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a b s t r a c t

We establish duality results for the generalized monotropic programming problem in
separated locally convex spaces. We formulate the generalized monotropic programming
(GMP) as the minimization of a (possibly infinite) sum of separable proper convex
functions, restricted to a closed and convex cone. We obtain strong duality under a
constraint qualification based on the closedness of the sum of the epigraphs of the
conjugates of the convex functions.When the objective function is the sumof finitelymany
proper closed convex functions, we consider two types of constraint qualifications, both of
which extend those introduced in the literature. The first constraint qualification ensures
strong duality, and is equivalent to the one introduced by Boţ and Wanka. The second
constraint qualification is an extension of Bertsekas’ constraint qualification and we use
it to prove zero duality gap.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

TheMonotropic Programming (MP) problemwas introduced by Rockafellar in [1] and has beenwidely studied (cf. [2–4]).
In its classical form, MP is defined in a finite dimensional setting and it involves minimizing a finite sum of proper and
convex separable functions restricted to a closed subspace. We focus on a generalization of this problem, the generalized
monotropic programming (GMP), which consists of minimizing a (finite or infinite) sum of proper and convex functions
defined on (possibly different) locally convex spaces. To define the problem, denote R := R∪{±∞} and let I be an arbitrary
index set. Consider a family of real separated locally convex spaces {Xi}i∈I , and a family {fi}i∈I of proper and convex functions
such that fi : Xi → R for all i ∈ I . Take X :=


i∈I Xi and consider the sum of {fi}i∈I , defined as f : X → R such that

f (x) :=


i∈I fi(xi). The meaning of the right-hand side of the last expression in the case in which I is infinite is recalled later
on in Definition 2.2. The GMP problem we study is as follows:

min

i∈I

fi(xi)

subject to x ∈ K ,

(P)

where xi ∈ Xi for all i ∈ I , and the constraint set K is a closed and convex cone contained in X =


i∈I Xi. As far as we
know, the only work dealing with an infinite sum of convex functions is [5]. The functions in [5] are defined in Banach
spaces, however, the definition and the properties of the infinite sums mentioned in [5] can be stated for functions defined
on separated locally convex spaces.

Following [6,3], we say that strong duality holds when the optimal primal and dual values coincide, and the dual value is
attained. If we only have equality of the primal and dual optimal values, we say that we have zero duality gap. Rockafellar
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[1,4] was the first to use a variant of the ϵ-descent method to prove zero duality gap for the MP problem. More recently,
Bertsekas [7] has modified Rockafellar’s method and applied it for solving the extended MP problem. The latter problem
has for the objective function a finite sum of extended real-valued functions which can have domains in different finite
dimensional spaces [7], and use a subspace S as a constraint set. To obtain zero duality gap in this context, Bertsekas used
projections on an outer approximation of the ϵ-subdifferential and used a constraint qualification involving the closedness
of the Minkowski sum of ϵ-subdifferentials. Bertsekas’ constraint qualification (cf. [7, Proposition 4.1]) requires that the set

Aϵ(x) = ∂ϵδS(x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x) (1)

is closed for all feasible solutions x = (x1, . . . , xm) and every ϵ > 0, where f̄i(x) := fi(xi) for each i = 1, . . . ,m (for the
definition of f̄i, see Remark 3.1(1)).

In locally convex spaces, Boţ and Csetnek [3] proved zero duality gap for the extended MP problem under alternative
assumptions. Boţ and Csetnek used in [3] an extension to separated locally convex spaces of Bertsekas’ constraint
qualification (1). Our purpose is to study strong duality for our general version GMP of the MP. We obtain strong duality
under new constraint qualifications (see Theorems 3.4 and 3.5). In Theorem 3.4 we prove that, when I is finite and the
constraint set K is nonempty closed and convex, strong duality for the Problem (P) holds if the set

epiδ∗

K + epif̄ ∗

1 + · · · + epif̄ ∗

m (2)

isweak∗ closed. The epif̄ ∗

i is the epigraph of the conjugate function of f̄i defined above.We also show, in Theorem3.4, that the
above constraint qualification is equivalent to the ones used in [8, p. 2798], [6, Theorem 3.2.6] for the case of locally convex
spaces and [9, Corollary 3] for the case of Banach spaces, to obtain generalized Fenchel’s duality. Namely, it is equivalent to
the weak∗ closedness of the set epif ∗

+ epig∗ in case f (x) is defined as in Problem (P) and g(x) = δK (x). Still for the finite
sum, we use in Theorem 3.6, an extension of Bertsekas’ constraint qualification (1) to obtain zero duality gap. This constraint
qualification requires that the set

Aϵ(x) = ∂ϵδK (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x) (3)

is weak∗ closed for all feasible solutions x = (x1, . . . , xm) and every ϵ > 0, where ∂ϵ f̄i(x) is the ϵ-subdifferential of f̄i at x.
Note that the constraint subspace S used in (1) has been replaced in (3) by any closed convex cone K .
Theorem 3.5 considers the case of I infinite and an arbitrary closed and convex constraint set K . For this casewe prove strong
duality when

epiδ∗

K +


i∈I

∗

epif̄i
∗

(4a)

is weak∗ closed, and

epif ∗
=


i∈I

∗

epif̄ ∗

i . (4b)

This constraint qualification, which is new in the literature, involves the weak∗ closedness of the sum of the epigraphs of
the conjugate functions and an additional condition on the summability of the epigraph of the conjugate of the infinite sum.
Corollary 3.1 describes conditions under which the constraint qualification (4a) is enough to ensure strong duality.
The outline of the paper is as follows. In Section 2, we review the necessary definitions and preliminary results. In
Section 3, we introduce the GMP problem and its dual in a separated locally convex space and introduce our new constraint
qualifications (2) and (4a)–(4b) to obtain strong duality for the GMP problem. Still in Section 3, we introduce the constraint
qualification (3) to show zero duality gap which generalizes the one used in [7]. We end Section 3 with an example
illustrating the fact that our new constraint qualification (2) is not weaker than (3). Section 4 contains our conclusions.
Some needed technical facts from real analysis are proved in the Appendix.

2. Preliminaries

We collect in this section some definitions and properties from convex analysis which can be found e.g., in [6,10,11]. Let X
denote a locally convex space, and X∗ its topological dual space endowedwith theweak∗ topologyw∗(X∗, X). IfD is a subset
of X∗, theweak∗ closure of Dwill be denoted by D

w∗

. Let C be a non empty subset of X . The indicator function associated with
the set C , δC : X → R is defined by

δC (x) :=


0 if x ∈ C,
+∞ otherwise.

The support function σC : X∗
→ R is defined by σC (v) = sup{⟨v, x⟩ : x ∈ C}, where ⟨·, ·⟩ is the duality product in X∗

× X .
Recall that, given ϵ ≥ 0, the ϵ-normal set of C , which is denoted by Nϵ

C (x), is defined as

Nϵ
C (x) :=


{x∗

∈ X∗
: ⟨x∗, y − x⟩ ≤ ϵ, ∀y ∈ C} if x ∈ C,

φ otherwise. (4)
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A subset K of X is called a closed convex cone if K is a closed and convex set such that for every x ∈ K and λ ≥ 0 it holds that
λx ∈ K . The polarconvex cone of K is defined as K ◦

= {x∗
∈ X∗

| ⟨x, x∗
⟩ ≤ 0∀x ∈ K}, and the dual cone will be denoted by

K ∗
:= −K ◦

= {x∗
∈ X∗

| ⟨x, x∗
⟩ ≥ 0∀x ∈ K}. A convex function f : X → R is said to be proper if f (x) > −∞ for every

x ∈ X , and the set dom f := {x ∈ X | f (x) < ∞} ≠ ∅. The set dom f is called the domain of f . The epigraph of f is defined as
epif := {(x, α) ∈ X × R | f (x) ≤ α}. The convex function f is called lower semi continuous (lsc) at x if and only if

f (x) = lim inf
y→x

f (y) = lim
ϵ→0

inf{f (y) | |y − x| ≤ ϵ}.

