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In this paper, we study the dimensions associated with the Cantor Julia set of a rational
map whose Fatou set is an attracting domain. We prove that if the Julia set of such a map
contains no persistently recurrent critical points, then the conformal dimension and the
Hausdorff dimension of the Julia set are equal.
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1. Introduction and main result

Let f be a rational map from the Riemann sphere C onto itself of degree d > 2. The Fatou set F(f ) and the Julia set
J(f ) of f represent the stable part and the chaotic part of the complex dynamical systems generated by the iteration of f
respectively. For the background of the complex dynamical systems, readers can refer to the book [10]. The purpose of this
paper is to study the geometrical properties of the Julia sets, such as the measures and dimensions relative to J(f ). The most
important dimension associated with the Julia sets is the Hausdorff dimension. It is a fractal dimension which can describe
the complexity of the Julia sets. The definitions of Hausdorff measure and Hausdorff dimension can be found in [5]. In this
paper, we denote by dimH the Hausdorff dimension and Ht the t-dimensional Hausdorff measure.

Conformal measure is an important geometrical measure associated with the Julia set, which is first introduced to
complex dynamical systems by Sullivan in [17]. It is defined as follows.

Definition 1. A probability measureµ supported on J(f ) is called a conformal measure with exponent α or an α-conformal
measure (0 < α 6 2) for f if the equation

µ(f (A)) =


A
|f ′(z)|αdµ

holds for every Borel set A ⊂ J(f ) such that f |A is injective.

The existence of the conformal measure for any rational map was shown in [17] by Sullivan, see also [3]. Conformal
measure is one of the tools to study the Hausdorff dimension of Julia sets because of the following principle, which is very
useful to estimate the Hausdorff dimension.

Theorem 1 (See Theorem 1.1 of [18]). Assume that X is a compact subset of the plane and µ is a Borel probability measure on
X. Then for every t > 0, there exist constants h1(t) and h2(t) with the following properties: If A is a Borel subset of X and C is a

E-mail addresses: zhaiyu@amss.ac.cn, dyu@zju.edu.cn.

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2013.01.052

http://dx.doi.org/10.1016/j.jmaa.2013.01.052
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmaa.2013.01.052&domain=pdf
mailto:zhaiyu@amss.ac.cn
mailto:dyu@zju.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2013.01.052


Y. Zhai / J. Math. Anal. Appl. 402 (2013) 772–780 773

constant such that

(1) for all (but countable many) x ∈ A

lim sup
r→0

µ(B(x, r))
r t

> C−1,

then for every Borel subset E ⊂ A we have Ht(E) 6 h1(t)Cµ(E). In particular, Ht(A) < ∞, t > dimH(A); or
(2) for all x ∈ A

lim sup
r→0

µ(B(x, r))
r t

6 C−1,

then for every Borel subset E ⊂ A we have Ht(E) > h2(t)Cµ(E).

According to the construction of the conformalmeasure, all the conformalmeasures for a rationalmap f form a closed set
in the sense of weak convergence, so there exists a conformal measure whose exponent is the infimum of all the exponents
of conformal measures for f . Denote by

α∗(f ) = inf{α ∈ (0, 2] : ∃ an α-conformal measure supported on J(f )}.

This minimal exponent α∗(f ) is called the conformal dimension of J(f ).
In [17], Sullivan also proved that for any hyperbolic rational map f , there is only one conformal measureµ supported on

J(f ), whose exponent δ equals the Hausdorff dimension of J(f ). It implies that the conformal dimension of J(f ) equals the
Hausdorff dimension of J(f ) in the expanding case.

Naturally, we want to know that for a general rational map, whether or not the above two dimensions of its Julia set are
equal. This problem has been studied in several cases before and almost all the answers are affirmative:

(1) Parabolic rational maps, [19].
(2) Rational maps with no recurrent critical points in their Julia sets, [20].
(3) Collet–Eckmann rationalmaps and non-renormalizable quadratic polynomial z → z2+c with c not in themain cardioid

in the Mandelbrot set, [11].
(4) Quadratic Feigenbaum map whose Julia set has zero 2-dimensional Lebesgue measure, [1]. However, if a quadratic

Feigenbaummap has a Julia set with positive area, then the above conclusion fails.
(5) Rational maps satisfying the backward contraction property, [8].

