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0. Introduction

Let f be a quasiconformal self-mapping of the plane with complex dilatation p. Thus f is a homeo-
morphism with locally integrable distributional derivatives verifying that df — udf = 0, p € L>°(C) and
il < 1.

The images of the real line (or the unit circle 9D) under quasiconformal mappings of the plane are called
quasicircles. In general, they are not rectifiable and they do not satisfy any regularity conditions such as local
absolute continuity or differentiability a.e., even when ||| oo is small. Then, understanding the properties
of the geometry of quasicircles in terms of the complex dilatation becomes one of the main objectives of the
quasiconformal analysis and, also, of this article.

One can get some regularity by imposing some stronger smallness condition on the dilatation u. If p were
zero in a neighborhood of 0D, then the map would be smooth on dD. So, if y decays to zero in some sense
as it approaches the unit circle then we should be able to get some good behavior of the mapping on JD.

One of the first results along these lines is due to Carleson [6]. He showed that if f is a quasiconformal
self mapping of C\ID such that
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1
M 2
/ it) dt < oo,
0

where M (t) = sup{|u(z)|: 1 < |z| < 1+ t}, then f is absolutely continuous on the circle and f' € L% .
Becker [3] extended this result to the case where f represents a conformal mapping of D that extends
quasiconformally to the whole plane.

In the same context, Dyn’kin [7] proved the following stronger result. Let

oW =( [ OE )"

1<|¢]<2

If there exists a constant a > 0 so that ¢*@®* ¢ L1(9D), then the curve I' = f(dD) is rectifiable.

A particular type of rectifiable quasicircle are the chord-arc or Laurentiev curves. A Jordan curve, I, is
chord-arc if it satisfies A(I'(21, 22)) < C|z1 — 22| for some constant C' > 0, where A(I'(z1, z2)) denotes the
length of the shortest arc of the curve I" between 21,20 € I

A condition for chord-arc curves with small constant was given by Astala and Zinsmeister [2, Theorem 3],
and requires the measure

|u(2)?
dr(z) = EE

dx dy

to be a Carleson measure in C\DD with small norm, i.e., ||7]|c < 7o for some 79 > 0. The proof relies on
estimates for the Schwarzian derivative of f in D, showing that log f/ € BMOA with small BMO constant.
On the other hand Semmes [14, Theorem 0.1] and MacManus [11, Corollary 6.5] showed that the same
result holds with no assumption on f being conformal on D. Semmes’ proof is based on estimates for a
certain perturbed Cauchy integral operator while the strategy in [11] is to estimate Haar type coefficients
for log f’.

For arbitrary constants, the result is no longer true [5]. In fact, if no restriction on the Carleson norm of
|(2)2/(]z| — 1) is imposed, the quasicircle I" might not be even rectifiable.

Related to these results is the following one due to Pommerenke [12]. A curve I' is an asymptotically
smooth curve, that is

A(I'(21, 22))

— 1, as |z — 22| =0,
21 — 21

if and only if log f € VMOA.
This paper presents a new characterization of smooth curves in terms of p. In particular, we are interested
in C1*+ curves. We prove the following result:

Theorem 1. Let f denote a conformal map of D onto the inner domain of a Jordan curve I'. Then I' is
a C'7 curve if and only if f extends to a global quasiconformal map whose dilatation p satisfies that
l(2)12/(|z| — 1)**¢ is a Carleson measure relative to T, where ¢ = £(a) and o = a(e, ||t]|o0)-

The equivalent result holds if we consider unbounded C'*® curves. In this case p satisfies that
|(2)[?/]y|**¢ is a Carleson measure relative to R, where y = Im(z).

In the second part of the paper we consider quasiconformal mappings of the plane p : C — C whose
complex dilatation y satisfies that for some € > 0, |u|?/|y|}T is a Carleson measure relative to R. We will
show that under this condition on p we can transfer H> on the half plane ]RfL onto the corresponding space
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in the complement of the quasicircle I" = p(R). More precisely, denoting by Cr(g) the Cauchy integral of a
function g € L>°(I"), that is

Crig)®) = 57 [ 2w, z¢r
r

we prove the following result:

Theorem 2. Let p be a quasiconformal map of the plane onto itself whose complex dilatation p has compact
support and satisfies that for some e > 0, |u|?/|y|* ™ is a Carleson measure relative to R. Let 24 and 2_
denote the two regions bounded by the quasicircle I' = p(R) and let g € L>®°(I"). Then Cr(g) € H>® () if
and only if Cr(f) € H>®(R%) respectively, where f = go p.

