n(n − 1)(n − 2)
6

H3

and

� = (n − 1)H1.

For any u such that

M u dv = 0, we have

M
uJwu dv = −(a + 2(n − 1)H)


M
[n(1 + H2)u2

− ∥∇u∥2
] dv

≥ −(a + 2(n − 1)H)


M
[n(1 + H2) − µ(M)]u2dv,

where µ(M) is the first non-zero eigenvalue of the Laplacian 1 on M . Since M is totally umbilical, M is a sphere, we have
µ(M) = n(1 + H2).

Hence we get

M uJwu dv ≥ 0 for all u satisfying


M u dv = 0. This completes the proof of Proposition 3.7. �

4. Proof of Theorem 1.3

Lemma 4.1 (Cf. [13]). Let x : Mn
→ Sn+1(1) be an isometric immersion for which (n − 1)H2 + aH = b, where a and b are

constants. If a2 + 4nb > 0, then

(1) the Jacobi operator Jw (see (3.3)) associated to the variational problem defined in Section 3 is elliptic;
(2) |∇h|2 ≥ |∇(nH)|2. When the equality holds, we have M is either totally umbilical or a Riemannian product Sm(c) ×

Sn−m(
√
1 − c2), 1 ≤ m ≤ n − 1.

Proof. (1) We only need to show that L = 2� + a1 is elliptic.
From 0 ≤ S = (nH)2 − n(n − 1)H2 = (nH)2 + naH − nb, we have that H satisfies

H ≥
−a +

√
a2 + 4nb
2n

or H ≤
−a −

√
a2 + 4nb
2n

.

So we get

2nH + a ≥


a2 + 4nb > 0 or 2nH + a ≤ −


a2 + 4nb < 0.

This means that 2nH + a has the same sign on M . Without loss of generality, we assume 2nH + a > 0. Since

(2nH + a)2 = 4(nH)2 + 4naH + a2

> 4[(nH)2 + naH − nb]
= 4S ≥ 4k2i , ∀i,

we get 2nH + a > 2ki, which implies L is elliptic.
(2) From S = (nH)2 − n(n − 1)H2 = (nH)2 + naH − nb, by taking the covariant derivative with respect to ek, we have

2

i,j

hijhijk = (2nH + a)nH,k.
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By the Cauchy–Schwarz inequality, we get

(2nH + a)2(nH,k)
2

= 4

i,j

(hijhijk)
2

≤ 4


i,j

h2
ij


i,j

h2
ijk


.

After making summation on k, we have

(2nH + a)2|∇(nH)|2 ≤ 4S|∇h|2 ≤ (2nH + a)2|∇h|2,

which implies |∇h|2 ≥ |∇(nH)|2.
When the equality holds, wemust have |∇h|2 = |∇(nH)|2 = 0. Hence H is constant and the second fundamental form is

parallel, whichmeansM is an isoparametric hypersurfacewith atmost two distinct principal curvatures (cf. [23]). Therefore,
we haveM is either totally umbilical or a Riemannian product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1. �

In the following, we always assume that x : Mn
→ Sn+1(1) is an isometric immersion for which (n − 1)H2 + aH = b,

where a and b are constants.

Lemma 4.2.

HLH =
2H
n

(|∇h|2 − |∇(nH)|2 + nS − (nH)2 + nHf3 − S2),

where H is the mean curvature, f3 =
n

i=1(ki)
3

= S31 − 3S1S2 + 3S3.

Proof. By a standard computation of Simons’ type formula (see [18,9,8]), we have

1
2
1S = |∇h|2 +


i

ki(nH),ii + nS − (nH)2 + nHf3 − S2, (4.1)

�H = nH1H −


i,j

hijH,ij, (4.2)

1
2
1(nH)2 = nH1(nH) + |∇(nH)|2, (4.3)

S = S21 − n(n − 1)H2. (4.4)

Then from naH + (nH)2 − S = n[(n − 1)H2 + aH] = nb is constant, we get

na1H = 1S − 1(nH)2. (4.5)

Hence, by (4.1)–(4.5), we have

HLH = H


a1H + 2nH1H − 2


i,j

hijH,ij



= H


1
n
1S −

1
n
1(nH)2 + 2nH1H − 2


i,j

hijH,ij



= H


1
n
1S −

2
n
|∇(nH)|2 − 2


i

kiH,ii



=
2H
n

(|∇h|2 − |∇(nH)|2 + nS − (nH)2 + nHf3 − S2). �

For any isometric immersion x : M → Sn+1(1), let E be a fixed vector of Rn+2, we define

f = ⟨N, E⟩, g = ⟨x, E⟩.

