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A CRITERION FOR THE EXPLICIT RECONSTRUCTION OF A

HOLOMORPHIC FUNCTION FROM ITS RESTRICTIONS ON LINES

AMADEO IRIGOYEN

Abstract. We deal with a problem of the explicit reconstruction of any holomorphic
function f on a ball of C2 from its restrictions on a union of complex lines. The validity
of such a reconstruction essentially depends on the mutual repartition of these lines. This
criterion can be analytically described and it is also possible to give geometrical sufficient

conditions. The motivation of this problem also comes from possible applications in
mathematical economics and medical imaging.
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1. Introduction

1.1. Presentation of the problem and first results.

1.1.1. General formulation of the problem. In this paper we deal with a problem of the
reconstruction of a holomorphic function from its restrictions on analytic submanifolds. f
being a holomorphic function on a domain Ω ⊂ C

n and {Zj}Nj=1 a family of analytic sub-

manifolds of Ω, we want to find f from the data f|{Zj}N
j=1

:= {f|Zj
}Nj=1. One can give

interpolating functions fN ∈ O (Ω) that satisfy fN |{Zj}N
j=1

= f|{Zj}N
j=1

(for example if Ω is

convex, strictly pseudoconvex or Ω = C
n, see [1]), but generally fN �= f . Then a natural way

is to consider an infinite family of submanifolds {Zj}∞j=1 and construct the associated inter-
polating f{Zj}j≥1

as limN→∞ fN . In this case the uniqueness of the interpolating function
will certainly be guaranteed but without any assurance of the convergence of the sequence
(fN )N≥1. Moreover, this motivates the research of explicit reconstruction formulas.

1.1.2. An explicit interpolation formula. Here we deal with the case of C2, Ω = B2(0, r0) ⊂
C

2 (where B2(0, r0) = {z ∈ C
2, |z1|2 + |z2|2 < r20}), and a family of distinct complex lines

that cross the origin. Such a family can be described as{{z ∈ C
2, z1 − ηjz2 = 0}}

j≥1
,(1.1)

with ηj ∈ C all different, that we will simply denote by η = {ηj}j≥1 (w.l.o.g. we can forget
the line {z2 = 0} that is associated to η0 = ∞). On the other hand, f ∈ O (B2(0, 1)) being
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2 AMADEO IRIGOYEN

given, a way to give one interpolating function fN is the one that uses one of the essential
ideas from [1], whose computation exploits residues and principal values (see [3] and [7]) and
whose motivation is to get a formula that fixes any polynomial function with degree smaller
than N . S2(0, 1) being the unit sphere, one has ∀ z ∈ B2(0, 1),

f(z) = lim
ε→0

1

(2πi)2

∫
ζ∈S2(0,1),|∏N

j=1(ζ1−ηjζ2)|=ε

f(ζ) det
(
ζ, PN (ζ, z)

)
ω(ζ)∏N

j=1(ζ1 − ηjζ2)(1− < ζ, z >)

− lim
ε→0

∏N
j=1(z1 − ηjz2)

(2πi)2

∫
ζ∈S2(0,1),|∏N

j=1(ζ1−ηjζ2)|>ε

f(ζ)ω′ (ζ) ∧ ω(ζ)∏N
j=1(ζ1 − ηjζ2)(1− < ζ, z >)2

,

where ω′(ζ) = ζ1dζ2 − ζ2dζ1, ω(ζ) = dζ1 ∧ dζ2, and PN (ζ, z) ∈ (O (C2 × C
2
))2

satisfies

∀ (ζ, z) ∈ C
2 × C

2,

< PN (ζ), ζ − z >= PN,1(ζ, z)(ζ1 − z1) + PN,2(ζ, z)(ζ2 − z2) =

N∏
j=1

(ζ1 − ηjζ2)−
N∏
j=1

(z1 − ηjz2) .

Both integrals can be explicited and yield the following relation: let f ∈ O (B2(0, r0)) (resp.
f ∈ O (C2

)
), one has ∀ z ∈ B2(0, r0) (resp. z ∈ C

2),

f(z) = EN (f ; η)(z)−RN (f ; η)(z) +
∑

k+l≥N

ak,lz
k
1z

l
2 ,(1.2)

where
∑

k,l≥0 ak,lz
k
1z

l
2 is the Taylor expansion of f ,

EN (f ; η)(z) :=
N∑

p=1

⎛⎝ N∏
j=p+1

(z1 − ηjz2)

⎞⎠ N∑
q=p

1 + ηpηq
1 + |ηq|2

1∏N
j=p,j �=q(ηq − ηj)

×

×
∑

m≥N−p

(
z2 + ηqz1
1 + |ηq|2

)m−N+p
1

m!

∂m

∂vm
|v=0[f(ηqv, v)](1.3)

and

RN (f ; η)(z) :=

N∑
p=1

⎛⎝ N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

⎞⎠ ∑
k+l≥N

ak,lη
k
p

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

.(1.4)

This relation is an application of the main theorem from [8] that is a more general version
for the case of multiple complex lines (i.e. with the restriction of f and its first derivatives
on every line). A direct proof of (1.2) is also given in the Appendix (Proposition 3). On the
other hand, the formula EN (f ; η) is well-defined and has the following properties:

• EN (f ; η) ∈ O (B2(0, r0)) (resp. EN (f ; η) ∈ O (C2
)
);

• EN (f ; η) is an explicit formula that is constructed with the data
{
f|{z1=ηjz2}

}
1≤j≤N

;

• ∀ j = 1, . . . , N , EN (f ; η)|{z1=ηjz2} = f|{z1=ηjz2}.
In addition, EN (f ; η) is essentially the unique formula that fixes any polynomial function

with bounded degree: ∀P ∈ C[z1, z2] with degP ≤ N − 1, EN (P ; η) ≡ P .
As N → ∞, the function f −EN (f ; η) will be a holomorphic function that will vanish on

an increasing number of lines. If EN (f ; η) were uniformly bounded on any compact subset
(in particular if it converged to some function), then by the Stiltjes-Vitali-Montel Theorem,
there would be a subsequence of f−EN (f ; η) that would converge to a holomorphic function
that would vanish on an infinite number of lines, so this limit would be 0 (in fact, the whole
sequence EN (f ; η) would converge to f uniformly on any compact subset).



A CRITERION FOR THE RECONSTRUCTION OF A HOLOMORPHIC FUNCTION 3

1.1.3. Applications in Radon transform theory. Our reconstruction problem is also moti-
vated by possible applications in real Radon transform theory that may have consequences
in mathematical economics and medical imaging. Let μ be a measure with compact sup-
port K ⊂ R

2 (w.l.o.g. one can assume that 0 ∈ K). We want to reconstruct it from the
knowledge of its Radon transforms on a finite number of directions, i.e. from (Rμ)

(
θ(j), s

)
with

(
θ(j), s

) ∈ S
1 × R and j = 1, . . . , N , where S

1 is the unit sphere of R2 and

(Rμ)
(
θ(j), s

)
:=

∂

∂s

∫
{x∈R2, θ

(j)
1 x1+θ

(j)
2 x2≤ s}

μ(dx) .(1.5)

The way is the following: we use some properties of the Fantappie transform of μ (see [13]).
We consider the dual space K� ⊂ CP2 (the projective complex space) that is defined as
the open set of the complex lines ξ of C

2 ⊃ R
2 ⊃ K that do not cross K, i.e. K� :={

ξ = [ξ0 : ξ1 : ξ2] ∈ CP2, < ξ, x > �= 0, ∀x ∈ K
}
, where < ξ, x >:= ξ0 + ξ1x1 + ξ2x2. The

Fantappie transform of μ is defined by

Φμ : K� −→ C(1.6)

ξ �→ < μ,
ξ0

< ξ, x >
> :=

∫
x∈K

ξ0
< ξ, x >

μ(dx) .

This function is well-defined and holomorphic on K�. C
2 ⊂ CP2 being the affine space of

CP2 defined by the canonical identification z ∈ C
2 �→ [1 : z1 : z2] ∈

{
ξ ∈ CP2, ξ0 �= 0

}
,

a classical calculation yields rK > 0 such that B2(0, rK) ⊂ K� and, for all θ ∈ S
2 and all

u ∈ C with |u| < rK ,

Φμ([1 : uθ1 : uθ2]) =

∫ +∞

−∞

(Rμ)(θ, s)

1 + s u
ds .

It follows that the knowledge of (Rμ)(θ(j), s), j = 1, . . . , N, s ∈ R, allows to know the
restriction of Φμ ∈ O (B2(0, rK)) on every line Lθ(j) = {(uθ1, uθ2), u ∈ C} = {z ∈ C

2, z1 =
ηjz2} where

ηj = θ
(j)
1 /θ

(j)
2 ∈ R, j = 1, . . . , N(1.7)

(w.l.o.g. one can assume that θ
(j)
2 �= 0). Thus, if the interpolation formula EN (Φμ; η) con-

verges to Φμ, then by the Martineau’s isomorphism theorem (see [13]), it will be possible to
give an explicit family of measures μN , N ≥ 1 (defined from EN (Φμ; η) under the reciprocal
isomorphism Φ−1) that will converge to μ in an appropriate topology.

1.1.4. A first observation. The essential problem is that we do not have any control a priori
of the function EN (f ; η) and do not have any idea if EN (f ; η) is always uniformly bounded
for any given f . Indeed, the following result that will be justified below gives explicit positive
and negative examples of sets {ηj}j≥1.

Proposition 1. (1) Let consider the following sequence defined as

ηj :=
ij

j
, ∀ j ≥ 1 .