The proof is based on an argument by Semmes [13], where the idea is to transform a d problem relative to
I' into a 9 — 0 problem relative to R via a change of variables. As an immediate consequence of Theorem 1
and Theorem 2 we obtain the following corollary.

Corollary. Let I' be an unbounded C'T® curve analytic at oo, and let p denote a conformal map of Ri onto
any of the regions bounded by I'. Then, given a function g € L>(I"), the Cauchy integral Cr(g) € L*°(C)
if and only if Cr(f) € L>°(C), where [ denotes the pullback of g under the conformal mapping p.

The paper is structured as follows: In Section 1, we review some definitions and basic facts, in particular
the analytic characterization of C'T® curves. The proof of Theorem 1 is presented in Section 2 whereas
Section 3 is devoted to Theorem 2.

The authors would like to thank the referees for the careful revision of this article and for many helpful
suggestions to improve its reading.

1. Preliminaries

Let us denote complex variables by z = x + iy and ¢ = £ + in. We shall use the following notation
throughout this article: Im(z) = y, D = {z: |z| < 1}, T = 0D, B,(r) denotes the ball centered at = and
radius 7, |I| represents the length of any arc I C 0D, I'(z1, 22) is the shortest arc of the curve I" between
21,72 € I, and A(I") the length of the curve I'. Also, we shall write = 9/0z = 1/2(d, + i0,) and
0=10/0z=1/2(0, —i0y).

A positive measure A on C is called a Carleson measure relative to a given chord-arc curve I if there
exists a constant C' > 0 such that A\(B,(R)) < CR for all z € I' and R > 0. The smallest such C' is the
norm of A, ||All¢. If

lim sup —=——%* =0,
r—=0 p<p

the measure is said to be a vanishing Carleson measure or that it satisfies the o(1)-Carleson condition.
We will denote by HP(D), 0 < p < oo, the Hardy space of analytic functions on I such that

1 .
sup o /’f(rew) ’de = ||f||%p < +o00.

If p=oo, f € H*(D) if f(z) is a bounded analytic function on D, || f||s = sup,eplf(2)|-
A function f € L'(T) belongs to the space BMO(T) if there exists A > 0 so that
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SUp 1 £(Q) —ar|ld¢| < A, with ar = g7 | SO
I I

and where the supremum is taken over all arcs I C T. The least possible A in this inequality is called the
BMO norm of f, [|f||«-
The space VMO(T) is defined as follows:

1
VMO(T) = {f € BMO(T): ‘Hglom /}f(() — a[||dC| = 0}.
I

We can extend the definitions of BMO and VMO to any locally rectifiable curve by replacing intervals with
arcs.

We say that f € BMOA or f € VMOA if f € H'(D) and if the boundary values of f on T belong to
BMO(T) or VMO(T) respectively. Recall that BMOA is contained in the Bloch space

B = {f analytic in D: | f|lz =sup(1 — |2*)| f'(2)| < oo}

and VMOA is contained in By = {f € B: (1 — |2|?)|f'(z)] = 0 as |z| = 1 —0}.

The notion of Carleson measures is closely related to BMO functions (see for example [8, Chapter 6, Sec-
tion 3]). Let F' be an analytic function on R and f = F|g. Then f € BMO(R) if and only if |F'(2)|?|y| dz dy
is a Carleson measure with respect to R [8, p. 262].

Let w be a nonnegative locally integrable function on R. Set w(E) = [, w(x)dz, and let |E| denote the
Lebesgue measure of E. We say that w is an A,, weight if for every ¢ > 0, there exists § > 0 such that if
I is any interval and E C I, then |E|/|I| < ¢ implies w(F)/w(I) < e. Note that if h is a bilipschitz map,
clearly |h/| € Awo.

An important fact is that logw € BMO if w € Ay, and {logw: w € A} spans an open subset of
real-valued BMO, inducing a natural topology on A. In particular, there is a v > 0 so that e’ € A, if b
is real valued and [|b]|« < v [12, p. 171].