Lemma 4.3 (Cf. [3,21]). For any isometric immersion x : M → Sn+1(1), we have

�g = 2S2f − (n − 1)S1g,

�f = −


k

S2,k⟨ek, E⟩ − (S1S2 − 3S3)f + 2S2g,

1g = S1f − ng,

1f = −


k

S1,k⟨ek, E⟩ − (S21 − 2S2)f + S1g.
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Set p = (n − 1)H + a, u = bf − pg , we have
M
u dv =

1
n


M
(a1g + �g) = 0.

By Lemma 4.3, using that L is self-adjoint, we have
M
uLu dv =


M
(bf − pg)(bLf − L(pg)) dv

=


M
[(bf − pg)bLf − bpgLf + pgL(pg)] dv

=


M


[b2f − 2bpg]Lf + [2a(n − 1)H + a2]gLg + (n − 1)2HgL(Hg)


dv

=


M


[b2f − 2bpg][−2(S1S2 − 3S3)f + 4S2g − a(S21 − 2S2)f + aS1g]

+ [2a(n − 1)H + a2]g[4S2f − 2(n − 1)S1g + aS1f − ang] + (n − 1)2HgL(Hg)

dv.

We take an orthonormal basis E1, . . . , En+2 of Rn+2 and define
fA = ⟨N, EA⟩, gA = ⟨x, EA⟩, uA = bfA − pgA, A = 1, . . . , n + 2.

Note that
n+2

A=1(fA)
2

=
n+2

A=1(gA)
2

= 1,
n+2

A=1 fAgA = 0, we have

−

n+2
A=1


M
uAJwuA dv =

n+2
A=1


M
uALuA dv +

n+2
A=1


M
(bfA − pgA)2{2[(S1S2 − 3S3) + (n − 1)S1]

+ a[(S21 − 2S2) + n]} dv

=


M
b2[2(n − 1)S1 + an] dv +


M
(n − 1)2H2

{2[(S1S2 − 3S3) + (n − 1)S1]

+ a[(S21 − 2S2) + n]} dv +


M
[a2 + 2(n − 1)aH][2(S1S2 − 3S3) + a(S21 − 2S2)] dv

− 2

M
b[(n − 1)H + a](4S2 + aS1) dv + (n − 1)2

n+2
A=1


M
(HgA)L(HgA) dv.

To deal with the last term above, we need the following lemma.

Lemma 4.4.
n+2
A=1

(HgA)L(HgA) = HLH − anH2
− 2n(n − 1)H3.

Proof. By direct computations, we have
n+2
A=1

HgA1(HgA) =

n+2
A=1

HgA


gA1H + H1gA + 2


i

(H),i(gA)i



= H1H + H2
n+2
A=1

gA(S1fA − ngA)

= H1H − nH2,

n+2
A=1

HgA�(HgA) =

n+2
A=1

HgA


gA�H + H�gA + 2


i,j

(nHδij − hij)(H),i(gA)j



= H�H +

n+2
A=1

H2gA(2S2fA − (n − 1)S1gA)

= H�H − (n − 1)H2S1,

where we used the fact that
n+2

A=1 gA(gA)i =
n+2

A=1⟨x, EA⟩⟨ei, EA⟩ = ⟨x, ei⟩ = 0 for any 1 ≤ i ≤ n. Hence,

n+2
A=1

(HgA)L(HgA) = 2
n+2
A=1

HgA�(HgA) + a
n+2
A=1

HgA1(HgA)

= HLH − anH2
− 2n(n − 1)H3. �
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Proof of Theorem 1.3. By Lemmas 4.2 and 4.4 we get that

−

n+2
A=1


M
uAJwuA dv =

2(n − 1)2

n


M
H(|∇h|2 − |∇(nH)|2) dv + 2n(n − 1)3


M
H(H2

− H2)(1 + nH2) dv

+ n(n − 1)2a

M
[(nH2

+ 3H2)(H2
− H2) + 2(n − 2)H(HH2 − H3)] dv

+ n(n − 1)a2

M
[2nH(H2

− H2) + (n − 2)(HH2 − H3)] dv

+ n(n − 1)a3

M
(H2

− H2) dv.