The function clf : X → R is called the lower semicontinuous hull of f , and is defined as (clf )(x) := inf{t : (x, t) ∈ cl(epif )}.
If f is lsc at every point in the space then f is called closed, this fact is denoted as clf = f . The function f ∗

: X∗
→ R, defined

as f ∗(v) := sup{⟨v, x⟩ − f (x) | x ∈ X} is called the conjugate function of f . In addition, if a convex function f is proper then
f ∗(v) > −∞ ∀v ∈ X∗. The subdifferential of f at x ∈ X is the point-to-set mapping ∂ f : X ⇒ X∗ defined as

∂ f (x) := {v ∈ X∗
| f (y) ≥ f (x) + ⟨v, y − x⟩ for all y ∈ X},

and the ϵ-subdifferential of f is defined as

∂ϵ f (x) := {v ∈ X∗
| f (y) ≥ f (x) + ⟨v, y − x⟩ − ϵ for all y ∈ X},

for all x ∈ X and all ϵ ≥ 0. The definition of ∂ϵ f (x) entails that, for every x ∈ dom f and every ϵ ≥ 0, v ∈ ∂ϵ f (x), if and only
if f ∗(v) + f (x) − ⟨v, x⟩ ≤ ϵ. If x ∈ dom f and ϵ ≥ 0, ∂ϵ f (x) is weak∗ closed and convex (see [10]). If f is a proper and lsc
convex function, ∂ϵ f (x) ≠ φ for all ϵ > 0 and x ∈ dom f (see [10]). If f is a proper and lsc convex function, x ∈ dom f and
ϵ > 0, the support function of ∂ϵ f (x) is given by the formula

σ [y|∂ϵ f (x)] := sup{⟨v, y⟩ | v ∈ ∂ϵ f (x)} = inf
α>0

f (x + αy) − f (x) + ϵ

α
, (5)

(see [10]). Recall that for a non-empty convex subset C of X we have

∂ϵδC (x) = Nϵ
C (x), (6)

where Nϵ
C (x) is defined in (4). When C is a subspace it is easy to show that

NC (x) = ∂δC (x) = ∂ϵδC (x) = C⊥, ∀x ∈ C, ∀ϵ ≥ 0

where C⊥
:= {y ∈ X : ⟨x, y⟩ = 0 ∀x ∈ C} is the orthogonal subspace of C . The infimal convolution of two proper convex

functions f , g : X → R is denoted by f ⊕ g and defined as (f ⊕ g)(x) = infx=x1+x2{f (x1) + f (x2)}. The infimal convolution
is called exact if the infimum is achieved for every x ∈ X [11]. For finite proper convex functions f1, . . . , fm, the infimal
convolution is defined as (f1 ⊕ · · · ⊕ fm)(x) = inf{f1(x1) + · · · + fm(xm) | x = x1 + · · · + xm}. We recall now the following
useful result.

Lemma 2.1 ([6, Theorem 2.3.10, Proposition 2.3.9]). Let fi : X → R, ∀i = 1, . . . ,m be proper and closed convex functions such
that

m
i=1 dom fi ≠ φ. Then

(1)

epi


m
i=1

fi

∗

= cl


m
i=1

epif ∗

i


. (7)

(2) The following statements are equivalent:
(i) epi(

m
i=1 fi)

∗
=
m

i=1 epif
∗

i

(ii) (
m

i=1 fi)
∗

= f ∗

1 ⊕ · · · ⊕ f ∗
m and the infimal convolution is exact.

The ϵ-descent direction and the ϵ-descentmethod aremain tools for obtaining zero duality gap for the extendedMPproblem
in [7].Wewill use them in our analysis. To the best of our knowledge, the ϵ-descentmethod is defined in a finite dimensional
setting. For references on the ϵ-descent method, see [12,2].

Definition 2.1. Let f : X → R be a function. A vector y is called an ϵ-descent direction at x ∈ dom f if and only if

inf
α>0

f (x + αy) < f (x) − ϵ. (8)

Combining the expression abovewith (5), we conclude that y is an ϵ-descent direction at x if and only if supv∈∂ϵ f (x)⟨v, y⟩ < 0.
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The ϵ-descent method is defined as follows. Select a vector x0 ∈ dom f and generate a sequence {xk} ⊂ dom f such that
xk+1 = xk + αkyk, where yk is an ϵ-descent direction (if one can be found) at xk and αk is a positive stepsize such that

f (xk + αkyk) < f (xk) − ϵ. (9)

From Definition 2.1, αk as above exists if an ϵ-descent direction yk can be found. The ϵ-descent method stops if and only
if 0 ∈ ∂ϵ f (x). Indeed, 0 ∈ ∂ϵ f (x) if and only if f (x + αy) ≥ f (x) − ϵ ∀y ∈ X , ∀α ≥ 0 and the latter inequality yields
infα>0(x + αy) ≥ f (x) − ϵ ∀y ∈ X . By (8), no ϵ-descent direction can be obtained and the method has to stop. We will use
this method in Theorem 3.6.
Wementioned above that the index set I may be infinite. For analyzing this situationwe recall the relevant definitions, taken
from [5].

Definition 2.2. Let I be an index set, and let F (I) = {J ⊆ I | J is finite}. Note that F (I) is a directed set ordered by the
inclusion relation.

(1) Let {wi | i ∈ I} ⊆ R ∪ {+∞}. We define limit inferior (liminf) and limit superior (limsup) of


i∈I wi, respectively, as
follows.

lim inf
i→+∞


i∈I

wi = sup
n∈N


inf
|A|≤n
A∈F (I)


i∈A

wi


,

and

lim sup
i→+∞


i∈I

wi = inf
n∈N

 sup
|A|≤n
A∈F (I)


i∈A

wi

 .

If the limits above exist and coincide, we denote the common limit by

lim
|A|→+∞

A∈F (I)


i∈A

wi =


i∈I

wi, (10)

where


i∈I wi belongs to R ∪ {+∞}. In this case, we say that the sum of {wi}i∈I is convergent.
(2) Let {fi | i ∈ I} be a family of extended real valued functions defined on a separable locally convex space Xi, for all i ∈ I .

Define, for x = (xi)i∈I ∈


i∈I Xi, the infinite sum of {fi | i ∈ I} as f (x) :=


i∈I fi(xi), where f :


i∈I Xi → R. The sum on
the right-hand side is understood as in (10) such that wi = fi(xi) ∈ R, and dom f := {x ∈


i∈I Xi |


i∈I fi(xi) < +∞}.

(3) Let {Zi | i ∈ I} be a family of locally convex spaces. Let Pj :


i∈I Zi → Zj be the projection of


i∈I Zi onto Zj for each j ∈ I ,
i.e., Pj((zi)i∈I) = zj.

(4) Let v ∈ X∗ and {vi}i∈I ⊆ X∗, we say that v :=


i∈I
∗
vi if and only if ⟨v, x⟩ =


i∈I⟨vi, x⟩ ∀x ∈ X . In this case, the sum

of {vi}i∈I is ‘‘weakly convergent’’. This happens if and only if


i∈I⟨vi, x⟩ converges in R, ∀x ∈ X , and its limit coincides
with ⟨v, x⟩.

(5) We now define the arbitrary sum of subsets of X∗ as follows. The sum of {Ai}i∈I ⊂ X∗ is defined as
∗
i∈I

Ai :=


v ∈ X∗

| ∀i ∈ I∃vi ∈ Ai such that v =


i∈I

∗

vi


.

Remark 2.1. Let X =


i∈I Xi. Then

(i) Denote by A ≃ B the fact that two vector spaces are algebraically isomorphic. Then, following [13, Theorem 4.3], we
know that there exists an algebraic isomorphism γ : X∗

→


i∈I X
∗

i . In other words, for all v ∈ X∗ there exist a unique
(vi)i∈I such that γ (v) = (vi)i∈I . Moreover, from [13, Theorem 4.3 and Section 4.1] and [14, p. 3], it holds that

⟨v, x⟩ =


i∈I

⟨vi, xi⟩, (11)

for each x = (xi)i∈I ∈ X where the sum above has only a finite number of nonzero terms.
(ii) Let f : X → R be a proper and convex separable function such that f (x) :=


i∈I fi(xi) for all x ∈ X . Then f ∗(v) :=

i∈I f
∗

i (vi) for all v ∈ dom f ∗ where f ∗
:


i∈I X
∗

i → R. Indeed, if v ∈ dom f ∗ then f ∗(v) = supz∈X {⟨v, z⟩−f (z)} < +∞.
By using (i) and the definition of f , the last expression becomes f ∗(v) = supzi∈Xi{


i∈I⟨vi, zi⟩−


i∈I fi(zi)} < +∞. From

Lemma A.1(iv), we get f ∗(v) = supzi∈Xi{


i∈I(⟨vi, zi⟩ − fi(zi))} < +∞. Using now Lemma A.2(ii–iii)

f ∗(v) =


i∈I

sup
zi∈Xi

{⟨vi, zi⟩ − fi(zi)} =


i∈I

f ∗

i (vi), (12)

as claimed.
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3. Duality results for the GMP problem

We start by describing the primal and dual problems for GMP.

