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First, the Cauchy problem for KdV equation with 2n+1 order dispersion is studied,
and the local well-posedness result for the initial data in Sobolev spaces Hs(R) with
s > −n+ 1

4 is established via the Fourier restriction norm method. Second, we prove
that the KdV equation with 2n + 1 order dispersion is ill-posed for the initial data
in Hs(R) with s < −n + 1

4 , n � 2, n ∈ N+ if the flow map is C2 differentiable
at zero form Ḣs(R) to C([0, T ]; Ḣs(R)). Finally, we obtain the sharp regularity
requirement for the KdV equation with 2n + 1 order dispersion s > −n + 1

4 .
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the Cauchy problem for the following KdV equation with 2n+1 order dispersion

∂tu + ∂2n+1
x u + 1

2∂x
(
u2) = 0, x, t ∈ R, n ∈ N+, n � 2, (1.1)

u(x, 0) = u0(x), (1.2)

which arises in the study of propagation of unidirectional nonlinear dispersive waves. Note that (1.1) at
least possesses the following three invariant functionals

I1(u) =
∫
R

u dx,

I2(u) = 1
2

∫
R

u2 dx,
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I3(u) = (−1)n+1

2

∫
R

(
∂n
xu

)2
dx− 1

6

∫
R

u3 dx. (1.3)

Consequently, (1.1) at least possesses three conservation laws

Ij(u) = Ij(u0) (j = 1, 2, 3). (1.4)

We define Poisson bracket as follows:

{F,G} =
∫
R

δF

δu

∂

∂x

δG

δu
dx. (1.5)

It is easily checked that the bracket (1.5) is anti-symmetric and satisfies Jacobi identity. Thus ∂x is a
Hamiltonian operator, see [26]. Obviously, (1.1) can be rewritten in the following form

∂tu = ∂

∂x

δI3(u)
δu

.

Thus (1.1) possesses Hamiltonian structure. When n = 1 in (1.1), we have the KdV equation which has
been extensively studied by lots of authors, for instance, see [18,27,29,19,2,21–23,11,6,4,12,14,13]. The KdV
equation possesses bi-Hamiltonian structure, Lax pairs and infinite conservation laws. It is known that the
KdV equation is associated with the Virasoro algebra, see [7]. The KdV equation can be viewed as the
geodesic equation on some diffeomorphism group with respect to the invariant L2 metric, thus the KdV
equation is also viewed as the generalized Euler equation. In [28], the authors studied the long time behavior
of solutions to a class of Korteweg–de Vries type equations

∂tu + ∂x

(
uλ

λ

)
+ ∂x

(
−∂2

x

)α
u = 0, (1.6)

where λ ∈ Z+, λ � 2 and α ∈ R, α � 1
2 . They showed that for α � 1

2 and λ > α + 3
2 + (α2 + 3α + 5

4 )1/2,
solutions of the nonlinear equation with small initial conditions are smooth in the large and asymptotic when
t −→ ±∞ to solutions of the linear problem. In [20], the authors also considered the long time behavior of
solutions to (1.6), (1.2) and improved the result of [28]. In [2], the authors proposed the Fourier restriction
norm method. In [21,23], the authors developed the Fourier restriction norm method. In [23], by using the
Cauchy–Schwartz’s inequality and the Fourier restriction norm method, the authors established the local
well-posedness of the KdV equation for the initial data in Hs(R) with −3

4 < s < 0. In [3], the author
proved that the KdV equation is locally ill-posed for the initial data in Hs(R) with s < −3

4 if the flow
map is C3-differentiable at zero from Hs(R) to C([0, T ];Hs(R)). In [30], the author proved that the KdV
equation is locally ill-posed for the initial data in Ḣs(R) with s < −3

4 if the flow map is C2-differentiable
at zero from Ḣs(R) to C([0, T ]; Ḣs(R)). In [5], by using the I-method, the authors established the global
well-posedness of the KdV equation for the initial data in Hs(R) with −3

8 < s < 0. In [6], by using the
I-method, the authors proved that the KdV equation is globally well-posed for the initial data in Hs(R)
with −3

4 < s < 0. In [4], the authors proved that the KdV equation is locally well-posed for the initial
data in Hs(R) with s = −3

4 and that the real KdV equation is ill-posed for the initial data in Hs(R) with
−1 � s < −3

4 if the flow map is uniformly continuous. In [13], by using the I-method which can be seen in
[6] and the dyadic bilinear estimates and resolution spaces which can be seen in [16,17], the author proved
that the KdV equation is globally well-posed for the initial data in Hs(R) with s = −3