Then the associated interpolation formula EN (·; η) does not converge, i.e. there
exists f ∈ O (C2

)
such that EN (f ; η) does not converge (uniformly in any compact

subset K ⊂ C
2). Similarly, for all ε > 0, there is f ∈ O (B2(0, r0)) and a compact

subset K ⊂ B2(0, εr0) such that EN (f ; η) does not converge in K.



4 AMADEO IRIGOYEN

(2) Let consider any set {ηj}j≥1 ⊂ R. Then the associated interpolation formula con-
verges, i.e. for all f ∈ O (C2

)
, EN (f ; η) converges to f uniformly on any com-

pact subset of C
2. Similarly, r0 being given, there is εη > 0 such that, for all

f ∈ O (B2(0, r0)), EN (f ; η) converges to f uniformly on any compact subset of
B2(0, εηr0).

The same holds true if we consider any set {ηj}j≥1 ⊂ C with |ηj | = 1, ∀ j ≥ 1.

On one hand, this fact leads to the following questions: first, which are the sets {ηj}j≥1

whose interpolation formula EN (·; η) will converge or will not? Next, is there some criterion
that allows to know if a given set {ηj}j≥1 will make converge (or will not) its associated
interpolation formula EN (·; η)? These questions will be answered in the following subsection.

On the other hand, the second part of Proposition 1 can be applied in our reconstruction
problem in Radon transform theory (the associated ηj ’s are real by (1.7)). It follows that
the measure μ can be reconstructed in an appropriate topology by an explicit family of
interpolating measures μN (μN interpolates μ in the meaning that, for all N ≥ 1 and
k, l ≥ 0 with k + l ≤ N , < μN , xk

1x
l
2 >=< μ, xk

1x
l
2 >). In addition, an application of

some results of Henkin and Shananin from [6] will allow to give some good precision for
this reconstruction. These expected estimates may also be compared to the one of Logan
and Shepp from [12] where they establish the optimal reconstruction formula for μ in the
special case of uniformly distributed lines θ(j)’s. This would allow to give some prognosis
for the ability of our reconstruction formula EN (·; η), at least in the case of real ηj ’s. All
these results are handled in [11] that is currently in progress.

1.2. An equivalent criterion. Before giving the first essential result, we need to consider
the following operator of divided differences Δp of any function ϕ that is defined on the ηj ’s
and that looks like the discrete derivative of ϕ with order p (see [5]):

Δ0,∅(ϕ)(η1) = ϕ(η1),(1.8)

∀ p ≥ 1, Δp,(ηp...,η1)(ϕ)(ηp+1) =
Δp−1,(ηp−1,...,η1)(ϕ)(ηp+1)−Δp−1,(ηp−1,...,η1)(ϕ)(ηp)

ηp+1 − ηp
.

Then we can give the following equivalent criterion for the convergence of EN (·; η) in the
case when the subset {ηj}j≥1 is bounded.

Theorem 1. Let {ηj}j≥1 be bounded and fix any r0 > 0. TFAE:

(1) there is εη > 0 such that, for all f ∈ O (B2(0, r0)), the interpolation formula
EN (f ; η) converges to f , uniformly on any compact subset of B2(0, εηr0);

(2) for all g ∈ O (C2
)
, the interpolation formula EN (g; η) converges to g, uniformly on

any compact subset of C2;
(3) ∃Rη ≥ 1, ∀ p, q ≥ 0,∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣ ≤ Rp+q
η .(1.9)

Furthermore, this result yields the following consequences: first, some precision for the
convergence of EN (f ; η) to f ; next, this convergence is also uniform with respect to f
belonging to any given compact subset.

Corollary 1. When any of the equivalent conditions from the above theorem is satisfied,
one has in addition: for all K ⊂ O (B2(0, r0)) (resp. O (C2

)
) and K ⊂ B2(0, εηr0) (resp.

C
2) compact subsets, there are CK,K and εK > 0 such that, for all N ≥ 1,

sup
f∈K

sup
z∈K

|f(z)− EN (f ; η)(z)| ≤ CK,K (1− εK)N .
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This analytic criterion gives a condition on the mutual repartition of the points ηj , j ≥ 1.
Since the operator Δp looks like the iterated derivative, condition (1.9) can be interpreted
as an exponential estimate of the derivatives (as it is always the case for any holomorphic
function). Thus Theorem 1 claims that this repartition of the ηj ’s must be such that under

the action of Δp, p ≥ 1, the (non-holomorphic) functions ζq/(1 + |ζ|2)q, q ≥ 1, should act
as if they were holomorphic.

On the other hand, one can notice the equivalence between (1) and (2) in Theorem 1. As
we will see in all the following, it will always be the case. That is why we want to simplify
some notations and give the following definition.

Definition 1. Let be any fixed set {ηj}j≥1.
We say that the interpolation formula EN (·; η) converges if statement (1) from Theorem 1

is valid for all r0 > 0 and so is (2).
Similarly, we say that the interpolation formula EN (·; η) does not converge if state-

ment (1) is valid for none r0 > 0 and neither is (2).

Now we want to know what happens when the set {ηj}j≥1 is not bounded. The way uses
the symmetry of the problem under any rotation of the lines. By ηc /∈ {ηj}j≥1, we will mean
any number that is different from all ηj , j ≥ 1. Let fix any ηc and set θj := hηc(ηj), ∀ j ≥ 1,

where hηc is the homographic transformation defined on the Riemann sphere C as

hηc(ζ) :=
1 + ηc ζ

ζ − ηc
,(1.10)

Then the set {θj}j≥1 is well-defined and one can give an extension of Theorem 1.

Theorem 2. (1) Let fix any set {ηj}j≥1. If EN (·; η) converges then for all ηc /∈
{ηj}j≥1, there is Rηc such that, ∀ p, q ≥ 0,∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣ ≤ Rp+q
ηc .(1.11)

(2) If {ηj}j≥1 is not dense, then TFAE:

(a) EN (·; η) converges;
(b) there is Rη such that, for all p, q ≥ 0,

sup
ηc /∈{ηj}j≥1

∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣ ≤ Rp+q
η ;(1.12)

(c) there is η∞ /∈ {ηj}j≥1 (the topological closure of {ηj}j≥1) such that (1.11) is

satisfied with the choice of ηc := η∞.
In addition, when any of these equivalent conditions is satisfied, the conclusion

of Corollary 1 holds.

First, in part (2) of this theorem, it suffices to satisfy condition (1.11) for one η∞ /∈
{ηj}j≥1 in order to deduce the uniform estimate (1.12). Next, although the assertion is still
open, we expect that the equivalence in part (2) will hold for the case where {ηj}j≥1 is dense
(this would complete part (1)). Finally, as it has been commented above as a property of
holomorphic functions, the exponential estimates from (1.9), (1.11) and (1.12) motivate us
to consider another criterion.

1.3. A geometric criterion. First, we begin with giving the following geometric definition
for any set {ηj}j≥1.
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Definition 2. We say that the set {ηj}j≥1 is locally interpolable by real-analytic curves if
it can be locally embedded in the zero set of a regular real-analytic function.

There is an equivalent formulation of this definition that is justified in this paper (Sec-
tion 5, Lemma 18) and that will be useful in the following: {ηj}j≥1 is locally interpolable
by real-analytic curves if and only if it can locally holomorphically interpolate the conju-
gate function, i.e. for all ζ ∈ {ηj}j≥1 (the topological closure of {ηj}j≥1), there exist a

neighborhood V of ζ and g ∈ O(V ) such that ηj = g(ηj), ∀ ηj ∈ V . In particular, when

∞ ∈ {ηj}j≥1, then the associated function g is holomorphic in a neighborhood of ∞, i.e.
the function defined by

ζ �= 0 �→ 1

g(1/ζ)
, 0 �→ 0 ,(1.13)

is holomorphic in a neighborhood of 0.
First, as it was expected, in such a set the conjugate function (as well as ζ

q
/(1 + |ζ|)q,

q ≥ 1) will coincide on the ηj ’s with a holomorphic one. Next, this geometric condition is
easier and more natural to be formulated than (1.9) that also seems difficult to be numerically
tested since the computation of Δp+1 does not only require the previous one, but rather
the computation of other Δp’s (i.e. with some other points ηj , see (1.8)). In addition, this
criterion can be interpreted as a real-analytic dependence of the family ({z1 − ηjz2 = 0})j≥1,

a formulation that can be extended in the case of any family of analytic submanifolds {Zj}j≥1

of any domain Ω ⊂ C
n. Finally, it is a sufficient condition for the convergence of EN (·; η).

Theorem 3. If {ηj}j≥1 is locally interpolable by real-analytic curves, then EN (·; η) con-
verges. In addition, the conclusion of Corollary 1 holds.

First, an immediate consequence of this theorem is the proof of the second part of Propo-
sition 1 that we have claimed above since R = {ζ ∈ C, ζ = ζ}. Similarly, the unit circle can
be written as {ζ ∈ C \ {0}, ζ = 1/ζ}.

Next, we do not know if this condition is also necessary. Our first intuition was negative
given the scarcity of the sets {ηj}j≥1 that are locally interpolable by real-analytic curves.
Later, it has been confirmed by a counterexample of an explicit set {ηj}j≥1 whose topolog-
ical closure has nonempty interior but whose associated interpolation formula EN (·; η) does
converge (see [10], Proposition 3). Actually, the essential results from [10] give the following
equivalence: {ηj}j≥1 is locally interpolable by real-analytic curves if and only if the interpo-
lation formula EN (·;σ(η)) also converges for all σ ∈ SN (the group of the permutations of
N), where σ(η) :=

(
ησ(j)

)
j≥1

(see [10], Theorem 3). Nevertheless, we will give in Section 5

the proof of the following result that is a special case of equivalence for Theorem 3.

Proposition 2. Let (ηj)j≥1 be any convergent sequence. If the interpolation formula

EN (·; η) converges, then {ηj}j≥1 is locally interpolable by real-analytic curves.