3.1. Primal and dual problems

To derive the dual problem of GMP problem (P), we recall from the introduction that the GMP problem can be formulated
as

min

i∈I

fi(xi)

subject to x ∈ K .

(13)

The above problem is the unconstrained minimization of the function

f̃ (x) = δK (x) +


i∈I

fi(xi) = δK (x) + f (x) ∀x ∈ D := K ∩


i∈I

dom fi


. (14)

We construct the dual in a canonical way using Fenchel’s duality [15, p. 454]. As in [2], we introduce an auxiliary vector
z ∈ X and re-write GMP problem (13) in the following equivalent form

min f (z)
subject to z = x, x ∈ K .

(15)

We then append the constraint to the objective function through a Lagrange multiplier vector v ∈ X∗. Namely, we define
the Lagrangian function L : X × X × X∗

→ R such that L(x, z, v) = f (z) + δK (x) + ⟨v, x − z⟩. By taking the infimum of
L(·, ·, v) over K × X we obtain the dual function q(v), i.e.,

q(v) = inf
x∈K ,z∈X

L(x, z, v)

= inf
x∈K

⟨v, x⟩ + inf
z∈X

{f (z) − ⟨v, z⟩}

= inf
x∈K

⟨v, x⟩ − sup
z∈X

{⟨v, z⟩ − f (z)}

=


−f ∗(v) if v ∈ K ∗, v ∈ dom f ∗

−∞ otherwise. (16)

By applying Remark 2.1 (Eq. (12)), the last expression yields

=


−


i∈I

f ∗

i (vi) if v ∈ dom f ∗
∩ K ∗

−∞ otherwise.

Thus, the conjugate dual problem can be written as follows

max−


i∈I

f ∗

i (vi)

subject to v ∈ K ∗,

(17)

where v∗

i ∈ X∗

i , f
∗

i : X∗

i → R is the conjugate convex function of fi for each i ∈ I , and K ∗ is the dual cone, K ∗
⊆


i∈I X
∗

i .

Remark 3.1. (1) The GMP problem involves the sum of separable proper and convex functions fi defined on Xi. However,
we can define the GMP problem as a sum of functions f̄i defined on X =


i∈I Xi. Namely, given fi : Xi → R, define

f̄i :


i∈I Xi → R such that f̄i(x) := fi(xi) for all i ∈ I . With this definition, we can write f (x) =


i∈I fi(xi) =


i∈I f̄i(x).
Thus, we can now re-write (13) as

min

i∈I

f̄i(x)

subject to x ∈ K .

(18)

Similarly, the dual problem (17) will be equivalent to

max−


i∈I

f ∗

i (v)

subject to v ∈ K ∗,

(19)

where, f ∗

i :


i∈I X
∗

i → R such that f ∗

i (v) := f ∗

i (vi) for all i ∈ I.
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(2) At this point, it is important to distinguish the difference between the functions f̄i
∗
and f ∗

i for all i ∈ I . The dom f ∗

i =

{v = (vj)j∈I ∈


j∈I X
∗

j : f ∗

i (v) < +∞} = {v | Pi(v) = vi ∈ dom f ∗

i }, where Pi is as in Definition 2.2(3) for Zi = X∗

i .
Hence, the dom f ∗

i = (


j≠i X
∗

j ) × dom f ∗

i . On the other hand, the function f̄i
∗

:


i∈I X
∗

i → R is the conjugate of f̄i and
is defined as

f̄i
∗
(v) = sup

x∈X
{⟨v, x⟩ − f̄i(x)}

= sup
x∈X


i∈I

⟨vi, xi⟩ − fi(xi)


.

If f̄i
∗
(v) < +∞, then by using Lemma A.1(iv), the last equality can be written as follows

= sup
x∈X


j≠i

⟨vj, xj⟩ + (⟨vi, xi⟩ − fi(xi))


= sup

xj∈Xj
∀j≠i


j≠i

⟨vj, xj⟩ + sup
xi∈Xi

{⟨vi, xi⟩ − fi(xi)}.

Since f̄i
∗
(v) < +∞ and sup xj∈Xj

j≠i


j≠i⟨vj, xj⟩ ≥ 0 then supxi∈Xi{⟨vi, xi⟩ − fi(xi)} < +∞, which yields vi ∈ dom f ∗

i . Thus,

using Lemma A.2(i)–(iii), we have supxj∈Xj⟨vj, xj⟩ < +∞ for each j ≠ i and this forces vj = 0 for all j ≠ i. Thus, we get

f̄i
∗
(v) =


sup
xi∈Xi

{⟨vi, xi⟩ − fi(xi)} if vj = 0 ∀j ≠ i, vi ∈ dom f ∗

i

+∞ otherwise,

=


fi∗(vi) if vj = 0 ∀j ≠ i, vi ∈ dom f ∗

i
+∞ otherwise. (20)

In other words, v = (vj)j∈I ∈ dom f̄i
∗
if and only if the ith component vi ∈ dom f ∗

i and vj = 0 for all i ≠ j, i.e.,

dom f̄i
∗

=


j≠i

{0}


× dom f ∗

i . (21)

The aim of the rest of this section is to obtain strong duality for the primal–dual problems (13) and (17) mentioned above.
Namely, we develop a constraint qualification which ensures

inf


δK (x) +


i∈I

fi(xi) | x ∈ X


= max


−δ∗

K (−v) −


i∈I

f ∗

i (vi) | v ∈ X∗


,

which is, from (18) and (19), equivalent to

inf


i∈I

f̄i(x) | x ∈ K


= max


−


i∈I

f ∗

i (v) | v ∈ K ∗


.

The equality above can be seen as a Fenchel’s duality result for GMP problems with infinite I .

3.2. Strong duality

In this subsectionwe deal with GMP problem (13) and (18) and its dual (17) and (19) respectively such that each function
fi in the primal problem is closed, i.e. each function is lower semi continuous on thewhole space Xi. Our aim is to show strong
duality for this problem under the constraint qualifications (2) and (4a)–(4b), respectively. When the objective function in
the primal problem is the sum of finitely many proper closed convex functions, our constraint qualification (2) turns out to
be equivalent to the geometric condition introduced by Boţ and Wanka in [8] to obtain Fenchel’s duality in locally convex
spaces (see also [6, Theorem 3.2.6]). We need the following properties.

Lemma 3.1. Let f and {fi : i ∈ I} be defined as in Remark 3.1(1). Then

(1) The relation between the ϵ-subdifferentials of f̄i and fi is given as

∂ϵ f̄i(x) = {v = (vi)i∈I | Pi(v) = vi ∈ ∂ϵ fi(xi) and Pj(v) = vj = 0 ∀j ≠ i}, (22)

for all i ∈ I.
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(2) The epigraph of f̄i
∗
can be expressed in terms of the epigraph of f ∗

i as follows

epif̄i
∗

=


(v, α) ∈


i∈I

X∗

i × R | Pi(v) = vi with f ∗

i (vi) ≤ α and Pj(v) = vj = 0 ∀j ≠ i


, for all i ∈ I. (23)

Proof. Statement (22) is straightforward from the definition of ϵ-subdifferential because f̄i depends only on the coordinate
xi, and is constant with respect to other coordinates. Statement (23) follows directly from (20). �

It was proved in [5] that the equality in (7) is no longer true when we have the sum of infinite proper and closed convex
functions. We quote below [5, Lemma 3.1] which was given for Banach spaces. However, its proof is also valid in separated
locally convex spaces.

Lemma 3.2. Let {f , fi : i ∈ I} be a family of proper closed convex functions such that f (x) =


i∈I fi(x) for all x ∈ X. Then
i∈I

∗

epif ∗

i

w∗

⊆ epif ∗. (24)

In [5], the authors present conditions underwhich (24) holds as an equality. Their results [5, Theorems 4.1 and 4.3] are stated
for Banach spaces. We quote them below, and we point out that one of them (Theorem 4.3) is also valid in our framework
of separated locally convex spaces. We note that assumption (1) in Theorem 3.1 below, together with the closedness of the
functions, implies that the functions are continuous (cf. [16, Theorem 2.2.20]).

