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1. Introduction

Let £2 be a bounded smooth domain in R¥. For D C £2 and 1 < p, we consider the eigenvalue problem

— Apu=Axpu’”', u>0in, u=00nds. (1)

Here X is the principal eigenvalue, which depends on £2, p and D. In what follows, §2 and p will be fixed, whereas, the subset
D may change, therefore we shall write A = Ap. It is well known that

Vou|Pdx Vup|Pdx
f:z|7|p : veH&‘p(.Q), / XD|v|pdx>O} :f9|7Dp|,
[ xplvlPdx 2 [ xpupdx

where up € H&‘p(.Q) is the principal (positive) eigenfunction, which we normalize so that fg ugdx = 1. The eigenvalues of
the p-Laplacian have been investigated in several papers, we refer to [1,2] and references therein. For regularity of solutions
of p-Laplace equations we refer to [3-5]. In particular, we recall that the eigenfunctions of problem (1) are continuous.

If D C £2 is a measurable set we denote with |D| its Lebesgue measure. Fix 0 < a < |§2], and consider the minimization
problem

)\D = ll'lf{

Vup|Pdx
inf Ap = inf 1;2'7[’[,'
ID|=c D= [ xpupdx

It is well known that this problem has (at least) a solution D and that
ﬁ:{xe(z:uﬁ(x)>t}

for some t > 0. For a proof of this result we refer to [6,7] in the case p = 2, and to [8] for general p.
In this paper, we define the function f (o) = infjp|—o Ap, and we shall prove that f () is strictly decreasing and continuous
fora € (0, |£2]). In the case p = 2, these facts have been observed in [9].
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Furthermore, we consider the maximization problem
Vup|Pdx
sup Ap = sup fgliDpl.
iD= D=« o XpUpdx
This problem has a unique solution Dand
E):{XEQ:UE(X)<'E}

for some v > 0. For a proof of this result in the case p = 2, we refer to [6,7]. For general p, this maximization problem is
discussed in [8] in the case where £2 is a ball. For general domains, see the Appendix of the present paper.

If g(@) = supp,—, Ap, we have f (@) < g(a) fora € (0, [$2]), and f(|£2|) = g(|$2]). We shall prove that g(«) is strictly
decreasing and differentiable.

The literature on the shape optimization for eigenvalues of elliptic operators is much rich. We quote the books/
articles [ 10-13] and references therein.

2. Main results
Theorem 2.1. Let 2 be a bounded smooth domain in RN, let D be a measurable subset of 2, and let A, be the principal eigenvalue
of problem (1). The functions
f(@) = inf Xp
|D|=«
and

g(a) = sup Ap
|D|=a

are decreasing for « € (0, |§2|). Furthermore, the function f («) is continuous, and the function g(«) is differentiable for 0 <
o < |£2|.
Proof. Let us show that f («) is decreasing. We know that there is D such that |15| =« and

|Vus|Pdx
f(a):)\-f):fg Dpd 3
Jo XpUpdx

where up is the normalized eigenfunction corresponding to A5. If @ < B < [£2], take DsothatD c D C £ with |13| =B.
Since u(x) > 01in £2, we have

_ Jo IVug|Pdx . [ IVug|Pdx
Jo Xﬁugdx Jo X[)”gdx

The monotonicity of f («) is proved.
Let us show that f («) is continuous from the left. Let D with |D| = « and u = up > 0 such that

B Jo IVulPdx

[, xpuPdx

Take h < O such thate + h > 0. Let Dy with |Dy| = « + hand u, = up, > 0 such that

[ IVup|Pdx

Jo xo,updx”

Although |Dp| < |D|, we do not have, in general, D, C D. Take D, C Dwith |I3h| = o + h. Recall that

) ) Jo IVvlPdx
f(@) = inf inf ="———.
IDl=t ey () S xpvPdx

fle) > 5 = f(B).

fe)

fla+h)=

Therefore, since |Dy| = |ﬁh|, we have

fo |Vuh|:dx - Jo |Vu|pdx7

Jo xo,updx Jo Xp,uPdx

where u is the same function as in (2). Hence (recall that h < 0),

[ [VulPdx B [ IVulPdx _ /‘ WP,
fn Xby, uPdx f(z xpuPdx D\Dy

fla+h) =

0 <fle+h) —fla) <
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where
[ IVulPdx
a [ xouPdx [, Xp, UPdx

:f(a) fQ thupdx.