We now introduce the curves which are the main object of study in this paper. A Jordan curve I is said
to be of class C™ (n = 1,2,...) if it has a parametrization ¢(7) = f(e'™), 0 < 7 < 27, that is n times
continuously differentiable and satisfies that ¢’(7) # 0, V7. Furthermore, it is of class C"@, for 0 < o < 1,
if

™ (1) — ™ (12)] < C|m1 — 72| (1)

It is well known that for 0 < @ < 1 we can consider the parametrization of the curve given by the
conformal mapping f that sends D onto the inner domain bounded by I' (Kellogg—Warschawski Theorem).
In this case, by the Hardy—-Littlewood criterion [15, Section V.4], (1) is equivalent to

=) <c(1—12)*"", forall z € D. (2)
2. Proof of Theorem 1
The main idea is based on an estimate of the logarithmic derivative developed by Dyn’kin [7]. Accordingly,

if f is a conformal mapping in the unit disc with a k-quasiconformal extension to the whole plane, that is
lielloe < k < 1, then for all z € D

(1 _ |z)‘f//(2) < C(l . |Z|)1fk

/ w(z,t)
7 1+ / - dt], (3)

t2—
12|
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where

w(zt) = ( s/ \mofdgdn)m, (4)

wt?
[¢—z]<t

and where the constant C' depends on k only.
Using this estimate, he also proved the following result [7, Theorem 2]:

Theorem 3. If the integral

1
t
/w(j’ )dt<oo
0

converges uniformly in z € T, then log ' (and thereby f' and 1/f') is continuous in the closed disc.

Theorem 1. Let f denote a conformal map of D onto the inner domain of a Jordan curve I'. Then I is
a CY* curve if and only if f extends to a global quasiconformal map whose dilatation u satisfies that
lw(2)2/(|z] — 1)¥*¢ is a Carleson measure relative to T, where ¢ = e(a) and a = a(e, ||t so)-

Proof. Let us assume first that there exists a quasiconformal extension of f so that for some ¢ > 0,
v(z) = |u(2)2/(Jz| — 1)**< is a Carleson measure relative to T, ||ullcc < k < 1. Let z € D, then for any
t > 1— |z|, we obtain from (4) that:

w%tK#(/ %dwn)m(/ \M(C)IQ(C—l)HEdfdn)

B (t) B:(t)

< CtEl?, (5)

1/2

where C' = C(||p]lo, [|¥]|c). To prove the last inequality note that the first integral can be always approxi-
mated by integrals on balls centered at the boundary. Then, by the Carleson condition on the measure
v, we get that the first integral is bounded by C(||v||¢)t}/?, while the second one is clearly bounded by
C (|1l o)t B3F9)/2. Therefore, if z € D and a < min (¢/4;1 — k), by (3)

1
1+C / e/ Ah=2 gy

1—|z]

<c(i-1z))" <c(1—z)"

’f”(Z)
f'(z)

and |f"(2)] < C|f'(2)|(1 = [2])*7*, where now C' = C(e, ||ullss, V]l 0)-
We need to prove that |f’(z)| is bounded on T. Let z € T, then by (5)

1 1
t t€/4
/w(i’ )dtgc/ —dt < o0,
0 0

so we get by Theorem 3 that |f/| is bounded in the closed disc. Therefore, |f”(2)| < C(1 — |2])®~! which
implies by (2) that I" is C**2.
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To prove the second part of the theorem, let us consider the following quasiconformal extension of the

() = f(%) + f(%) (z - %) for |2| > 1. (6)

Note that if 3(z) denotes the logarithmic derivative, that is 5(z) = (1 — |z])|f"(2)/f' ()], z € D, and p
denotes the complex dilatation of the quasiconformal extension, then for |z| > 1

lu(z)| = 1ﬂ<1>. (7)

2|7 \z

Riemann mapping f:

In general, the mapping (6) is not homeomorphic, but Becker and Pommerenke [4, Theorem 4] proved
that (6) is indeed a quasiconformal extension of f to a neighborhood of T if f(D) is a Jordan domain and
limy,1-08(2) < 1.

If I" is C** it is asymptotically smooth, so by Pommerenke’s result log f/ € VMOA (see [12, p. 172]).
Since VMOA C By, we get that 8(z) — 0 as |z| — 1 — 0 and the aforementioned extension of f gives a well
defined quasiconformal extension to a neighborhood of T, G = {z: |z| < R for some Ry > 1}.

To obtain a global quasiconformal mapping we apply the following theorem [10, Theorem 8.1]: If f : G —
G’ is a k-qc map and F is a compact set of the domain G, then there exists a k’-qc map of the whole plane
that coincides with f in E and with &’ depending only on k, G and E.