In this paper, we will concentrate on a special class of rational maps with Cantor Julia sets and obtain a positive result about
the problem mentioned above. Notice that if the Julia set J(f ) of a rational map f is a Cantor set, then the Fatou set F(f ) is
connected and F(f ) is either an attracting domain or a parabolic domain.

Let F be the set of rational maps f with Cantor Julia sets satisfying the following hypotheses.

(1) F(f ) is an attracting domain. In other words, there is an attracting fixed point in F(f ).
(2) J(f ) contains no persistently recurrent critical points.

The definition of the persistently recurrent critical point will be given in the next section. The main result in this paper is
the following

Main Theorem. If f ∈ F , then α∗(f ) = dimH(J(f )).

Notations. (1) C denotes the complex plane;C = C∪{∞} denotes the Riemann sphere;R denotes the set of real numbers.
(2) B(z, r) denotes the ball of radius r centered at z. Specially, Dr = {z : |z| < r} and D = D1 denotes the unit disk.
(3) diam denotes the diameter and dist denotes the distance.

2. Branner–Hubbard puzzle and KSS nest

The combinatorial tool we used in this paper is the Branner–Hubbard puzzle. The Fatou set of a rational mapwith Cantor
Julia set is either an attracting domain or a parabolic domain. In other words, there is either an attracting fixed point in F(f )
or a parabolic fixed point in J(f ). In this paper, we focus on the attracting case.

Now, we construct the Branner–Hubbard puzzle for f ∈ F . We always assume that ∞ is the attracting fixed point of f .
Take a simply connected neighborhood U0 ⊂ F(f ) of ∞ such that U0 ⊂ f −1(U0). In particular, we can take the disk

{z : |z| > R} as U0, where R is a sufficiently large number and {z : |z| = R} is disjoint from the critical orbits of f . Let Un be
the component of f −n(U0) containing ∞. Then Un ⊂ Un+1 and F(f ) =


∞

n=0 Un. For an integer N0 large enough, f −n(UN0)

has only one component for any n > 0. The set f −n(C − UN0) is a disjoint union of finitely many topological disks. For each
n > 0, let Pn be the collection of all the components of f −n(C −UN0), which are called puzzle pieces of depth n. For arbitrary
two different puzzle pieces P1 and P2, there are three possibilities: P1 ∩ P2 = ∅, P1 ⊂ P2 or P1 ⊃ P2.

For any point x ∈ J(f ) and any n > 0, there is only one puzzle piece Pn(x) ∈ Pn containing x. Thus each point x ∈ J(f )
determines a nested sequence P0(x) ⊃ P1(x) ⊃ · · · and


n>0 Pn(x) = {x}, since each component of J(f ) is a singleton.
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Take N0 large enough such that UN0 contains all the critical points in F(f ) and each puzzle piece contains at most one
critical point.

We say that a critical point is recurrent if c ∈ ω(c), where ω(c) is the set of limit points of forward orbit of c . Otherwise,
c is called non-recurrent. Let

Crit = {c ∈ J(f ) : c is a critical point of f }.

Definition 2. (1) We say x is combinatorially convergent to y, write as x → y, if for any n > 0, there exists j > 0 such that
f j(x) ∈ Pn(y). It is clear that x → y if and only if y ∈


n>1 f

−n(x) or y ∈ ω(x), the limit set of the forward orbit of x. If
x → y and y → z, then x → z. For each recurrent critical point c ∈ Crit, let

[c] = {c ′
∈ Crit : c → c ′ and c ′

→ c}.

[c] is called the combinatorially equivalent class of c.
(2) We say x is non-critical if x 9 c for any c ∈ Crit.
(3) We say Pn+k(c ′) is a child of Pn(c) if c ′

∈ [c], f k(Pn+k(c ′)) = Pn(c), and f k−1
: Pn+k−1(f (c ′)) → Pn(c) is conformal.

(4) Suppose c → c , i.e. [c] ≠ ∅. We say c is persistently recurrent if Pn(c1) has only finitely many children for all n > 0 and
all c1 ∈ [c]. Otherwise, c is said to be reluctantly recurrent.

Remark 1. We say that a critical point c is combinatorially recurrent if c → c. This terminology is equivalent to recurrent
in the usual sense that c ∈ ω(c)when J(f ) is a Cantor set.

