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1. Introduction

The Monotropic Programming (MP) problem was introduced by Rockafellar in [ 1] and has been widely studied (cf. [2-4]).
In its classical form, MP is defined in a finite dimensional setting and it involves minimizing a finite sum of proper and
convex separable functions restricted to a closed subspace. We focus on a generalization of this problem, the generalized
monotropic programming (GMP), which consists of minimizing a (finite or infinite) sum of proper and convex functions
defined on (possibly different) locally convex spaces. To define the problem, denote R := RU {400} and let ] be an arbitrary
index set. Consider a family of real separated locally convex spaces {Xi}ic;, and a family {f;};c; of proper and convex functions
such thatf; : X; — Rforalli € I. Take X := [ 1ic; Xi and consider the sum of {fi}ie;, defined as f : X — R such that
f(x) ==Y, fi(x;). The meaning of the right-hand side of the last expression in the case in which I is infinite is recalled later
on in Definition 2.2. The GMP problem we study is as follows:

min )~ fi(x;)

iel (P)
subjecttox € K,

where x; € X; for alli € I, and the constraint set K is a closed and convex cone contained in X = [],, X;. As far as we
know, the only work dealing with an infinite sum of convex functions is [5]. The functions in [5] are defined in Banach
spaces, however, the definition and the properties of the infinite sums mentioned in [5] can be stated for functions defined
on separated locally convex spaces.

Following [6,3], we say that strong duality holds when the optimal primal and dual values coincide, and the dual value is
attained. If we only have equality of the primal and dual optimal values, we say that we have zero duality gap. Rockafellar

* Corresponding author.
E-mail addresses: regina.burachik@unisa.edu.au (R.S. Burachik), saba.majeed@mymail.unisa.edu.au, majsy001@mymail.unisa.edu.au (S.N. Majeed).

0022-247X/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j,jmaa.2012.10.052


http://dx.doi.org/10.1016/j.jmaa.2012.10.052
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:regina.burachik@unisa.edu.au
mailto:saba.majeed@mymail.unisa.edu.au
mailto:majsy001@mymail.unisa.edu.au
http://dx.doi.org/10.1016/j.jmaa.2012.10.052

542 R.S. Burachik, S.N. Majeed / J. Math. Anal. Appl. 400 (2013) 541-557

[1,4] was the first to use a variant of the e-descent method to prove zero duality gap for the MP problem. More recently,
Bertsekas [7] has modified Rockafellar’'s method and applied it for solving the extended MP problem. The latter problem
has for the objective function a finite sum of extended real-valued functions which can have domains in different finite
dimensional spaces [7], and use a subspace S as a constraint set. To obtain zero duality gap in this context, Bertsekas used
projections on an outer approximation of the e-subdifferential and used a constraint qualification involving the closedness
of the Minkowski sum of e-subdifferentials. Bertsekas’ constraint qualification (cf. [7, Proposition 4.1]) requires that the set

Ac(x) = 3:85(X) + Bef1(X) + - + defm(x) (1)

is closed for all feasible solutions x = (1, ..., Xp,) and every ¢ > 0, where fi(x) == fi(x;) foreachi = 1, ..., m (for the
definition of f;, see Remark 3.1(1)).

In locally convex spaces, Bot and Csetnek [3] proved zero duality gap for the extended MP problem under alternative
assumptions. Bot and Csetnek used in [3] an extension to separated locally convex spaces of Bertsekas’ constraint
qualification (1). Our purpose is to study strong duality for our general version GMP of the MP. We obtain strong duality
under new constraint qualifications (see Theorems 3.4 and 3.5). In Theorem 3.4 we prove that, when I is finite and the
constraint set K is nonempty closed and convex, strong duality for the Problem (P) holds if the set

epidy + epif;" + - - - + epif,; (2)
is weak* closed. The epifi* is the epigraph of the conjugate function of f; defined above. We also show, in Theorem 3.4, that the
above constraint qualification is equivalent to the ones used in [8, p. 2798], [6, Theorem 3.2.6] for the case of locally convex
spaces and [9, Corollary 3] for the case of Banach spaces, to obtain generalized Fenchel’s duality. Namely, it is equivalent to
the weak* closedness of the set epif* 4 epig* in case f (x) is defined as in Problem (P) and g(x) = 8 (x). Still for the finite

sum, we use in Theorem 3.6, an extension of Bertsekas’ constraint qualification (1) to obtain zero duality gap. This constraint
qualification requires that the set

Ac(x) = 38k (%) + 0cf1(X) + - - + e (%) (3)

is weak* closed for all feasible solutions x = (x1, . .., X,) and every € > 0, where d.f;(x) is the e-subdifferential of f; at x.
Note that the constraint subspace S used in (1) has been replaced in (3) by any closed convex cone K.

Theorem 3.5 considers the case of I infinite and an arbitrary closed and convex constraint set K. For this case we prove strong
duality when

episy; + Z*epiﬁ* (4a)
iel

is weak* closed, and

epif* = Z*epif_i*. (4b)
iel
This constraint qualification, which is new in the literature, involves the weak* closedness of the sum of the epigraphs of
the conjugate functions and an additional condition on the summability of the epigraph of the conjugate of the infinite sum.
Corollary 3.1 describes conditions under which the constraint qualification (4a) is enough to ensure strong duality.

The outline of the paper is as follows. In Section 2, we review the necessary definitions and preliminary results. In
Section 3, we introduce the GMP problem and its dual in a separated locally convex space and introduce our new constraint
qualifications (2) and (4a)-(4b) to obtain strong duality for the GMP problem. Still in Section 3, we introduce the constraint
qualification (3) to show zero duality gap which generalizes the one used in [7]. We end Section 3 with an example
illustrating the fact that our new constraint qualification (2) is not weaker than (3). Section 4 contains our conclusions.
Some needed technical facts from real analysis are proved in the Appendix.

2. Preliminaries

We collect in this section some definitions and properties from convex analysis which can be found e.g.,in [6,10,11]. Let X
denote a locally convex space, and X* its topological dual space endowed with the weak* topology w*(X*, X).If D is a subset

of X*, the weak* closure of D will be denoted by D" .Let C be anon empty subset of X. The indicator function associated with
the set C, §¢ : X — R is defined by

Se(x) = 0 ifx e C,
@) = +o00 otherwise.

The support function o¢ : X* — R is defined by o¢(v) = sup{{v, x) : x € C}, where {-, ) is the duality product in X* x X.
Recall that, given € > 0, the e-normal set of C, which is denoted by N¢ (x), is defined as

crn . X eX  (x,y—x) <e,Vye(C} ifxeC,
Ne () = {d) otherwise. (4)
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A subset K of X is called a closed convex cone if K is a closed and convex set such that for every x € K and A > 0 it holds that
Ax € K. The polarconvex cone of K is defined as K° = {x* € X* | (x, x*) < 0Vx € K}, and the dual cone will be denoted by
K* = —K° = {x* € X* | (x,x*) > 0Vx € K}. A convex function f : X — R is said to be proper if f (x) > —oo for every
x € X,and the setdom f := {x € X | f(x) < oo} # (. The set dom f is called the domain of f. The epigraph of f is defined as
epif .= {(x,x) € X x R | f(x) < a}. The convex function f is called lower semi continuous (Isc) at x if and only if

feo =Tliminff(y) = lim inf{f () | ly — x| = €}.

