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a b s t r a c t

We study minimization and maximization problems for the principal eigenvalue of a
p-Laplace equation in a bounded domain Ω , with weight χD, where D ⊂ Ω is a variable
subset with a fixed measure α. We investigate monotonicity, continuity and differentiabil-
ity with respect to α of the optimizing eigenvalues.
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1. Introduction

LetΩ be a bounded smooth domain in RN . For D ⊂ Ω and 1 < p, we consider the eigenvalue problem

−∆pu = λχDup−1, u > 0 inΩ, u = 0 on ∂Ω. (1)

Here λ is the principal eigenvalue, which depends onΩ , p and D. In what follows,Ω and pwill be fixed, whereas, the subset
Dmay change, therefore we shall write λ = λD. It is well known that

λD = inf
 

Ω
|∇v|pdx

Ω
χD|v|pdx

: v ∈ H1,p
0 (Ω),


Ω

χD|v|
pdx > 0


=


Ω

|∇uD|
pdx

Ω
χDu

p
Ddx

,

where uD ∈ H1,p
0 (Ω) is the principal (positive) eigenfunction, which we normalize so that


Ω
up
Ddx = 1. The eigenvalues of

the p-Laplacian have been investigated in several papers, we refer to [1,2] and references therein. For regularity of solutions
of p-Laplace equations we refer to [3–5]. In particular, we recall that the eigenfunctions of problem (1) are continuous.

If D ⊂ Ω is a measurable set we denote with |D| its Lebesgue measure. Fix 0 < α < |Ω|, and consider the minimization
problem

inf
|D|=α

λD = inf
|D|=α


Ω

|∇uD|
pdx

Ω
χDu

p
Ddx

.

It is well known that this problem has (at least) a solution D̂ and that

D̂ = {x ∈ Ω : uD̂(x) > t}

for some t > 0. For a proof of this result we refer to [6,7] in the case p = 2, and to [8] for general p.
In this paper, we define the function f (α) = inf|D|=α λD, andwe shall prove that f (α) is strictly decreasing and continuous

for α ∈ (0, |Ω|). In the case p = 2, these facts have been observed in [9].
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Furthermore, we consider the maximization problem

sup
|D|=α

λD = sup
|D|=α


Ω

|∇uD|
pdx

Ω
χDu

p
Ddx

.

This problem has a unique solution Ď and

Ď = {x ∈ Ω : uĎ(x) < τ }

for some τ > 0. For a proof of this result in the case p = 2, we refer to [6,7]. For general p, this maximization problem is
discussed in [8] in the case whereΩ is a ball. For general domains, see the Appendix of the present paper.

If g(α) = sup|D|=α λD, we have f (α) < g(α) for α ∈ (0, |Ω|), and f (|Ω|) = g(|Ω|). We shall prove that g(α) is strictly
decreasing and differentiable.

The literature on the shape optimization for eigenvalues of elliptic operators is much rich. We quote the books/
articles [10–13] and references therein.

2. Main results

Theorem 2.1. LetΩ be a bounded smooth domain inRN , let D be ameasurable subset of Ω , and let λD be the principal eigenvalue
of problem (1). The functions

f (α) = inf
|D|=α

λD

and

g(α) = sup
|D|=α

λD

are decreasing for α ∈ (0, |Ω|). Furthermore, the function f (α) is continuous, and the function g(α) is differentiable for 0 <
α < |Ω|.

Proof. Let us show that f (α) is decreasing. We know that there is D̂ such that |D̂| = α and

f (α) = λD̂ =


Ω

|∇uD̂|
pdx

Ω
χD̂u

p
D̂
dx
,

where uD̂ is the normalized eigenfunction corresponding to λD̂. If α < β ≤ |Ω|, take D̃ so that D̂ ⊂ D̃ ⊂ Ω with |D̃| = β .
Since uD̂(x) > 0 inΩ , we have

f (α) =


Ω

|∇uD̂|
pdx

Ω
χD̂u

p
D̂
dx

>


Ω

|∇uD̂|
pdx

Ω
χD̃u

p
D̂
dx

≥ λD̃ ≥ f (β).