Since H2 > 0, a ≥ 0, we get a2 + 4nb > 0,H > 0,H2
− H2 ≥ 0,HH2 − H3 ≥ 0. So we have

−

n+2
A=1


M
uAJwuA dv ≥ 0.

On the other hand, by the condition of stability, we have

n+2
A=1


M
uAJwuA dv ≥ 0.

So we have
n+2
A=1


M
uAJwuA dv = 0.

Thenwe getH2
= H2 > 0,which impliesM is totally umbilical and non-totally geodesic. This combinedwith Proposition 3.7

completes the proof of Theorem 1.3. �

5. Estimates for the first and second eigenvalues of the Jacobi operator

In this section, we will give optimal estimates for the upper bounds of both the first and second eigenvalues of the Jacobi
operator Jw .

Definition 5.1. We call λJw
i an eigenvalue of Jw if there exists a non-zero function f on M such that Jwf = λ

Jw
i f , we call λ�

i
an eigenvalue of � if there exists a non-zero function f on M such that �f + λ�

i f = 0, and we call λ1
i an eigenvalue of 1 if

there exists a non-zero function f onM such that 1f + λ1
i f = 0.

First of all, we consider the first and second eigenvalues of the Jacobi operator Jw of the totally umbilical and non-totally
geodesic hypersurface in Sn+1(1) with positive mean curvature, and the Riemannian product Sm(c) × Sn−m(

√
1 − c2), 1 ≤

m ≤ n − 1 with H2 > 0.

Example 5.2. Let M be a totally umbilical and non-totally geodesic hypersurface in Sn+1(1). Then the mean curvature H is
a non-zero constant. We choose the orientation such that H > 0 and assume that (n − 1)H2 + aH = b, where a ≥ 0. Then
we have H2 = H2,H3 = H3. From (3.3) we have

Jw = −(2(n − 1)H + a)1 − 2[(S1S2 − 3S3) + (n − 1)S1] + a[(S21 − 2S2) + n].

Hence

λ
Jw
1 = −2[(S1S2 − 3S3) + (n − 1)S1] + a[(S21 − 2S2) + n]

= −2n(n − 1)H3
− anH2

− 2n(n − 1)H − an

= an2H2
− [2bn2

+ 4n(n − 1) − a2n]H +
2bn(b + 1)

H
− 3an(b + 1),

where we used the fact b = (n − 1)H2
+ aH .

Since the first non-zero eigenvalue of 1 is n(1 + H2), we have

λ
Jw
2 = [2(n − 1)H + a]n(1 + H2) − 2[(S1S2 − 3S3) + (n − 1)S1] + a[(S21 − 2S2) + n] = 0.



666 H. Chen, X. Wang / J. Math. Anal. Appl. 397 (2013) 658–670

Example 5.3. Let M = Sm(c) × Sn−m(
√
1 − c2), 1 ≤ m ≤ n − 1, be a hypersurface with H2 > 0 in Sn+1(1). Following the

computations of [8,11], we know that all the principal curvatures are constant, and the positive constant c satisfies

0 < c2 <
m
n

−

√
m(n − m)

n
√
n − 1

or
m
n

+

√
m(n − m)

n
√
n − 1

< c2 < 1. (5.1)

We choose the orientation such that H > 0 and assume that (n − 1)H2 + aH = b, where a ≥ 0. Since the operator L is
self-adjoint and elliptic,

λ
Jw
1 = −2[(S1S2 − 3S3) + (n − 1)S1] − a[(S21 − 2S2) + n].

By a long and direct computation, we have

− [(S1S2 − 3S3) + (n − 1)S1] = −[2n(n − 1) + n2(n − 1)(r − 1)]H

+ n(n − 1)(r − 1)[(n − 1)(r − 1) + 1]
1
H

, (5.2)

where n(n − 1)(r − 1) = S21 − S = 2S2 = nb − anH .
Hence

λ
Jw
1 = 2[−2n(n − 1) − n(nb − anH)]H + 2[(nb − anH)(b − aH + 1)]

1
H

− a[(n2H2
+ anH − nb) + n]

= an2H2
− [2bn2

+ 4n(n − 1) − a2n]H +
2bn(b + 1)

H
− 3an(b + 1).