Since u = u(x) > 0, and |f)h| =a +h > 0, Q, is bounded as h — 0~. Hence, since |D \ f)h| = |h|, we have
0 < lim [f(e +h) —f(a)] < lim Qy uPdx = 0.
h—0— h—0— D\ﬁh

The continuity of f («) from the left is proved.
Let us show that f () is continuous from the right. As in the previous case, let D with [D] = ¢ and u = up > 0 asin (2).
Ifh > 0, let Dy with |Dp| = « + h and u, = up, > 0 such that

S [Vup[Pdx

fle+h) = .
frz XDthdX

(4)

Although |D| < |Dy|, we do not have, in general, D C Dy,. Take Dy C Dy, with |5h| = «. By (2) and (3) we have
_ Jo [VulPdx - fo |Vuh|pdx-
[ xouPdx = [, xbhuﬁdx

fle)

Therefore,

0<fl@)—fla+h) < fg [Vup|Pdx _ fg [Vup|Pdx _ éh/ W,
ffz Xby, uﬁdx fsz XDy uﬁdx Dp\Dp '
where
Jo IVuy|Pdx
f.(z Xﬁhuﬁdx f.(z XDhude

Q= =f(a+h) <f(a)

f.Q Xf)h uﬁdx f.Q Xflh uﬁdx .

We claim that Qj, is bounded as h — 0. By contradiction, suppose th — oo asi— oo, where h; — 0. Since fg uﬁidx =1,
by (4) we find

/ IVuhilpdx = f(a + hi)/ th,.uﬁ,-dx <f((¥)/ uﬁidx = f(a).
2 2 [?;

As a consequence, a subsequence (still denoted as) uy;, converges to some v € H&’p (£2) in the weak topology of H"? and in
the norm of [” (£2). We have

f |Vup, P2V, - Vi dx = A / Xoy Un Wdx, VY€ HyP (),
2 2

where A; = f(a¢ + h;). We may suppose that the sequence A; converges to some A > 0 and that XDy, (or some of its

subsequences) converge in the weak* topology of L>°(£2) to a function n such that 0 < n < 1 and fg ndx = «. Hence, v
satisfies

/ [VuP2Vv - Vi dx = A/ nP W dx, Vi e HyP ().
2 2

This means that v is the first eigenfunction corresponding to 7, therefore, v(x) > 0. Finally, since Xby, (or some of its
1

subsequences) converge in the weak* topology of L°°(£2) to a function £ such that0 < £ < 1and f o & dx = o, we have

lim [ xp, updx= f € vPdx > 0.
e 2

i—00
It follows that we cannot have Qh,. — 00, and Qj, is bounded as h — 0.

Hence, since |Dy, \ f)h| = h, we have

0 < lim [f(e) = f(e + h)] < lim Q,,/ ubdx = 0.
h—0t Dp\Dp

h—07t

The continuity of f («) follows.
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Let us prove that g(«) is decreasing. Let « < . We know that there is D such that |b| = fBand
[ IVup[Pdx
8B =hp =T~
Jo XpUpaX

where ujy is the normalized eigenfunction corresponding to A . Take DsothatD c Dand D] = a. If uj is the eigenfunction
corresponding to D, we have uz(x) > 01in §2, and

[ IVug|Pdx - Jo IVuplPdx [, |Vup|Pdx
< <
[ Xbupbdx Jo xpuzdx Ja xpusdx

The monotonicity of g(«) is proved.