The monotonicity of f (α) is proved.
Let us show that f (α) is continuous from the left. Let Dwith |D| = α and u = uD > 0 such that

f (α) =


Ω

|∇u|pdx
Ω
χDupdx

. (2)

Take h < 0 such that α + h > 0. Let Dh with |Dh| = α + h and uh = uDh > 0 such that

f (α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

.

Although |Dh| < |D|, we do not have, in general, Dh ⊂ D. Take D̃h ⊂ D with |D̃h| = α + h. Recall that

f (α) = inf
|D|=α

inf
v∈H1,p

0 (Ω)


Ω

|∇v|pdx
Ω
χDvpdx

. (3)

Therefore, since |Dh| = |D̃h|, we have

f (α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

≤


Ω

|∇u|pdx
Ω
χD̃h

updx
,

where u is the same function as in (2). Hence (recall that h < 0),

0 < f (α + h)− f (α) ≤


Ω

|∇u|pdx
Ω
χD̃h

updx
−


Ω

|∇u|pdx
Ω
χDupdx

= Qh


D\D̃h

updx,
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where

Qh =


Ω

|∇u|pdx
Ω
χDupdx


Ω
χD̃h

updx
= f (α)

1
Ω
χD̃h

updx
.

Since u = u(x) > 0, and |D̃h| = α + h > 0, Qh is bounded as h → 0−. Hence, since |D \ D̃h| = |h|, we have

0 ≤ lim
h→0−

[f (α + h)− f (α)] ≤ lim
h→0−

Qh


D\D̃h

updx = 0.

The continuity of f (α) from the left is proved.
Let us show that f (α) is continuous from the right. As in the previous case, let D with |D| = α and u = uD > 0 as in (2).

If h > 0, let Dh with |Dh| = α + h and uh = uDh > 0 such that

f (α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

. (4)

Although |D| < |Dh|, we do not have, in general, D ⊂ Dh. Take D̃h ⊂ Dh with |D̃h| = α. By (2) and (3) we have

f (α) =


Ω

|∇u|pdx
Ω
χDupdx

≤


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

.

Therefore,

0 < f (α)− f (α + h) ≤


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

−


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

= Q̃h


Dh\D̃h

up
hdx,

where

Q̃h =


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx


Ω
χDhu

p
hdx

= f (α + h)
1

Ω
χD̃h

up
hdx

< f (α)
1

Ω
χD̃h

up
hdx

.

We claim that Q̃h is bounded as h → 0+. By contradiction, suppose Q̃hi → ∞ as i → ∞, where hi → 0. Since

Ω
up
hi
dx = 1,

by (4) we find
Ω

|∇uhi |
pdx = f (α + hi)


Ω

χDhi
up
hi
dx < f (α)


Ω

up
hi
dx = f (α).

As a consequence, a subsequence (still denoted as) uhi , converges to some v ∈ H1,p
0 (Ω) in the weak topology of H1,p and in

the norm of Lp(Ω). We have
Ω

|∇uhi |
p−2

∇uhi · ∇ψ dx = λi


Ω

χDhi
up−1
hi
ψ dx, ∀ψ ∈ H1,p

0 (Ω),

where λi = f (α + hi). We may suppose that the sequence λi converges to some λ > 0 and that χDhi
(or some of its

subsequences) converge in the weak* topology of L∞(Ω) to a function η such that 0 ≤ η ≤ 1 and

Ω
η dx = α. Hence, v

satisfies
Ω

|∇v|p−2
∇v · ∇ψ dx = λ


Ω

η vp−1ψ dx, ∀ψ ∈ H1,p
0 (Ω).

This means that v is the first eigenfunction corresponding to η, therefore, v(x) > 0. Finally, since χD̃hi
(or some of its

subsequences) converge in the weak* topology of L∞(Ω) to a function ξ such that 0 ≤ ξ ≤ 1 and

Ω
ξ dx = α, we have

lim
i→∞


Ω

χD̃hi
up
hi
dx =


Ω

ξ vpdx > 0.