To compute the 2nd eigenvalue of Jw , we choose the unit normal vector such that

k1 = · · · = km = −

√
1 − c2

c
, km+1 = · · · = kn =

c
√
1 − c2

,

we have

S1 =
nc2 − m

c
√
1 − c2

> 0, S =
m(1 − c2)

c2
+

(n − m)c2

1 − c2
,

2S2 = S21 − S =
f (c2)

c2(1 − c2)
> 0,

where f (t) = n(n − 1)t2 − 2m(n − 1)t + m(m − 1).

After an analogous argument with Example 3.2 in [11], we have

Lf = (2(nH − k1) + a)11f + (2(nH − kn) + a)12f ,

where 11 and 12 are the Laplacian on Sm(c) and Sn−m(
√
1 − c2) respectively. Then

λL
2 = min{(2(nH − k1) + a)λ11

2 , (2(nH − kn) + a)λ12
2 },

where λ
1i
2 is the 2nd eigenvalue (i.e. the 1st non-zero eigenvalue) of 1i given by

λ
11
2 =

m
c2

<
n − m
1 − c2

= λ
12
2 ,

as S1 > 0. Then we have

λ
Jw
2 = λL

2 − 2[(S1S2 − 3S3) + (n − 1)S1] − a[(S21 − 2S2) + n]

= (2(nH − k1) + a)
m
c2

− 2[(S1S2 − 3S3) + (n − 1)S1] − a[(S21 − 2S2) + n]

= 2


(n − 1)c2 − (m − 1)

c
√
1 − c2

m
c2

−

(S1S2 − 3S3) + (n − 1)S1


+ a

m
c2

− S − n


.

Using (5.2), we have

(n − 1)c2 − (m − 1)

c
√
1 − c2

m
c2

−

(S1S2 − 3S3) + (n − 1)S1


=

−2c2

c
√
1 − c2

S2 − (n − 1)S1 < 0.

We also have
m
c2

− S − n = −(n − m) −
(n − m)c2

1 − c2
< 0.

Note that a ≥ 0, we finally get λ
Jw
2 < 0.



H. Chen, X. Wang / J. Math. Anal. Appl. 397 (2013) 658–670 667

Proof of Theorem 1.4. Denote Hmin = minx∈M H(x) > 0, note that H2 =
b−aH
(n−1) , from Lemmas 4.1 and 4.2, we have

−


M
HJwH dv =

2
n


M
H(|∇h|2 − |∇(nH)|2) dv +


M
[anH2(1 + H2) + an(n − 1)H2(H2

− H2)]dv

+


M
[2n(n − 1)H3(2 + nH2) − 2n(n − 1)HH2((n − 1)H2 + 1)]dv

=
2
n


M
H(|∇h|2 − |∇(nH)|2) dv +


M
H2


−an2H2

+ [a2n + 4n(n − 1) + 2bn2
]H

−
2n
H

(b − aH)(b − aH + 1) + an − abn


dv

≥


M
H2


−an2H2

+ [a2n + 4n(n − 1) + 2bn2
]H −

2n
H

(b − aH)(b − aH + 1) + an − abn


dv.

Note that Hmin ≤ H ≤
b
a , we have

2b ≥ a(H + Hmin).

By multiplying both sides of the above inequality by (H − Hmin), we get

2bH − aH2
≥ 2bHmin − aH2

min.

Hence

−


M
HJwH dv ≥


M
H2


−an2H2

min + [a2n + 4n(n − 1) + 2bn2
]Hmin

−
2n
Hmin

(b − aHmin)(b − aHmin + 1) + an − abn


dv

=


M
H2


−an2H2

min + [2bn2
+ 4n(n − 1) − a2n]Hmin −

2bn(b + 1)
Hmin

+ 3an(b + 1)


dv.

Finally, we obtain

λ
Jw
1 ≤


M HJwH dv
M H2 dv

≤ an2H2
min − [2bn2

+ 4n(n − 1) − a2n]Hmin +
2bn(b + 1)

Hmin
− 3an(b + 1). (5.3)

When the equality holds, we have |∇h|2 = |∇(nH)|2 = 0, by Lemma 4.1, we haveM is totally umbilical or a Riemannian
product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1. On the other hand, if M is totally umbilical and non-totally geodesic, or

a Riemannian product Sm(c) × Sn−m(
√
1 − c2), 1 ≤ m ≤ n − 1 with H2 > 0, from Examples 5.2 and 5.3 in this section, we

know that the equality in (5.3) is attained. This completes the proof of Theorem 1.4. �

Remark 5.4. We note that when a = 0, we get a same optimal estimate as in [8].