The function clf : X — R is called the lower semicontinuous hull of f, and is defined as (clf)(x) = inf{t : (x, t) € cl(epif)}.
If f is Isc at every point in the space then f is called closed, this fact is denoted as clf = f. The function f* : X* — R, defined
as f*(v) := sup{(v, x) — f(x) | x € X} is called the conjugate function of f. In addition, if a convex function f is proper then
f*(v) > —oo Vv € X*. The subdifferential of f at x € X is the point-to-set mapping df : X = X™* defined as

f ) =={veX"|fy) = f() + (v,y —x) forally € X},
and the e-subdifferential of f is defined as
Aef(x) =={veX" | f(y) = fx)+ (v,y —x) —eforally € X},

for all x € X and all ¢ > 0. The definition of d.f (x) entails that, for every x € dom f and every € > 0, v € d.f (x), if and only
if f*(vV) +f(x) — (v,x) < e.Ifx € domf and € > 0, 9.f (x) is weak* closed and convex (see [10]). If f is a proper and Isc
convex function, d.f (x) # ¢ foralle > 0 and x € dom f (see [10]). If f is a proper and Isc convex function, x € dom f and
€ > 0, the support function of d.f (x) is given by the formula

pfxtay) —f)+e€

oly19ef (%] = sup{(v, y) | v € 8ef ()} = inf (3)

o

(see [10]). Recall that for a non-empty convex subset C of X we have

dedc(x) = N (%), (6)
where N¢ (x) is defined in (4). When C is a subspace it is easy to show that

Ne(®) = 38c(x) = 3:8c(x) = CH, VxeC,Ve >0

where C+ := {y € X : (x,y) = 0Vx € C} is the orthogonal subspace of C. The infimal convolution of two proper convex
functions f, g : X — R is denoted by f @ g and defined as (f ® g)(x) = infy_y, 1x, {f (%1) + f (x2)}. The infimal convolution
is called exact if the infimum is achieved for every x € X [11]. For finite proper convex functions fi, ..., f,, the infimal
convolution is defined as (f; @ - - - ® fn) (x) = inf{f;(x1) + - - - + fn(xXm) | x = X1 + - - - + X }. We recall now the following
useful result.

Lemma 2.1 ([6, Theorem 2.3.10, Proposition 2.3.9]). Let f; : X — R, Vi = 1, ..., m be proper and closed convex functions such
that (-, dom f; # ¢. Then

(1)

epi (Zﬁ) =l (Z epif,-*) ) (7)
i=1 =1

(2) The following statements are equivalent:
(i) epiQoiL ) = 1L, epifyt
(ii) (Zillf,-)* =fI ® .- @ f; and the infimal convolution is exact.

The e-descent direction and the e-descent method are main tools for obtaining zero duality gap for the extended MP problem

in [7]. We will use them in our analysis. To the best of our knowledge, the e-descent method is defined in a finite dimensional
setting. For references on the e-descent method, see [12,2].

Definition 2.1. Let f : X — R be a function. A vector y is called an e-descent direction at x € dom f if and only if
inff(x +ay) <f(x) —e. (8)
a>

Combining the expression above with (5), we conclude thaty is an e-descent direction at x if and only if sup,¢5_¢(x) (v, ¥) < O.
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The e-descent method is defined as follows. Select a vector X, € dom f and generate a sequence {x,} C dom f such that
Xk+1 = Xk + oYk, where y; is an e-descent direction (if one can be found) at x; and ¢ is a positive stepsize such that

i+ o) < fx) — €. (9)

From Definition 2.1, « as above exists if an e-descent direction y, can be found. The e-descent method stops if and only
if 0 € 9.f(x). Indeed, 0 € d.f(x) if and only if f(x + ay) > f(x) — e Vy € X, Va > 0 and the latter inequality yields
inf,.o(x + ay) > f(x) — € Vy € X. By (8), no e-descent direction can be obtained and the method has to stop. We will use
this method in Theorem 3.6.

We mentioned above that the index set I may be infinite. For analyzing this situation we recall the relevant definitions, taken
from [5].

Definition 2.2. Let I be an index set, and let #(I) = {J € I | J is finite}. Note that £ (I) is a directed set ordered by the
inclusion relation.

(1) Let {w; | i € I} € R U {400}. We define limit inferior (liminf) and limit superior (limsup) of
follows.

lim inf | = inf i],
fminf ) 5“p</‘§‘<n wl)

iel neN AcF () I€A

iel Wi, Tespectively, as

and

lim sup E w; = inf | sup E w;
i N
i—+oo g ne ANZh iea

If the limits above exist and coincide, we denote the common limit by

wllToo Z Wi = Z Wi, (10)

AcF () i€A iel

where ), w; belongs to R U {+o0}. In this case, we say that the sum of {w;} ;¢ is convergent.

(2) Let {f; | i € I} be a family of extended real valued functions defined on a separable locally convex space X;, for all i € I.
Define, for x = (x;)ie € [[;; Xi, the infinite sum of {f; | i € [} asf(x) :== Y., fi(x;), where f : [],, X; = R.The sum on
the right-hand side is understood as in (10) such that w; = fi(x;) € R,anddom f := {x € [[;,; Xi | >_;c; fi(xi) < +o00}.

(3) Let{Z; | i € I} be a family of locally convex spaces. Let P; : [[,; Zi — Z; be the projection of [ [,_, Z; onto Z; for eachj € I,
ie., Pi((z)ie1) = 2.

(4) Let v € X* and {vi}ie; € X*, we say that v = Zie,*vi if and only if (v, x) = >, (v;, x) Vx € X. In this case, the sum
of {vi}ie is “weakly convergent”. This happens if and only if ) ", (vi, x) converges in R, Vx € X, and its limit coincides
with (v, x).