It follows that we cannot have Q̃hi → ∞, and Q̃h is bounded as h → 0+.
Hence, since |Dh \ D̃h| = h, we have

0 ≤ lim
h→0+

[f (α)− f (α + h)] ≤ lim
h→0+

Q̃h


Dh\D̃h

up
hdx = 0.

The continuity of f (α) follows.
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Let us prove that g(α) is decreasing. Let α < β . We know that there is Ď such that |Ď| = β and

g(β) = λĎ =


Ω

|∇uĎ|
pdx

Ω
χĎu

p
Ď
dx
,

where uĎ is the normalized eigenfunction corresponding to λĎ. Take D̄ so that D̄ ⊂ Ď and |D̄| = α. If uD̄ is the eigenfunction
corresponding to D̄, we have uD̄(x) > 0 inΩ , and

g(β) =


Ω

|∇uĎ|
pdx

Ω
χĎu

p
Ď
dx

≤


Ω

|∇uD̄|
pdx

Ω
χĎu

p
D̄
dx

<


Ω

|∇uD̄|
pdx

Ω
χD̄u

p
D̄
dx

= λD̄ ≤ g(α).

The monotonicity of g(α) is proved.
By using arguments similar to those used to prove the continuity of f (α), one proves that also g(α) is continuous. Let D

with |D| = α be the set relative to g(α) (recall that D is unique), and let Dh with |Dh| = α+ h be the set relative to g(α+ h).
If u = uD and uh = uDh are the corresponding eigenfunctions, we claim that, when h → 0, χDh → χD in the weak* topology
of L∞(Ω), and uh → u in the norm of Lp(Ω). Indeed, one finds easily that


Ω

|∇uh|
pdx is bounded as h → 0. Hence, there

are a sequence hi (with hi → 0 as i → ∞) and a function z = z(x) ≥ 0, z ∈ H1,p
0 (Ω), such that uhi → z in the weak

topology of H1,p(Ω) and in the norm of Lp(Ω). Furthermore, one finds η with 0 ≤ η(x) ≤ 1 and

Ω
η(x)dx = α such that

χDhi
→ η in the weak* topology of L∞(Ω). Therefore, by

Ω

|∇uhi |
p−2

∇uhi · ∇ψ dx = g(α + hi)


Ω

χDhi
up−1
hi
ψ dx, ∀ψ ∈ H1,p

0 (Ω),

it follows that
Ω

|∇z|p−2
∇z · ∇ψ dx = g(α)


Ω

η zp−1ψ dx, ∀ψ ∈ H1,p
0 (Ω).

This implies that g(α) is the principal eigenvalue corresponding to η. Observe that, if G is the class of all functions of the
kind χD with |D| = α, then η ∈ G, the closure of G with respect to the weak* topology of L∞(Ω). But (see the Appendix
below) we know that there is a unique η ∈ G which corresponds to g(α), and that η ∈ G, that is, η = χĎ for some Ď with
|Ď| = α. Hence, with ψ = z we find

g(α) =


Ω

|∇z|pdx
Ω
χĎ zpdx

=


Ω

|∇u|pdx
Ω
χD updx

.

By uniqueness, we must have D = Ď and z = u. The claim follows.
Now we prove that g(α) is differentiable. We have

g(α) = sup
|D|=α

inf
v∈H1,p

0 (Ω)


Ω

|∇v|pdx
Ω
χD|v|pdx

≤ inf
v∈H1,p

0 (Ω)

sup
|D|=α


Ω

|∇v|pdx
Ω
χD|v|pdx

.

Note that, if v ∈ H1,p
0 (Ω), v > 0, we have (see, for example, [9] page 321)

inf
|D|=α


Ω

χDv
pdx =


Ω

χĎv
pdx,

for some Ď with |Ď| = α and

{v(x) < t} ⊂ Ď ⊂ {v(x) ≤ t}, t = sup{s : |{v(x) < s}| < α}.