4 . In [24], the authors
proved that the complex KdV is not uniformly continuous for the initial data in Hs(R) with s < −3

4 . In
[1], the authors introduced a general well-posedness principle. Recently, in [9], the authors considered the
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periodic case of (1.1), (1.2) with n � 2 and n ∈ N+, they proved that (1.1), (1.2) are locally well-posed for
the initial data in Hs(T) with s � −1

2 .
In this paper, inspired by [9,15,10], we consider the nonperiodic initial value problem of (1.1), (1.2). By

using the Fourier restriction norm method which can be used to establish bilinear estimate and the fixed
point argument, we derive the local well-posedness of (1.1), (1.2) for the initial data in Hs(R). We prove
that (1.1), (1.2) are ill-posed for the initial data in Hs(R) with s < −n + 1

4 , n � 2, n ∈ N+ if we require
that the flow map

u0 −→ u(t), t ∈ [0, T ]

is C2-differentiable at zero from Ḣs(R) to C([0, T ]; Ḣs(R)).
We introduce some definitions and notations before giving the main results. Throughout this paper, we

denote 〈ξ〉s = (1 + ξ2) s
2 for any ξ ∈ R. Fu is the Fourier transform of u with respect to its all variables.

F−1u is the Fourier inverse transform of u with respect to its all variables. Fxu is the Fourier transform
of u with respect to its space variable. F−1

x u is the Fourier inverse transform of u with respect to its space
variable. S (Rn) is the Schwartz space and S ′(Rn) is its dual space. Hs(R) is the usual Sobolev space
with norm ‖f‖Hs(R) = ‖〈ξ〉sFxf(ξ)‖L2

ξ(R). For any s, α ∈ R, Xs,α(R2) is the Bourgain space with phase
function φ(ξ) = (−1)nξ2n+1. That is, a functions u(x, t) in S ′(R2) belongs to Xs,α(R2) if

‖u‖Xs,α(R2) =
∥∥〈ξ〉s〈τ + (−1)nξ2n+1〉αFu(ξ, τ)

∥∥
L2

τ (R)L2
ξ(R) < ∞.

For any given interval L, Xs,α(R×L) is the space of the restriction of all functions in Xs,α(R2) on R×L,
and for u ∈ Xs,α(R × L) its norm is

‖u‖Xs,α(R×L) = inf
{
‖U‖Xs,α(R2); U |R×L = u

}
.

When L = [0, T ], Xs,α(R × L) is abbreviated as XT
s,α. We always assume that ψ is a smooth function,

ψδ(t) = ψ( t
δ ), satisfying 0 � ψ � 1, ψ = 1 when t ∈ [−1, 1], suppψ ⊂ [−2, 2]. We define σ = τ +(−1)nξ2n+1

and σj = τj + (−1)nξ2n+1
j (j = 1, 2). We define

W (t)u0 = C

∫
R

ei(xξ+t(−1)nξ2n+1)Fxu0(ξ) dξ

and

‖f‖Lq
tL

p
x

=
(∫

R

(∫
R

∣∣f(x, t)
∣∣p dx)

q
p

dt

) 1
q

, ‖f‖Lp
tL

p
x

= ‖f‖Lp
xt
.

We use |X| � C0|Y | to denote X 	 Y , where C0 is a generic positive constant. We denote X ∼ Y by
A1|X| � |Y | � A2|X|, where Aj > 0 (j = 1, 2), which may depend on C. C is a generic constant which may
depend on n and may vary from line to line.

Obviously, (1.1), (1.2) are equivalent to the following integral equation

u(t) = W (t)u0(x) − 1
2

t∫
0

W (t− τ)∂x
(
u2(τ)

)
dτ. (1.7)

The main results of this paper are as follows.
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Theorem 1.1. Let s > −n+ 1
4 , n ∈ N+. Then (1.1), (1.2) are locally well-posed for the initial data in Hs(R).

Theorem 1.2. Let s < −n + 1
4 , n � 2, n ∈ N+. Then there does not exist any T > 0 such that (1.7) admits

a unique local solution defined on the interval [0, T ] and such that the flow map

u0 −→ u, t ∈ [0, T ]

is C2-differentiable at zero from Ḣs(R) to C([0, T ]; Ḣs(R)).

Remark 1. When n = 1, (1.1), (1.2) are ill-posed if the flow map is uniformly continuous, see [4]. Thus we
only consider the case n � 2 of (1.1), (1.2).