Remark 2. We consider the preperiodic critical points as non-recurrent ones since their orbits are finite. All the statements
and proofs about non-recurrent critical points are available for preperiodic critical points.

While we construct the Branner–Hubbard puzzle piece, take N0 large enough if necessary to make sure that for each
c ∈ Crit, f n(c) ∉ P0(c ′) holds for any n > 0 and any c ′

∈ Crit if c 9 c ′.
Let

Critn = {c ∈ Crit : c is non-critical},
Critr = {c ∈ Crit : c is reluctantly recurrent},
Criten = {c ′

∈ Crit : c ′ 9 c ′ and c ′
→ c for some c ∈ Critn},

Criter = {c ′
∈ Crit : c ′ 9 c ′ and c ′

→ c for some c ∈ Critr}.

Then

Crit = Critn ∪ Critr ∪ Criten ∪ Criter .

This is not a classification because these sets might intersect.
Let A be an open set and x ∈ A. The connected component of A containing x will be denoted by CompxA. Given a puzzle

piece I , let

D(I) = {z ∈ C : There exists k > 1 such that f k(z) ∈ I} =


k>1

f −k(I).

For any z ∈ D(I), let k > 1 be the smallest integer such that f k(z) ∈ I and let n0 be the depth of I . Then there is at most one
piece in

{Pn0+k(z) = Compz f
−k(I), f (Pn0+k(z)), . . . , f k−1(Pn0+k(z))}

which contains a critical point c for any c ∈ Crit. Hence

deg(f k : Pn0+k(z) → I) 6 D

for a constant D < ∞ depending only on Crit.

3. Distortion lemmas

This section is devoted to proving several distortion results about the holomorphic maps which are concluded by the
famous Koebe distortion theorem.

Theorem 2 (Koebe Distortion Theorem). Suppose that ϕ : D → ϕ(D) ⊂ C is a conformal map, then for any z ∈ D, we have

|ϕ′(0)|
|z|

(1 + |z|)2
6 |ϕ(z)− ϕ(0)| 6 |ϕ′(0)|

|z|
(1 − |z|)2

,

|ϕ′(0)|
1 − |z|
(1 + |z|)3

6 |ϕ′(z)| 6 |ϕ′(0)|
1 + |z|
(1 − |z|)3

.
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Corollary. If ϕ : D → ϕ(D) is a conformal map, then we have

1
4
(1 − |z|2)|ϕ′(z)| 6 dist(ϕ(z), ∂ϕ(D)) 6 (1 − |z|2)|ϕ′(z)|, ∀z ∈ D.

In this paper, we also need the following theorem which is the generalized version of Koebe distortion theorem.

Theorem 3. Let U, V be two simply-connected domains in C satisfying U ⊂ V and g be a conformal map in V . Suppose the
conformal modulus of V − U equals ν > 0. Then there is a constant C > 1 depending only on ν such that the inequalities

1
C

6
|g ′(x)|
|g ′(y)|

6 C

hold for all x, y ∈ U.

Let U be a subset of C and x0 ∈ U , the shape of U about the point x0 is defined as

shape(U, x0) =

max
z∈∂U

dist(x0, z)

min
z∈∂U

dist(x0, z)
=

max
z∈∂U

dist(x0, z)

dist(x0, ∂U)
.

Lemma 1. Assume that U ⊂⊂ P andU ⊂⊂ P are two pairs of simply connected domains, x0 ∈ U, and ϕ : (P,U) → (P,U) is
a conformal map satisfyingx0 = ϕ(x0) ∈ U. If mod(P − U) > ν > 0, then there exists a constant C0 = C0(ν) such that

1
C0

· shape(U, x0) 6 shape(U,x0) 6 C0 · shape(U, x0).

Proof. Let h1 : (P,U) → (D, V ) and h2 : (P,U) → (D,V ) be the Riemann maps with h1(x0) = 0 and h2(x0) = 0
respectively, so we have

mod(P − U) = mod(P − U) = mod(D − V ) = mod(D − V ) > ν.

By Grötzsch Theorem, there is a constant r0 = r0(ν) < 1 such that V , V ⊂ Dr0 (in two different unit disks). Clearly,
g = h−1

1 ◦ ϕ ◦ h2 is a conformal map from D onto itself with g(0) = 0, so g(z)must be a rigid rotation eiθ z for some θ ∈ R.
Moreover, we have g(V ) = V .