By using arguments similar to those used to prove the continuity of f («), one proves that also g(«) is continuous. Let D
with |D| = « be the set relative to g(«) (recall that D is unique), and let D, with |Dy| = o + h be the set relative to g(« + h).
Ifu = up and uy = up, are the corresponding eigenfunctions, we claim that, when h — 0, xp, — xp in the weak* topology
of L*°(£2), and u, — u in the norm of LP(£2). Indeed, one finds easily that fg |Vup|Pdx is bounded as h — 0. Hence, there
are a sequence h; (with h; — 0asi — oo)and a functionz = z(x) > 0,z € H;’p(.Q), such that up, — z in the weak

topology of H''P(£2) and in the norm of I”(£2). Furthermore, one finds  with 0 < n(x) < 1and fg n(x)dx = « such that
XDy, —> 1 in the weak™ topology of L*°(£2). Therefore, by

gB) = =Ap < g(a).

/ |Vup, P2V, - Vi dx = g (o + hy) / Xop Ub ' Wrdx, Yy € HyP(2),
Q Q 1 1
it follows that
/ |Vz|P™2Vz - Vi dx = g(a)/ nZ2 'ydx, V¢ € Hy'(2).
2 2

This implies that g(«) is the principal eigenvalue corresponding to 1. Observe that, if § is the class of all functions of the
kind xp with |D| = «, then n € §, the closure of § with respect to the weak* topology of L*°(£2). But (see the Appendix
below) we know that there is a unique n € ¢ which corresponds to g(«), and that n € §, thatis, n = Xp for some D with
|lv)| = «. Hence, with ¢y = z we find

_ JoIVzlPdx [ | VulPdx

[y xpzPdx [, xpuPdx’

g(a)

By uniqueness, we must have D = D and z = u. The claim follows.
Now we prove that g(«) is differentiable. We have

[ VP . [, [VulPdx
gl@)=sup inf 22— " < inf sup 22— —.
IDl=e ver) () S X0IVIPAX ™ yenlP (@) D= [ XplvIPdX

Note that, if v € H(}’p(.Q), v > 0, we have (see, for example, [9] page 321)

inf / XDvpdx=/ xpvPdx,
IDl=e J o 2

for some D with |b| = « and

{fvix) <t} C Dc {fv(x) <t}, t=sup{s: |[{vix) <s}| <a}.
This implies that, for v > 0,
[ IVv[Pdx
[ xpvPdx’
Ifh > 0, let Dy with D] = & + h and uy, = up, such that

ga) = {fv) <t} cDC{vlx) <t} D|=a. (5)

S [Vup[Pdx
Jo xp,updx
We know that (see Remark 1 of the Appendix) there is t > 0 such that

gla+h) =

Dp={xe R :uy(x) <t} |Dpl=a+h.
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By using Eq. (1) with D = Dy, one finds that uj has not flat zones on Dy, Therefore, there is T < t so that
Dh={xe Q2 :uyx) <1}, |Dpl=cr.
Note that, in this situation, the sets D, and {x € £2 : up(x) < t} have the same measure. Hence, by using (5) we find
_ [ |VulPdx - [ |Vuh|pdx7
Jo xouPdx ~ [, Xﬁhulﬁdx

where, as usual, D is the set corresponding to g(«) and u = up > 0 is a corresponding eigenfunction. The latter inequality
and (6) yield

_gla+h) —g@) 1 Jo IVuy|Pdx B Jo IVup|Pdx
h ~h| [, Xf,huﬁdx [ Xpyubdx
[ IVwPd fous WX g@th) o, UhdX
fg th”gdx fg XpyUpdx h fg Xﬁhuﬁdx h .

Since h > 0, we have g(@ + h) < g(«). Moreover, as h — 0, u, converges to the eigenfunction u = up in the [P (£2) norm,
and xp, converges to xp in the weak* topology of L*°(£2). Since

/ thuﬁdx —/ xpuPdx = —/ (xp, — Xﬁh)uﬁdx—l—f Xp, (Uh — uP)dx—{-/ (xp, — xp)uPdx,
o) o) o) o) 2
it follows that

lim Xbﬁuﬁdx:/ xpuPdx.
e 2

h—07t

g(@)

Furthermore, since 15;, C Dy and |Dy, \I5h| = h, we have

p
th\Dh u,dx

. < sup up < supuf.