(5) We now define the arbitrary sum of subsets of X* as follows. The sum of {A;};c; C X* is defined as

*
ZA, = {v € X* | Vi € Iqv; € Aj suchthatv = Z*vi}.

iel iel

iel iel

Remark 2.1. Let X = [].., Xi. Then

iel
(i) Denote by A >~ B the fact that two vector spaces are algebraically isomorphic. Then, following [13, Theorem 4.3], we
know that there exists an algebraic isomorphism y : X* — [[,., X*. In other words, for all v € X* there exist a unique

(v)ier such that y (v) = (v;)ie;. Moreover, from [13, Theorem 4.3 and Section 4.1] and [ 14, p. 3], it holds that

(v.x) = (vi, xi), (11)
iel
for each x = (x;)ic; € X where the sum above has only a finite number of nonzero terms.
(ii) Let f : X — R be a proper and convex separable function such that f(x) = Zie,fi(x,-) for all x € X. Then f*(v) =
Y i fif(vi) forallv € dom f* where f* : [, X;* — R.Indeed, if v € domf* thenf*(v) = sup,x{(v, 2)—f(2)} < +o0.
By using (i) and the definition of f, the last expression becomes f*(v) = sup,,¢x, {3 i i, zi) = Y i fiz)} < +o00. From

f*@) = supl(vi.z) — fiz)} = Y _f7(w). (12)

icl Zi€Xi iel

as claimed.
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3. Duality results for the GMP problem
We start by describing the primal and dual problems for GMP.
3.1. Primal and dual problems
To derive the dual problem of GMP problem (P), we recall from the introduction that the GMP problem can be formulated
min )~ fi(x;)

iel (]3)
subject tox € K.

das

The above problem is the unconstrained minimization of the function

F =80 + ) _fiw) = 50 +f() VxeD=Kn <H domﬁ) : (14)
iel iel
We construct the dual in a canonical way using Fenchel’s duality [15, p. 454]. As in [2], we introduce an auxiliary vector
z € X and re-write GMP problem (13) in the following equivalent form
min f (z
@ (15)
subjecttoz =x, x K.
We then append the constraint to the objective function through a Lagrange multiplier vector v € X*. Namely, we define
the Lagrangian function L : X x X x X* — R such that L(x, z, v) = f(z) 4+ §k(x) 4+ (v, x — z). By taking the infimum of
L(-, -, v) over K x X we obtain the dual function q(v), i.e.,
qlv) = inf L(x,z,v)

xeK,zeX

= inlg(v,x) + in){{f(z) —(v,2z)}
= inf(v, x) — sup{(v, z) — f(2)}

xek zeX
—f*(v) ifveK* vedomf*
= . (16)
—00 otherwise.
By applying Remark 2.1 (Eq. (12)), the last expression yields
{—Zfi*(vi) ifv e dom f* N K*
= iel
—00 otherwise.
Thus, the conjugate dual problem can be written as follows
max — Z f(vy)
iel (]7)

subject to v € K*,

where v € X, f* : X;* — Ris the conjugate convex function of f; for each i € I, and K* is the dual cone, K* C [, X"

Remark 3.1. (1) The GMP problem involves the sum of separable proper and convex functions f; defined on X;. However,
we can define the GMP problem as a sum of functions f; defined on X = [],, X;. Namely, given f; : X; — R, define

fi : Tliws Xi — R such that f(x) := fi(x;) for all i € I. With this definition, we can write f(x) = Y, fi(x) = Y i, i®).
Thus, we can now re-write (13) as

min ) " fix)
iel (18)
subject tox € K.

Similarly, the dual problem (17) will be equivalent to
max — Zf(v)
iel (]9)
subject to v € K*,

where, f : [T;; X — R such that f*(v) == f*(v;) foralli € I.
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(2) At this point, it is important to distinguish the difference between the functions f_,* andf foralli € I. The domf =
{v = (Ve € ]_[jel Xj* :F(v) < 400} = {v | Pi(v) = v; € dom f*}, where P; is as in Definition 2.2(3) for Z; = X}*.

Hence, the dom f* = ([;.X") x dom f*. On the other hand, the function f;* : [
is defined as

i X — Ris the conjugate of f; and

) = sup{ (v, ) — fit0)}
= sup !wa,xlv —fi(xf)] :
xe icl

lff_,-*(v) < 400, then by using Lemma A.1(iv), the last equality can be written as follows

xeX

sup {Z(vj, x) + ((vi, x;) —ﬁ(x»)}

i

= sup E (vj, Xj) + sup{{v;, x;) — fi(x)}.
XjEXj £ x;i€X;
Vit

Sincef_i*(v) < +00 and sup xex; Zj#(vj, Xj) > 0 then sup,.cx. {{vi, %) — fi(x;))} < +o00, which yields v; € dom f*. Thus,

J#i
using Lemma A.2(i)-(iii), we have SUDy;ex; (v}, X;) < o0 for eachj # i and this forces v; = 0 for all j # i. Thus, we get

. sup{{vi, ;) — fi(x))} ifv; =0Vj#1i,v; € dom f*
fi (U) = {xjeX; )
+00 otherwise,

_ {fi*(v,-) ifv; = 0Vj # i, v; € dom f* (20)

400  otherwise.
In other words, v = (v)jes € domﬁ* if and only if the ith component v; € dom f* and v; = O for all i # j, i.e.,
domf" = (H{O}) x dom f*. (21)
i

The aim of the rest of this section is to obtain strong duality for the primal-dual problems (13) and (17) mentioned above.
Namely, we develop a constraint qualification which ensures

—

in

iel iel

Be(0) + Y i) | x € X} = max 1—6;‘;(—1)) ~Y ) lve x*] ,

which is, from (18) and (19), equivalent to

> F® |xe1<} :max{—Zfi*(v) | v eK*}.

iel iel

)

in

The equality above can be seen as a Fenchel’s duality result for GMP problems with infinite I.
3.2. Strong duality

In this subsection we deal with GMP problem (13) and (18) and its dual (17) and (19) respectively such that each function
fiin the primal problem is closed, i.e. each function is lower semi continuous on the whole space X;. Our aim is to show strong
duality for this problem under the constraint qualifications (2) and (4a)-(4b), respectively. When the objective function in
the primal problem is the sum of finitely many proper closed convex functions, our constraint qualification (2) turns out to
be equivalent to the geometric condition introduced by Bot and Wanka in [8] to obtain Fenchel’s duality in locally convex
spaces (see also [6, Theorem 3.2.6]). We need the following properties.

Lemma 3.1. Let f and {f; : i € I} be defined as in Remark 3.1(1). Then
(1) The relation between the e-subdifferentials of f; and f; is given as

3fi(®) = {v = (Vier | Pi(v) = v; € 0cfi(x;) and Pj(v) = v; = 0 Vj # i}, (22)
foralliel.
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(2) The epigraph of f,* can be expressed in terms of the epigraph of f* as follows

iel

epifi = {(v,a) c HXI.* x R | Pi(v) = v with f;*(v;)) < o and Pj(v) = v; =0 Vj # i} , foralliel. (23)

Proof. Statement (22) is straightforward from the definition of e-subdifferential because f; depends only on the coordinate
x;, and is constant with respect to other coordinates. Statement (23) follows directly from (20). O

It was proved in [5] that the equality in (7) is no longer true when we have the sum of infinite proper and closed convex
functions. We quote below [5, Lemma 3.1] which was given for Banach spaces. However, its proof is also valid in separated
locally convex spaces.