In addition, this result allows to easily construct examples of families of complex lines
whose associated interpolation formula does not converge: any convergent sequence that
cannot be embedded in any real-analytic curve. In particular, the set {ηj}j≥1 where
ηj = ij/j, j ≥ 1, is not locally interpolable by real-analytic curves then the associated
interpolation formula EN (·; η) does not converge (Section 5, Corollary 2). This example
gives the justification of the first part of Proposition 1 and finally completes its whole proof.

Acknowledgements. I would like to thank G. Henkin for having introduced me this in-
teresting problem and J. Ortega-Cerdà for all the rewarding ideas and discussions about it.
I would also like to thank the referee for the useful remarks about the improvement of this
paper.
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2. Some preliminar results on the divided differences

In this part, {ηj}j≥1 will be any set of points all differents, and ϕ will be any function
defined on the points ηj , j ≥ 1. The following results can be found in [2] and their proofs
are given in the references therein. They have also been proved independently by the author
in a first version of this paper [9] (except for Lemma 6).

The proof of the first one is an immediate consequence of the definition of Δp.

Lemma 1. For all p ≥ 0 and 0 ≤ q ≤ p,

Δp,(ηp,...,η1)(ϕ) (ηp+1) = Δ1,ηp

[
ζ �→ Δp−1,(ηp−1,...,η1)(ϕ)(ζ)

]
(ηp+1)

= Δp−1,(ηp,...,η2) [ζ �→ Δ1,η1
(ϕ)(ζ)] (ηp+1)

= Δp−q,(ηp,...,ηq+1)

[
ζ �→ Δq,(ηq,...,η1)(ϕ)(ζ)

]
(ηp+1)

= Δ1,ηp

[
ζp �→ Δ1,ηp−1

[· · · [ζ1 �→ Δ1,η1
(ϕ) (ζ1)] · · · ] (ζp)

]
(ηp+1) .

Now ϕ being any given function that is defined on the ηj ’s (not necessarily with some
regularity condition), the Lagrange polynomial of ϕ is defined as

LN [ϕ](X) =

N∑
p=1

⎛⎝ N∏
j=1,j �=p

X − ηj
ηp − ηj

⎞⎠ϕ (ηp) ,(2.1)

and is the unique polynomial function with degree at most N − 1 that coincides with ϕ
on the N first points ηj ’s. The following result is the Newton formula that gives another
expression of LN [ϕ](X) with the Δp’s (see [5], Chapter 1, 1)3), or [4], Chapter 4, 7)d) ).

Lemma 2. For all N ≥ 1, one has

LN [ϕ](X) =

N−1∑
p=0

p∏
j=1

(X − ηj)Δp,(ηp,...,η1)(ϕ) (ηp+1) .

The following result is the Leibniz formula for the divided differences (see [15]).

Lemma 3. For all p ≥ 0 and ϕ, ψ functions defined on the ηj’s, one has

Δp,(ηp,...,η1)(ϕψ) (ηp+1) =

p∑
q=0

Δp−q,(ηp,...,ηq+1)(ϕ) (ηp+1) Δq,(ηq,...,η1)(ψ) (ηq+1) .

This result is an example of the explicit calculation of the Δp of a holomorhic function
(see [14], Chapter 3, and also [4], Chapter 4, 7)c) and 7)d) ).

Lemma 4. Let be ϕ ∈ O(D(w0, r)) and ϕ(w) =
∑

n≥0 an(w − w0)
n its Taylor expansion

for all |w − w0| < r. Assume that ∀ j ≥ 1, ηj ∈ D(w0, r). Then for all p ≥ 0,

Δp,(ηp,...,η1)(ϕ) (ηp+1) =
∑
n≥p

an

n−p∑
l1=0

(η1 − w0)
n−p−l1

l1∑
l2=0

(η2 − w0)
l1−l2 · · ·

· · ·
lp−2∑

lp−1=0

(ηp−1 − w0)
lp−2−lp−1

lp−1∑
lp=0

(ηp − w0)
lp−1−lp(ηp+1 − w0)

lp .(2.2)

In particular,

lim
η1,...,ηp,ηp+1→w0

Δp,(ηp,...,η1)(ϕ) (ηp+1) = ap =
ϕ(p)(0)

p!
.
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In addition, if ϕ is a polynomial function, then for any subset {ηj}j≥1 ⊂ C and all p > degϕ,

Δp,(ηp,...,η1)(ϕ) (ηp+1) = 0 .

Next, we give the following result whose proof is given in [4], Chapter 4, 7)a).

Lemma 5. For all p ≥ 0 and σ ∈ Sp+1 (the permutation group of the p+ 1 first integers),
one has

Δp,(ησ(p),...,ησ(1))(ϕ)
(
ησ(p+1)

)
= Δp,(ηp,...,η1)(ϕ) (ηp+1) .

This assertion can also be deduced from the following identity whose proof is given in [5],
Chapter 1: for all p ≥ 0,

Δp,(ηp,...,η1)(ϕ)(ηp+1) =

p+1∑
q=1

ϕ(ηq)∏p+1
j=1,j �=q(ηq − ηj)

.

Now the next result is the Hermite formula of the integral representation for divided
differences. Its proof can be found in [5], Chapter 1, 4)3).

Lemma 6. Let fix p ≥ 0 and let D(ζ0, r) be a disc that contains η1, . . . , ηp+1. On the
other hand, let ϕ be any holomorphic function defined on a neighborhood of the closed disc
D(ζ0, r). Then one has

Δp,(ηp,...,η1)(ϕ)(ηp+1) =
1

2πi

∫
|ζ−ζ0|=r

ϕ(ζ)∏p+1
j=1(ζ − ηj)

dζ .

As an application, one has the following estimate:∣∣Δp,(ηp,...,η1)(ϕ)(ηp+1)
∣∣ ≤ r sup

|ζ−ζ0|=r

∣∣∣∣∣ ϕ(ζ)∏p+1
j=1(ζ − ηj)

∣∣∣∣∣ .(2.3)

3. On the equivalence with the exponential estimate of the divided
differences

In this section, we will prove Theorem 1. Its proof requires some preliminar results that
will also be useful in the other sections. In all the following, we will mean the Taylor
expansion of any function f ∈ O (B2(0, r0)) (resp. f ∈ O (C2

)
), that absolutely converges

in any compact subset of B2(0, r0) (resp. C
2), by

f(z) =
∑
k,l≥0

ak,lz
k
1z

l
2 .(3.1)

When it is not specified, the simple expression Δp(ϕ) will mean Δp,(ηp,...,η1)(ϕ) (ηp+1).

We begin with the following preliminar result: it gives the equivalence between the con-
vergence of EN (f ; η) to f and the control of RN (f ; η).

Lemma 7. r0 > 0 being fixed, let consider f ∈ O (B2(0, r0)) (resp. f ∈ O (C2
)
) and K any

compact subset of B2(0, r0) (resp. C
2). Then for all N ≥ 1, one has

sup
z∈K

|f(z)− EN (f ; η)(z)| ≤ sup
z∈K

|RN (f ; η)(z)|+ CK(N + 2) sup
‖z‖≤rK

|f(z)| (1− εK)N ,

where ‖z‖ =
√|z1|2 + |z2|2 is the usual norm on C

2 and CK , rK depend only on K.
In particular, EN (f ; η) converges to f if and only if so does RN (f ; η) to 0.
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Proof. First, let fix any z ∈ B2(0, r0). Since ‖z‖ < r0, there is ε > 0 such that one still

has ‖z‖2 < ‖z‖2 + 2ε < r20. Since D2(0, (
√|z1|2 + ε,

√|z2|2 + ε)) ⊂ B2(0,
√‖z‖2 + 2ε) ⊂

B2(0, r0), then one has by Cauchy’s estimates for all k, l ≥ 0,

|ak,l| =
∣∣∣∣∣ 1

(2πi)2

∫
|ζ1|=

√
|z1|2+ε,|ζ2|=

√
|z2|2+ε

f(ζ1, ζ2) dζ1dζ2

ζk+1
1 ζl+2

2

∣∣∣∣∣ ≤ sup
ζ∈B2(0,

√
‖z‖2+2ε)

|f(ζ)|
(
√|z1|2 + ε)k(

√|z2|2 + ε)l
.

It follows that, for all N ≥ 1,

∑
k+l≥N

|ak,l| |z1|k|z2|l ≤ sup
ζ∈B2(0,

√
‖z‖2+2ε)

|f(ζ)|
∑

k+l≥N

(
|z1|√|z1|2 + ε

)k( |z2|√|z2|2 + ε

)l

≤ sup
ζ∈B2(0,

√
‖z‖2+2ε)

|f(ζ)|
∑
m≥N

(m+ 1)(1− ε′)m ,

where ε′ = 1 − maxi=1,2
|zi|√|zi|2 + ε

. On the other hand, by a classical calculation (since

ε′ ≤ 1),
∑

m≥N (m+ 1)(1− ε′)m ≤ (N + 2)(1− ε′)N

ε′2
, then∑

k+l≥N

|ak,l| |z1|k|z2|l ≤ N + 2

ε′2
sup

ζ∈B2(0,
√

‖z‖2+2ε)

|f(ζ)|(1− ε′)N .

Now, let K ⊂ B2(0, r0) being fixed. By the maximum principle, there is zK ∈ K such

that supz∈K

∣∣∣∑k+l≥N ak,lz
k
1z

l
2

∣∣∣ = ∣∣∣∑k+l≥N ak,l(zK)k1(zK)l2

∣∣∣. The lemma follows by (1.2)

and the above estimate applied to zK with the associated choices of εK , ε′K , CK = 1/ε′K
2

and rK =
√‖zK‖2 + 2εK .