Setting ' = {z: |2] < Rp,1 < Ry < Ry}, the above result provides a global quasmonformal extension of
the conformal mapping f whose complex dilatation p satisfies (7) for 1 < |z| <

Since I' is a C'+® curve, log f is continuous in D [12, Theorem 3.5] and therefore | '] is bounded below
in D. So, we get by (2) and (7) that

lu(z)] < C’B(%) < O(lz] - l)a, for 1 < |z| < Ry. (8)

To finish the proof of the theorem, it only remains to show the Carleson condition. For that, and without
any loss of generality, consider a ball B,(R) centered at a point z € T and radius R < Ry — 1. By using (8)
and a change of variables to polar coordinates, we obtain that

/ <<||M—(C)>|l+s d”:d”\c/ |<C|| )1+6 didn < CR,

z

fore <2a. O
3. Proof of Theorem 2

Before proceeding to the proof we need to mention a result on quasiconformal mappings preserving
Carleson measures. We say that F' : R2 — Rﬁ_ preserves Carleson measures if given any Carleson measure
W in R2 the measure v defined in ]R2 as

B = [ ar()dutz)

is a Carleson measure, where
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1
|B

ap(z) =

Z|é/‘JF(<>1/2d§chL

B, = B.(1/2y) and J is the Jacobian of F. The function ar(z) is somehow the quasiconformal substitute
of |F’| in Koebe distortion theorem. In fact Im F(z) ~ ar(2)y [1].

If we consider a quasiconformal map p from Ri onto itself, it is well known that p preserves Carleson
measures if and only if p|g is strongly quasisymmetric, i.e., it is locally absolutely continuous and |p’|r| € Ao
[2,9].

We will need an analogous result for a quasiconformal map p from Ri onto a domain bounded by a
chord-arc curve.

Lemma 1. Let p : Ri — {2 a quasiconformal map and let I' = p(R) be a chord-arc curve. If p|g is locally
absolutely continuous and |p'|r| € Aso, then p preserves Carleson measures.

Proof. Note that since I' is chord-arc, there exists a global bilipschitz map h that sends Rﬁ_ onto {2 [12,
Theorem 7.9]. As h is bilipschitz, so is h~!. Then h~! o p is absolutely continuous and |[(h~! 0 p)/|r| € Asc.
Since h™! o p sends Rﬁ_ onto itself, the lemma follows from the previous case, that is 2 = Ri. O

Let us now estate more precisely the result mentioned at the Introduction due to Semmes [14, Theo-
rem 0.1] and MacManus [11, Theorem 6.3]: Let p : C — C be a quasiconformal mapping with dilatation .
Set 7 = |u|?/|y|. If there exists v such that if ||7]|c < 40 then p(R) is a chord-arc curve, p|r is absolutely
continuous and log p’ € BMO(R), with ||log p/||.« < cHTng for some constant ¢ > 0.

We will apply this result when the measure |u|?/|y| is a vanishing Carleson measure. In fact, in this case
not only log p" € BMO(R) but also |p’|r| € Ao as the following lemma shows.

Lemma 2. Let p: C — C be a quasiconformal mapping with complex dilatation p. If i has compact support
and |p|?/]y| is a vanishing Carleson measure relative to R, then p(R) is a chord-arc curve, p|g is absolutely
continuous and |p'|r| € Aso.

Proof. To prove this, we may assume that p = 0 outside a band |y| < € for some ¢ > 0. Indeed, let p be the
solution of the Beltrami equation pz/p, = u(z) for |y| < € and pz/p, = 0 otherwise. Then p = F' o p where
F is conformal in the quasidisc g({z: |y| < £}). We can then replace p by g in the whole plane without any
loss of generality. Next, note that by choosing € > 0 small enough, we can make the Carleson norm of the
measures as small as we want and, by the properties of A,, weights mentioned in the preliminaries, we can
conclude that |p'|g| € Ass. O

To prove Theorem 2 we will follow Semmes approach in [13]. Let I" be locally rectifiable quasicircle in
the plane. Given a function g defined on I', consider its Cauchy integral

1 [ 9w

=— [ —= I.