Lemma 3.2. Let {f, f; : i € I} be a family of proper closed convex functions such that f (x) = Y, fi(x) for all x € X. Then

*

S Cepifr < epif. (24)

iel

In [5], the authors present conditions under which (24) holds as an equality. Their results [5, Theorems 4.1 and 4.3] are stated
for Banach spaces. We quote them below, and we point out that one of them (Theorem 4.3) is also valid in our framework
of separated locally convex spaces. We note that assumption (1) in Theorem 3.1 below, together with the closedness of the
functions, implies that the functions are continuous (cf. [ 16, Theorem 2.2.20]).

Theorem 3.1. Let {f, f; : i € I} be a family of proper closed convex functions such that f (x) = ., fi(x) for all x € X. Then
epif* = Ziel*epif,-*w , if one of the following conditions hold.

(1) Assume that X is a Banach space and that each function in the family {f, f; : i € I} is real valued.
(2) Each function in the family {f, f; : i € I} is nonnegative on X.

Itis shown in [5, Theorem 4.2] that, by using condition (1) in Theorem 3.1 with additional assumptions, the sum of (possibly
infinite) closed epigraphs of the conjugate of convex functions is weak* closed. We quote this result next.

Theorem 3.2. Let X be a Banach space, I be a countable set, and {f, f; : i € I} be a family of continuous convex real valued
functions on X such that f (x) = ), fi(x) for all x € X. Assume that dom f* = Imdf where Imdf = {v € X* : there exists
x € X such that v € 3f (x)}. Then epif* = ", "epif*.

Itis clear from the preceding Theorems 3.1-3.2 that the sum of (possibly infinite) closed epigraphs of the conjugate of convex
functions is not necessarily closed. However, for the convex functions f; in GMP problem (18), this sum is always closed as
we show in the next lemma.

Lemma 3.3. Assume that f; is defined as in Remark 3.1(1). Then Z:‘E . epif_,-* is weak* closed.

7_10* - 7_]”*
Proof. It is enough to prove that Y & epif;” < > i, epif;’, so take (v, @) € Y & epifi ,50v = (v;)ic;. We need to show
that (v, @) € Y &, epifi, that is, for each i € I, there exists (¥;, ;) € [, X* x R, with f*(;) < o; such that ", o = @
and (v, x) = Y (v, x) for each x € [[;, Xi. From Lemma 3.2, (v, «) € epi(}_;., fi)*.i.e., (O i f)*(v) < a. Using also
(11) and definition of the conjugate function

sup {Zwi, xi) — Zﬁ(x)} < sup { D (v x) — Zﬁ(x)} <a. (25)

xedom f | “igy iel iel iel
Applying Lemma A.1(iv), Lemma A.2(ii)-(iii) and the definition of f,, we obtain

sup {{vi, x;) — fi(x)} < .

ic] xi€dom f;

Thus, Y, f*(v)) < «. We claim that this implies f;*(v;) < +oo foralli € I. Indeed, if there exist j € I such that
f¥(vp) = +oo, then because f*(vi) > —oo Vi # j, we will have sup < Y ieafii(v)) = +oo foreachn > 1, that s,
AeF (1)

> it fi* (i) = +oo which contradicts the fact that ), f*(v;) < «. Hence, f;*(v;) € RVi € I. From Lemma A.1(v), there
exist some «; € Rand i € I such that

Z o = o, (26)

iel
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and f*(v;) < ;. Hence, (v;, o) € epif;* for each i € I. Define v; € [[;, X;" such that P;(v;) = 0Vj # i and P;(v;) = v;. Thus,
from (20),

Fr@) =) < (27)
Finally, using (v;, x;) = (v;, X) we obtain
(v, %) =Y (v, x)
iel
=Y (B.x) VxeX. (28)
iel
By making use of (26)-(28), we can conclude that (v, «) € ZL, epif_i* asrequired. O
We next recall a generalized Fenchel’s duality result proved in [6, Theorem 3.2.6] (see also the quote below Theorem 4.2
in [8]) for the case of locally convex spaces, and the result proved in [9, Corollary 3] for a Banach space setting.

Theorem 3.3. Let f, g : X — R be proper lower semicontinuous (closed) convex functions such that dom f Ndom g # ¢. If the
set epif* + epig* is weak* closed then

Inf{f () + g (%)} = max{—f"(-v) — g"()}.

The closed epigraph condition used above has been also used to characterize the subdifferential sum formula in the case
where the functions involved in the formula are lower semi-continuous and sublinear [17], and as a necessary and sufficient
condition for a stable Fenchel-Rockafellar duality theorem [18]. We are now ready to prove strong duality for GMP problem
(18), for the case when I is finite, as a direct conclusion of Theorem 3.3.

Theorem 3.4. Let {f,f; : i € I} be a family of proper closed convex functions. Consider GMP problem (18) and its
dual (19) respectively such that K is a nonempty closed convex set. Assume that g(x) = 8 (x), f(x) = ZLfi(xi) = Z}":]f,»(x)
and the set

epis}; + epif; + - - - + epif: (29)
is weak* closed. Then

inf{g(x) +f(x) : x € X} = max{—g"(—v) — f*(v) : v € X*},
ie, inf{dx (%) + D0, fix) 1 x € X} = max{—8;(—v) — > 1, f*(v) : v € X*}.
Proof. Itis clear, from (19), that f*(v) = Zi";f?(v).Also,g*(—v) = SUPyex {{(—V, X) —g(X)} = supyer {{—v, X)} =S¢ (—v).
Thus, in view of Theorem 3.3, we need to show that epig™* + epif * i_s weak* closed. Note th_at from Lemmas 2.1(1) and 3.3 we
have epig* + epif * = epis; +epi(3_1, fi)* = epis; +cl(SI", epifi') = epid; + Y I, epifi . Since the right most expression
is weak* closed by assumption then epig* + epif * is weak* closed as required. O

Now we consider GMP problem (13) when I is infinite. Lemma 3.2 shows that the constraint qualification (29) is not enough
to obtain strong duality.

Theorem 3.5. Let {f.f; : i € I} be a family of proper closed convex functions. Consider GMP problem (18) and its dual
(19) respectively such that K is a nonempty closed convex set. Assume that g(x) = 8x(x), f(xX) = ) ., fi(x). Assume that
the set

(i) episy + i, “epifi " is weak* closed, and
(ii) epif* = 3 ;" epif;"
Then inf{g(x) + f (x) : x € X} = max{—g*(—v) —f*(v) : v € X*},

ie., inf{(SK(x) + Zﬁ(x) IXE X} = max {—8;(—1)) — Zﬁ(v) v E X*} . (30)

iel iel

Proof. Asin the preceding theorem we must show that epif* + epig* is weak* closed. Note first that g*(—v) = §5(—v) and,

from (19), f*(v) = Y i, 7 (V).

epig* + epif* = epis}; + epi (Zﬁ) = epis} + Z*epz'f_i*,
iel iel
which is weak* closed by (i). The second equality in the expression above follows from (ii). Thus, epif* + epig* is weak*
closed and from Theorem 3.3 we obtain (30). O
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The constraint qualification (i) in the preceding theorem is enough to obtain strong duality whenever the objective functions
in problem (18) satisfy the assumptions of either condition (1) or (2) of Theorem 3.1, or the assumptions of Theorem 3.2.