Suppose that the points xR ∈ ∂U and xr ∈ ∂U ,xR ∈ ∂U andxr ∈ ∂U satisfy

|xR − x0| = max
x∈∂U

|x − x0|, |xr − x0| = min
x∈∂U

|x − x0|

and

|xR −x0| = maxx∈∂U |x −x0|, |xr −x0| = minx∈∂U |x −x0|
respectively. Correspondingly, there are points zR, zr ∈ ∂V andzR,zr ∈ ∂V satisfying

|zR| = max
z∈∂V

|z|, |zr | = min
z∈∂V

|z|;

|zR| = maxz∈∂V |z|, |zr | = minz∈∂V |z|.
Consider the conformal map h−1

1 first, by Koebe distortion theorem, we have

|xR − x0| > |h−1
1 (zR)− h−1

1 (0)| > |(h−1
1 )

′(0)|
|zR|

(1 + |zR|)2
,

|xr − x0| 6 |h−1
1 (zr)− h−1

1 (0)| 6 |(h−1
1 )

′(0)|
|zr |

(1 − |zr |)2
.

Therefore we can conclude that

shape(U, x0) =
|xR − x0|
|xr − x0|

>
|zR|
|zr |

(1 − |zr |)2

(1 + |zR|)2
> shape(V , 0)

(1 − r0)2

(1 + r0)2
.

Now we consider the map h2. We have the following inequalities,

|zR| > |h2(xR)| = |h2(xR)− h2(x0)| >
1
C

· |h′

2(x0) ∥xR −x0|,
|zr | 6 |h2(xr)| = |h2(xr)− h2(x0)| 6 C · |h′

2(x0) ∥xr −x0|,
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where C is the constant given in Theorem 3. It follows that

shape(V , 0) =
|zR|
|zr | >

|xR −x0|
|xr −x0| 1

C2
=

1
C2

· shape(U,x0).
Since g is a rigid rotation, it follows immediately that

shape(V , 0) = shape(g(V ), 0) = shape(V , 0).
Combining the above facts together, finally we deduce that

shape(U,x0) 6 C2
·
(1 + r0)2

(1 − r0)2
shape(U, x0) = C0 · shape(U, x0),

where C0 is a constant depending only on ν.
Another inequality can be proved by the same method if we deal with the map g−1

= h−1
2 ◦ ϕ−1

◦ h1 instead of g . �

Lemma 2. Suppose g : D → D is holomorphic proper map of degree d > 1 and g(0) = 0. Let V ⊂ D be a simply connected
domain containing 0. Then there exists a constant C1 = C1(d) such that

shape(U, 0) 6 C1 · shape(V , 0),

where U = Comp0g−1(V ).

Proof. Let

L1 = max
w∈∂V

|w|, l1 = min
w∈∂V

|w|;

L2 = max
z∈∂U

|z|, l2 = min
z∈∂U

|z|.

By Schwarz’s Lemma, we know that l2 > l1.
If L1 > 1

2 , then

shape(U, 0) =
L2
l2

6
1
l1

6
2L1
l1

= 2shape(V , 0).

Now we consider the case of L1 < 1
2 . Denote by D the component of g−1(B(0, 2L1)) containing 0, so D is simply connected.

Let ϕ : D → D be the Riemann map with ϕ(0) = 0. Denote byW the set ϕ−1(U).
The composedmapG(x) =

1
2L1

g ◦ϕ(x) : D → D is a holomorphicmap of degree d. It is easy to see thatmaxw∈∂G(W ) |w| =

1
2 and shape(V , 0) = shape(G(W ), 0). Obviously,

mod(D2L1 − V ) >
1
2π

ln 2,

so, mod(D − U) = mod(D − W ) > ln 2
2πd . According to the former case, we have

shape(W , 0) 6 2shape(G(W ), 0) = 2shape(V , 0).

By Lemma 1, there exists a constant C0 = C0(
ln 2
2πd ) such that shape(U, 0) 6 C0 · shape(W , 0). Hence,

shape(U, 0) 6 2C0 · shape(V , 0) = C1 · shape(V , 0),

where C1 is a constant depending only on d. �

Lemma 2 is a version of distortion lemma of the d-to-1 holomorphic maps, one can refer to the Refs. [2,6,14,16,21] to find
out the previous work about this topic.