Now if f ∈ O (C2
)
, the proof is still valid with the choice of any arbitrary εK . Notice

that in this case the associated 1− ε′K can be made arbitrarily small. √

3.1. A comparison for the convergence of EN (f ; η) betwen O (B2(0, r0)) and O (C2
)
.

We prove this result that will be useful in all the following.

Lemma 8. Let r0 > 0 be fixed. If there is εη > 0 such that, ∀ f ∈ O (B2(0, r0)), RN (f ; η)
converges to 0 uniformly on any compact subset of B2(0, εηr0), then ∀ g ∈ O (C2

)
, RN (g; η)

converges to 0 uniformly on any compact subset of C2.

Proof. Let g ∈ O (C2
)
and K ⊂ C

2 being fixed. There is RK > 0 such that K ⊂ B2(0, RK)

then, by setting εK =
εηr0
RK

, one has εKK ⊂ B2(0, εηr0).

On the other hand, the function defined as f(z) := g(z/εK), z ∈ C
2, is still entire (then

holomorphic on B2(0, r0)). Moreover, g(z) =
∑

k+l≥0 z
k
1z

l
2 being the Taylor expansion of g,

one immediatly has f(z) =
∑

k+l≥0

ak,l

εk+l
K

zk1z
l
2. This yields for all z ∈ C

2,

RN (f ; η)(εKz) =
N∑

p=1

εN−1
K

N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

∑
k+l≥N

ak,l

εk+l
K

ηkpε
k+l−N+1
K

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

=

N∑
p=1

N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

∑
k+l≥N

ak,lη
k
p

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

,
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that is exactly RN (g; η)(z). It follows that

sup
z∈K

|RN (g; η)(z)| = sup
z∈εKK

|RN (f ; η)(z)| −−−−−→
N→+∞

0 ,(3.2)

the last assertion coming from hypothesis since εKK is a compact subset of B2(0, εηr0). √

3.2. On the necessity of the estimate (1.9). In this part, we deal with the necessity of
the estimate (1.9) to make converge the associated interpolation formula EN (f ; η).

Remark 3.1. In particular, we will see that no one condition is required for the set {ηj}j≥1

yet, like boundedness.

We begin with this result.

Lemma 9. For all f ∈ O (C2
)
, N ≥ 1 and k1 ≥ N ,

1

k1!

∂k1

∂zk1
1

|z=0[RN (f ; η)(z)] = ΔN−1,(ηN−1,...,η1)

((
ζ

1 + |ζ|2
)k1−N+1 ∑

k+l=k1

ak,lζ
k

)
(ηN ) .

Proof. First, we claim that

RN (f ; η)(z) =
N−1∑
p=0

zN−1−p
2

p∏
j=1

(z1 − ηjz2)Δp,(ηp,...,η1) (ζ �→ rN (ζ, z)) (ηp+1) ,(3.3)

with rN (ζ, z) :=
∑

m≥N

(
z2 + ζz1
1 + |ζ|2

)m−N+1∑
k+l=m ak,lζ

k. Indeed, by Lemma 2,

RN (f ; η)(z) = zN−1
2

N∑
p=1

N∏
j=1,j �=p

z1/z2 − ηj
ηp − ηj

∑
k+l≥N

ak,lη
k
p

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

= zN−1
2

N−1∑
p=0

p∏
j=1

(z1/z2 − ηj)Δp,(ηp,...,η1)

⎡⎣ ∑
k+l≥N

ak,lζ
k

(
z2 + ζz1
1 + |ζ|2

)k+l−N+1
⎤⎦ (ηp+1) .

It follows that

RN (f ; η)(z) =
N−1∑
p=0

zN−1−p
2

[
p∑

r=0

zr1(−1)p−rzp−r
2 Σp−r(η1, . . . , ηp)

]
Δp(rN (ζ, z))

=
N−1∑
r=0

zr1z
N−1−r
2

N−1∑
p=r

(−1)p−rΣp−r(η1, . . . , ηp)Δp(rN (ζ, z)) ,

where Σr(η1, . . . , ηp) =
∑

1≤j1<···<jr≤p ηj1 · · · ηjr . Thus

1

k1!

∂k1

∂zk1
1

|z=0[RN (f ; η)(z)] =
1

k1!

∂k1

∂zk1
1

|z=0

[
zN−1
1 ΔN−1(rN (ζ, z))

]
= ΔN−1,(ηN−1,...,η1)

(
ζ �→ 1

k1!

∂k1

∂zk1
1

|z=0

[
zN−1
1 rN (ζ, z)

])
(ηN ) .
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Since k1 ≥ N , one has for all ζ ∈ C

1

k1!

∂k1

∂zk1
1

|z=0

[
zN−1
1 rN (ζ, z)

]
=

1

(k1 −N + 1)!

∂k1−N+1

∂zk1−N+1
1

|z=0

⎡⎣∑
m≥N

∑
k+l=m

ak,lζ
k

(
z2 + ζz1
1 + |ζ|2

)m−N+1
⎤⎦

=
∑

k+l=k1

ak,lζ
k

(
ζ

1 + |ζ|2
)k1−N+1

,

and the proof is achieved. √

As an application, we get the following result.

Lemma 10. For all f ∈ O (C2
)
and p ≥ 0, q ≥ 1, one has∣∣∣∣∣∣Δp,(ηp,...,η1)

⎡⎣( ζ

1 + |ζ|2
)q ∑

k+l=p+q

ak,lζ
k

⎤⎦ (ηp+1)

∣∣∣∣∣∣ ≤ sup
z∈B2(0,

√
2)

|Rp+1(f ; η)(z)| .

Proof. By applying Lemma 9 with k1 = p+q, N = p+1 (that is possible since p+q ≥ p+1)
and by Cauchy’s formula, one has

Δp,(ηp,...,η1)

⎡⎣( ζ

1 + |ζ|2
)q ∑

k+l=p+q

ak,lζ
k

⎤⎦ (ηp+1) =
1

(p+ q)!

∂p+q

∂zp+q
1

|z=0[Rp+1(f ; η)(z)]

=
1

(2iπ)2

∫
|ζ1|=|ζ2|=1

Rp+1(f ; η)(ζ1, ζ2) dζ1 ∧ dζ2

ζp+q+1
1 ζ2

.

The lemma follows by estimating the last integral on the closed ball B2(0,
√
2). √

We finish this part with this result that gives the necessity of the estimate (1.9) in the
general case.

Lemma 11. Let be {ηj}j≥1 such that, for all f ∈ O (C2
)
, RN (f ; η) is uniformly bounded

on any compact subset of C2. Then the estimate (1.9) from Theorem 1 is satisfied.

Proof. Let fix any f ∈ O (C2
)
. In particular, ∀ p ≥ 0, sup

z∈B2(0,
√
2)
|Rp+1(f ; η)(z)| ≤ M(f).

Then for all p ≥ 0 and q ≥ 1, one has by Lemma 10∣∣∣∣∣∣Δp,(ηp,...,η1)

⎡⎣( ζ

1 + |ζ|2
)q ∑

k+l=p+q

ak,lζ
k

⎤⎦ (ηp+1)

∣∣∣∣∣∣ ≤ M(f) .

Now let consider any function entire on C, w(ζ) =
∑

n≥0 bnζ
n, and set fw(z) := w(z2).

Then fw ∈ O (C2
)
and for all p ≥ 0, q ≥ 1,∑

k+l=p+q

ak,l(fw)ζ
k = a0,p+q(fw) = bp+q .

It follows with the choice of fw that ∀ p ≥ 0, ∀ q ≥ 1,

|bp+q|
∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣ ≤ M(h) := M (fw) ,



12 AMADEO IRIGOYEN

then

sup
p≥0, q≥1

⎧⎨⎩|bp+q| 1
p+q

∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

⎫⎬⎭ < +∞ .

Since w ∈ O(C), lim supn→∞ |bn|1/n = 0. Conversely, if (εn)n≥1 is any sequence that
converges to 0, the function wε(ζ) :=

∑
n≥1 ε

n
nζ

n is entire on C and

sup
p≥0, q≥1

⎧⎨⎩|εp+q|
∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

⎫⎬⎭ < +∞ .(3.4)

Now the estimate (1.9) that we want to prove is equivalent to the following one:

Rη := sup
p≥0, q≥1

⎧⎨⎩
∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

⎫⎬⎭ < +∞ .(3.5)

Indeed, if q = 0, p ≥ 1, one has
∣∣Δp,(ηp,...,η1)(ζ �→ 1)(ηp+1)

∣∣ = 0 and |Δ0(ζ �→ 1)(η1)| = 1 =

R0
η, then the proof will be achieved.
The estimate (3.5) will be an application of the Banach-Steinhaus Theorem. First, let

consider the (complex) space C0 of the sequences (εn)n≥1 that tend to 0 as n tends to infinity,
with the supremum norm. Then (C0, ‖ · ‖∞) is a Banach space as a subspace of the set of
the bounded sequences (with the same norm). On the other hand, let consider the family
of linear forms (λm)m≥1 on C0 defined as:

λm : C0 → C

(εn)n≥1 �→ εm max
p≥0,q≥1,p+q=m

∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

.

Then λm is well-defined and for all m ≥ 1, its operator norm is

‖λm‖ = max
p≥0,q≥1,p+q=m

∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

< +∞ .