Corollary 3.1. Let {f.fi : i € I} be a family of proper closed convex functions. Consider GMP problem (18) and its
dual (19) respectively such that K is a nonempty closed convex set and g(x) = &k (x). Assume that the set

epis;; + Z*epifi* (31)

iel
is weak* closed, and one of the following conditions hold.

(1) X is a Banach space, and each function in the family {f.fi . i €1} isreal valued on X.
(2) Each function in the family {f, f; : i € I} is nonnegative on X. _
(3) If X is a Banach space, I is a countable set, dom f* = Imaf, and each function in the family {f, f; : i € I} is real valued on X.

Then infyex {g(¥) + f ()} = max,ex+ {—g*(—v) — f*(v)}.

L =w
Proof. Assume that condition (1) or (2) holds, then from Theorem 3.1 and Lemma 3.3, we have that epif* = Zie,*epifi* =
> ., epif*. Hence, condition (ii) of Theorem 3.5 holds. Using now Theorem 3.5, we obtain the conclusion. If assumption (3)

holds, then by using Theorem 3.2, we obtain that epif* = Ziel*epifi*. Thus, condition (ii) of Theorem 3.5 is satisfied. Hence
the conclusion. O

3.3. Bertsekas’s constraint qualification

Bertsekas [7, Proposition 4.1] has recently proved zero duality gap for the extended MP problem in the case of extended
real valued functions in which X; = R, n; > 0, i € I. For I finite and K is a closed subspace, he proved that zero duality gap
holds if the set

Ac(X) = 38 (X) + 0cf1 (0) + -+ + 0cfm (%), (32)
is closed for all feasible solutions x = (Xq,...,X) and for all € > 0. The proof in [7] uses the e-descent algorithm
to approximate d.f(x) by the set A.(x) such that d.f(x) C Ac(x) C 0Omef(x), where f(x) = &k(x) + Z{"z]fi(xi) =
Sk + Y0 fix).

We will prove that the constraint qualification (32) above ensures zero duality gap for infinite dimensional GMP problem
(13) such that the index set I is finite and K is a closed convex cone. We start with the following result which has been cited
in [7] for finite dimensional case. We restate the result in [7, Proposition 3.1] in separated locally convex spaces. We omit
the proof for the infinite dimensional setting because it is the same as the one used for finite dimension.

Proposition 3.1. Let f(x) = Z:’l Ji@and fi - X — R,i = 1,..., m be proper closed convex functions. Choose a vector
x € dom f and a positive scalar €. Then

0 CAR" C Imef ().
where A, (x) = 8f(X) + -+ + Befon (X).

Corollary 3.2. Let {f.f : i =1, ... ,m} be a family of proper closed convex functions defined as in Remark 3.1. Letf(x) =
Sk (x) + Zgn:lfi(xi) = fk(x) + Z;llf,'(x) such that x € D = dom &g N (ﬂ;’;l dom f;) where K is a closed convex cone subset
of X =[], Xi. From Proposition 3.1,

w*

AfX) CAX) C dmenef (), (33)
where Ac(x) = 98k (X) + 3ef1(X) + - + defn(X) = Ne(®) + 3ef1 () + -+ - + Jefin (X).

Inclusion (33) has been used by Bertsekas to prove zero duality gap in the extended MP problem when K is a closed subspace
S. Bertsekas obtained zero duality gap when the set Ao (x) = St + 8.f; (X) + - - - + 3fm (%) is closed (see [7, Proposition 4.1]).

Under the weak™* closedness of the set A, (x) in Corollary 3.2, we obtain zero duality gap for our primal-dual GMP problem
as we show next.

Theorem 3.6. Let {f,f :i=1, ..., m}beafamily of proper closed convex functions. Consider problem (13), for I = {1, ..., m},
and its dual (17) respectively, and define the functions {f; : i = 1, ..., m} as in Remark 3.1(1). Assume also problem (13) has
feasible solutions x such that x e D = K N (ﬂ}n:] dom f;) and the set

Ac(X) = 08 (X) + Bef1(0) + -+ - + Defn () (34)
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is weak* closed foralle > 0,i =1, ..., m. Then
m m
inf{Zﬁ(xi):xeK} = sup —Zfi*(v,-):vel(*}. (35)
i=1 i=1
Proof. From weak duality, we have inf{ZLf,-(x,») :x € K} > sup{— Z:":]fi*(v) : v € K*}. Thus, it remains to show that

inf[Zf,-(xi):xeK] < sup —Zfi*(vi):vel(*]. (36)

i=1 i=1

If inf{Z}n:]fi(x,-) : x € K} = —oo, then from weak duality, (35) is automatically fulfilled, so let us assume that
p* = inf{} ;" fi(x) : x € K} > —oo. As in [7, Proposition 4.1], we apply the e-descent method to obtain (36). We
choose an initial vector xg € D and generate a sequence {x;} C D such that the (k + 1)th iteration is

X1 = X + oYk (37)
The iteration can be implemented as follows. We find the projection Aj of the origin on the closed set A.(xy), i.e., Ay =
argmin, ga(x,) lIA|l. If A, = 0, which means that 0 € A (x,), then the method stops because there is no e-descent direction,

i.e., X1 = Xg. Inthis case, x; is within (m+1)e of being optimal. If A, # 0(0 & A (xx)), hence 0 & Bef (x¢) (from Corollary 3.2),
we generate X1 € D as in (37) as follows. By using a separation theorem (see e.g., [19, Corollary 4.22] and [20, Corollary
5.80]), there exists a hyperplane strongly separating 0 from E)ef(xk). This means there exist a continuous linear functional
yk defined in X* such that

sup  p(A) < 0. (38)

A€De] (xi0)
Since yy is linear and continuous, there exists y, € X suchthat (1) = (A, yx), VA € X*(cf.[21, p. 112, Theorem 1]). Using
this in (38) gives SUD; co. Fxp) (A, ¥x) < 0.By Definition 2.1, y, is an e-descent direction which yields inf,-o f (xx + ayr) <

f(xk) — €. Therefore, there exists ¢, > 0 such that f (X + ockyk) < f (x) —€ < f(xk) The last expression ensures that the
current iteration xp41 = X + i reduces the cost function f by more than €. We claim that this method should stop at a
finite number of iterations k € N. Consequently, for k € N,wehave0 € A(xy, €). To prove this claim, let L € N be such that

fxo) —p* < (L— e (39)

where X is the initial point. We c1~aim that tpe method should stop at some k < L — 1.Indeed, assume that, on the contrary,
we generate Xo, ..., X such that f(x;.1) < f(x;)) —€,Vi=0,...,L— 1. This yields,