Theorem 3.1. Let {f , fi : i ∈ I} be a family of proper closed convex functions such that f (x) =


i∈I fi(x) for all x ∈ X. Then

epif ∗
=


i∈I
∗epif ∗

i

w∗

, if one of the following conditions hold.

(1) Assume that X is a Banach space and that each function in the family {f , fi : i ∈ I} is real valued.
(2) Each function in the family {f , fi : i ∈ I} is nonnegative on X.

It is shown in [5, Theorem 4.2] that, by using condition (1) in Theorem 3.1 with additional assumptions, the sum of (possibly
infinite) closed epigraphs of the conjugate of convex functions is weak∗ closed. We quote this result next.

Theorem 3.2. Let X be a Banach space, I be a countable set, and {f , fi : i ∈ I} be a family of continuous convex real valued
functions on X such that f (x) =


i∈I fi(x) for all x ∈ X. Assume that dom f ∗

= Im∂ f where Im∂ f = {v ∈ X∗
: there exists

x ∈ X such that v ∈ ∂ f (x)}. Then epif ∗
=


i∈I
∗epif ∗

i .

It is clear from the preceding Theorems 3.1–3.2 that the sumof (possibly infinite) closed epigraphs of the conjugate of convex
functions is not necessarily closed. However, for the convex functions f̄i in GMP problem (18), this sum is always closed as
we show in the next lemma.

Lemma 3.3. Assume that f̄i is defined as in Remark 3.1(1). Then


∗

i∈I epif̄i
∗
is weak∗ closed.

Proof. It is enough to prove that


∗

i∈I epif̄i
∗
w∗

⊆


∗

i∈I epif̄i
∗
, so take (v, α) ∈


∗

i∈I epif̄i
∗
w∗

, so v = (vi)i∈I . We need to show
that (v, α) ∈


∗

i∈I epif̄i
∗
, that is, for each i ∈ I , there exists (v̄i, αi) ∈


i∈I X

∗

i × R, with f̄ ∗

i (v̄i) ≤ αi such that


i∈I αi = α

and ⟨v, x⟩ =


i∈I⟨v̄i, x⟩ for each x ∈


i∈I Xi. From Lemma 3.2, (v, α) ∈ epi(


i∈I f̄i)
∗, i.e., (


i∈I f̄i)

∗(v) ≤ α. Using also
(11) and definition of the conjugate function

sup
x∈dom f


i∈I

⟨vi, xi⟩ −


i∈I

f̄i(x)


≤ sup

x∈X


i∈I

⟨vi, xi⟩ −


i∈I

f̄i(x)


≤ α. (25)

Applying Lemma A.1(iv), Lemma A.2(ii)–(iii) and the definition of f̄i, we obtain
i∈I

sup
xi∈dom fi

{⟨vi, xi⟩ − fi(xi)} ≤ α.

Thus,


i∈I f
∗

i (vi) ≤ α. We claim that this implies f ∗

i (vi) < +∞ for all i ∈ I . Indeed, if there exist j ∈ I such that
f ∗

j (vj) = +∞, then because f ∗

i (vi) > −∞ ∀i ≠ j, we will have sup |A|≤n
A∈F (I)


i∈A f

∗

i (vi) = +∞ for each n ≥ 1, that is,
i∈I f

∗

i (vi) = +∞ which contradicts the fact that


i∈I f
∗

i (vi) ≤ α. Hence, f ∗

i (vi) ∈ R ∀i ∈ I . From Lemma A.1(v), there
exist some αi ∈ R and i ∈ I such that

i∈I

αi = α, (26)
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and f ∗

i (vi) ≤ αi. Hence, (vi, αi) ∈ epif ∗

i for each i ∈ I . Define v̄i ∈


i∈I X
∗

i such that Pj(v̄i) = 0 ∀j ≠ i and Pi(v̄i) = vi. Thus,
from (20),

f̄i
∗
(v̄i) = f ∗

i (vi) ≤ αi. (27)

Finally, using ⟨vi, xi⟩ = ⟨v̄i, x⟩ we obtain

⟨v, x⟩ =


i∈I

⟨vi, xi⟩

=


i∈I

⟨v̄i, x⟩ ∀x ∈ X . (28)

By making use of (26)–(28), we can conclude that (v, α) ∈


∗

i∈I epif̄i
∗
as required. �

We next recall a generalized Fenchel’s duality result proved in [6, Theorem 3.2.6] (see also the quote below Theorem 4.2
in [8]) for the case of locally convex spaces, and the result proved in [9, Corollary 3] for a Banach space setting.

Theorem 3.3. Let f , g : X → R be proper lower semicontinuous (closed) convex functions such that dom f ∩ dom g ≠ φ. If the
set epif ∗

+ epig∗ is weak∗ closed then

inf
x∈X

{f (x) + g(x)} = max
v∈X∗

{−f ∗(−v) − g∗(v)}.

The closed epigraph condition used above has been also used to characterize the subdifferential sum formula in the case
where the functions involved in the formula are lower semi-continuous and sublinear [17], and as a necessary and sufficient
condition for a stable Fenchel–Rockafellar duality theorem [18]. We are now ready to prove strong duality for GMP problem
(18), for the case when I is finite, as a direct conclusion of Theorem 3.3.

Theorem 3.4. Let {f , fi : i ∈ I} be a family of proper closed convex functions. Consider GMP problem (18) and its
dual (19) respectively such that K is a nonempty closed convex set. Assume that g(x) = δK (x), f (x) =

m
i=1 fi(xi) =

m
i=1 f̄i(x)

and the set

epiδ∗

K + epif̄ ∗

1 + · · · + epif̄ ∗

m (29)

is weak∗ closed. Then

inf{g(x) + f (x) : x ∈ X} = max{−g∗(−v) − f ∗(v) : v ∈ X∗
},

i.e., inf{δK (x) +
m

i=1 f̄i(x) : x ∈ X} = max{−δ∗

K (−v) −
m

i=1 f
∗

i (v) : v ∈ X∗
}.

Proof. It is clear, from (19), that f ∗(v) =
m

i=1 f
∗

i (v).Also, g∗(−v) = supx∈X {⟨−v, x⟩−g(x)} = supx∈K {⟨−v, x⟩} = δ∗

K (−v).
Thus, in view of Theorem 3.3, we need to show that epig∗

+ epif ∗ is weak∗ closed. Note that from Lemmas 2.1(1) and 3.3 we
have epig∗

+ epif ∗
= epiδ∗

K + epi(
m

i=1 f̄i)
∗

= epiδ∗

K + cl(
m

i=1 epif̄i
∗
) = epiδ∗

K +
m

i=1 epif̄i
∗
. Since the right most expression

is weak∗ closed by assumption then epig∗
+ epif ∗ is weak∗ closed as required. �

Nowwe consider GMP problem (13) when I is infinite. Lemma 3.2 shows that the constraint qualification (29) is not enough
to obtain strong duality.

Theorem 3.5. Let {f , f̄i : i ∈ I} be a family of proper closed convex functions. Consider GMP problem (18) and its dual
(19) respectively such that K is a nonempty closed convex set. Assume that g(x) = δK (x), f (x) =


i∈I f̄i(x). Assume that

the set
(i) epiδ∗

K +


i∈I
∗epif̄i

∗
is weak∗ closed, and

(ii) epif ∗
=


i∈I
∗epif̄ ∗

i .

Then inf{g(x) + f (x) : x ∈ X} = max{−g∗(−v) − f ∗(v) : v ∈ X∗
},

i.e., inf


δK (x) +


i∈I

f̄i(x) : x ∈ X


= max


−δ∗

K (−v) −


i∈I

f ∗

i (v) : v ∈ X∗


. (30)

Proof. As in the preceding theoremwemust show that epif ∗
+ epig∗ isweak∗ closed. Note first that g∗(−v) = δ∗

K (−v) and,
from (19), f ∗(v) =


i∈I f

∗

i (v).

epig∗
+ epif ∗

= epiδ∗

K + epi


i∈I

f̄i

∗

= epiδ∗

K +


i∈I

∗

epif̄i
∗
,

which is weak∗ closed by (i). The second equality in the expression above follows from (ii). Thus, epif ∗
+ epig∗ is weak∗

closed and from Theorem 3.3 we obtain (30). �
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The constraint qualification (i) in the preceding theorem is enough to obtain strong dualitywhenever the objective functions
in problem (18) satisfy the assumptions of either condition (1) or (2) of Theorem 3.1, or the assumptions of Theorem 3.2.