Dp\Dp

Observe that, by regularity (see [4,5]), all eigenfunctions are Holder continuous in §2. Since & /2 < |Dy| < |§2], we may also
assume that the Hélder constants are independent of h. Therefore, by Ascoli-Arzela Theorem, a sequence uj, converges to
u uniformly. It follows that

p
th\Bh u,dx

lim sup <supuP.
h—0t 2
Hence,
h —
limsup(_g(aJr ) g(ct))S g(a) — (7)
o+ h [ xpuPdx "¢

To prove the reverse inequality we observe that, by Eq. (1) we have A,u = 0in £2 \ D. This implies that u(x) is a constant
on £2 \ D. More precisely, on £2 \ D we have

u(x) = uX)|s2\p) = sgp u(x).

Now, if T = sup,, u(x), take Dy, such that
{u) <t} CDyp C {u(®) <7}, Dyl = +h.
By (6) and (5) (with o 4 h in place of «) we have
Vup|P VulP
Jo Uh|de - Jo IVul dx.
Jo Xp,updx Jo Xp, UPdx

gla+h) =

Therefore,

g@) —gla+ ) > SV g |VuPx

Jo xouPdx [ xp, uPdx
o folVuPdx fppwd @) [ p WX
o [ xowdx [, xp,uPdx  h [y xpurdx b
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Since u is a constant on Dy, \ D and |Dh \ D| = h, we have

= uPdx
L"\D = supuP.
h 2
Hence
h) —
lim inf(—g(a +h g(a)) > 8@ sup uP. (8)
h— 0+ h Jo xpuPdx "
From (7) and (8) we find
h) —
lim (_g(a +h) g(a)) __ 8 sup 1. 9)
hs0+ h Jo xpuPdx "o
Now let h < 0 such that « + h > 0. We know that there are D, with |Dy| = o + h and u, = up, > 0 such that
|Vup|Pdx
gla+h = fﬂi’?p
f() XDhuth

and
Dp={x€ 2 :up(x) <t}

for t = supg, up(x). Let us take 15,1 D Dy with |15h| = «. Note that
{un(®) <t} C Dy C {un(®) < t).

Using (5) (with uy, in place of v), we find

_ Jo IVulPdx - [ |Vuy|Pdx

gla) = < .
Jo xouPdx ~ [, Xﬁhuﬁdx

Hence,

Jo | Vup|Pdx B Jo | Vup|Pdx
Jo X[)huﬁdx Jo Xp,Updx
_ gla+h

= - uPdx.
[ xp, undx Jp h
2 Xb,Un Dp\Dp

g(a) —gla+h

IA

Since |13h \ Dy| = |h| and since uy, is a constant outside Dy, it follows that

g@) —g@+h) _ gath oo _ gath
h = [0 xp,uhdx  Ih| Jo xpuhdx "2 "

Since h < 0, we have g(@ + h) > g(a), and

lim inf
h—0—

_gla+h) —g@) g(a) p
( h ) = Jo xpuPdx sgpu '

On the other hand, since u has not flat zones on D, we can find t such that
Dh={xe:ukx) <1}, |Dpil=a+h.
In this situation, the sets D, and {x € £2 : u(x) < t} have the same measure. By (5) (with & + h in place of &), we have
S [Vup[Pdx - [ IVulPdx

gla+h) = < .
Jo xoyupdx ~ fg Xp, UPdx

Since Dy, C D, we find
Jo IVulPdx [, |VulPdx
Jo xowPdx [ xp, uPdx

R 1 CON / Pdx
f(z XDnude D\Dy

gla) —gla+h) >
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Finally, since h < 0, we have

g@—g@+h _ g@ Jpp, 4N

h = Jo xp,uPdx  |h|
Hence,
h) —
limsup(—g(a+) g(a))f @) sup uP. (11)
h—0- h [ xouPdx "o
From (10) and (11) we find
h) —
lim (—g(a+) g(a)): GO (12)
h—0— h ./:Q XDude 2

From (9) and (12) it follows that g () is differentiable and
g(@) )

————supuP.