This implies that, for v > 0,

g(α) ≤


Ω

|∇v|pdx
Ω
χDvpdx

, {v(x) < t} ⊂ D ⊂ {v(x) ≤ t}, |D| = α. (5)

If h > 0, let Dh with |Dh| = α + h and uh = uDh such that

g(α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

. (6)

We know that (see Remark 1 of the Appendix) there is t > 0 such that

Dh = {x ∈ Ω : uh(x) < t} |Dh| = α + h.
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By using Eq. (1) with D = Dh, one finds that uh has not flat zones on Dh. Therefore, there is τ < t so that

D̃h = {x ∈ Ω : uh(x) < τ }, |D̃h| = α.

Note that, in this situation, the sets D̃h and {x ∈ Ω : uh(x) ≤ τ } have the same measure. Hence, by using (5) we find

g(α) =


Ω

|∇u|pdx
Ω
χDupdx

≤


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

,

where, as usual, D is the set corresponding to g(α) and u = uD > 0 is a corresponding eigenfunction. The latter inequality
and (6) yield

−
g(α + h)− g(α)

h
≤

1
h


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

−


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx



=


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx


Ω
χDhu

p
hdx


Dh\D̃h

up
hdx

h
=

g(α + h)
Ω
χD̃h

up
hdx


Dh\D̃h

up
hdx

h
.

Since h > 0, we have g(α + h) < g(α). Moreover, as h → 0, uh converges to the eigenfunction u = uD in the Lp(Ω) norm,
and χDh converges to χD in the weak* topology of L∞(Ω). Since

Ω

χD̃h
up
hdx −


Ω

χDupdx = −


Ω

(χDh − χD̃h
)up

hdx +


Ω

χDh(u
p
h − up)dx +


Ω

(χDh − χD)updx,

it follows that

lim
h→0+


Ω

χD̃h
up
hdx =


Ω

χDupdx.

Furthermore, since D̃h ⊂ Dh and |Dh \ D̃h| = h, we have
Dh\D̃h

up
hdx

h
≤ sup

Dh\D̃h

up
h ≤ sup

Ω

up
h.

Observe that, by regularity (see [4,5]), all eigenfunctions are Hölder continuous inΩ . Since α/2 < |Dh| < |Ω|, we may also
assume that the Hölder constants are independent of h. Therefore, by Ascoli–Arzelá Theorem, a sequence uhi converges to
u uniformly. It follows that

lim sup
h→0+


Dh\D̃h

up
hdx

h
≤ sup

Ω

up.

Hence,

lim sup
h→0+


−

g(α + h)− g(α)
h


≤

g(α)
Ω
χDupdx

sup
Ω

up. (7)

To prove the reverse inequality we observe that, by Eq. (1) we have∆pu = 0 inΩ \D. This implies that u(x) is a constant
onΩ \ D. More precisely, onΩ \ Dwe have

u(x) = u(x)|∂(Ω\D) = sup
Ω

u(x).

Now, if τ = supΩ u(x), take D̄h such that

{u(x) < τ } ⊂ D̄h ⊂ {u(x) ≤ τ }, |D̄h| = α + h.

By (6) and (5) (with α + h in place of α) we have

g(α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

≤


Ω

|∇u|pdx
Ω
χD̄h

updx
.

Therefore,

g(α)− g(α + h) ≥


Ω

|∇u|pdx
Ω
χDupdx

−


Ω

|∇u|pdx
Ω
χD̄h

updx

=


Ω

|∇u|pdx
Ω
χDupdx


Ω
χD̄h

updx


D̄h\D

updx

h
=

g(α)
Ω
χD̄h

updx


D̄h\D

updx

h
.
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Since u is a constant on D̄h \ D and |D̄h \ D| = h, we have
D̄h\D

updx

h
= sup

Ω

up.