Now one has from the above estimate (3.4) that ∀ ε ∈ C0, supm≥1 |λm(ε)| < +∞. It
follows by the Banach-Steinhaus Theorem that

sup
p≥0, q≥1

⎧⎨⎩
∣∣∣∣∣Δp,(ηp,...,η1)

[(
ζ

1 + |ζ|2
)q
]
(ηp+1)

∣∣∣∣∣
1

p+q

⎫⎬⎭ = sup
m≥1

‖λm‖ < +∞ ,

and this proves the estimate (3.5). √

3.3. On the equivalence when {ηj}j≥1 is bounded. In this part we deal with the
equivalence between the convergence of the interpolation formula EN (f ; η) and the validity
of the estimate (1.9), i.e. we give the proof of Theorem 1. First, we assume that the set
{ηj}j≥1 is bounded,

‖η‖∞ := sup
j≥1

|ηj | < +∞ ,(3.6)

and satisfies (1.9). We begin with the following result that is a little stronger consequence.
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Lemma 12. There is R′
η ≥ 1 such that, for all p, q, s ≥ 0 with 0 ≤ s ≤ q, one has∣∣∣∣∣Δp,(ηp,...,η1)

[
ζ �→ ζ

s

(1 + |ζ|2)q
]
(ηp+1)

∣∣∣∣∣ ≤ R′
η
p+q

.

Proof. Set ⎧⎪⎨⎪⎩
R = max (1, Rη) ,

Q = max(3, Rη) ,

S = 3max(1, ‖η‖∞)

(3.7)

and

R′
η := [max(R,Q, S)]

2
= [max (3, 3‖η‖∞, Rη)]

2
.(3.8)

In order to prove the lemma, it will suffice to prove the following estimate: ∀ p, q, s ≥ 0 with
s ≤ q, ∣∣∣∣∣Δp,(ηp,...,η1)

[
ζ �→ ζ

s

(1 + |ζ|2)q
]
(ηp+1)

∣∣∣∣∣ ≤ RpQqSq−s .(3.9)

Indeed, we will get for all p, q, s ≥ 0 with s ≤ q,∣∣∣∣∣Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q
)
(ηp+1)

∣∣∣∣∣ ≤ RpQqSq ≤ R′
η
p+q

.

The estimate (3.9) will be proved by induction on p+q−s ≥ 0. If p+q−s = 0 then since
p, q − s ≥ 0, necessarily p = 0 and s = q ≥ 0. One has by the Cauchy-Schwarz inequality∣∣∣∣∣Δ0

(
ζ
q

(1 + |ζ|2)q
)
(η1)

∣∣∣∣∣ =

∣∣∣∣ η1
q

(1 + |η1|2)q
∣∣∣∣ ≤
(√

1 + |η1|2
1 + |η1|2

)q

≤ R0QqS0 .

If p+ q− s = 1, then either p = 1 and q = s ≥ 0, or p = 0 and 0 ≤ s = q − 1. In the first
case, since {ηj}j≥1 satisfies (1.9),∣∣∣∣∣Δ1,η1

[(
ζ

1 + |ζ|2
)q
]
(η2)

∣∣∣∣∣ ≤ R1+q
η ≤ R1QqS0 .

In the second case, one has for all q ≥ 1∣∣∣∣∣Δ0

(
ζ
q−1

(1 + |ζ|2)q
)
(η1)

∣∣∣∣∣ =
1

1 + |η1|2
∣∣∣∣ η1
1 + |η1|2

∣∣∣∣q−1

≤ 1 ≤ R0QqS1 .

Now let be m ≥ 1 and assume that (3.9) is true for all p, q, s ≥ 0 with s ≤ q and such
that p + q − s ≤ m. Let consider p, q, s ≥ 0 with s ≤ q and such that p + q − s = m + 1.
One has different cases:

• if p = 0 then∣∣∣∣∣Δ0

(
ζ
s

(1 + |ζ|2)q
)
(η1)

∣∣∣∣∣ =

∣∣∣∣ η1
(1 + |η1|2)

∣∣∣∣s 1

(1 + |η1|2)q−s ≤ 1 ≤ R0QqSq−s ;

• if s = q then by (1.9)∣∣∣∣∣Δp,(ηp,...,η1)

[
ζ
q

(1 + |ζ|2)q
]
(ηp+1)

∣∣∣∣∣ ≤ Rp+q
η ≤ RpQqS0 ;
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• otherwise p ≥ 1 and 0 ≤ s ≤ q − 1 (in particular q ≥ 1). On one hand, one has by
Lemmas 3 and 4

Δp,(ηp,...,η1)

(
ζ
s+1

ζ

(1 + |ζ|2)q
)
(ηp+1) =

=

p∑
r=0

Δr,(ηr,...,η1)

(
ζ
s+1

(1 + |ζ|2)q
)
(ηr+1)Δp−r,(ηp,...,ηr+1) (ζ �→ ζ) (ηp+1)

= Δp−1,(ηp−1,...,η1)

(
ζ
s+1

(1 + |ζ|2)q
)
(ηp)× 1 + Δp,(ηp,...,η1)

(
ζ
s+1

(1 + |ζ|2)q
)
(ηp+1)× ηp+1 .

On the other hand,

Δp,(ηp,...,η1)

(
ζ
s|ζ|2

(1 + |ζ|2)q
)
(ηp+1) =

= Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q−1

)
(ηp+1)−Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q
)
(ηp+1) .

Thus

Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q
)
(ηp+1) = Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q−1

)
(ηp+1)

− Δp−1,(ηp−1,...,η1)

(
ζ
s+1

(1 + |ζ|2)q
)
(ηp)− ηp+1Δp,(ηp,...,η1)

(
ζ
s+1

(1 + |ζ|2)q
)
(ηp+1) .

Since s ≤ q− 1 and (p− 1) + q− (s+1) ≤ p+ (q− 1)− s = p+ q− (s+1) = m, by
induction and (3.7) it follows that∣∣∣∣∣Δp,(ηp,...,η1)

(
ζ
s

(1 + |ζ|2)q
)
(ηp+1)

∣∣∣∣∣ ≤ Rp−1Qq−1Sq−s−1 (R+Q+ ‖η‖∞RQ)

≤ Rp−1Qq−1Sq−s−1

(
R
SQ

3
+Q

RS

3
+

S

3
RQ

)
,

and this proves (3.9). √

In the following the constant Rη will mean R′
η from Lemma 12. One can deduce as a

consequence the next result.

Lemma 13. For all p, q ≥ 0 and z ∈ C
2,∣∣∣∣∣Δp,(ηp,...,η1)

[
ζ �→

(
z2 + ζz1
1 + |ζ|2

)q
]
(ηp+1)

∣∣∣∣∣ ≤ Rp
η(2Rη‖z‖)q .

Proof. Indeed, Lemma 12 yields∣∣∣∣∣Δp,(ηp,...,η1)

[(
z2 + ζz1
1 + |ζ|2

)q
]
(ηp+1)

∣∣∣∣∣ ≤
q∑

u=0

q!

u! (q − u)!
|z2|q−u|z1|u

∣∣∣∣∣Δp,(ηp,...,η1)

(
ζ
u

(1 + |ζ|2)q
)
(ηp+1)

∣∣∣∣∣
≤ ‖z‖q

q∑
u=0

q!

u! (q − u)!
Rp+q

η = ‖z‖q2qRp+q
η .
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√

Now we need the following combinatorial result.

Lemma 14. For all n, p ≥ 0,

Ap
n := card {(l1, . . . , lp) ∈ N

p, n ≥ l1 ≥ l2 ≥ · · · ≥ lp ≥ 0} =
(n+ p)!

n! p!
.

Proof. First, we admit that if p = 0 and n ≥ 0, then A0
n = 1. Next, if n = 0 and p ≥ 1,

then Ap
n = 1. Finally, if n ≥ 1 and p = 1, then Ap

n = n+ 1.
So one can assume that n ≥ 1, p ≥ 2 and prove this result by induction on n+ p ≥ 2. If

n+ p = 2, then we are already done. One can consider n+ p ≥ 3 and claim that

Ap
n = Ap

n−1 + Ap−1
n .

Indeed, for any (l1, . . . , lp) such that n ≥ l1 ≥ · · · ≥ lp ≥ 0, either l1 = n or l1 ≤ n−1. Then

Ap
n = card

{
(l2, . . . , lp) ∈ N

p−1, n ≥ l2 ≥ · · · ≥ lp ≥ 0
}

+ card {(s1, . . . , sp) ∈ N
p, n− 1 ≥ s1 ≥ · · · ≥ sp ≥ 0} = Ap−1

n +Ap
n−1 .

This proves the claim and the lemma follows by applying the induction hypothesis to Ap−1
n

and Ap
n−1. √

Now Lemmas 13 and 14 lead to the following result.

Lemma 15. Let be f ∈ O (B2(0, r0)) and set

εη :=
1

2
√
2 (1 + ‖η‖∞)2R2

η

.

For all N ≥ 1, p = 0, . . . , N − 1 and z ∈ C
2, r < r0 such that ‖z‖ < εηr, one has∣∣∣∣∣∣Δp,(ηp,...,η1)

⎡⎣ζ �→
∑
m≥N

(
z2 + ζz1
1 + |ζ|2

)m−N+1 ∑
k+l=m

ak,lζ
k

⎤⎦ (ηp+1)

∣∣∣∣∣∣ ≤

≤ 8‖f‖rR2
η‖z‖

‖η‖∞(1− 2
√
2 ‖η‖∞R2

η‖z‖/r)

(√
2 ‖η‖∞Rη

r

)N (
Rη(1 + ‖η‖∞)

‖η‖∞

)p

,

with

‖f‖r := sup
z∈B2(0,r)

|f(z)| .

Proof. First, for all z ∈ C
2 and m ≥ N , one has by Lemma 3

Δp,(ηp,...,η1)

[(
z2 + ζz1
1 + |ζ|2

)m−N+1 ∑
k+l=m

ak,lζ
k

]
(ηp+1) =(3.10)

=

p∑
v=0

Δv,(ηv,...,η1)

[(
z2 + ζz1
1 + |ζ|2

)m−N+1
]
(ηv+1)Δp−v,(ηp,...,ηv+1)

( ∑
k+l=m

ak,lζ
k

)
(ηp+1) .