Remark 2. We believe that the local well-posedness for the case s = −n + 1
4 can be obtained with the aid

of the idea of [13].

Remark 3. In Theorem 1.2, inspired by [1], we choose t = N−2n+ 2
4n−3 .

Remark 4. In Theorem 1.2, for an arbitrary fixed T > 0, we can choose sufficiently N such that t =
N−2n+ 2

4n−3 < T for n � 2 and n ∈ Z.

The remainder of this paper is organized as follows. In Section 2, we give some preliminaries. In Section 3,
by using the Fourier restriction norm method, we establish a crucial bilinear estimate. In Section 4, we give
the proof of Theorem 1.1. In Section 5, we give the proof of Theorem 1.2.

2. Preliminaries

Lemma 2.1. Let n ∈ N+ and ξ = ξ1 + ξ2. Then

∣∣ξ2n+1 − ξ2n+1
1 − ξ2n+1

2
∣∣ ∼ |ξmin||ξmax|2n, (2.1)

where |ξmin| := min{|ξ|, |ξ1|, |ξ2|} and |ξmax| := max{|ξ|, |ξ1|, |ξ2|}.

Lemma 2.1 can be found in Lemma 2.5 in [31].

Lemma 2.2. For 0 < δ < 1, s ∈ R and 1
2 < b � 1, we have

∥∥ψδ(t)W (t)u0
∥∥
Xs,b

� Cδ
1
2−b‖u0‖Hs , (2.2)

and for −1
2 < b′ � 0 � b � b′ + 1, we have

∥∥∥∥∥ψδ(t)
t∫

0

W (t− τ)f(τ) dτ

∥∥∥∥∥
Xs,b

� Cδ1+b′−b‖f‖Xs,b′ . (2.3)

Lemma 2.2 can be seen in Lemmas 3.1 and 3.2 of [8].

3. Bilinear estimates

In this section, we will prove a crucial bilinear estimate.
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Lemma 3.1. Let s � −n + 1
4 + (6n + 3)ε, n ∈ N+, b = 1

2 + 2ε, b′ = −1
2 + 3ε, 0 < ε � 1. Then

∥∥∥∥∥∂x
( 2∏

j=1
uj

)∥∥∥∥∥
Xs,b′

� C
2∏

j=1
‖uj‖Xs,b

. (3.1)

Proof. Let

Fj(ξj , τj) = 〈ξj〉s〈σj〉bFuj(ξj , τj) (j = 1, 2),

F (ξ, τ) = 〈ξ〉−s〈σ〉−b′Fu(ξ, τ).

By duality and the Plancherel’s identity, to derive (3.1), it suffices to prove

∫
R2

∫
ξ=ξ1+ξ2
τ=τ1+τ2

|ξ|〈ξ〉s|F |
∏2

j=1 |Fj |
〈σ〉−b′

∏2
j=1〈σj〉b〈ξj〉s

dξ1 dτ1 dξ dτ � C‖F‖L2
ξτ

2∏
j=1

‖Fj‖L2
ξτ
. (3.2)

Without loss of generality, we can assume that Fj(ξj , τj) (j = 1, 2) � 0 and F (ξ, τ) � 0 and |ξ1| � |ξ2| since
|ξ1| and |ξ2| is symmetrical. It is easily checked that {|ξ2| � |ξ1|} ⊂

⋃7
j=1 Ωj , where,

Ω1 = {|ξ2| � |ξ1| � 1},
Ω2 = {4|ξ2| < |ξ1|, |ξ2| � 1, |ξ1| � 1},
Ω3 = {4|ξ2| < |ξ1|, |ξ2| � 1, |ξ1| � 1},
Ω4 = {|ξ2| � 1 � |ξ1| � 4|ξ2|},
Ω5 = {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0, 2|ξ| � |ξ2|},
Ω6 = {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0, |ξ2| � 2|ξ|},
Ω7 = {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0}.

In this lemma, integrals over the subregion Ωk’s are respectively denoted as Jk (1 � k � 7). Let

K1(ξ1, τ1, ξ, τ) = |ξ|〈ξ〉s

〈σ〉−b′
∏2

j=1〈σj〉b〈ξj〉s
,

and

Ffj = Fj

〈σj〉b
(j = 1, 2), Ff = F

〈σ〉−b′
.

(1) Subregion {|ξ2| � |ξ1| � 1}. In this subregion,

K1(ξ1, τ1, ξ, τ) � C

〈σ〉−b′
∏2

j=1〈σj〉b
.

This case can be treated similarly to Subregion (1) of Lemma 3.2 of [25].