4. Proof of Main Theorem

In this section, we start with the following lemma that gives a control of the degrees of iterations from arbitrarily deep
critical puzzle pieces to a fixed puzzle piece.

Lemma 3 (See Lemma 7 of [22]). There is a constant D < ∞ such that for any c ∈ Crit and all n > 0, there exist a puzzle piece
P0 of depth 0 and infinitely many in satisfying

deg(f in : Pin(c) → P0) 6 D.

Proof. If c ∈ Critn, then there must be an integer n0 > 0 such that for any n > 1, f n(c) ∉


c1∈Crit Pn0(c1), so

deg(f n : Pn0+n(c) → Pn0(f
n(c))) = deg(f |Pn0+n(c)).
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Thus, there exists an integer D1 such that

deg(f n0+n
: Pn0+n(c) → P0(f n0+n(c))) 6 D1.

Take a subsequence in of n0 + n such that P0(f in(c)) = P0 for some fixed puzzle piece P0.
If c ∈ Critr , according to the definition, there exist an integer n0 > 0, c ′

∈ [c], c1 ∈ [c] and infinitelymany integers kn > 1
such that {Pn0+kn(c

′)}n>1 are children of Pn0(c1). Since c ′
∈ [c], we have c → c ′. For each n, let mn be the first moment that

f mn(c) ∈ Pn0+kn(c
′). Let Pin(c) = Compc f −mn(Pn0+kn(c

′)), then

deg(f mn+kn : Pin(c) → Pn0(c1))

are uniformly bounded from above. So there must be an integer D2 such that

deg(f mn+kn+n0 : Pin(c) → P0(f n0(c1))) 6 D2.

For a critical point c of other kind, it must combinatorially converge to a critical point c0 ∈ Critn


Critr . For each
n, suppose ln is the smallest integer such that f ln(c) ∈ Pin(c0). Denote by Pin(c) the component Compc f −ln(Pin(c0)). So
deg(f in : Pin(c) → P0) are uniformly bounded from above. Pay attention to the symbols, for different critical points, the
indices in are also different. �

Lemma 4 (See Lemma 5 of [8]). Suppose that µ is an α-conformal measure for a rational map f . Then there is a constant K
depending on f satisfying

µ(U)
(diam(U))α

> K
µ(V )

(diam(V ))α
,

where V is a simply connected open set and U is a simply connected component of f −1(V ).

Proposition 1. There is a constant M > 1 such that for each critical point c ∈ Crit, we have

shape(Pin+1(c), c) 6 M,

where the puzzle pieces Pin(c) are given in Lemma 3.
Proof. This proposition is an easy conclusion of Lemma 2 by normalizing the puzzle pieces to the unit disk by the Riemann
maps, see also the proof of Proposition 2 of [22]. �

The following proposition is the main result of this section.

Proposition 2. Assume that µ is an α-conformal measure for f ∈ F , then there is a constant L > 0 such that for all c ∈ Crit
and n > 0, we have

µ(Pin+1(c))
(diamPin+1(c))α

> L,

where the pieces Pin(c) are given in Lemma 3 and the constant L is independent of n.
Proof. By Lemma 3, we know that there is a constant D depending on Crit such that for each c ∈ Crit, there exist a sequence
of nested puzzle pieces Pin(c) and a fixed puzzle piece P0 of depth 0 satisfying

deg(f in : Pin+1(c) → P1(f in(c))) 6 deg(f in : Pin(c) → P0) 6 D.

By passing to a subsequence, wemay also assume that P1(f in(c)) = P1 is a fixed puzzle piece of depth 1. Let jk, k = 1, . . . ,m,
0 = j1 < j2 < · · · < jm < in, be the moments that f jk(Pin+1(c)) contains a critical point. Obviously, for each n, the iteration
f in |Pin+1(c) can be decomposed into several steps as follows:

f : Pin+1(c) → f (Pin+1(c)),

f j2−1
: f (Pin+1(c)) → f j2(Pin+1(c)),

f : f j2(Pin+1(c)) → f j2+1(Pin+1(c)),

f j3−j2−1
: f j2+1(Pin+1(c)) → f j3(Pin+1(c)),

· · · ,

f : f jm(Pin+1(c)) → f jm+1(Pin+1(c)),

f in−jm−1
: f jm+1(Pin+1(c)) → P1.