L—1

fxo) —fx) = Zf(xi) — f(xi11) > Le.
pary

By re-arranging the expression above and using the fact thatf is bounded below by p*, it follows that

p* <f(x) <f(xo) —Le = f(xo) —p*) +p* —Le < (L — De +p* — Le =p* — e,

where the right most inequality follows from (39). The last expression yields a contradiction. Therefore, the process has
to stop at some k such that 0 € A.(x;) as claimed. We proceed now to show that this implies zero duality gap. Denote x;

by x, we have 0 € A, (x) Since Ac(x) = 9.8k (%) + 3cf1(X) + -+ - + 9cfim(x), there exist some vectors v = (vq, ..., Um)
with v € 8.fi(x) + -+ + 8fn(x), and —v € 8.8¢(x). Note that the vector v can be expressed as v = ZL v; where
v; = (0,...,0,v;,0,...,0) has m components and the only possibly nonzero element in v; is in the ith position. From
(6), —v € N,i(x), and in view of (22), v; € dfi(x;) fori = 1, ..., m. Using the definition of the e-subdifferential we obtain
VX,' € Xi

fitx) < —fF(u) + (vi, %) +€, i=1,...,m. (40)

Also, from the definition of e-normal set (see (4)) we have
(—v,y) <€+ (—v,x) VyeKk. (41)

Since (—v, x) < 0, from (41) we get sup,cx (—v, y) < €. This forces —v to be in the polar cone of K. Namely, —v € K° and
hence v € K*. By summing up for all i in (40), we obtain

Zfi(xi) <- Zf,—*(v,-) + (v, x) + me.

i=1 i=1
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In (41), take y = 0. This yields (v, x) <€
m m
Zfi(xi) <- Zfi*(vi) + (m+ 1e.
i=1 i=1

Since x is primal feasible and v is dual feasible, then

inf{Zfi(x,') 1X € K} < sup i—Zfi*(v;) ‘v E K*} + (m+ 1)e.
i=1 i=1

By taking ¢ — 0, we get inf{} ;" fi(x;) : x € K} < sup{— > [, f*(v;) : v € K*}. Thus, inf{} ", fi(x;)) : x € K} =
sup{— > ", f*(v)) : v € K*} as required. O

Remark 3.2. Theorems 3.4 and 3.6 use two types of constraint qualifications that ensure zero duality gap for the GMP
problem. The following example shows that the constraint qualification (29) used in Theorem 3.4 is not weaker than the
constraint qualification (34) used in Theorem 3.6. We also show below how the primal and the dual GMP problems (13) and
(17) can be formulated for this specific example. The example is inspired by the one introduced in [8, p. 2798].

Example 3.1. LetX = R?and K C X be a non empty closed convex cone such that K = {(x1, x») : x; < 0}. Consider also two
convex sets C and D, respectively where C = {(x1, X2) : 2x; +x§ < 0},and D = {(x1, x3) : X; > 0}. Let g = & be a proper
Isc and convex function, and fi, f» : X — R be two separable proper Isc and convex functions such that X; = X, = R?,

fi = 8c and f, = &p. Clearly, K N'dom f; N dom f, = {(0, 0)}. First we show that for all € > 0, the sum
Ac(0,0) := 3:5x (0, 0) + 9f1(0, 0) + 3.f2(0, 0),

is closed. One can check that the conjugate functions g*, f; and f;* are

* o _ 0 ifwy >0, w, =0
g (wy, wp) = SK(wl, wy) = {—}—OO otherwise,
2
u
—2 ifll1 >0
fiuy, up) = 88(uq, up) = 2uy

0 ifuy=u, =0
+o00 otherwise,
and

* ek _]0 ifvy <0,v,=0
f (w1, v2) = dp(v1, v2) = +00 otherwise.

By direct calculation we have 3,8 (0, 0) = [0, +00) x {0}, 3.f;(0,0) = (0, 0) U (Uul>o(u1 x [—~/2ewm, «/Zeul])) and
9¢f2(0, 0) = (—o0, 0] x {0}. Therefore the set

A.(0,0) =R x {0} + (0, 0) U (Uu1>0(u1 X [—+/2€uy, \/2€u1])) —R?

is closed. However, the set epig* + epif;" + epif;’ is not closed. To show this, we will find the infimal convolution of g*, f7", f5',
and prove that there exist a point in R? at which the infimal convolution is not exact.

G Dff ®HHK, X)) = . ilerf . {8 (w1, wp) + 8&(uy, up) + 85 (v1, v2)}
W‘l U‘l U]:X
w2+uz+v2=x%

2
ifwlzo,w2=0,u1>O,v1<0,v2=0

= inf 2u, =
w]+u1+v1=xT : > —_ — — < —
wy-Hig +uy =3 0 lfl,U1 >0, Wy = 0, up =u; = 0, v = 0, Uy = 0

2

u
2 .
. — ifw;>0,u; >0
- u‘]'*l-?lt;x* 2u1 if
) B _ _
u2=x; ifuy=uy; =0
= 0.

It is clear that g* @ f}* @ f;" is Isc on R?. However, it is not exact at (x7,x5) = (1/2,1/4). In fact, the infimal convolution
(&* @ ff ®f)(1/2,1/4) is not attained. Thus, in the view of Lemma 2.1(2) epig* + epif]" + epif;’ # epi(g + f1 + f)*, and
hence by Lemma 2.1(1) epig* + epif;* + epif;’ is not closed.
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Let us see now how the primal and dual problems (13) and (17) can be formulated for this example. The primal problem
can be written as

min fy(w1) + fo(wy)
subject to (wy, wy) € K x K € R? x R%.

In other words, we duplicate the space R? in order to minimize the sum of two separable functions over the closed convex
cone K x K. o B

To write the dual problem as in (17), we first define fi, f, : R?> x R* — ﬁ_such that fi(wq, wy) = fi(w;),i = 1, 2. Note
that each f; is defined as in Remark 3.1(1). Then we calculate the conjugate of f;, to obtain

Fi1, v2) = oc (V1) + 80,0y (V2) = fi (V1) + 80,0y (V2). (42)
We also have that
f (1, v2) = 0p(v2) + 80,0 (V1) = f5 (V2) + 80,0 (V1) (43)

where (vq, v2) € R? x R?. Note that from (42) and (43), we have that

domf; = domf; x {0} and domf; = {0} x domf;".
Thus,

dom f;' N dom f; = {(0, 0)}. (44)
Hence, by using (42)-(43), the dual problem (in the form of problem (17)) trivializes to

max —(o¢(v1) + 840,03 (v2)) — (op(v2) + 8{(0,0)) (V1))
subject to (vy, v2) € (K x K)* = K* x K*.

It is clear, from (44), that only (vq, v;) = (0, 0) belongs to the domain of the dual objective function. Hence, both primal
and dual have 0 as the optimal value, and the optimal dual value is attained at (0, 0).