Next, for all 0 ≤ v ≤ p and m ≥ N (> p), one has by Lemmas 4 and 14∣∣∣∣∣Δp−v,(ηp,...,ηv+1)

(
m∑

k=0

ak,m−kζ
k

)
(ηp+1)

∣∣∣∣∣ ≤
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≤
m∑

k=p−v

|ak,m−k|
k−p+v∑
l1=0

|ηv+1|k−p+v−l1 · · ·
lp−v−1∑
lp−v=0

|ηp|lp−v−1−lp−v |ηp+1|lp−v

≤
m∑

k=p−v

|ak,m−k|‖η‖k−p+v
∞

k!

(p− v)! (k − p+ v)!
.

On the other hand, for all r1, r2 > 0, let consider the bidisc

D2(0, (r1, r2)) = D1(0, r1)×D(0, r2) =
{
z ∈ C

2, |z1| < r1, |z2| < r2
}
.

Since, for all r < r0, D2(0, (r/
√
2, r/

√
2)) ⊂ B2(0, r) ⊂ B2(0, r0) and f ∈ O (B2(0, r0)), one

has

|ak,l| =

∣∣∣∣∣ 1

(2iπ)2

∫
|ζ1|=|ζ2|=r/

√
2

f(ζ1, ζ2) dζ1 ∧ dζ2

ζk+1
1 ζl+1

2

∣∣∣∣∣ ≤ ‖f‖r
(r/

√
2)k+l

.

Thus by Cauchy’s formula,∣∣∣∣∣Δp−v,(ηp,...,ηv+1)

(
m∑

k=0

ak,m−kζ
k

)
(ηp+1)

∣∣∣∣∣ ≤

≤ ‖f‖r
(√

2

r

)m
1

(p− v)!

∂p−v

∂tp−v
|t=‖η‖∞

[
m∑

k=0

tk

]
= ‖f‖r

(√
2

r

)m
1

2iπ

∫
|t|=Rη

∑m
k=0 t

k dt

(t− ‖η‖∞)p−v+1

≤ ‖f‖r
(√

2

r

)m
Rm+1

η − 1

(Rη − ‖η‖∞)p−v+1(1− 1/Rη)
≤ 2‖f‖r Rη

‖η‖∞

(
Rη

√
2

r

)m
1

‖η‖p−v∞
,

since by (3.8), Rη ≥ max(2‖η‖∞, 2). Then (3.10) and Lemma 13 yield∣∣∣∣∣Δp,(ηp,...,η1)

[(
z2 + ζz1
1 + |ζ|2

)m−N+1 ∑
k+l=m

ak,lζ
k

]
(ηp+1)

∣∣∣∣∣ ≤

≤ 2‖f‖rRη

‖η‖∞

(
Rη

√
2

r

)m

(2Rη‖z‖)m−N+1 1

‖η‖p∞
p∑

v=0

(Rη‖η‖∞)
v

≤ 2‖f‖rRη

‖η‖∞(2Rη‖z‖)N−1

(
2
√
2 ‖η‖∞R2

η‖z‖
r

)m
1

‖η‖p∞
(Rη(1 + ‖η‖∞))p+1 − 1

Rη(1 + ‖η‖∞)− 1

≤ 4‖f‖rRη

‖η‖∞(2Rη‖z‖)N−1

(
2
√
2 ‖η‖∞R2

η‖z‖
r

)m(
Rη(1 + ‖η‖∞)

‖η‖∞

)p

.

Now by the definition of εη from the statement of the lemma, for all ‖z‖ < εηr0, there

is r < r0 such that one still has ‖z‖ < εηr ≤ r

2
√
2 ‖η‖∞R2

η

, then for all N ≥ 1 and

p = 0, . . . , N − 1,∣∣∣∣∣∣Δp,(ηp,...,η1)

⎡⎣∑
m≥N

(
z2 + ζz1
1 + |ζ|2

)m−N+1 ∑
k+l=m

ak,lζ
k

⎤⎦ (ηp+1)

∣∣∣∣∣∣ ≤
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≤ 4‖f‖rRη

‖η‖∞(2Rη‖z‖)N−1

(
Rη(1 + ‖η‖∞)

‖η‖∞

)p ∑
m≥N

(
2
√
2 ‖η‖∞R2

η‖z‖
r

)m

≤ 8‖f‖rR2
η‖z‖

‖η‖∞(1− 2
√
2 ‖η‖∞R2

η‖z‖/r)

(√
2 ‖η‖∞Rη

r

)N (
Rη(1 + ‖η‖∞)

‖η‖∞

)p

.

√

We can finally give the proof of Theorem 1.

Proof. The proof of (1) ⇒ (2) is exactly Lemma 8, as well as (2) ⇒ (3) follows by Lemma 11.
(3) ⇒ (1): f ∈ O (B2(0, r0)) and K any compact subset of B2(0, εηr0) being fixed, there

is rK < r0 such that one still has supz∈K ‖z‖ < εηrK , ∀ z ∈ K. It follows from (3.3) and
Lemma 15 that for all N ≥ 1,

|RN (f ; η)(z)| ≤

≤ 8‖f‖rKR2
η‖z‖ (

√
2 ‖η‖∞Rη/rK)N

‖η‖∞(1− 2
√
2 ‖η‖∞R2

η‖z‖/rK)

N−1∑
p=0

|z2|N−1−p‖z‖p
p∏

j=1

√
1 + |ηj |2

(
Rη(1 + ‖η‖∞)

‖η‖∞

)p

≤ 8‖f‖rKR2
η

‖η‖∞(1− 2
√
2 ‖η‖∞R2

η‖z‖/rK)

(√
2 ‖η‖∞Rη‖z‖

rK

)N
((1 + ‖η‖∞)2Rη/‖η‖∞)N − 1

(1 + ‖η‖∞)2Rη/‖η‖∞ − 1

≤ 16‖f‖rKRη

(1 + ‖η‖∞)2(1− 2
√
2 ‖η‖∞R2

η‖z‖/rK)

(√
2R2

η(1 + ‖η‖∞)2‖z‖
rK

)N

.

Since

sup
z∈K

‖z‖ < εηrK =
1

2

rK√
2 (1 + ‖η‖∞)2R2

η

,

then

sup
z∈K

|RN (f ; η)(z)| ≤ 16‖f‖rKRη

(1 + ‖η‖∞)2(1− 2
√
2 ‖η‖∞R2

η supz∈K ‖z‖/rK)

1

2N
−−−−→
N→∞

0(3.11)

and the proof of Theorem 1 is achieved. √

We finish this section with the proof of Corollary 1 that gives some precision for the
convergence of EN (f ; η) to f as well as the uniform property.

Proof. The case of O (B2(0, r0)) follows from Lemma 7 and the estimate (3.11) of the last
proof above. In addition, this also proves the case for O (C2

)
by applying again Lemma 7

on one hand, Lemma 8 and the estimate (3.2) from its proof on the other hand. √

4. On the generalization to the case of any set {ηj}j≥1

In this part, we will give the proof of Theorem 2. First, let consider U(2,C) to be the group
of 2× 2 matrices that are isometric with respect to the Hermitian structure of C2. We need
to consider the action of (a subset of) U(2,C) on the complex lines {z1 − ηjz2 = 0}, j ≥ 1
and O (B2(0, r0)) (resp. O

(
C

2
)
).
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4.1. On the rotation of the lines. Let fix any ηc /∈ {ηj}j≥1 and consider the matrix

defined as

Uηc :=
1√

1 + |ηc|2
(
ηc 1
1 −ηc

)
.(4.1)

Uηc ∈ U(2,C), i.e.

U�
ηc = U−1

ηc =
1√

1 + |ηc|2
(
ηc 1
1 −ηc

)
= Uηc(4.2)

and {
Uηc({z1 − ηcz2 = 0}) = {z2 = 0} ,
U�
ηc({z2 = 0}) = {z1 − ηcz2 = 0} .

We remind the definition of θj = hηc(ηj) associated to ηc (Introduction, (1.10)):

∀ j ≥ 1, θj =
1 + ηcηj
ηj − ηc

,

and we give the proof of this preliminar result.

Lemma 16. Let be f ∈ O (B2(0, r0)) (resp. f ∈ O (C2
)
). For all N ≥ 1 and z ∈ B2(0, r0)

(resp. z ∈ C
2),

RN (f ; η)(z) = RN

(
f ◦ U�

ηc ; θ
)
(Uηcz) .

Proof. It is sufficient to consider the case of f ∈ O (B2(0, r0)) with z ∈ B2(0, r0). We set w =
Uηcz. Since Uηc is unitary, thenRN

(
f ◦ U�

ηc ; θ
)
is well-defined (and so is EN

(
f ◦ U�

ηc ; θ
)
(Uηcz)).

On the other hand, z = Uηcw and ηj =
1 + ηcθj
θj − ηc

(notice that θj �= ηc, ∀ j ≥ 1, since ηj is

supposed to be finite). First, one has for all p = 1, . . . , N ,

N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

=
N∏

j=1,j �=p

ηcw1 + w2√
1 + |ηc|2 − 1 + ηcθj

θj − ηc
w1 − ηcw2√
1 + |ηc|2

1 + ηcθp
θp − ηc

− 1 + ηcθj
θj − ηc

=

(
θp − ηc√
1 + |ηc|2

)N−1 N∏
j=1,j �=p

−(1 + |ηc|2)w1 + (1 + |ηc|2)θjw2

(1 + |ηc|2)θj − (1 + |ηc|2)θp

=

(
θp − ηc√
1 + |ηc|2

)N−1 N∏
j=1,j �=p

w1 − θjw2

θp − θj
.