It is easy to see that the followingm iterations

f jk−jk−1−1
: f jk−1+1(Pin+1(c)) → f jk(Pin+1(c)), k = 2, . . . ,m,

f in−jm−1
: f jm+1(Pin+1(c)) → P1

are all conformal maps.
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Note that we can find a neighborhoodP1 of P1 satisfying P1 ⊂ P1 and the annulusP1 − P1 is disjoint from the critical
orbits, since J(f ) is contained in the union of puzzle piece of depth 1 and all the critical orbits in F(f ) are attracted to the
fixed point∞. Moreover, because there are only finitelymany puzzle pieces of depth 1, so theremust exist a constant ν > 0
such that

min
P1∈P1

{ mod(P1 − P1)} > ν,

which means that all the distortion theorems stated in Section 3 are applicable in P1. Therefore, there exists a universal
constant K1 = K1(ν) (see Subproposition below) such that

µ(f jk−1+1(Pin+1(c)))
(diamf jk−1+1(Pin+1(c)))α

> K1
µ(f jk(Pin+1(c)))

(diamf jk(Pin+1(c)))α
, k = 2, . . . ,m, (1)

µ(f jm+1(Pin+1(c)))
(diamPin+1(c))α

> K1
µ(P1)

(diamP1)α
. (2)

Subproposition. Let f and µ be as in Proposition 2, U ⊃⊃ U be two topological disks intersecting J(f ) with mod(U − U) >
ν > 0. Suppose that z0 ∈ U and shape(U, z0) 6 M, shape(f m(U), f m(z0)) 6 M. If f m is injective inU for some positive integer
m, then we have

K1 ·
µ(f m(U))

(diamf m(U))α
6

µ(U)
(diamU)α

6 K ′

1 ·
µ(f m(U))

(diamf m(U))α
,

where K1 and K ′

1 are constants depending on ν and M.

Proof. Let ϕ : D → U and ψ : D → f m(U) be the Riemann maps with ϕ(0) = z0 and ψ(0) = f m(z0) respectively. Then
the composed map F(w) = ψ−1

◦ f m ◦ ϕ(w) is a conformal map from D onto D satisfying F(0) = 0. Thus F must be a rigid
rotation, that is, F(w) = eiβw for some β ∈ R. In particular,

|F ′(0)| = 1 = |(ψ−1
◦ f m ◦ ϕ)′(0)| =

|(f m)′(z0) · ϕ′(0)|
|ψ ′(0)|

.

So taking advantage of the corollary in Section 3, we have

|(f m)′(z0)| =
|ψ ′(0)|
|ϕ′(0)|

6
4diamf m(U)
dist(z0, ∂U)

6
4diamf m(U)
diamU/2M

= 8M ·
diamf m(U)

diamU
.

On the other hand, we have

|(f m)′(z0)| =
|ψ ′(0)|
|ϕ′(0)|

>
dist(f m(z0), ∂ f m(U))

4diamU
>

diamf m(U)/2M
4diamU

=
1
8M

·
diamf m(U)

diamU
.

According to the definition of conformal measure, we conclude that

µ(f m(U)) =


U

|(f m)′(z)|αdµ 6 Cα|(f m)′(z0)|αµ(U) 6 (8MC)α ·
(diamf m(U))α

(diamU)α
µ(U),

where C > 1 is given in Theorem 3. In other words,

µ(U)
(diamU)α

> K1 ·
µ(f m(U))

(diamf m(U))α

is true for some constant K1 depending only on ν and M .
The inequality in another direction can be proved if we use another estimate of |(f m)′(z0)|. �

The rest of the iterations f : f jk(Pin+1(c)) → f jk+1(Pin+1(c)), k = 1, . . . ,m, are all branched coverings of degree bigger
than one. Therefore, by Lemma 4, there exists a constant K2 depending on f such that

µ(f jk(Pin+1(c)))
(diamf jk(Pin+1(c)))α

> K2
µ(f jk+1(Pin+1(c)))

(diamf jk+1(Pin+1(c)))α
, k = 1, . . . ,m. (3)

Multiplying the above inequalities (1)–(3), we obtain that

µ(Pin+1(c))
(diamPin+1(c))α

> Km
1 Km

2
µ(P1)

(diamP1)α
.
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Notice that 2m 6 D 6 dmmax, which means that

logD
log dmax

6 m 6
logD
log 2

,

where dmax is the maximal local degree of the critical points in Crit. Moreover, since there are only finitely many puzzle
pieces of depth 1, we have

min
P1∈P1


µ(P1)

(diamP1)α


> 0.