(2) Subregion {|ξ1| > 4|ξ2|, |ξ2| � 1, |ξ1| � 1}. In this subregion, |ξ| ∼ |ξ1| which yields

K1(ξ1, τ1, ξ, τ) � C
|ξ|

〈σ〉−b′
∏2 〈σ 〉b

� C
|ξ2n

1 − ξ2n
2 | 12

〈σ〉−b′
∏2 〈σ 〉b

.

j=1 j j=1 j
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This case can be treated similarly to Subregion (2) of Lemma 3.3 of [25].

(3) Subregion {|ξ1| > 4|ξ2|, |ξ2| � 1, |ξ1| � 1}. In this subregion, |ξ| ∼ |ξ1|. By using (2.1), since ξ = ξ1 + ξ2,
we have

3 max{|σ|, |σ1|, |σ2|} � |σ − σ1 − σ2| =
∣∣ξ2n+1 − ξ2n+1

1 − ξ2n+1
2

∣∣
� C|ξmin||ξmax|2n. (3.3)

(3.3) implies that one of the following three cases always occurs.

|σ| = max{|σ|, |σ1|, |σ2|} � C|ξmin||ξmax|2n, (3.4)

|σ1| = max{|σ|, |σ1|, |σ2|} � C|ξmin||ξmax|2n, (3.5)

|σ2| = max{|σ|, |σ1|, |σ2|} � C|ξmin||ξmax|2n. (3.6)

In the case s � 0, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|

〈σ〉−b′
∏2

j=1〈σj〉b
� C

|ξ2n
1 − ξ2n

2 |1/2

〈σ〉−b′
∏2

j=1〈σj〉b
,

can be treated similarly to Subregion (2) of Lemma 3.3 of [25].
In the case s < 0, we consider the cases (3.4), (3.5), (3.6), respectively.

Case (1). When (3.4) holds.
If −s + b′ � 0, since b′ = −1

2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1+2nb′ |ξ2|−s+b′∏2

j=1〈σj〉b
� C

|ξ1|
2n−1

4∏2
j=1〈σj〉b

.

If −s + b′ � 0, since s � −n + 1
4 + (6n + 3)ε and b′ = −1

2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1+2nb′ |ξ2|−s+b′∏2

j=1〈σj〉b
� C

|ξ|1−s+2nb′+b′∏2
j=1〈σj〉b

� C
|ξ1|

2n−1
4∏2

j=1〈σj〉b
.

This case can be treated similarly to case 3.6 of Subregion (5) of Lemma 3.2 of [25].

Case (2). When (3.5) holds.
In this case, since 〈σ〉b′+b � 〈σ1〉b

′+b which yields 〈σ1〉−b〈σ〉b′ � 〈σ1〉b
′〈σ〉−b, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ||ξ2|−s〈σ1〉b

′

〈σ2〉b〈σ〉b
� C

|ξ|1+2nb′ |ξ2|−s+b′

〈σ2〉b〈σ〉b
,

if −s + b′ � 0, since b′ = −1
2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1+2nb′

〈σ2〉b〈σ〉b
� C

|ξ2n
2 − ξ2n| 12
〈σ2〉b〈σ〉b

,

if −s + b′ � 0, since s � −n + 1
4 + (6n + 3)ε and b′ = −1

2 + 3ε, then

K1(ξ1, τ1, ξ, τ) � C
|ξ|1−s+b′+2nb′

b b
� C

|ξ2n
2 − ξ2n| 12

b b
.
〈σ2〉 〈σ〉 〈σ2〉 〈σ〉



Y. Li, W. Yan / J. Math. Anal. Appl. 416 (2014) 647–658 653
This case can be treated similarly to case 3.6 of 1 � n � 2 of Subregion (4) of Lemma 3.2 of [25].

Case (3). When (3.6) holds.
In this case, since 〈σ〉b′+b � 〈σ2〉b

′+b which yields 〈σ2〉−b〈σ〉b′ � 〈σ2〉b
′〈σ〉−b, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ||ξ2|−s〈σ2〉b

′

〈σ1〉b〈σ〉b
� C

|ξ|1+2nb′ |ξ2|−s+b′

〈σ1〉b〈σ〉b
,

if −s + b′ � 0, since b′ = −1
2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1+2nb′

〈σ1〉b〈σ〉b
� C

|ξ1|
2n−1

4

〈σ1〉b〈σ〉b
,

if −s + b′ � 0, since s � −n + 1
4 + (6n + 3)ε and b′ = −1

2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1−s+b′+2nb′

〈σ1〉b〈σ〉b
� C

|ξ1|
2n−1

4

〈σ1〉b〈σ〉b
.