Corollary 3.1. Let {f , f̄i : i ∈ I} be a family of proper closed convex functions. Consider GMP problem (18) and its
dual (19) respectively such that K is a nonempty closed convex set and g(x) = δK (x). Assume that the set

epiδ∗

K +


i∈I

∗

epif̄i
∗

(31)

is weak∗ closed, and one of the following conditions hold.

(1) X is a Banach space, and each function in the family {f , f̄i : i ∈ I} is real valued on X.
(2) Each function in the family {f , f̄i : i ∈ I} is nonnegative on X.
(3) If X is a Banach space, I is a countable set, dom f ∗

= Im∂ f , and each function in the family {f , f̄i : i ∈ I} is real valued on X.

Then infx∈X {g(x) + f (x)} = maxv∈X∗{−g∗(−v) − f ∗(v)}.

Proof. Assume that condition (1) or (2) holds, then from Theorem 3.1 and Lemma 3.3, we have that epif ∗
=


i∈I
∗epif̄ ∗

i

w∗

=
i∈I

∗epif̄ ∗

i . Hence, condition (ii) of Theorem 3.5 holds. Using now Theorem 3.5, we obtain the conclusion. If assumption (3)
holds, then by using Theorem 3.2, we obtain that epif ∗

=


i∈I
∗epif̄ ∗

i . Thus, condition (ii) of Theorem 3.5 is satisfied. Hence
the conclusion. �

3.3. Bertsekas’s constraint qualification

Bertsekas [7, Proposition 4.1] has recently proved zero duality gap for the extended MP problem in the case of extended
real valued functions in which Xi = Rni , ni ≥ 0, i ∈ I . For I finite and K is a closed subspace, he proved that zero duality gap
holds if the set

Aϵ(x) = ∂ϵδK (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x), (32)

is closed for all feasible solutions x = (x1, . . . , xm) and for all ϵ > 0. The proof in [7] uses the ϵ-descent algorithm
to approximate ∂ϵ f (x) by the set Aϵ(x) such that ∂ϵ f (x) ⊂ Aϵ(x) ⊂ ∂mϵ f (x), where f (x) = δK (x) +

m
i=1 fi(xi) =

δK (x) +
m

i=1 f̄i(x).
Wewill prove that the constraint qualification (32) above ensures zero duality gap for infinite dimensional GMP problem

(13) such that the index set I is finite and K is a closed convex cone. We start with the following result which has been cited
in [7] for finite dimensional case. We restate the result in [7, Proposition 3.1] in separated locally convex spaces. We omit
the proof for the infinite dimensional setting because it is the same as the one used for finite dimension.

Proposition 3.1. Let f (x) =
m

i=1 fi(x) and fi : X → R, i = 1, . . . ,m be proper closed convex functions. Choose a vector
x ∈ dom f and a positive scalar ϵ. Then

∂ϵ f (x) ⊂ Aϵ(x)
w∗

⊂ ∂mϵ f (x),

where Aϵ(x) = ∂ϵ f1(x) + · · · + ∂ϵ fm(x).

Corollary 3.2. Let {f , f̄i : i = 1, . . . ,m} be a family of proper closed convex functions defined as in Remark 3.1. Let f̃ (x) =

δK (x) +
m

i=1 fi(xi) = δK (x) +
m

i=1 f̄i(x) such that x ∈ D = dom δK ∩ (
m

i=1 dom f̄i) where K is a closed convex cone subset
of X =

m
i=1 Xi. From Proposition 3.1,

∂ϵ f̃ (x) ⊂ Aϵ(x)
w∗

⊂ ∂(m+1)ϵ f̃ (x), (33)

where Aϵ(x) = ∂ϵδK (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x) = Nϵ
K (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x).

Inclusion (33) has been used by Bertsekas to prove zero duality gap in the extendedMP problemwhen K is a closed subspace
S. Bertsekas obtained zero duality gap when the set Aϵ(x) = S⊥

+ ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x) is closed (see [7, Proposition 4.1]).
Under theweak∗ closedness of the set Aϵ(x) in Corollary 3.2, we obtain zero duality gap for our primal–dual GMP problem

as we show next.

Theorem 3.6. Let {f , f̄i : i = 1, . . . ,m} be a family of proper closed convex functions. Consider problem (13), for I = {1, . . . ,m},
and its dual (17) respectively, and define the functions {f̄i : i = 1, . . . ,m} as in Remark 3.1(1). Assume also problem (13) has
feasible solutions x such that x ∈ D = K ∩ (

m
i=1 dom f̄i) and the set

Aϵ(x) = ∂ϵδK (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x) (34)



550 R.S. Burachik, S.N. Majeed / J. Math. Anal. Appl. 400 (2013) 541–557

is weak∗ closed for all ϵ > 0, i = 1, . . . ,m. Then

inf


m
i=1

fi(xi) : x ∈ K


= sup


−

m
i=1

f ∗

i (vi) : v ∈ K ∗


. (35)

Proof. From weak duality, we have inf{
m

i=1 fi(xi) : x ∈ K} ≥ sup{−
m

i=1 f
∗

i (v) : v ∈ K ∗
}. Thus, it remains to show that

inf


m
i=1

fi(xi) : x ∈ K


≤ sup


−

m
i=1

f ∗

i (vi) : v ∈ K ∗


. (36)

If inf{
m

i=1 fi(xi) : x ∈ K} = −∞, then from weak duality, (35) is automatically fulfilled, so let us assume that
p∗

:= inf{
m

i=1 fi(xi) : x ∈ K} > −∞. As in [7, Proposition 4.1], we apply the ϵ-descent method to obtain (36). We
choose an initial vector x0 ∈ D and generate a sequence {xk} ⊂ D such that the (k + 1)th iteration is

xk+1 = xk + αkyk. (37)

The iteration can be implemented as follows. We find the projection λk of the origin on the closed set Aϵ(xk), i.e., λk =

argminλ∈Aϵ (xk)∥λ∥. If λk = 0, which means that 0 ∈ Aϵ(xk), then the method stops because there is no ϵ-descent direction,
i.e., xk+1 = xk. In this case, xk iswithin (m+1)ϵ of being optimal. Ifλk ≠ 0 (0 ∉ Aϵ(xk)), hence 0 ∉ ∂ϵ f̃ (xk) (fromCorollary 3.2),
we generate xk+1 ∈ D as in (37) as follows. By using a separation theorem (see e.g., [19, Corollary 4.22] and [20, Corollary
5.80]), there exists a hyperplane strongly separating 0 from ∂ϵ f̃ (xk). This means there exist a continuous linear functional
γk defined in X∗ such that

sup
λ∈∂ϵ f̃ (xk)

γk(λ) < 0. (38)

Since γk is linear and continuous, there exists yk ∈ X such that γk(λ) = ⟨λ, yk⟩, ∀λ ∈ X∗ (cf. [21, p. 112, Theorem 1]). Using
this in (38) gives supλ∈∂ϵ f̃ (xk)

⟨λ, yk⟩ < 0. By Definition 2.1, yk is an ϵ-descent direction which yields infα>0 f̃ (xk + αyk) <

f̃ (xk) − ϵ. Therefore, there exists αk > 0 such that f̃ (xk + αkyk) < f̃ (xk) − ϵ < f̃ (xk). The last expression ensures that the
current iteration xk+1 = xk + αkyk reduces the cost function f̃ by more than ϵ. We claim that this method should stop at a
finite number of iterations k̂ ∈ N . Consequently, for k̂ ∈ N , we have 0 ∈ A(xk̂, ϵ). To prove this claim, let L ∈ N be such that

f̃ (x0) − p∗ < (L − 1)ϵ (39)

where x0 is the initial point. We claim that the method should stop at some k̂ ≤ L− 1. Indeed, assume that, on the contrary,
we generate x0, . . . , xL such that f̃ (xi+1) < f̃ (xi) − ϵ, ∀i = 0, . . . , L − 1. This yields,

f̃ (x0) − f̃ (xL) =

L−1
i=0

f̃ (xi) − f̃ (xi+1) > Lϵ.