Jo xouPdx "

The proof of the theorem is completed. O

—g'(@) =

Remarks. (1) A similar proof for the differentiability of f(«) fails to hold in general. For example, in the case where 2
is a dumbbell (see [9]), for a particular value of o« we have two different sets D; and D, such that [D;| = |D;| = « and
Ap, = Ap, = f(a).Inthis situation, a sequence of domains Dy, corresponding to )”Dh,- ,asi — oo may converge to D1, whereas,
another sequence Dy, corresponding to ADhj, as j — oo may converge to D,. In this case our method does not guarantee the
differentiability of f (). We think that differentiability occurs for domains 2 where uniqueness of a minimizer holds for
any o € (0, |£2]).

(2) The results for maximization and minimization are different. Indeed, for maximization we always have uniqueness,
whereas, for minimization we may have different solutions (as in the case of a dumbbell). We think that uniqueness of a
minimizer occurs for convex domains, but we do not have a proof. In the case p = 2 and where §2 is Steiner symmetric, in [9]
itis shown that any minimizer Dis symmetric. This implies uniqueness of the minimizer when £2 = Bis a ball. Therefore, in
the latter case, the minimizer D is a ball concentric with B, whereas, the maximizer D is the annulus whose exterior boundary
coincides with the boundary of B.

(3) From the definition of principal eigenvalue, it follows that Ap — oo as |D| — 0. Therefore, f () and g(«) diverge to
ooasa — 0.

Appendix
Let £2 be a bounded smooth domain in R". We say that two measurable functions f (x) and g(x) defined in £2 have the
same rearrangement if
xe2:fx) =Bl =I{xe2:8(x) =B} VBeR.

If go(x) > 0 is a bounded function defined in §2, we denote by § = §(go) the class of its rearrangements. We assume
go(x) > 0in a subset of positive measure, and suppose gy # constant. Let § be the closure of § in the weak* topology of
L°°(£2). We make use of the following result on minimization of a linear functional.

Lemma A.1. Let § € §, and let u be a measurable function that has not flat zones in theset F = {x € 2 : g(x) > 0}.If

/gudxz/gudx Vg € g,
2 2

then, & € §, and there is a decreasing function  (t) such that § = ¥ (u).
Proof. We refer to [14], proof of Theorem 2.2, part Il. The proof uses ideas from [15-17]. O

For1 < p < oo and g € §, we consider the eigenvalue problem

— Apu=2g()u” ", u>0in2, u=00nds. (13)

Here A is the principal eigenvalue, which depends on £2, p and g. In what follows, £2 and p will be fixed, whereas, the function
g may change, therefore we shall write A = Ag. It is well known that

Vu|Pdx Vug|Pdx
JoVoldx, v € HyP(£2), /g|v|de > 0} _ Ja|Vu:l"dx ,
2

Ao = inf{ :
€ Jo glvlPdx [, gugdx
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where u; € H(}’p(.Q) is the principal eigenfunction and ug(x) > 0 (see [1]). Fix gy and define the corresponding class
4 = G(8o). Consider the problem

[ [Vug|Pdx
Sup Ag = sup = ———. (14)
ge geg [, gugdx
Note that
Jo |VvlPdx

supAg = sup inf ,
g€4 8€5 veH) P (2) [, glvlPdx

and that we cannot change, in general, the order of sup,., with infve In the case p = 2 problem (14) is discussed

HyP(2)”
in [7], but the method used there does not seem to work for general p. We use here a different method inspired by that used
in [14] in a different situation.