This case can be treated similarly to case 3.7 of Subregion (5) of Lemma 3.2 of [25].

(4) Subregion {|ξ2| � 1 � |ξ1| � 4|ξ2|}. In this subregion,

K1(ξ1, τ1, ξ, τ) � C

〈σ〉−b′
∏2

j=1〈σj〉b
.

This case can be treated similarly to Subregion (1) of Lemma 3.2 of [25].

(5) Subregion {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0, 2|ξ| � |ξ2|}. Obviously, in this subregion, since ξ1ξ2 � 0,
2|ξ| � |ξ2| and |ξ2| � |ξ1| � 4|ξ2|, we have

|ξ2n
1 − ξ2n

2 | 12 � C|ξ| 12 |ξ1|n−
1
2 , |ξ2n − ξ2n

2 | 12 � C|ξ1|n, |ξ2n − ξ2n
1 | 12 � C|ξ1|n

which can be seen in [25].
In the case s � 0, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|

〈σ〉−b′
∏2

j=1〈σj〉b
� C

|ξ2n
1 − ξ2n

2 |1/2

〈σ〉−b′
∏2

j=1〈σj〉b
.

This case can be treated similarly to Subregion (2) of Lemma 3.3 of [25].
In the case s < 0, we consider cases (3.4), (3.5), (3.6), respectively.

Case (1). When (3.4) holds.
By using (3.4), since −n + 1

4 + (6n + 3)ε � s < 0 and b′ = −1
2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|1+b′

∏2
j=1 |ξj |−s+nb′∏2
j=1〈σj〉b

� C
|ξ| 12 |ξ1|

1
2−2s+(2n+1)b′∏2
j=1〈σj〉b

� C
|ξ| 12 |ξ1|n−

1
2∏2

j=1〈σj〉b
� C

|ξ2n
1 − ξ2n

2 | 12∏2
j=1〈σj〉b

.

This case can be treated similarly to case 3.6 of 1 � n � 2 of Subregion (4) of Lemma 3.3 of [25].
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Case (2). When (3.5) holds.
In this case, since 〈σ〉b′+b � 〈σ1〉b

′+b which yields 〈σ1〉−b〈σ〉b′ � 〈σ1〉b
′〈σ〉−b, since −n + 1

4 + (6n + 3)ε �
s < 0 and b′ = −1

2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ|〈σ1〉b

′

〈σ2〉b〈σ〉b
∏2

j=1〈ξj〉s
� C

|ξ|1+b′
∏2

j=1 |ξj |−s+nb′

〈σ2〉b〈σ〉b
� C

|ξ1|1−2s+(2n+1)b′

〈σ2〉b〈σ〉b

� C
|ξ1|n

〈σ2〉b〈σ〉b
� C

|ξ2n − ξ2n
2 | 12

〈σ〉b〈σ2〉b
.

This case can be treated similarly to case 3.6 of 1 � n � 2 of Subregion (4) of Lemma 3.3 of [25].

Case (3). When (3.6) holds.
By using |ξ2n − ξ2n

1 | 12 � C|ξ1|n and an idea similar to Case (3.5), in this case we obtain

J5 � C‖F‖L2
ξτ

2∏
j=1

‖Fj‖L2
ξτ
.

(6) Subregion {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0, |ξ2| � 2|ξ|}. In this subregion, |ξ1| ∼ |ξ2| ∼ |ξ| which yields

K1(ξ1, τ1, ξ, τ) � C
|ξ1|1−s

〈σ〉−b′
∏2

j=1〈σj〉b
.

We consider (3.4), (3.5), (3.6), respectively.

Case (1). When (3.4) holds.
Since −n + 1

4 + (6n + 3)ε � s < 0 and b′ = −1
2 + 3ε, we have

K1(ξ1, τ1, ξ, τ) � C
|ξ1|1−s+(2n+1)b′∏2

j=1〈σj〉b
� C

|ξ1|
2n−1

4∏2
j=1〈σj〉b

.

This case can be treated similarly to case 3.6 of Subregion (5) of Lemma 3.2 of [25].

Case (2). When (3.5) holds.
Since 〈σ〉b′+b � 〈σ1〉b

′+b which yields 〈σ1〉−b〈σ〉b′ � 〈σ1〉b
′〈σ〉−b, by a calculation similar to Case (3.4),

we have

K1(ξ1, τ1, ξ, τ) � C
|ξ2|

2n−1
4

〈σ2〉b〈σ〉b
.