Hence

lim inf
h→0+


−

g(α + h)− g(α)
h


≥

g(α)
Ω
χDupdx

sup
Ω

up. (8)

From (7) and (8) we find

lim
h→0+


−

g(α + h)− g(α)
h


=

g(α)
Ω
χDupdx

sup
Ω

up. (9)

Now let h < 0 such that α + h > 0. We know that there are Dh with |Dh| = α + h and uh = uDh > 0 such that

g(α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

,

and

Dh = {x ∈ Ω : uh(x) < t}

for t = supΩ uh(x). Let us take D̃h ⊃ Dh with |D̃h| = α. Note that

{uh(x) < t} ⊂ D̃h ⊂ {uh(x) ≤ t}.

Using (5) (with uh in place of v), we find

g(α) =


Ω

|∇u|pdx
Ω
χDupdx

≤


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

.

Hence,

g(α)− g(α + h) ≤


Ω

|∇uh|
pdx

Ω
χD̃h

up
hdx

−


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

= −
g(α + h)
Ω
χD̃h

up
hdx


D̃h\Dh

up
hdx.

Since |D̃h \ Dh| = |h| and since uh is a constant outside Dh, it follows that

g(α)− g(α + h)
h

≥
g(α + h)
Ω
χD̃h

up
hdx


D̃h\Dh

up
hdx

|h|
=

g(α + h)
Ω
χD̃h

up
hdx

sup
Ω

up
h.

Since h < 0, we have g(α + h) > g(α), and

lim inf
h→0−


−

g(α + h)− g(α)
h


≥

g(α)
Ω
χDupdx

sup
Ω

up. (10)

On the other hand, since u has not flat zones on D, we can find τ such that

D̄h = {x ∈ Ω : u(x) < τ }, |D̄h| = α + h.

In this situation, the sets D̄h and {x ∈ Ω : u(x) ≤ τ } have the same measure. By (5) (with α + h in place of α), we have

g(α + h) =


Ω

|∇uh|
pdx

Ω
χDhu

p
hdx

≤


Ω

|∇u|pdx
Ω
χD̄h

updx
.

Since D̄h ⊂ D, we find

g(α)− g(α + h) ≥


Ω

|∇u|pdx
Ω
χDupdx

−


Ω

|∇u|pdx
Ω
χD̄h

updx

= −
g(α)

Ω
χD̄h

updx


D\D̄h

updx.
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Finally, since h < 0, we have

g(α)− g(α + h)
h

≤
g(α)

Ω
χD̄h

updx


D\D̄h

updx

|h|
.

Hence,

lim sup
h→0−


−

g(α + h)− g(α)
h


≤

g(α)
Ω
χDupdx

sup
Ω

up. (11)

From (10) and (11) we find

lim
h→0−


−

g(α + h)− g(α)
h


=

g(α)
Ω
χDupdx

sup
Ω

up. (12)

From (9) and (12) it follows that g(α) is differentiable and

−g ′(α) =
g(α)

Ω
χDupdx

sup
Ω

up.

The proof of the theorem is completed. �

Remarks. (1) A similar proof for the differentiability of f (α) fails to hold in general. For example, in the case where Ω
is a dumbbell (see [9]), for a particular value of α we have two different sets D1 and D2 such that |D1| = |D2| = α and
λD1 = λD2 = f (α). In this situation, a sequence of domainsDhi corresponding toλDhi

, as i → ∞may converge toD1, whereas,
another sequence Dhj corresponding to λDhj

, as j → ∞ may converge to D2. In this case our method does not guarantee the
differentiability of f (α). We think that differentiability occurs for domains Ω where uniqueness of a minimizer holds for
any α ∈ (0, |Ω|).

(2) The results for maximization and minimization are different. Indeed, for maximization we always have uniqueness,
whereas, for minimization we may have different solutions (as in the case of a dumbbell). We think that uniqueness of a
minimizer occurs for convex domains, butwe do not have a proof. In the case p = 2 andwhereΩ is Steiner symmetric, in [9]
it is shown that anyminimizer D̂ is symmetric. This implies uniqueness of theminimizer whenΩ = B is a ball. Therefore, in
the latter case, theminimizer D̂ is a ball concentricwith B, whereas, themaximizer Ď is the annuluswhose exterior boundary
coincides with the boundary of B.