Next, one has

z2 + ηpz1
1 + |ηp|2 =

w1 − ηcw2√
1 + |ηc|2 +

1 + ηcθp

θp − ηc
ηcw1 + w2√
1 + |ηc|2

1 +
1 + ηcθp
θp − ηc

1 + ηcθp

θp − ηc

=
θp − ηc√
1 + |ηc|2

(1 + |ηc|2)θpw1 + (1 + |ηc|2)w2

(1 + |θp|2)(1 + |ηc|2) =
θp − ηc√
1 + |ηc|2

w2 + θpw1

1 + |θp|2 .
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It follows that, for all N ≥ 1,

RN (f ; η)(z) =
N∑

p=1

N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

∑
k+l≥N

ak,lη
k
p

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

=
N∑

p=1

(
θp − ηc√
1 + |ηc|2

)N−1 N∏
j=1,j �=p

w1 − θjw2

θp − θj
×

×
∑

k+l≥N

ak,l

(
1 + ηcθp
θp − ηc

)k
(

θp − ηc√
1 + |ηc|2

)k+l−N+1(
w2 + θpw1

1 + |θp|2
)k+l−N+1

=
N∑

p=1

N∏
j=1,j �=p

w1 − θjw2

θp − θj

∑
m≥N

(
w2 + θpw1

1 + |θp|2
)m−N+1 ∑

k+l=m

ak,l
(1 + ηcθp)

k(θp − ηc)l

(
√
1 + |ηc|2)m .

Now notice that for all m ≥ 0 and all k, l with k + l = m, one has

(ηcθp + 1)k(θp − ηc)l =
∑

u+v=m

b(k,l)u,v θup ,

where b
(k,l)
u,v is the coefficient of XuY v of the polynomial (ηcX + Y )k(X − ηcY )l (that is

homogeneous with total degree k + l = m). It follows that∑
k+l=m

ak,l(η
cθp + 1)k(θp − ηc)l =

∑
u+v=m

θup
∑

k+l=m

ak,lb
(k,l)
u,v .

Now we claim that, for all u, v ≥ 0,
1

(
√
1 + |ηc|2)m

∑
k+l=m ak,lb

(k,l)
u,v is the Taylor coefficient

of wu
1w

v
2 of the function f ◦ U�

ηc . Indeed,

(
f ◦ U�

ηc

)
(w) =

∑
k,l≥0

ak,l

(
ηcw1 + w2√
1 + |ηc|2

)k(
w1 − ηcw2√
1 + |ηc|2

)l

=
∑
m≥0

1

(
√
1 + |ηc|2)m

∑
k+l=m

ak,l(η
cw1 + w2)

k(w1 − ηcw2)
l

=
∑
m≥0

1

(
√
1 + |ηc|2)m

∑
k+l=m

ak,l
∑

u+v=m

b(k,l)u,v wu
1w

v
2

=
∑

u,v≥m

wu
1w

v
2

[
1

(
√
1 + |ηc|2)m

∑
k+l=m

ak,lb
(k,l)
u,v

]
.

The claim follows by the uniqueness of the Taylor expansion of f ◦ U�
ηc . Finally,

RN (f ; η)(z) =
N∑

p=1

∏
j �=p

w1 − θjw2

θp − θj

∑
m≥N

(
w2 + θpw1

1 + |θp|2
)m−N+1 ∑

u+v=m

θup
1

(
√
1 + |θp|2)m

∑
k+l=m

ak,lb
(k,l)
u,v ,

that is exactly the formula RN (f ◦ U�
ηc ; θ)(w). The lemma is proved. √

4.2. Proof of part (1) from Theorem 2.

Proof. By Definition 1, since EN (·; η) converges, then in particular for all f ∈ O (C2
)
, the

interpolation formula EN (f ; η) converges to f , uniformly on any compact subset of C2.
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Let fix any ηc /∈ {ηj}j≥1, f ∈ O (C2
)
and let consider the associated θj = hηc(ηj), j ≥ 1.

By Lemmas 7 and 16, one has that [RN (f ; θ)] ◦ Uηc = RN (f ◦ Uηc ; η) converges to zero
uniformly on any compact subset of C2, then also RN (f ; θ) since Uηc is an isometry. By
applying Lemma 7 again, it follows that EN (f ; θ) converges to f , uniformly on any compact
subset of C2. Thus the assertion is a consequence of Lemma 11 (since there is no condition
for the set {θj}j≥1, see Remark 3.1). √

4.3. Proof of part (2) from Theorem 2. First, we give the proof of the following result
that will be useful in order to prove the second part of Theorem 2.

Lemma 17. Let {ηj}j≥1 be such that the interpolation formula EN (f ; η) converges to f ,
uniformly on any compact subset of C2 and also on any f in any compact subset of O (C2

)
.

Then the estimate (1.12) from Theorem 2 is satisfied, i.e. ∃Rη, ∀ p, q ≥ 0,

supηc /∈{ηj}j≥1

∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣ ≤ Rp+q
η .

Proof. First, it follows by Lemma 7 that RN (·; η) converges to 0, uniformly on any com-
pact subsets of C2 and O (C2

)
repectively. Next, let fix any ηc /∈ {ηj}j≥1 and set θj :=

hηc(ηj), ∀ j ≥ 1. On the other hand, let fix any f ∈ O (C2
)
and consider its Taylor expan-

sion f(z) =
∑

k,l≥0 ak,lz
k
1z

l
2. By applying Lemma 10 to the θj ’s and f , one has for all p ≥ 0,

q ≥ 1,∣∣∣∣∣∣Δp,(θp,...,θ1)

⎡⎣( ζ

1 + |ζ|2
)q ∑

k+l=p+q

ak,lζ
k

⎤⎦ (θp+1)

∣∣∣∣∣∣ ≤ sup
z∈B2(0,

√
2)

|Rp+1(f ; θ)(z)|

= sup
z∈B2(0,

√
2)

|Rp+1(f ◦ Uηc ; η)(z)| ,

the last equality coming from Lemma 16 and the fact that Uηc is unitary. Since the family
{f ◦ Uηc}ηc /∈{ηj} is a relatively compact subset of O (C2

)
, it follows by hypothesis that

supηc /∈{ηj}

⎡⎣ sup
p≥0, z∈B2(0,

√
2)

|Rp+1(f ◦ Uηc ; η)(z)|
⎤⎦ ≤ M(f) < +∞ ,

thus

supηc /∈{ηj},p≥0,q≥1

∣∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

⎡⎣( ζ

1 + |ζ|2
)q ∑

k+l=p+q

ak,lζ
k

⎤⎦ (hηc(ηp+1))

∣∣∣∣∣∣ < +∞ .

Now the end of the proof uses the same argument from Lemma 11: first, we deduce that
for all sequence (εn)n≥1 that converges to 0,

sup
ηc /∈{ηj}j≥1,p≥0, q≥1

|εp+q|
∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣
1

p+q

< +∞ .

By replacing (λm)m≥1 with (λm,ηc)m≥1,ηc /∈{ηj}j≥1
, where

λm,ηc : C0 → C

(εn)n≥1 �→ εm max
p≥0,q≥1,p+q=m

∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣
1

p+q
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and

‖λm,ηc‖ = max
p≥0,q≥1,p+q=m

∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣
1

p+q

,

the last above estimate means that for all ε ∈ C0, supm≥1,ηc /∈{ηj}j≥1
|λm,ηc(ε)| < +∞. It

follows by the Banach-Steinhaus Theorem that supm≥1,ηc /∈{ηj}j≥1
‖λm,ηc‖ < +∞, i.e.

sup
ηc /∈{ηj}j≥1,p≥0,q≥1,p+q=m

∣∣∣∣∣Δp,(hηc (ηp),...,hηc (η1))

[(
ζ

1 + |ζ|2
)q
]
(hηc(ηp+1))

∣∣∣∣∣
1

p+q

< +∞

and the lemma is proved. √

Now we can give the proof of part (2) from Theorem 2.

Proof. 2a) ⇒ 2b): Once again, by Definition 1 and Lemma 7, for all f ∈ O (C2
)
, RN (f ; η)

converges to 0, uniformly on any compact subset of C2. On the other hand, since {ηj}j≥1

is not dense, then

∃ η∞ ∈ C, ∃ ε∞ > 0, ∀ j ≥ 1, |ηj − η∞| ≥ ε∞(4.3)

(w.l.o.g. one can assume that η∞ �= 0). Let consider θj = hη∞(ηj), ∀ j ≥ 1. We claim that
{θj}j≥1 is bounded. Indeed, if |ηj | ≤ 2|η∞|, then by (4.3)

|θj | =
|1 + η∞ηj |
|ηj − η∞| ≤ 1 + 2|η∞|2

ε∞
< +∞ .

Otherwise |ηj | > 2|η∞| then

|θj | =
|η∞ + 1/ηj |
|1− η∞/ηj | ≤ |η∞|+ 1/(2|η∞|)

1− 1/2
= 2 (|η∞|+ 1/(2|η∞|)) < +∞ .

Now by Lemma 16 applied to ηc := η∞, it follows that for all f ∈ O (C2
)
, RN (f ; θ) =

[RN (f ◦ Uη∞ ; η)] ◦ U�
η∞ also converges to 0 uniformly on any compact subset (and so does

EN (f ; θ) to f by Lemma 7). In particular, Corollary 1 can be deduced to the (bounded) set
{θj}j≥1 that satisfies one of the equivalent conditions of Theorem 1. As a consequence, the
convergence of EN (f ; θ) to f is also uniform on any f belonging to any relatively compact
subset of O (C2

)
. By applying Lemmas 7 and 16 again, EN (f ; η) converges to f too,

uniformly on any compact subset and on any f belonging to any relatively compact subset
of O (C2

)
. Finally, an application of Lemma 17 leads to the required estimate (1.12).