For g € 4, we define

1® =5
We have
Jgy= sup JaBlPE_ Jpmsdx (15)
veHP (@) [o IVvlPdx [, [Vug|Pdx
Note that problem (14) is equivalent to problem
infJ(g). (16)

Theorem A.2. Let gy be a non negative bounded function. Let § be the class of rearrangements generated by go, and let J(g) be
defined as in (15). Then, problem (16) has a unique solution g; furthermore, if uz > 0 is a corresponding eigenfunction then

& = ¥ (ug) for some decreasing function  (t).
Proof. By Lemma 4.2 of [8], the map g — A, is continuous. Equivalently, the map g — J(g) is continuous. Let us show that
this map in Gateaux differentiable. If g, g; € ¢ we have
f Q giugi dx
[ |Vug|Pdx

Jo® —guzdx [, g dx
[ [Vug|Pdx [ |Vug|Pdx

J@©) + <J@) =

_ Josug dx [, (8 — g)uy dx Jo (8 — g)ug dx

= < 17
Jo I Vug Pdx Jo IVug |Pdx =le Jo I Vug |Pdx a7
Let f; > 0 be a sequence such thatt; — Oasi — oo.Letg, h € G and let g; = g + t;(h — g). Then, by (17) we find
[ (h — g)ug dx
t: < A
J©) +ti T Vi P =J(&)
(h — g)up, dx
< ) + ¢ Jo B &t (18)

Jo IVug,[Pdx

Recall that we are using the normalization fQ ugi dx = 1.Since t; > 0asi — oo, we have g — g in the norm of L*°(£2).
As a consequence, the sequence g, is bounded in the norm of H'?(£2), and a subsequence (denoted again by ug, ) converges
in the norm of L”(§2) to some function z € H&‘p(Q). We find

Vug, [Pdx Vz|Pdx
lim il’lf)\,gi = liminf ‘f-Q | ‘§1| > fQ | I >
i—00 i—00 fg gitth, dx fg g 2P dx

Since, by continuity,

lim Ag, = Ag,

i—00
we must have z = ug and ug, — Uug in the norm of H'"?(£2). Therefore, from (18) we get
L JE+t(h—2) —J@) _ [o(h—gug dx

li =
-0+ t [ [Vug|Pdx

(19)
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To discuss problem (16), we first consider the problem
infJ(g),
g<§
where § is the closure of § with respect to the weak* topology of L>(£2). By continuity of J(g) (see Lemma 4.2 of [8]) and
compactness of g, the latter problem has a solution g € §. By strict convexity of J(g) (see Lemma 4.1 of [8]), this solution is

unique. Let us prove that g € §.
If0 <t <1landifg =g + t(g — &), by the minimality of g and by (19) withg = g and h = g, we have

Jo(g — B dx

+
f_QIVuglpdx +o(t) ast—0".

J@) <JE&) =J@ +t
Hence,
[ @-onan=o
2

Equivalently,

/gugdxz‘/gfugdx Vg €g.
Q Q

On the other hand, by the equation

p—1

—Apuy = Ag Uz

it follows that the function uz cannot have flat zones in the set
F={xeR:8x >0}
The theorem follows now from LemmaA.1. O

Remarks. (1) In the case gy = yxp, the function vy of Theorem A.2 is 1/ (s) = H(t — s), where H is the Heaviside function
and 7 is the superior of u(x) in £2. It follows that § = x; with

b:{xe.Q:ub(x)<r}.

(2) A different approach to prove Theorem A.2 could be the use of the following functional

2
A(g,v):p/g|v|pdx— /|Vv|”dx .
2 2

This functional is inspired by Auchmuty [18]. For t > 0 we have

2
A(g,tv)=t”p/glvl”dX—tz"</ IVvI"dX> < A(g, tov),
2 2

p f9g|vlpdx
2

( [y |Vu|pdx>

2
(@gwww>

with

th = (20)

It follows that

p2
Ag, tv) < —
(g v)_4<

I, IVulpdx
and
sup A=
u V) = ——
’ 2
veHy P (2) 4 A

Note that a maximizer u > 0 of v — A(g, v) is normalized so that to = 1in (20), that is,

2
B/gu”dx: /|Vu|pdx .
2Ja Q
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