(3) From the definition of principal eigenvalue, it follows that λD → ∞ as |D| → 0. Therefore, f (α) and g(α) diverge to
∞ as α → 0.

Appendix

Let Ω be a bounded smooth domain in RN . We say that two measurable functions f (x) and g(x) defined in Ω have the
same rearrangement if

|{x ∈ Ω : f (x) ≥ β}| = |{x ∈ Ω : g(x) ≥ β}| ∀β ∈ R.

If g0(x) ≥ 0 is a bounded function defined in Ω , we denote by G = G(g0) the class of its rearrangements. We assume
g0(x) > 0 in a subset of positive measure, and suppose g0 ≠ constant . Let G be the closure of G in the weak* topology of
L∞(Ω). We make use of the following result on minimization of a linear functional.

Lemma A.1. Let ǧ ∈ G, and let u be a measurable function that has not flat zones in the set F = {x ∈ Ω : ǧ(x) > 0}. If
Ω

g u dx ≥


Ω

ǧ u dx ∀g ∈ G,

then, ǧ ∈ G, and there is a decreasing function ψ(t) such that ǧ = ψ(u).

Proof. We refer to [14], proof of Theorem 2.2, part II. The proof uses ideas from [15–17]. �

For 1 < p < ∞ and g ∈ G, we consider the eigenvalue problem

−∆pu = λg(x)up−1, u > 0 inΩ, u = 0 on ∂Ω. (13)

Hereλ is the principal eigenvalue, which depends onΩ , p and g . Inwhat follows,Ω and pwill be fixed, whereas, the function
g may change, therefore we shall write λ = λg . It is well known that

λg = inf


Ω
|∇v|pdx

Ω
g|v|pdx

: v ∈ H1,p
0 (Ω),


Ω

g|v|pdx > 0


=


Ω

|∇ug |
pdx

Ω
gup

gdx
,



M. Marras et al. / J. Math. Anal. Appl. 398 (2013) 766–775 773

where ug ∈ H1,p
0 (Ω) is the principal eigenfunction and ug(x) > 0 (see [1]). Fix g0 and define the corresponding class

G = G(g0). Consider the problem

sup
g∈G

λg = sup
g∈G


Ω

|∇ug |
pdx

Ω
gup

gdx
. (14)

Note that

sup
g∈G

λg = sup
g∈G

inf
v∈H1,p

0 (Ω)


Ω

|∇v|pdx
Ω
g|v|pdx

,

and that we cannot change, in general, the order of supg∈G with inf
v∈H1,p

0 (Ω)
. In the case p = 2 problem (14) is discussed

in [7], but the method used there does not seem to work for general p. We use here a different method inspired by that used
in [14] in a different situation.

For g ∈ G, we define

J(g) =
1
λg
.

We have

J(g) = sup
v∈H1,p

0 (Ω)


Ω
g|v|pdx

Ω
|∇v|pdx

=


Ω
gup

gdx
Ω

|∇ug |
pdx

. (15)

Note that problem (14) is equivalent to problem

inf
g∈G

J(g). (16)

Theorem A.2. Let g0 be a non negative bounded function. Let G be the class of rearrangements generated by g0, and let J(g) be
defined as in (15). Then, problem (16) has a unique solution ǧ; furthermore, if uǧ > 0 is a corresponding eigenfunction then
ǧ = ψ


uǧ

for some decreasing function ψ(t).