By re-arranging the expression above and using the fact that f̃ is bounded below by p∗, it follows that

p∗
≤ f̃ (xL) < f̃ (x0) − Lϵ = (f̃ (x0) − p∗) + p∗

− Lϵ < (L − 1)ϵ + p∗
− Lϵ = p∗

− ϵ,

where the right most inequality follows from (39). The last expression yields a contradiction. Therefore, the process has
to stop at some k̂ such that 0 ∈ Aϵ(xk̂) as claimed. We proceed now to show that this implies zero duality gap. Denote xk̂
by x, we have 0 ∈ Aϵ(x). Since Aϵ(x) = ∂ϵδK (x) + ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x), there exist some vectors v = (v1, . . . , vm)
with v ∈ ∂ϵ f̄1(x) + · · · + ∂ϵ f̄m(x), and −v ∈ ∂ϵδK (x). Note that the vector v can be expressed as v =

m
i=1 v̄i where

v̄i = (0, . . . , 0, vi, 0, . . . , 0) has m components and the only possibly nonzero element in v̄i is in the ith position. From
(6), −v ∈ Nϵ

K (x), and in view of (22), vi ∈ ∂ϵ fi(xi) for i = 1, . . . ,m. Using the definition of the ϵ-subdifferential we obtain
∀xi ∈ Xi

fi(xi) ≤ −f ∗

i (vi) + ⟨vi, xi⟩ + ϵ, i = 1, . . . ,m. (40)

Also, from the definition of ϵ-normal set (see (4)) we have

⟨−v, y⟩ ≤ ϵ + ⟨−v, x⟩ ∀y ∈ K . (41)

Since ⟨−v, x⟩ ≤ 0, from (41) we get supy∈K ⟨−v, y⟩ ≤ ϵ. This forces −v to be in the polar cone of K . Namely, −v ∈ K ◦ and
hence v ∈ K ∗. By summing up for all i in (40), we obtain

m
i=1

fi(xi) ≤ −

m
i=1

f ∗

i (vi) + ⟨v, x⟩ + mϵ.
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In (41), take y = 0. This yields ⟨v, x⟩ ≤ ϵ

m
i=1

fi(xi) ≤ −

m
i=1

f ∗

i (vi) + (m + 1)ϵ.

Since x is primal feasible and v is dual feasible, then

inf


m
i=1

fi(xi) : x ∈ K


≤ sup


−

m
i=1

f ∗

i (vi) : v ∈ K ∗


+ (m + 1)ϵ.

By taking ϵ → 0, we get inf{
m

i=1 fi(xi) : x ∈ K} ≤ sup{−
m

i=1 f
∗

i (vi) : v ∈ K ∗
}. Thus, inf{

m
i=1 fi(xi) : x ∈ K} =

sup{−
m

i=1 f
∗

i (vi) : v ∈ K ∗
} as required. �

Remark 3.2. Theorems 3.4 and 3.6 use two types of constraint qualifications that ensure zero duality gap for the GMP
problem. The following example shows that the constraint qualification (29) used in Theorem 3.4 is not weaker than the
constraint qualification (34) used in Theorem 3.6. We also show below how the primal and the dual GMP problems (13) and
(17) can be formulated for this specific example. The example is inspired by the one introduced in [8, p. 2798].

Example 3.1. Let X = R2 andK ⊆ X be a non empty closed convex cone such thatK = {(x1, x2) : x1 ≤ 0}. Consider also two
convex sets C and D, respectively where C = {(x1, x2) : 2x1 + x22 ≤ 0}, and D = {(x1, x2) : x1 ≥ 0}. Let g = δK be a proper
lsc and convex function, and f1, f2 : X → R be two separable proper lsc and convex functions such that X1 = X2 = R2,
f1 = δC and f2 = δD. Clearly, K ∩ dom f1 ∩ dom f2 = {(0, 0)}. First we show that for all ϵ > 0, the sum

Aϵ(0, 0) := ∂ϵδK (0, 0) + ∂ϵ f1(0, 0) + ∂ϵ f2(0, 0),

is closed. One can check that the conjugate functions g∗, f ∗

1 and f ∗

2 are

g∗(w1, w2) = δ∗

K (w1, w2) =


0 if w1 ≥ 0, w2 = 0
+∞ otherwise,

f ∗

1 (u1, u2) = δ∗

C (u1, u2) =


u2
2

2u1
if u1 > 0

0 if u1 = u2 = 0
+∞ otherwise,

and

f ∗

2 (v1, v2) = δ∗

D(v1, v2) =


0 if v1 ≤ 0, v2 = 0
+∞ otherwise.

By direct calculation we have ∂ϵδK (0, 0) = [0, +∞) × {0}, ∂ϵ f1(0, 0) = (0, 0) ∪


∪u1>0(u1 × [−

√
2ϵu1,

√
2ϵu1])


and

∂ϵ f2(0, 0) = (−∞, 0] × {0}. Therefore the set

Aϵ(0, 0) = R × {0} + (0, 0) ∪


∪u1>0(u1 × [−


2ϵu1,


2ϵu1])


= R2

is closed. However, the set epig∗
+ epif ∗

1 + epif ∗

2 is not closed. To show this, we will find the infimal convolution of g∗, f ∗

1 , f ∗

2 ,
and prove that there exist a point in R2 at which the infimal convolution is not exact.

(g∗
⊕ f ∗

1 ⊕ f ∗

2 )(x∗

1, x
∗

2) = inf
w1+u1+v1=x∗1
w2+u2+v2=x∗2

{δ∗

K (w1, w2) + δ∗

C (u1, u2) + δ∗

D(v1, v2)}

= inf
w1+u1+v1=x∗1
w2+u2+v2=x∗2

 u2
2

2u1
if w1 ≥ 0, w2 = 0, u1 > 0, v1 ≤ 0, v2 = 0

0 if w1 ≥ 0, w2 = 0, u1 = u2 = 0, v1 ≤ 0, v2 = 0

= inf
w1+u1≥x∗1

u2=x∗2

 u2
2

2u1
if w1 ≥ 0, u1 > 0

0 if u1 = u2 = 0

= 0.

It is clear that g∗
⊕ f ∗

1 ⊕ f ∗

2 is lsc on R2. However, it is not exact at (x∗

1, x
∗

2) = (1/2, 1/4). In fact, the infimal convolution
(g∗

⊕ f ∗

1 ⊕ f ∗

2 )(1/2, 1/4) is not attained. Thus, in the view of Lemma 2.1(2) epig∗
+ epif ∗

1 + epif ∗

2 ≠ epi(g + f1 + f2)∗, and
hence by Lemma 2.1(1) epig∗

+ epif ∗

1 + epif ∗

2 is not closed.
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Let us see now how the primal and dual problems (13) and (17) can be formulated for this example. The primal problem
can be written as

min f1(w1) + f2(w2)

subject to (w1, w2) ∈ K × K ⊂ R2
× R2.

In other words, we duplicate the space R2 in order to minimize the sum of two separable functions over the closed convex
cone K × K .

To write the dual problem as in (17), we first define f̄1, f̄2 : R2
× R2

→ R such that f̄i(w1, w2) = fi(wi), i = 1, 2. Note
that each f̄i is defined as in Remark 3.1(1). Then we calculate the conjugate of f̄i, to obtain

f̄ ∗

1 (v1, v2) = σC (v1) + δ{(0,0)}(v2) = f ∗

1 (v1) + δ{(0,0)}(v2). (42)

We also have that

f̄ ∗

2 (v1, v2) = σD(v2) + δ{(0,0)}(v1) = f ∗

2 (v2) + δ{(0,0)}(v1), (43)

where (v1, v2) ∈ R2
× R2. Note that from (42) and (43), we have that

dom f̄ ∗

1 = dom f ∗

1 × {0} and dom f̄ ∗

2 = {0} × dom f ∗

2 .

Thus,

dom f̄ ∗

1 ∩ dom f̄ ∗

2 = {(0, 0)}. (44)

Hence, by using (42)–(43), the dual problem (in the form of problem (17)) trivializes to

max−(σC (v1) + δ{(0,0)}(v2)) − (σD(v2) + δ{(0,0)}(v1))

subject to (v1, v2) ∈ (K × K)∗ = K ∗
× K ∗.

It is clear, from (44), that only (v1, v2) = (0, 0) belongs to the domain of the dual objective function. Hence, both primal
and dual have 0 as the optimal value, and the optimal dual value is attained at (0, 0).