This case can be treated similarly to case 3.7 of Subregion (5) of Lemma 3.2 of [25].

Case (3). When (3.6) holds.
This case can be treated similarly to case 3.7 of Subregion (5) of Lemma 3.2 of [25].

(7) Subregion {1 � |ξ2| � |ξ1| � 4|ξ2|, ξ1ξ2 � 0}.
This case can be treated similarly to subregion of Lemma 3.2 of [25].
Consequently, by putting the estimates of Jk(1 � k � 7) together, we obtain

∫
R2

∫
ξ=ξ1+ξ2
τ=τ1+τ2

K1(ξ1, τ1, ξ, τ)F
2∏

j=1
Fj dξ1 dτ1 dξ dτ � C‖F‖L2

ξτ

2∏
j=1

‖Fj‖L2
ξτ
. (3.7)

Thus we complete the proof of Lemma 3.1.
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4. Proof of Theorem 1.1

In order to prove Theorem 1.1, firstly, for u0 ∈ Hs(R) and δ ∈ (0, 1], v ∈ Xs,b(R2), we define Gu0(v) by

Gu0(v) = ψ(t)W (t)u0 −
1
2ψδ

t∫
0

W
(
t− t′

)(
∂xv

2) dt′. (4.1)

Applying Lemma 2.2 and Lemma 3.1 to (4.1), we conclude that for a certain constant C,

∥∥Gu0(v)
∥∥
Xs,b(R2) � C‖u0‖Hs(R) + Cδb

′+1−b‖v‖2
Xs,b(R2), (4.2)

where s, b, b′ of (4.2) concords with s, b and b′ of Lemma 3.1. Let

δ =
(

1
8C2(‖u0‖Hs(R) + 2)

) 1
b′+1−b

, and r = 2C‖u0‖Hs(R), (4.3)

where 0 < δ < 1, thus based on (4.2) and (4.3), we obtain that G is a mapping from the closed ball
B(0, r) = {u ∈ Xs,b(R2), ‖u‖Xs,b(R2) � r} into itself. By a similar calculation, we have

∥∥Gu0(v) −Gu0(u)
∥∥
Xs,b(R2) � Cδb

′+1−b‖v − u‖Xs,b(R2)
(
‖u‖Xs,b(R2) + ‖v‖Xs,b(R2)

)
� 1

2‖v − u‖Xs,b(R2),

thus G is a contraction mapping from the closed ball B(0, r) = {u ∈ Xs,b(R2), ‖u‖Xs,b(R2) � r} into itself,
by using Banach fixed point theorem, we have Gu0(v) = v. The rest of local well-posedness of Theorem 1.1
follow from a standard proof.Consequently, we complete the proof of Theorem 1.1.

5. Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. We give Theorem 5.1 before proving Theorem 1.2.

Theorem 5.1. Let s < −n + 1
4 and T be a positive real number. Then there does not exist a space YT

continuously embedded in C([0, T ]; Ḣs(R)) such that
∥∥W (t)u0

∥∥
YT

� C‖u0‖Ḣs , ∀u0 ∈ Ḣs(R), (5.1)∥∥∥∥∥
t∫

0

W (t− τ)∂x
(
u2(τ)

)
dτ

∥∥∥∥∥
YT

� C‖u‖2
YT

, ∀u ∈ YT . (5.2)

Proof. We assume that u = W (t)u0 in (5.2) and YT satisfies (5.1), (5.2), since YT is continuously embedded
in C([0, T ]; Ḣs(R)), for any t ∈ [0, T ], we have

∥∥∥∥∥
t∫

0

W (t− τ)∂x
(
W (t)u0

)2
dτ

∥∥∥∥∥
Ḣs

� C‖u0‖2
Ḣs , for all u0 ∈ YT . (5.3)

We prove that (5.3) fails by choosing

Fxu0N (x) = γ−1/2N−s
(
χIN (ξ) + χIN (−ξ)

)
,
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where IN = [N,N + 2γ] and N 
 1 and γ will be chosen later. Thus

‖u0N‖Ḣs ∼ 1.

We define

u2,N =
t∫

0

W (t− τ)∂x
(
W (t)u0N

)2
dτ.