In the following, we will prove Theorem 1.5. First, we have H2
≥ H2 > 0 and a ≥ 0; hence Jw is elliptic (cf. [8,11]). In

order to get the optimal estimate of the second eigenvalue of Jw , we will use a technique which was introduced by Li and
Yau in [14] and was later used by other authors (see [15,16,24,19,11]). Let Bn+2 be the open unit ball in Rn+2. For each point
l ∈ Bn+2, we consider the map

Fl(p) =
p + (µ⟨p, l⟩ + λ)l

λ(⟨p, l⟩ + 1)
, ∀ p ∈ Sn+1(1) ⊂ Rn+2,

where λ = (1−∥l∥2)−1/2, µ = (λ− 1)∥l∥−2 and ⟨, ⟩ denotes the inner product on Rn+2. A direct computation (see [15,19])
shows that Fl is a conformal transformation from Sn+1(1) to Sn+1(1) and the differential map dFl of Fl is given by

dFl(v) = λ−2(⟨p, l⟩ + 1)−2
{λ(⟨p, l⟩ + 1)v − λ⟨v, l⟩p + ⟨v, l⟩(1 − λ)∥l∥−2l},
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where v is a tangent vector to Sn+1 at the point p. Hence, for two vectors v, w ∈ TpSn+1 we have (see [15,16,19])

⟨dFl(v), dFl(w)⟩ =
1 − ∥l∥2

(⟨p, l⟩ + 1)2
⟨v, w⟩.

By the use of the technique in [14], we have the following result.

Lemma 5.5 (See [15,16,24,19]). Let M be a compact orientable hypersurface in Sn+1(1),M satisfies that H2 > 0, we choose the
orientation such that H > 0, assume a ≥ 0; then Jw is elliptic. Let u be a positive first eigenfunction of Jw on M; then there exists
l ∈ Bn+2 such that


M u(Fl ◦ x)dv = (0, . . . , 0).

For any isometric immersion x : M → Sn+1(1), let {EA
}
n+2
A=1 be a fixed orthonormal basis ofRn+2, for a fixed point l ∈ Bn+2,

we define functions f A : M → R(1 ≤ A ≤ n + 2) by

f A = ⟨EA, Fl ◦ x⟩ =
⟨EA, x⟩ + (µ⟨x, l⟩ + λ)⟨l, EA

⟩

λ(⟨x, l⟩ + 1)
. (5.4)

Lemma 5.6 (See [11]). The gradient of f A is given by

f Ai =
⟨EA, ei⟩

λ(⟨x, l⟩ + 1)
+

⟨l, ei⟩
λ(⟨x, l⟩ + 1)2

·


−⟨EA, x⟩ +

1 − λ

λ∥l∥2
⟨l, EA

⟩


.

Lemma 5.7. For any isometric immersion x : M → Sn+1(1), we have
n+2
A=1


M
(Jwf A · f A)dv =


M

(2n(n − 1)H + an)(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv

−


M
{n(n − 1)(2H − (n − 2)H3 + nHH2)}dv −


M
{a(n2H2

− n(n − 1)H2 + n)}dv. (5.5)

Proof. By the divergence theorem and Lemma 5.6 we have

−

n+2
A=1


M
(1f A · f A)dv =


M

n(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv. (5.6)

From the proof of Lemma 3.6 in [11], we have

−

n+2
A=1


M
(�f A · f A)dv =


M

n(n − 1)H(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv. (5.7)

Then (5.5) follows immediately from (5.6) and (5.7). �

For a fixed point l ∈ Bn+2, let

f̃ = ⟨x, l⟩, l̃ = ⟨N, l⟩, ρ = − ln λ − ln(1 + f̃ ), (5.8)
where λ = (1 − ∥l∥2)−1/2, x is the position vector and N is the unit normal vector. We have

e2ρ =
1

λ2(1 + f̃ )2
=

1 − ∥l∥2

(⟨x, l⟩ + 1)2
, ρi =

−f̃i
1 + f̃

, ρij =
−f̃ij
1 + f̃

+
f̃i f̃j

(1 + f̃ )2
. (5.9)

Lemma 5.8. Let M be a compact orientable hypersurface in Sn+1(1),M satisfies that H2 > 0, we choose the orientation such
that H > 0. Let f̃ , l̃, ρ be the functions defined by (5.8), we have
(i) 

M

(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv ≤


M
(1 + H2)dv, (5.10)

and the equality holds if and only if H +
l̃

1+f̃
≡ 0 and ⟨l, ei⟩ ≡ 0 on M.