4. Conclusion

In this paper we define the generalized monotropic programming (GMP) problem in locally convex spaces and we obtain
strong duality for the primal-dual problem in this setting. The GMP problem is the minimization of a possibly infinite sum of
separable proper convex functions subject to a closed convex cone. Two new constraint qualifications are studied. Namely,
when we have a finite sum on the objective, we show that the constraint qualification (29) implies strong duality. Moreover,
the constraint qualification in [7, Proposition 4.1] is used in Theorem 3.6 to obtain zero duality gap, for the case in which the
constraint set for the (GMP) problem is a closed and convex cone. For the case of infinite sum of the separable functions, we
use the constraint qualification (4a)-(4b). Still for the infinite sum, under additional assumptions on the primal objective
functions, the constraint qualification (31) is enough to obtain strong duality for the GMP problem.

A natural question, for the case of the sum of finite objective functions, is what is the connection between the constraint
qualifications (29) and (34)?

Example 3.1 confirms that the constraint qualification (29) is not weaker than (34), but we have not been able to find an
example to show that (34) is not weaker than (29). It is also a question of future research to investigate new constraint
qualifications which can be equivalent to condition (34).
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Appendix

Lemma A.1. Let I be an indexed set. Then

(i) If I is a countable set then there exists a real sequence a = (a;)ic; with a; > 0 for alli € I such that Y ,_ a; = 1.

iel
(ii) If I is uncountable set then there exists a net a = (a;);e; with a; > 0 for all i € I such that )_
(iii) Let {a; : i € I} C Rsuchthat Y, ,a; = athen) . ka; = ka for all k € R.

ier 4 = L

iel iel
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(iv)Let {b; : i € I} € Rand{¢ : i € I} € R such that )
Ziel (bi +c) = Ziel b; + Zie[ Ci.

(v) If 8, € Rand thenet {8; : i € I} C Rsuchthat ),
and §; < «; foralli € L.

wbi = band Y, ¢ = c, where b,c € R. Then

8i = 8 < a. Then there exist some «; € R such that ).,

o = o
Proof. To prove (i), if [[| = m then there exists a positive sequence (a;) = {1 ciefl,...,m} C N.Thus, ) ;. a =
Zm = 1.If the cardinal of I is infinite, i.e., |I[| = N, the set of natural numbers, then take (a)ier = { :ieN,i> 1}

i=1m
where a; > Oforalli € I,and ), a; = 1. To show (ii), let ] C I be a countable set. From (i), there EXlStS a real sequence

@ = (G;)igy with @; > 0 for alli € J such that Zie] a; = 1. Let us define a net a = (a;);¢; such that

- {0 ifid],

& ifie).

From (10), 3,y @i = lim—to0 D ;s G- Note that Yy @i = D icpry Git D icarye Gi = D_jcary Gi- Thus, from Definition 2.2(1)
AeF (I)

Za,- = sup (Anfn Za,) = sup 1nf Z a;

iel neN Aﬂj;&¢ ieAn]

> su inf a;
neN \ W5 Gy
= lim mfZ a; = 11m1nfz a = 1. (A.1)
i—00 1—>00
i€/ ief

The last equality above follows from the definition of a = (a;);¢; and part (i). In a similar way and using Definition 2.2(1)
> ic1 @i = infren (SUP |4 <y D _jcq Gi), We Obtain

Y a=. (A2)
iel
By combining (A.1) and (A.2), we obtain ) ;_, a; = 1. To prove (iii), for I countable, it has been shown in [22, Theorem 3.47],
that ), ka; = ka for all k € R. Assume now [ is uncountable and k > 0, from Definition 2.2(1) we have that

Zkal = l1m 1anka, = kllllzl)glfz a; = ka.

iel iel iel

Ifk < 0, then ), , ka; = sup,ey (— supA\QE(rIl) Yiea(—k)a) = —infrey (supA\QE(,;) Yiea(—l)a) = klimsup;_, o >, ai =
ka. ; ;

To obtain (iv), if I is countable, see [22, Theorem 3.47]. Assume I is uncountable, from Definition 2.2(1) and the
assumption, we have that

b= b =sup (lm bi>,

iel neN AcF () i€A
c=§ c; = sup inf E Gl.

el neN \ A=t A

AcF () i€

From the definition of supremum, the above expressions imply that, for each € > 0 there exist ng, iy € N such that

. €
inf bi>b— - and inf E c,>c—f
lAl<ng £ 2 1AI<fig

AeF () 1€ Acr () €A

Take ng = min{ng, fp}. Note that if |A| < 11y then |A| < ng and |A| < fp. Hence

€
inf b; > inf b >b— = (A.3)
lAl<ig 4 lAl<ng £ 2
AeF () 1€ AeF () 1€
similarly,
ml\r<1£ Zc, >Cc— = (A.4)

AcF () €A
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From (A.3) and (A.4), we conclude inf u<iy Y ;4 bi +infiai<ay D ;ca G > b+ ¢ — €. This yields,
) AeF ()

AcF (I

liminf Y (b + ¢;) = sup ( inf > b+ ci)>

iel neN \ yerqy icA

v

inf > (b; + )
|Al<ng £
AcF () 1€A

inf b; + inf E Ci
|Al<ng < |Al<ng 4
AeF() 1€A AeF () €A

>b+c—e. (A.5)

v

Using now

b:Zb,:mf sup Zbl )

- neN Al<n £
iel AcF (D) i€A

c:Zq:inf sup Zci ,

- neN Al<n £
iel AcF (D) i€A

we can show, in a similar way described above, that

lim sup Z(b,— +c)<b+4+c+e (A.6)
imoo g

for all ¢ > 0. This means, ), (b; + ¢;) = b + c. Finally we prove (v), from the assumption, we know that § < «. If
8 = « then the required result is obtained. Assume now § < «, soa — § > 0. From (iii), for k = (o — §), we have that
(¢ —8) =Y iy ai(a — 8), where {a; : a; > 0} are as in (ii). Take

a:8+(a—8):ZSi+Zai(a—6):Z(S,-—{-ai(a—(S)).

iel iel iel
The last equality follows from (iv). Call ¢; := 8; 4+ a;(@¢ — §) > §;. Hence, we constructed «; > §; for eachi € [ with
=) O

Lemma A.2. Let [ be an indexed set, X, {X;}ier be locally convex spaces such that X = [, X; and let {¢; : i € I} be a family of
separable functions such that ¢; : X; — R for alli € I. Define ¢(x) := Y ic ¢i(x;) where @ = T1;, Xi — R. Assume also that, for
X = (Xiel, SUPxex D i ¥i(Xi) < +00. Then

(i) Si == supyex, @i(xi)) < oo Vi€,
(i) X i1 Si = D ies SUPxex; 9i(X:) exist and finite,
(iii) SUPyex D i @i(Xi) = D _ics SUPxex; ¥i(Xi) = X iy Si-