Thus

u2,N = C(f − g),

where

f = γ−1N−2s
∫
Kξ

(ξ1 + ξ2)eix(ξ1+ξ2)+it(φ(ξ1)+φ(ξ2))

φ(ξ1) + φ(ξ2) − φ(ξ1 + ξ2)
dξ1,

g = γ−1N−2s
∫
Kξ

(ξ1 + ξ2)eix(ξ1+ξ2)+itφ(ξ1+ξ2)

φ(ξ1) + φ(ξ2) − φ(ξ1 + ξ2)
dξ1.

Thus we deduce that

∥∥u2,N (t)
∥∥2
Ḣs �

γ
2∫

− γ
2

|ξ|2s
∣∣Fxu2,N (t, ξ)

∣∣2 dξ

= N−4sγ−2

γ
2∫

− γ
2

|ξ|2s|ξ|2
∣∣∣∣
∫
Kξ

eit(φ(ξ1)+φ(ξ2)−φ(ξ1+ξ2))−1

φ(ξ1) + φ(ξ2) − φ(ξ1 + ξ2)
dξ1

∣∣∣∣
2

dξ,

where

Kξ = {ξ1 | ξ − ξ1 ∈ IN , ξ1 ∈ −IN} ∪ {ξ1 | ξ1 ∈ IN , ξ − ξ1 ∈ −IN}.

Notice that mes(Kξ) � γ where mes denotes the Lebesgue measure. Thus we have

∥∥u2,N (t)
∥∥2
Ḣs � N−4sγ−2γ2sγ2γN−4nγ−2γ2 = N−4s−4nγ1+2s.

Taking γ = N− 2
4n−3 and t = N−2n+ 2

4n−3 which yields

t
∣∣(φ(ξ1) + φ(ξ2) − φ(ξ1 + ξ2)

)∣∣ ∼ t|ξ||ξ1|2n ∼ 1

resulting from (2.1), then we have

∥∥u2,N (t)
∥∥2
Ḣs � N−4s−4nN− 4s+2

4n−3 = N−4s 4n−2
4n−3−4n− 2

4n−3 . (5.4)

When s < −n + 1
4 which yields −4s4n−2

4n−3 − 4n− 2
4n−3 > 0, (5.4) contradicts with (5.3) for sufficiently N .

We complete the proof of Theorem 5.1.
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Now we prove Theorem 1.2.
Let u be a solution of (1.1), (1.2), then we have

u(x, t, u0) = W (t)u0 −
1
2

t∫
0

W (t− τ)∂x
(
u(·, τ, u0)2

)
dτ.

Suppose that the flow-map is C2. By using the fact that u(x, t, 0) = 0, we derive

u1(x, t) = ∂u

∂u0
(x, t, 0)[h] = W (t)h,

u2(x, t) = ∂2u

∂2u0
(x, t, 0)[h, h] = −

t∫
0

W (t− τ)∂x
(
W (t)h

)2
dτ.

By using the fact that the flow-map is C2, we derive

∥∥u2(t)
∥∥
Ḣs � C‖h‖2

Ḣs , ∀h ∈ Ḣs(R). (5.5)

By using Theorem 5.1, we have that (5.5) does hold. Consequently, we have completed the proof of Theo-
rem 1.2.

Acknowledgments

The authors are deeply indebted to Prof. Yulin Zhao, Prof. Zheng-an Yao of Sun Yat-sen University
and Prof. Chun-long Zheng of Shaoguan University for giving some helpful and suggest. This work is
supported by the NSF of China (No. 11171355), Foundation for Distinguished Young Talents in Higher
Education of Guangdong Province of China (No. 2013LYM0081), Guangdong Provincial NSF of China
(No. S2012010010069), the Shaoguan Science and Technology Foundation (No. 313140546) and Science
Foundation of Shaoguan University. The authors thank the handling editor and the reviewers for their
valuable comments and suggestions, which improved the completeness of the paper.

References

[1] I. Bejennaru, T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation,
J. Funct. Anal. 233 (2006) 228–259.

[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution
equations, Part I: Schrodinger equation, Geom. Funct. Anal. 3 (1993) 107–156;
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution
equations, Part II: The KdV equation, Geom. Funct. Anal. 3 (1993) 209–262.

[3] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997) 115–159.
[4] M. Christ, J. Colliander, T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defo-

cussing equations, Amer. J. Math. 125 (2003) 1235–1293.
[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for the KdV in Sobolev spaces of negative

indices, Electron. J. Differential Equations 26 (2001) 1–7.
[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on R

and T, J. Amer. Math. Soc. 16 (2003) 705–749.
[7] I.M. Gel’fand, I.Ya. Dorfman, Hamiltonian operators and infinite dimensional Lie algebras, Funktsional. Anal. i Prilozhen.