Crig)e) = 5 [ 2 o, 2¢
r

We define the jump of G = Cr(g) across I' at the point z as gy — g—, where g+ and g_ denote the

boundary values of G. As the classical Plemelj formula states,

1 1 g(w)
— 4= —_PV. d I
g+(2) 59(2) + 5 V/w_z w, z€
I

Hence g, (z) — g_(z) = g(z). Also, G is holomorphic off I', so that G = 0 on C\I".
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Applying Green’s theorem, we can reexpress these two conditions by saying that, in the distributional
sense, 0G = gdzp on C. This means that for any ¢ € C°°(C) with compact support

[ 6o dzndz = - [ oot () - g () dor,
C

r

where dzp denotes the usual measure on I' and dz A dz represents the wedge product which is equal to
2idz dy.

We can also say that G is determined by the equation G = 0 on C\I" and the condition jump(G) = g on
I', as if G were another function with the same properties, then 9(G — G) = 0 in the sense of distributions
and therefore, by Weyl’s lemma, G — G would be entire and a mild condition at oo would force it to be 0.

Let G = Gopon C\Rand f =gopon R, wherep: C - Cisa quasiconformal map that takes R into I.
Then, G = 0 off I' transforms into (9 — d)G = 0 off R with jump(G) = f across R, where y = p,. Again,
in the distributional sense, we can say that (0 — ud)G = f dz.

In order to prove the following result it is convenient to change the problem a bit more. Let F' = Cgr(f)
the Cauchy integral on R of f. Thus, F' is holomorphic off R and its jump across R is given by f, i.e.,
OF = fdz.

Let us now define H = G — F on C\R. Then, H has no jump across R and H = pudG. As H has no
jump, we can consider that the previous equation holds on all of C in the sense of distributions (that there
is no boundary piece).

Theorem 2. Let p be a quasiconformal map of the plane onto itself whose complex dilatation p has compact
support and satisfies that for some e > 0, |u|?/|y|* T is a Carleson measure relative to R. Let 24 and £2_
denote the two regions bounded by the quasicircle I' = p(R) and let g € L*°(I"). Then Cr(g) € H® (1) if
and only if Cr(f) € H®(R2) respectively, where f = g o p.

Proof. Set G = Cr(g) where g € L>®(I") and G = G o p € L™(R%). To show that F' = Cg(f) € H®(R%)
we need to prove that F|g € L>°(R). Using the notation above, and since H = G — F, this is equivalent to
prove that H|g € L>(R). Since 0H = wdG, 1 with compact support,

H(a):%/wdxdy:%/wdmdy for a € R. (9)

zZ—a zZ—aQa
C C

For a € R and k an integer, let us denote By, = B,(27%). Then

0 < 32 /; )[|0G(2)| da dy
k

B \Br+1

§Z?k+1</%d:pdy)l/2(/|867 )| |y|dxdy>1/2. (10)
k B

By,

Since v(z) = |u(2)|?/|y|'T¢ is a Carleson measure,

\u(Z)I (2 . c
B |1+5\ Y| dz dy < ||v|c2 "0, (11)

If 7 = |u|?/|y|, the above inequality shows that ||7||c < ||v||c27% and, therefore, that it is a vanishing
Carleson measure. By Lemma 2, the quasicircle I' = p(R) is actually a chord-arc curve with small constant,
plr is absolute continuous and |p'|g| € Ao
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On the other hand, since G € H*(§2,), then |G’ (¢)|?6r(¢) d dn is a Carleson measure relative to I" with
norm < C||g||? [13, Theorem 5.1].
By Lemma 1,

0B = [ o OGO or(Q) dedn 527
p(Br)

So, the measure o defined in ]R?|r is also a Carleson measure. By the Koebe distortion theorem for quasicon-
formal mappings [1], a,-1(¢)dr(¢) ~ [Im(p~"(¢))| = |y|. Then

106 luldrdy = [16/ (o)) 00 1ol dy

Bk Bk:
:/|G'( )| Jo(2)|y| dz dy
By,
~ / GO a1 (Q)5r(C) de dn < 2. (12)
p(Bk)

This shows that \ = |0G|?|y| dz dy is a Carleson measure relative to R and

/ 10G () Iyl de dy < [N |o27". (13)

By (10), (11) and (13) |H(a)| < C(||v]|c, [[M]lc) 34 (275/2)F < 0o as we wanted to prove.
Conversely, if F' were bounded, the same argument would show that G is bounded on R and then, that
Ge H®(). O

To conclude this paper we would like to propose the following problem:
Problem. Find conditions on p so that Theorem 2 holds.
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