Proof. To show (i), we assume that there existj € I such that SUDyex; ¥ (xj) = +o0. This means, for each M > 0 there exist
xj(M) € X; such that ¢;(x;(M)) > M. Choose X(M) € X such that (x(M)); = x;(M). The coordinates i # j are irrelevant.
Since (x) = Y, ¢i(x;) for all x € X, then in particular (X(M)) := >_,_; ¢i((x(M));). From Definition 2.2(1), the latter
expression is defined as

p&M) = inf | sup Y @ &O));

< .
=

Because SUPy <y Yica i(RM))) = Supy_y Yo Gi(EM))) =  supig ¢i((X(M)))), we have that p(*(M)) =
infren (SUPja=1 D _icp 9i(R(M));) = sup;e; @i(Xi(M)) > ;(X;(M)) > M. Therefore, for each M > 0 there exist X(M) € X
such that sup,ex ¢(x) > @(X(M)) > M which means that sup,.x ¢ (x) = +o0. This contradicts the assumption. Hence, S;
must be finite for each i € I, which shows (i). To obtain (ii), we first show that ", S; = limsup;_, o, Y i SUPy.ex; @i(Xi) Is
finite. From the assumption, we have sup,.x Y ., ¢i(x;) < +o00, which yields that there exists y > 0 such that

sup > gilx) < . (A7)

XeX g
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Assume that limsup;_, o D i, SUPyex, ¢i(X) = +oo. By definition of limsup, this implies that infyey  (SUp Wi<n
AeF (D)

D ica SUPy.ex; %i(%i)) > 3y. Thus, for every fixed n € N there exist A(n) € ¥ (I) with |A(n)| < n such that

> supgitxi) > 3y. (AS8)
icA(n) Xi€Xi
From (i), we know that sup, cx, ¢i(x;) < +oo for alli € I. Thus, using the definition of supremum, for each i € A(n) there
exist x; € X; such that

%
sup @;(x;) — 7= @i(x}) < sup g;(x;),

xieX; X €Xi

by taking the finite sum over all i € A(n) and using % < y we obtain

ieA(n)

D osuppix) —y < Y @il) < Y supgilxy). (A9)
icA(n) Xi€Xi i€A(n) icA(n) Xi<Xi
By re-arranging (A.9) and using (A.8) we get 2y < ) i a(, ¢i(X)), which yields 2y < 3~ 4 i(X) < SUP<n D icn 9i(X0),
where 7(,; = x; if i € A(n). Thus, we have 2y < infyey (SUPjg<p D icn @i(%)) = D i @i(X). Using (A7) and the fact that
D ic PiXi) < SUPyex D i) 0i(Xi) We get 2y < SUPyex 2 i ®i(Xi) < v, which contradicts (A.7). Thus,

lim sup Z sup @;(x;) < +00. (A.10)

i—00 g X;i€X;

Now we must show that limsup;_, o, D, SUPyex, %i(*:) = liminfi o Y el SUPyex; %i(*:), which consequently yields that
D i SUPyex, ¥i(xi) exist. For simplicity, denote

L :=lim iglf Z sup ¢;(x;), and R :=lim sup Z sup @;(x;).

S O i—00 xi€X;

iel iel

Since L < R, by using (A.10), we conclude L < +o0. Thus, it is enough to prove that R < L. Assume that L < R. Choose an
arbitrary positive number é. Since R is finite, we can say that

)
R— - <R:=inf | sup sup @i (x;)
2 neN |Al=n ;:x,-ex,- o
AeF ()
So for each n € N there exists a finite set A(n) € # (I) with |A(n)| < n such that
R — 5 < Z sup @;(x;). (A.11)

icA(n) Xi€Xi
On the other hand, from the definition of the supremum, for each i € A(n) there exist X! € X; such that ¢;(x]) >
SUPyex; ¥i(Xi) — 2‘3—,1 By taking the sum over all i € A(n) for the last inequality and then combine it with (A.11) we get
R-6 < Z ¢i(x) foreachn e N. (A12)

ieA(n)

BeCﬁushe L+% > L = sup,cy (infp<p ZieB SUPy.ex, ¢i(X:)), foreachn € N there exist a finite set B(n) € ¥ (I) with [B(n)| < n
such that

L+ - > Z sup ¢i(x;) > Z wi(x) Vx; € X;.
ieB(n) XiXi ieB(n)
Since the last inequality holds for each n € N and for each x; € X;, then
8
L+8>L—|—7>sup mfZ(pl(x) mf sungo,(x) =opkx) VX eX.

neN |Bl=<n “icg

This yields, there exists no € N such that

L+8> sup ) oix) = ) wi®°).

IBl=<no “icp icA(ng)
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Using (A.12) (for n = ng) with the inequalities above yields
L+8> > @& >R-8.
icA(ng)

We proved that forevery § > Owe have L+8 > R—38.HenceL > Rasrequired. Thus, we have showed that } ", ; sup,.cx. ¢i(x))
exists. Finally we prove (iii), It is clear that

sup Z 0i(x;) < Z sup @i (x;).

&ier €] Tier Xi “jer icl Xi€Xi

So, we only need to show the opposite inequality. Assume that there exist y € R such that

sup Z(p,(x,) <y < Z sup ¢;(x;) = sup mf Z sup ¢;(x) | - (A.13)
(XI)IEIEHIEI Xi iel el Xi€X; Al i A Xi€Xi
From (A.13), there exists § > 0 and ny € N such that
y+38< mf Z sup @;i(x;). (A.14)

=ng ica Xi€Xi

From the inequality on the left hand side of (A.13), we have that for each x € X

Z‘pl(xl) = Sup lnf ZQOI(XI <y -—é.

iel

Thus, infja<n D ;4 9i(x;)) < y — & foreachn € N and for each x € X. Fix ng € N, from the definition of infimum, there exist
A(ng) € ¥ (I) with |A(ng)| < ng such that

Z pi(xj)) <y — 38 foreachx; € X;. (A.15)
icA(ng)

From (i) and the definition of supremum, there exist x; € X; such that
- 3
@i(X;) > sup ¢i(x;) — -—, (A.16)
x;ieX; 2n0

5

whereng € Nandi € ;\(no). By taking the sum over all i € ;\(no) and using the fact that ZzeA(no) 3ng

(A.16) yields

*+ Z @i(X;) > Z sup @;(x;) > mf ZSUP(PI(Xz) >y +34,

X;i€X; ; X €X;
ieA(ng) ieA(ng) " ieA TI=N

E) . .
< 3, the inequality

where we used (A.14) in the right most expression above. Thus, the last expression yields Zie;‘(no) 0ix) >y + % and by
combining the last inequality with (A.15), we gety — § > Zia;(no) 0ix) >y + % This entails a contradiction. Thus,

sup Z oi(x;) > Z sup ¢;(x;),

(xl)xslenxelxx iel el Xi€Xi

asrequired. O
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