15 (1981) 23–40.
[8] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain),

Asteŕisque 237 (1996) 163–187.
[9] J. Gorsky, A.A. Himonas, Well-posedness of KdV equation with higher dispersion, Math. Comput. Simulation 80 (2009)

173–183.
[10] J. Gorsky, A. Himonas, C. Holliman, G. Petronilho, The Cauchy problem of a periodic higher order KdV equation in

analytic Gevrey spaces, J. Math. Anal. Appl. 405 (2013) 349–361.

http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4254s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4254s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib42s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib42s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib42s2
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib42s2
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4230s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434354s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434354s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434B535454s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434B535454s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434B5354542D4A414D53s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib434B5354542D4A414D53s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4744s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4744s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4769s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4769s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4748s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4748s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib47484850s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib47484850s1


658 Y. Li, W. Yan / J. Math. Anal. Appl. 416 (2014) 647–658
[11] A. Grünrock, New applications of the Fourier restriction norm method to well-posedness problems for nonlinear evolution
equations, Dissertation, University of Wuppertal, 2002.

[12] A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. IMRN 61
(2004) 1488–1503.

[13] Z.H. Guo, Global well-posedness of the Korteweg–de Vries equation in H− 3
4 (R), J. Math. Pures Appl. 91 (2009) 583–597.

[14] S. Herr, Well-posedness results for dispersive equations with derivative nonlinearities, Dissertation, Dem Fachbereich
Mathematik der Universität Dortmund vorgelegt von, 2006.

[15] H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential
Equations Appl. 19 (2012) 677–693.

[16] A.D. Ionescu, C.E. Kenig, Global well-posedness of the Benjamin–Ono equation in low-regularity spaces, J. Amer. Math.
Soc. 20 (2007) 753–798.

[17] A.D. Ionescu, C.E. Kenig, D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent.
Math. 173 (2008) 265–304.

[18] T. Kato, On the Cauchy problem for the generalized Korteweg–Vries equation, Adv. Math. Suppl. Stud. 8 (1983) 93–128.
[19] C.E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg–de Vries equation, J. Amer.

Math. Soc. 4 (1991) 323–347.
[20] C.E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Mah. J. 40

(1991) 33–69.
[21] C.E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative

indices, Duke Math. J. 71 (1993) 1–21.
[22] C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via

the contraction principle, Comm. Pure Appl. Math. 46 (1993) 527–620.
[23] C.E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996)

573–603.
[24] C.E. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001)

617–633.
[25] Y.S. Li, W. Yan, X.Y. Yang, Well-posedness of a higher modified Camassa–Holm equation in spaces of low regularity,

J. Evol. Equ. 10 (2010) 465–486.
[26] P.J. Olver, Applications of Lie Groups to Differential Equations, second edition, Springer-Verlag, 2000.
[27] J. Saut, R. Temam, Remark on the Korteweg–de Vries equation, Israel J. Math. 24 (1976) 78–87.
[28] A. Sidi, C. Sulem, P.-L. Sulem, On the long time behavior of a generalized KdV equation, Acta Appl. Math. 7 (1986)

35–47.
[29] A. Sjöberg, On the Korteweg–de Vries equation: existence and uniqueness, J. Math. Anal. Appl. 29 (1970) 569–579.
[30] N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris 329 (1999) 1043–1047.
[31] W. Yan, Y.S. Li, S.M. Li, Sharp well-posedness and ill-posedness of a higher-order modified Camassa–Holm equation,

Differential Integral Equations 25 (2012) 1053–1074.

http://refhub.elsevier.com/S0022-247X(14)00042-0/bib47s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib47s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4732303034s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4732303034s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib475As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib5348s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib5348s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib48s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib48s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4930s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4930s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib49s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib49s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4Bs1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4A414D532D31393931s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4A414D532D31393931s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D49554D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D49554D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D444D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D444D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4350414Ds1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4350414Ds1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4A414D53s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B50562D4A414D53s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B5056444D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4B5056444D4As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4C5959s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4C5959s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib4Fs1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib5354s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib535353s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib535353s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib53s1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib547As1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib594C4Cs1
http://refhub.elsevier.com/S0022-247X(14)00042-0/bib594C4Cs1

	Well-posedness and ill-posedness of KdV equation with higher dispersion
	1 Introduction
	2 Preliminaries
	3 Bilinear estimates
	4 Proof of Theorem 1.1
	5 Proof of Theorem 1.2
	Acknowledgments
	References