4. Conclusion

In this paper we define the generalizedmonotropic programming (GMP) problem in locally convex spaces andwe obtain
strong duality for the primal–dual problem in this setting. The GMP problem is theminimization of a possibly infinite sum of
separable proper convex functions subject to a closed convex cone. Two new constraint qualifications are studied. Namely,
whenwe have a finite sum on the objective, we show that the constraint qualification (29) implies strong duality. Moreover,
the constraint qualification in [7, Proposition 4.1] is used in Theorem 3.6 to obtain zero duality gap, for the case in which the
constraint set for the (GMP) problem is a closed and convex cone. For the case of infinite sum of the separable functions, we
use the constraint qualification (4a)–(4b). Still for the infinite sum, under additional assumptions on the primal objective
functions, the constraint qualification (31) is enough to obtain strong duality for the GMP problem.

A natural question, for the case of the sum of finite objective functions, is what is the connection between the constraint
qualifications (29) and (34)?

Example 3.1 confirms that the constraint qualification (29) is not weaker than (34), but we have not been able to find an
example to show that (34) is not weaker than (29). It is also a question of future research to investigate new constraint
qualifications which can be equivalent to condition (34).
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Appendix

Lemma A.1. Let I be an indexed set. Then

(i) If I is a countable set then there exists a real sequence a = (ai)i∈I with ai > 0 for all i ∈ I such that


i∈I ai = 1.

(ii) If I is uncountable set then there exists a net a = (ai)i∈I with ai ≥ 0 for all i ∈ I such that


i∈I ai = 1.

(iii) Let {ai : i ∈ I} ⊆ R such that


i∈I ai = a then


i∈I kai = ka for all k ∈ R.
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(iv) Let {bi : i ∈ I} ⊆ R and {ci : i ∈ I} ⊆ R such that


i∈I bi = b and


i∈I ci = c, where b, c ∈ R. Then
i∈I(bi + ci) =


i∈I bi +


i∈I ci.

(v) If δ, α ∈ R and the net {δi : i ∈ I} ⊂ R such that


i∈I δi = δ ≤ α. Then there exist some αi ∈ R such that


i∈I αi = α
and δi ≤ αi for all i ∈ I .

Proof. To prove (i), if |I| = m then there exists a positive sequence (ai) = {
1
m : i ∈ {1, . . . ,m} ⊂ N}. Thus,


i∈I ai =m

i=1
1
m = 1. If the cardinal of I is infinite, i.e., |I| = N , the set of natural numbers, then take (ai)i∈I = {

1
2i

: i ∈ N, i ≥ 1}
where ai > 0 for all i ∈ I , and


i∈I ai = 1. To show (ii), let J ⊂ I be a countable set. From (i), there exists a real sequence

ã = (ãi)i∈J with ãi > 0 for all i ∈ J such that


i∈J ãi = 1. Let us define a net a = (ai)i∈I such that

ai :=


0 if i ∉ J,
ãi if i ∈ J.

From (10),


i∈I ai = lim |A|→+∞

A∈F (I)


i∈A ai.Note that


i∈A ai =


i∈A∩J ai+


i∈A∩Jc ai =


i∈A∩J ai. Thus, fromDefinition 2.2(1)


i∈I

ai = sup
n∈N


inf

|A|≤n


i∈A

ai


= sup

n∈N

 inf
|A|≤n
A∩J≠φ


i∈A∩J

ai


≥ sup

n∈N

 inf
|A∩J|≤n
A∩J≠φ


i∈A∩J

ai


= lim inf

i→∞


i∈J

ai = lim inf
i→∞


i∈J

ãi = 1. (A.1)

The last equality above follows from the definition of a = (ai)i∈I and part (i). In a similar way and using Definition 2.2(1)
i∈I ai = infn∈N (sup|A|≤n


i∈A ai), we obtain

i∈I

ai ≤ 1. (A.2)

By combining (A.1) and (A.2), we obtain


i∈I ai = 1. To prove (iii), for I countable, it has been shown in [22, Theorem 3.47],
that


i∈I kai = ka for all k ∈ R. Assume now I is uncountable and k ≥ 0, from Definition 2.2(1) we have that
i∈I

kai = lim inf
i→∞


i∈I

kai = k lim inf
i→∞


i∈I

ai = ka.

If k < 0, then


i∈I kai = supn∈N (− sup |A|≤n
A∈F (I)


i∈A(−k)ai) = − infn∈N (sup |A|≤n

A∈F (I)


i∈A(−k)ai) = k lim supi→∞


i∈I ai =

ka.
To obtain (iv), if I is countable, see [22, Theorem 3.47]. Assume I is uncountable, from Definition 2.2(1) and the

assumption, we have that

b =


i∈I

bi = sup
n∈N


inf
|A|≤n
A∈F (I)


i∈A

bi


,

c =


i∈I

ci = sup
n∈N


inf
|A|≤n
A∈F (I)


i∈A

ci


.

From the definition of supremum, the above expressions imply that, for each ϵ > 0 there exist n0, ñ0 ∈ N such that

inf
|A|≤n0
A∈F (I)


i∈A

bi > b −
ϵ

2
and inf

|A|≤ñ0
A∈F (I)


i∈A

ci > c −
ϵ

2
.

Take n̄0 = min{n0, ñ0}. Note that if |A| ≤ n̄0 then |A| ≤ n0 and |A| ≤ ñ0. Hence

inf
|A|≤n̄0
A∈F (I)


i∈A

bi ≥ inf
|A|≤n0
A∈F (I)


i∈A

bi > b −
ϵ

2
(A.3)

similarly,

inf
|A|≤n̄0
A∈F (I)


i∈A

ci > c −
ϵ

2
. (A.4)
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From (A.3) and (A.4), we conclude inf |A|≤n̄0
A∈F (I)


i∈A bi + inf |A|≤n̄0

A∈F (I)


i∈A ci > b + c − ϵ. This yields,

lim inf
i→∞


i∈I

(bi + ci) = sup
n∈N


inf
|A|≤n
A∈F (I)


i∈A

(bi + ci)


≥ inf

|A|≤n̄0
A∈F (I)


i∈A

(bi + ci)

≥ inf
|A|≤n̄0
A∈F (I)


i∈A

bi + inf
|A|≤n̄0
A∈F (I)


i∈A

ci

> b + c − ϵ. (A.5)

Using now

b =


i∈I

bi = inf
n∈N

 sup
|A|≤n
A∈F (I)


i∈A

bi

 ,

c =


i∈I

ci = inf
n∈N

 sup
|A|≤n
A∈F (I)


i∈A

ci

 ,

we can show, in a similar way described above, that

lim sup
i→∞


i∈I

(bi + ci) < b + c + ϵ (A.6)

for all ϵ > 0. This means,


i∈I(bi + ci) = b + c. Finally we prove (v), from the assumption, we know that δ ≤ α. If
δ = α then the required result is obtained. Assume now δ < α, so α − δ > 0. From (iii), for k = (α − δ), we have that
(α − δ) =


i∈I ai(α − δ), where {ai : ai ≥ 0} are as in (ii). Take

α = δ + (α − δ) =


i∈I

δi +

i∈I

ai(α − δ) =


i∈I

(δi + ai(α − δ)).

The last equality follows from (iv). Call αi := δi + ai(α − δ) ≥ δi. Hence, we constructed αi ≥ δi for each i ∈ I with
α =


i∈I αi. �

Lemma A.2. Let I be an indexed set, X, {Xi}i∈I be locally convex spaces such that X =


i∈I Xi and let {ϕi : i ∈ I} be a family of
separable functions such that ϕi : Xi → R for all i ∈ I . Define ϕ(x) :=


i∈I ϕi(xi) where ϕ :


i∈I Xi → R. Assume also that, for

x = (xi)i∈I , supx∈X


i∈I ϕi(xi) < +∞. Then

(i) Si := supxi∈Xi ϕi(xi) < +∞ ∀i ∈ I ,
(ii)


i∈I Si =


i∈I supxi∈Xi ϕi(xi) exist and finite,

(iii) supx∈X


i∈I ϕi(xi) =


i∈I supxi∈Xi ϕi(xi) =


i∈I Si.

Proof. To show (i), we assume that there exist j ∈ I such that supxj∈Xj ϕj(xj) = +∞. This means, for eachM > 0 there exist
xj(M) ∈ Xj such that ϕj(xj(M)) > M . Choose x̃(M) ∈ X such that (x̃(M))j = xj(M). The coordinates i ≠ j are irrelevant.
Since ϕ(x) :=


i∈I ϕi(xi) for all x ∈ X , then in particular ϕ(x̃(M)) :=


i∈I ϕi((x̃(M))i). From Definition 2.2(1), the latter

expression is defined as

ϕ(x̃(M)) = inf
n∈N

 sup
|A|≤n
A∈F (I)


i∈A

ϕi(x̃(M))i

 .