Finally, we can claim that there is a constant L such that for all c ∈ Crit, we have

µ(Pin+1(c))
(diamPin+1(c))α

> L,

where L is not dependant on n. �

Another important dimension associatedwith the Julia set is the hyperbolic dimensionwhich is introduced by Shishikura
in [15].

Definition 3. We call a compact forward invariant subset X ⊂ J(f ) hyperbolic if there exists n > 1 such that |(f n)′(x)| > 1
for every x ∈ X .

The hyperbolic dimension of the Julia set J(f ), denoted by hypdimH(J(f )), is defined as the supremum of the dimensions
of all the hyperbolic subsets of J(f ).

The relation between the conformal dimension and the hyperbolic dimension of the Julia set is as follows.

Theorem 4 (See [4,12]). For any rational map f , α∗(f ) = hypdimH(J(f )).

Proof of Main Theorem. For every non-negative integer n, define the set

Yn =


z ∈ J(f ) : f k(z) ∉


c∈Crit

Pin+1(c) for every k ∈ N


⊂ J(f ),

where the puzzle pieces Pin(c), c ∈ Crit, are given in Lemma 3. So we have Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · and the set

Y =


n

Yn

is the collection of points which do not combinatorially converge to any critical point. For each n, Yn is a hyperbolic set (see
the proof of Fact 5.1 of [7]). Then dimH(Yn) 6 hypdimH(J(f )) holds for each n > 0, so

dim
H
(Y ) = sup

n
{dim

H
(Yn)} 6 hypdimH(J(f )) = α∗(f ).

For each point z ∈ J(f ) − Y , here, we may assume that z is not critical, or we can use Propositions 1 and 2 directly. The
orbit of z enters the union of critical puzzle pieces


c∈Crit Pin+1(c) infinitely many times for each n. Let pn be the smallest

positive integer such that f pn(z) ∈


c∈Crit Pin+1(c). Assume that f pn(z) ∈ Pin+1(c0) for some c0 ∈ Crit, denote by Un(z)
the component Compz f −pn(Pin+1(c0)). Then for n large enough, f pn : Un(z) → Pin+1(c0) are conformal maps, since J(f ) is a
Cantor set, the pieces Un(z)with sufficiently large depth contains no critical points if z is not critical. Using the similar proof
of Propositions 1 and 2, we can conclude that there are constants L0 and M0 such that for all n, we have

µ(Un(z))
(diamUn(z))α

> L0 and shape(Un(z), z) 6 M0.

Moreover, diamUn(z) → 0 since J(f ) is a Cantor set. Combining the above several facts, we can easily conclude that

lim sup
r→0

µ(B(z, r))
rα

> C

for some constant C . It follows that

dim
H
(J(f )− Y ) 6 α

by Theorem 1. Actually, the above proof is also true for the conformal measures with arbitrary exponent, so

dim
H
(J(f )− Y ) 6 α∗(f ).
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Finally, we get the relation about the dimensions:

α∗(f ) = hypdimH(J(f )) 6 dim
H
(J(f ))

= max{dim
H
(J(f )− Y ), dim

H
(Y )} 6 α∗(f ).

The proof is completed. �

Improvement of the result
Of course, we hope to prove Main Theorem without the assumption that J(f ) contains no persistently recurrent critical

points. In this case, the difficulty is how to find a good estimate of the moduli of critical nest of puzzle pieces around the
persistently recurrent critical points. Precisely speaking, in [7], Kozlovski, Shen and van Strien introduced a critical nest
containing the persistently recurrent critical points, which is usually called KSS nest. Qiu and Yin proved that the moduli of
the annuli between arbitrary two adjacent pieces in the KSS nest have a positive lower bound if J(f ) is a Cantor set, see [13].
But this estimate is not good enough. To improve Main Theorem, we have to show that the moduli of the annuli increase to
infinity as the depths tend to infinity. Lyubich obtained a similar result about quadratic polynomials. He proved the linear
growth of themoduli about the principal nest around the critical point of a special class of quadratic polynomials, for details,
see [9].
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