(ii) (Cf. Lemma 3.7 in [11])
M

H(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv ≤


M


H +

H2
2

H


dv −


M


H∥∇ρ∥

2
−

2
n(n − 1)


i,j

(nHδij − hij)ρiρj


dv, (5.11)

and the equality holds if and only if H2 +
l̃H
1+f̃

≡ 0 on M.
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Proof. We only have to prove (i). We have

0 =


M

1ρdv =
n
2


M

(1 + H2) −


H +

l̃

1 + f̃

2

−
n − 2
n

∥∇ρ∥
2
−

1 − ∥l∥2

(1 + f̃ )2

 dv,

which immediately leads to (5.10). �

Following the same arguments as in Lemma 3.8 of [11], we have the following.

Lemma 5.9. Let M be a compact orientable hypersurface in Sn+1(1), M satisfies that H2 > 0, we choose the orientation such
that H > 0. Assume n ≥ 5, we have

M


H∥∇ρ∥

2
−

2
n(n − 1)


i,j

(nHδij − hij)ρiρj


dv ≥ 0.

Proof of Theorem 1.5. SinceH2 > 0, a ≥ 0, we have 2�+a1 an elliptic operator andH ≠ 0. Hence, we can assumeH > 0.
Let u be a first eigenfunction of Jw , we can assume u is positive onM , by Lemma 5.5 there exists l ∈ Bn+2 such that

M
u(Fl ◦ x)dv = (0, . . . , 0),

which implies that the functions {f A, 1 ≤ A ≤ n + 2} given by (5.4) are perpendicular to the function u, i.e.,

M u · f Adv =

0, ∀ 1 ≤ A ≤ n + 2. Then by using the min–max characterization of eigenvalues for elliptic operators, we have

λ
Jw
2 ·


M
(f A · f A)dv ≤


M
(Jwf A · f A)dv, ∀ 1 ≤ A ≤ n + 2.

Summing up and using the fact that
n+2

A=1 f
A
· f A = 1, we obtain

λ
Jw
2 · Vol(M) ≤

n+2
A=1


M
(Jwf A · f A)dv. (5.12)

From Lemma 5.7 and Eq. (5.12) we have

λ
Jw
2 · Vol(M) ≤


M

(2n(n − 1)H + an)(1 − ∥l∥2)

(⟨x, l⟩ + 1)2
dv −


M
{n(n − 1)(2H − (n − 2)H3 + nHH2)}dv

−


M
{a(n2H2

− n(n − 1)H2 + n)}dv. (5.13)

Then by Eq. (5.13), Lemmas 5.8 and 5.9, we get

λ
Jw
2 · Vol(M) ≤ 2n(n − 1) ·


M


H +

H2
2

H


dv + an ·


M
(1 + H2)dv

−


M
n(n − 1)(2H − (n − 2)H3 + nHH2)dv −


M
{a(n2H2

− n(n − 1)H2 + n)}dv

= 2n(n − 1) ·


M


H2

2

H
+

n − 2
2

H3 −
nHH2

2


dv + an(n − 1)


M
(H2 − H2)dv.

Since H2 > 0, we have H3 ≤
H2
2
H and H2 ≤ H2 (see [25, p. 52]) and hence

λ
Jw
2 · Vol(M) ≤ 2n(n − 1) ·


M


H2

2

H
+

n − 2
2

H3 −
nHH2

2


dv

≤ 2n(n − 1) ·


M


H2

2

H
+

n − 2
2

H2
2

H
−

nHH2

2


dv

= 2n(n − 1) ·


M

nH2

2


H2

H
− H


dv ≤ 0, (5.14)

thereforewe getλJw
2 ≤ 0.Whenλ

Jw
2 = 0, all the inequalities become equalities.When the equality in Lemma5.8 (or in (5.14))

holds, we have H2 ≡ H2 onM , since H2 is positive, we getM is a totally umbilical and non-totally geodesic hypersurface. On
the other hand, ifM is a totally umbilical and non-totally geodesic hypersurface, from Example 5.2 in this section, we know
that λ

Jw
2 = 0. This completes the proof of Theorem 1.5. �
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