Because sup|A|≤n


i∈A ϕi((x̃(M))i) ≥ sup|A|=1


i∈A ϕi((x̃(M))i) = supi∈I ϕi((x̃(M))i), we have that ϕ(x̃(M)) ≥

infn∈N (sup|A|=1


i∈A ϕi(x̃(M))i) = supi∈I ϕi(x̃i(M)) ≥ ϕj(x̃j(M)) > M. Therefore, for each M > 0 there exist x̃(M) ∈ X
such that supx∈X ϕ(x) ≥ ϕ(x̃(M)) > M which means that supx∈X ϕ(x) = +∞. This contradicts the assumption. Hence, Si
must be finite for each i ∈ I , which shows (i). To obtain (ii), we first show that


i∈I Si = lim supi→∞


i∈I supxi∈Xi ϕi(xi) is

finite. From the assumption, we have supx∈X


i∈I ϕi(xi) < +∞, which yields that there exists γ > 0 such that

sup
x∈X


i∈I

ϕi(xi) < γ . (A.7)
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Assume that lim supi→∞


i∈I supxi∈Xi ϕi(xi) = +∞. By definition of lim sup, this implies that infn∈N (sup |A|≤n

A∈F (I)
i∈A supxi∈Xi ϕi(xi)) > 3γ . Thus, for every fixed n ∈ N there exist A(n) ∈ F (I) with |A(n)| ≤ n such that

i∈A(n)

sup
xi∈Xi

ϕi(xi) > 3γ . (A.8)

From (i), we know that supxi∈Xi ϕi(xi) < +∞ for all i ∈ I . Thus, using the definition of supremum, for each i ∈ A(n) there
exist x′

i ∈ Xi such that

sup
xi∈Xi

ϕi(xi) −
γ

n
< ϕi(x′

i) ≤ sup
xi∈Xi

ϕi(xi),

by taking the finite sum over all i ∈ A(n) and using


i∈A(n)
γ

n ≤ γ we obtain
i∈A(n)

sup
xi∈Xi

ϕi(xi) − γ <

i∈A(n)

ϕi(x′

i) ≤


i∈A(n)

sup
xi∈Xi

ϕi(xi). (A.9)

By re-arranging (A.9) and using (A.8) we get 2γ <


i∈A(n) ϕi(x′

i), which yields 2γ <


i∈A(n) ϕi(x′

i) ≤ sup|A|≤n


i∈A ϕi(x̃i),
where x̃i = x′

i if i ∈ A(n). Thus, we have 2γ < infn∈N(sup|A|≤n


i∈A ϕi(x̃i)) =


i∈I ϕi(x̃i). Using (A.7) and the fact that
i∈I ϕi(x̃i) ≤ supx∈X


i∈I ϕi(xi) we get 2γ < supx∈X


i∈I ϕi(xi) < γ , which contradicts (A.7). Thus,

lim sup
i→∞


i∈I

sup
xi∈Xi

ϕi(xi) < +∞. (A.10)

Now we must show that lim supi→∞


i∈I supxi∈Xi ϕi(xi) = lim infi→∞


i∈I supxi∈Xi ϕi(xi), which consequently yields that

i∈I supxi∈Xi ϕi(xi) exist. For simplicity, denote

L := lim inf
i→∞


i∈I

sup
xi∈Xi

ϕi(xi), and R := lim sup
i→∞


i∈I

sup
xi∈Xi

ϕi(xi).

Since L ≤ R, by using (A.10), we conclude L < +∞. Thus, it is enough to prove that R ≤ L. Assume that L < R. Choose an
arbitrary positive number δ. Since R is finite, we can say that

R −
δ

2
< R := inf

n∈N

 sup
|A|≤n
A∈F (I)


i∈A

sup
xi∈Xi

ϕi(xi)

 .

So for each n ∈ N there exists a finite set A(n) ∈ F (I) with |A(n)| ≤ n such that

R −
δ

2
<

i∈A(n)

sup
xi∈Xi

ϕi(xi). (A.11)

On the other hand, from the definition of the supremum, for each i ∈ A(n) there exist x̃ni ∈ Xi such that ϕi(x̃ni ) >

supxi∈Xi ϕi(xi) −
δ
2n . By taking the sum over all i ∈ A(n) for the last inequality and then combine it with (A.11) we get

R − δ <

i∈A(n)

ϕi(x̃ni ) for each n ∈ N. (A.12)

Because L+ δ
2 > L := supn∈N(inf|B|≤n


i∈B supxi∈Xi ϕi(xi)), for each n ∈ N there exist a finite set B(n) ∈ F (I)with |B(n)| ≤ n

such that

L +
δ

2
>

i∈B(n)

sup
xi∈Xi

ϕi(xi) ≥


i∈B(n)

ϕi(x′

i) ∀x′

i ∈ Xi.

Since the last inequality holds for each n ∈ N and for each xi ∈ Xi, then

L + δ > L +
δ

2
≥ sup

n∈N


inf

|B|≤n


i∈B

ϕi(x′

i)


= inf

n∈N


sup
|B|≤n


i∈B

ϕi(x′

i)


= ϕ(x′) ∀x′

∈ X .

This yields, there exists n0 ∈ N such that

L + δ > sup
|B|≤n0


i∈B

ϕi(xi) ≥


i∈A(n0)

ϕi(x̃
n0
i ).
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Using (A.12) (for n = n0) with the inequalities above yields

L + δ >


i∈A(n0)

ϕi(x̃
n0
i ) > R − δ.

Weproved that for every δ > 0wehave L+δ > R−δ. Hence L ≥ R as required. Thus,wehave showed that


i∈I supxi∈Xi ϕi(xi)
exists. Finally we prove (iii), It is clear that

sup
(xi)i∈I∈


i∈I Xi


i∈I

ϕi(xi) ≤


i∈I

sup
xi∈Xi

ϕi(xi).

So, we only need to show the opposite inequality. Assume that there exist γ ∈ R such that

sup
(xi)i∈I∈


i∈I Xi


i∈I

ϕi(xi) < γ <

i∈I

sup
xi∈Xi

ϕi(xi) = sup
n∈N


inf

|A|≤n


i∈A

sup
xi∈Xi

ϕi(xi)


. (A.13)

From (A.13), there exists δ > 0 and n0 ∈ N such that

γ + δ < inf
|A|≤n0


i∈A

sup
xi∈Xi

ϕi(xi). (A.14)

From the inequality on the left hand side of (A.13), we have that for each x ∈ X
i∈I

ϕi(xi) = sup
n∈N


inf

|A|≤n


i∈A

ϕi(xi)


< γ − δ.

Thus, inf|A|≤n


i∈A ϕi(xi) < γ − δ for each n ∈ N and for each x ∈ X . Fix n0 ∈ N , from the definition of infimum, there exist
Ã(n0) ∈ F (I) with |Ã(n0)| ≤ n0 such that

i∈Ã(n0)

ϕi(xi) < γ − δ for each xi ∈ Xi. (A.15)

From (i) and the definition of supremum, there exist x̃i ∈ Xi such that

ϕi(x̃i) > sup
xi∈Xi

ϕi(xi) −
δ

2n0
, (A.16)

where n0 ∈ N and i ∈ Ã(n0). By taking the sum over all i ∈ Ã(n0) and using the fact that


i∈Ã(n0)
δ

2n0
≤

δ
2 , the inequality

(A.16) yields

δ

2
+


i∈Ã(n0)

ϕi(x̃i) >


i∈Ã(n0)

sup
xi∈Xi

ϕi(xi) ≥ inf
|A|≤n0


i∈A

sup
xi∈Xi

ϕi(xi) > γ + δ,

where we used (A.14) in the right most expression above. Thus, the last expression yields


i∈Ã(n0)
ϕi(x̃i) > γ +

δ
2 , and by

combining the last inequality with (A.15), we get γ − δ >


i∈Ã(n0)
ϕi(x̃i) > γ +

δ
2 . This entails a contradiction. Thus,

sup
(xi)i∈I∈


i∈I Xi


i∈I

ϕi(xi) ≥


i∈I

sup
xi∈Xi

ϕi(xi),

as required. �
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