Proof. By Lemma 4.2 of [8], the map g → λg is continuous. Equivalently, the map g → J(g) is continuous. Let us show that
this map in Gateaux differentiable. If g, gi ∈ G we have

J(g)+


Ω
(gi − g)up

g dx
Ω

|∇ug |
pdx

=


Ω
giu

p
g dx

Ω
|∇ug |

pdx
≤ J(gi) =


Ω
giu

p
gi dx

Ω
|∇ugi |

pdx

=


Ω
gup

gi dx
Ω

|∇ugi |
pdx

+


Ω
(gi − g)up

gi dx
Ω

|∇ugi |
pdx

≤ J(g)+


Ω
(gi − g)up

gi dx
Ω

|∇ugi |
pdx

. (17)

Let ti > 0 be a sequence such that ti → 0 as i → ∞. Let g, h ∈ G and let gi = g + ti(h − g). Then, by (17) we find

J(g)+ ti


Ω
(h − g)up

g dx
Ω

|∇ug |
pdx

≤ J(gi)

≤ J(g)+ ti


Ω
(h − g)up

gi dx
Ω

|∇ugi |
pdx

. (18)

Recall that we are using the normalization

Ω
up
gi dx = 1. Since ti → 0 as i → ∞, we have gi → g in the norm of L∞(Ω).

As a consequence, the sequence ugi is bounded in the norm of H1,p(Ω), and a subsequence (denoted again by ugi ) converges
in the norm of Lp(Ω) to some function z ∈ H1,p

0 (Ω). We find

lim inf
i→∞

λgi = lim inf
i→∞


Ω

|∇ugi |
pdx

Ω
giu

p
gi dx

≥


Ω

|∇z|pdx
Ω
g zp dx

≥ λg .

Since, by continuity,

lim
i→∞

λgi = λg ,

we must have z = ug and ugi → ug in the norm of H1,p(Ω). Therefore, from (18) we get

lim
t→0+

J(g + t(h − g))− J(g)
t

=


Ω
(h − g)up

g dx
Ω

|∇ug |
pdx

. (19)
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To discuss problem (16), we first consider the problem

inf
g∈G

J(g),

where G is the closure of G with respect to the weak* topology of L∞(Ω). By continuity of J(g) (see Lemma 4.2 of [8]) and
compactness of G, the latter problem has a solution ǧ ∈ G. By strict convexity of J(g) (see Lemma 4.1 of [8]), this solution is
unique. Let us prove that ǧ ∈ G.

If 0 < t < 1 and if gt = ǧ + t(g − ǧ), by the minimality of ǧ and by (19) with g = ǧ and h = g , we have

J(ǧ) ≤ J(gt) = J(ǧ)+ t


Ω
(g − ǧ)up

ǧ dx
Ω

|∇uǧ |
pdx

+ o(t) as t → 0+.

Hence,
Ω

(g − ǧ)up
ǧdx ≥ 0.

Equivalently,
Ω

g up
ǧdx ≥


Ω

ǧ up
ǧdx ∀g ∈ G.

On the other hand, by the equation

−∆puǧ = λǧ up−1
ǧ ,

it follows that the function uǧ cannot have flat zones in the set

F = {x ∈ Ω : ǧ(x) > 0}.

The theorem follows now from Lemma A.1. �

Remarks. (1) In the case g0 = χD, the function ψ of Theorem A.2 is ψ(s) = H(τ − s), where H is the Heaviside function
and τ is the superior of uĎ(x) inΩ . It follows that ǧ = χĎ with

Ď = {x ∈ Ω : uĎ(x) < τ }.

(2) A different approach to prove Theorem A.2 could be the use of the following functional

A(g, v) = p

Ω

g|v|pdx −


Ω

|∇v|pdx

2

.

This functional is inspired by Auchmuty [18]. For t > 0 we have

A(g, tv) = tpp

Ω

g|v|pdx − t2p


Ω

|∇v|pdx

2

≤ A(g, t0v),

with

tp0 =
p
2


Ω
g|v|pdx

Ω
|∇v|pdx

2 . (20)

It follows that

A(g, tv) ≤
p2

4

 
Ω
g|v|pdx

Ω
|∇v|pdx

2

,

and

sup
v∈H1,p

0 (Ω)

A(g, v) =
p2

4
1
λ2g
.

Note that a maximizer u > 0 of v → A(g, v) is normalized so that t0 = 1 in (20), that is,

p
2


Ω

gupdx =


Ω

|∇u|pdx

2

.
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