2b) ⇒ 2c): It is an immediate consequence since C \ {ηj}j≥1 is not empty.

2c) ⇒ 2a): Once again, let consider θj = hη∞(ηj), ∀ j ≥ 1 as above. Then the bounded
set {θj}j≥1 satisfies (1.9). Let fix any r0 > 0. It follows by Theorem 1 that there is εθ > 0
such that, for all f ∈ O (B2(0, r0)), EN (f ; θ) converges to f uniformly on any compact
subset of B2(0, εθr0). By applying Lemmas 7 and 16, so does EN (f ; η) to f uniformly on
any compact subset of B2(0, εθr0) for any f ∈ O (B2(0, r0)). Finally, one can deduce by
Lemma 8 that EN (·; η) converges in the meaning of Definition 1.

In addition, as it has been specified above, the statement of Corollary 1 is still valid as a
consequence of one of these equivalent conditions. √
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5. About the geometric criterion

5.1. Proof of Theorem 3 when {ηj}j≥1 is bounded. Before giving the proof of this
result, we want to prove the following lemma that has been claimed in Introduction and
that will be usefull in all the following.

Lemma 18. The set {ηj}j≥1 is locally interpolable by real-analytic curves if and only if it

can locally holomorphically interpolate the conjugate function, i.e. for all ζ ∈ {ηj}j≥1, there
are a neighborhood V of ζ and g ∈ O (V ) such that

ηj = g(ηj) , ∀ ηj ∈ V .(5.1)

Proof. Let be ζ0 ∈ {ηj}j≥1. If there are Vζ0 ∈ V(ζ0), g ∈ O (Vζ0) such that ηj = g(ηj),
∀ ηj ∈ V , then any ηj is in the zero set of h(x, y) := x− iy − g(x+ iy). h is real-analytic in

the neighborhood of (x0, y0) := (� ζ0,� ζ0) and regular since ∇h(x0, y0) = (1− ∂g

∂x
(ζ0),−i−

i
∂g

∂x
(ζ0)) �= 0.

Conversely, assume that there are Vζ0 ∈ V (ζ0) and a real-analytic curve Cζ0 such that
{ηj}j≥1 ∩ Vζ0 ⊂ Cζ0 . Let be h real-analytic on Vζ0 such that Cζ0 = {ζ ∈ Vζ0 , h(�ζ,�ζ) = 0}
with ∇h(x0, y0) �= 0. By considering the Taylor expansion of h on (�ζ0,�ζ0) and the

change of variables using the Euler’s formulas for ζ, there is h̃(z, w) which is holomorphic
on a neighborhood of (ζ0, ζ0) such that (after reducing Vζ0 if necessary), for all ζ ∈ Vζ0 ,

h(�ζ,�ζ) = h̃
(
ζ, ζ
)
. Moreover,

∂h̃

∂ζ
(x0, y0) =

1

2

(
∂h

∂x
(x0, y0) + i

∂h

∂y
(x0, y0)

)
�= 0 since h

is real and ∇h(x0, y0) �= 0. By the holomorphic implicit function Theorem, there exist a

neighborhood Uζ0×Wζ0
of (ζ0, ζ0) and g ∈ O (Uζ0) such that, ∀ (z, w) ∈ U(ζ0,ζ0), h̃(z, w) = 0

if and only if w = g(z). In particular, since for all ζ ∈ Cζ0 , 0 = h(�ζ,�ζ) = h̃(ζ, ζ), then

after reducing Vζ0 if necessary, one has ζ = g(ζ), ∀ ζ ∈ Vζ0 . It follows that g|Vζ0
∈ O (Vζ0)

satisfies the required conditions for all ηj ∈ Vζ0 . √

Now we will give the proof of Theorem 3 in the special case when {ηj}j≥1 is bounded.

Lemma 19. Let {ηj}j≥1 be bounded and locally interpolable by real-analytic curves. Then
Theorem 3 is valid in this case.

Proof. First, it will suffice to prove that any bounded set {η}j≥1 that is locally interpolable
by real-analytic curves satisfies (1.9). Indeed, an application of Theorem 1 will allow to
deduce that EN (·; η) converges in the meaning of Definition 1, as well as the statement of
Corollary 1.

Let fix any ζ0 ∈ {ηj}j≥1. First, by Lemma 18, ∃Vζ0 ∈ V(ζ0), gζ0 ∈ O (Vζ0), such

that ∀ ηj ∈ Vζ0 , ηj = gζ0(ηj). In particular, ζ0 = gζ0(ζ0). Next, since

∣∣∣∣ gζ0(ζ0)

1 + ζ0gζ0(ζ0)

∣∣∣∣ =∣∣∣∣ ζ0
1 + |ζ0|2

∣∣∣∣ ≤ 1√
1 + |ζ0|2

≤ 1, then by reducing Vζ0 if necessary, one has

∣∣∣∣ gζ0(ζ)

1 + ζgζ0(ζ)

∣∣∣∣ ≤ 2,

for all ζ ∈ Vζ0 . This proves that there is εζ0 small enough such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gζ0 and

gζ0(ζ)

1 + ζgζ0(ζ)
∈ O

(
D(ζ0, 2εζ0)

)
,

∀ ηj ∈ D(ζ0, 2εζ0), ηj = gζ0(ηj) ,

∀ ζ ∈ D(ζ0, 2εζ0),

∣∣∣∣ gζ0(ζ)

1 + ζgζ0(ζ)

∣∣∣∣ ≤ 2 .

(5.2)
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This last property is true for all ζ ∈ {ηj}j≥1, it follows that {ηj}j≥1 ⊂ ⋃
ζ∈{ηj}j≥1

D(ζ, εζ).

On the other hand, since it is a compact subset, by the Lebesgue’s number Lemma, there
is ε0 > 0 (with ε0 ≤ 1) that satisfies: for all ζ ∈ {ηj}j≥1, there is ζ ′ ∈ {ηj}j≥1 such that
D(ζ, ε0) ⊂ D(ζ ′, εζ′).

Now the estimate (1.9) will be deduced as a consequence of the following stronger one
that we will prove for all q ≥ 0 and by induction on p ≥ 0:∣∣∣∣∣Δp,(ηip ,...,ηi1

)

[
ζ �→

(
ζ

1 + |ζ|2
)q
]
(ηip+1

)

∣∣∣∣∣ ≤
(

2

ε0

)p

2q ,(5.3)

where there is no condition on the choice for the p + 1 first points. This estimate being
obvious for p = 0 and all q ≥ 0, one can assume that p ≥ 0 and consider p + 2 arbitrary
points from the ηj ’s.

First, if there are j, k with 1 ≤ j < k ≤ p + 2 and such that |ηij − ηik | ≥ ε0, then by
Lemma 5∣∣∣∣∣Δp+1,(ηip+1

,...,ηi1
)

[(
ζ

1 + |ζ|2
)q
]
(ηip+2)

∣∣∣∣∣ =
∣∣∣∣∣Δp+1,(ηij

,ηip+2
,...,η̂ik

,...,η̂ij
,...,ηi1

)

[(
ζ

1 + |ζ|2
)q
]
(ηik)

∣∣∣∣∣
≤

∣∣∣Δp,(ηip+2
,...,η̂ij

,η̂ik
,...ηi1

)

[(
ζ

1+|ζ|2
)q]

(ηij )
∣∣∣+ ∣∣∣Δp,(ηip+2

,...,η̂k,η̂ij
,...,η1)

[(
ζ

1+|ζ|2
)q]

(ηik)
∣∣∣

|ηij − ηik |

≤ 2(2/ε0)
p2q

ε0

(the notation η̂j means that ηj has been removed), and this proves the induction.
Otherwise, one has that |ηij − ηi1 | < ε0, ∀ j = 2, . . . , p + 2. By the above property,

there is ζ0 ∈ {ηj}j≥1 such that D(ηj1 , ε0) ⊂ D(ζ0, εζ0). In particular, εζ0 ≥ ε0. An
application of the estimate (2.3) from Lemma 6 that is guaranteed by (5.2) and the choice

of
gζ0(ζ)

1 + ζgζ0(ζ)
∈ O

(
D(ζ0, 2εζ0)

)
with r = 2εζ0 , yields∣∣∣∣∣Δp,(ηip ,...,ηi1

)

[(
ζ

1 + |ζ|2
)q
]
(ηip+1)

∣∣∣∣∣ =

∣∣∣∣Δp,(ηip ,...,ηi1
)

[(
gζ0(ζ)

1 + ζgζ0(ζ)

)q]
(ηip+1)

∣∣∣∣
≤ 2εζ0 sup

|ζ−ζ0|=2εζ0

∣∣∣∣∣ 1∏p+1
j=1(ζ − ηij )

(
gζ0(ζ)

1 + ζgζ0(ζ)

)q
∣∣∣∣∣

≤ 2εζ0
1

εp+1
ζ0

2q ,

the last estimate coming from (5.2) and the fact that ηi1 , . . . , ηip+2 ∈ D(ηj1 , ε0) ⊂ D(ζ0, εζ0).
Since εζ0 ≥ ε0 and ε0 ≤ 1, it follows that∣∣∣∣∣Δp,(ηip ,...,ηi1

)

[(
ζ

1 + |ζ|2
)q
]
(ηip+1)

∣∣∣∣∣ ≤ 2

εp0
2q ≤ 2p+1

εp+1
0

2q

and this proves (5.3) in the second case. The proof of the lemma is finished. √

Remark 5.1. The proof can also be direct without using Theorem 1 (see [9]).
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5.2. Proof of Theorem 3 in the general case. We start by giving some comments about
a set {ηj}j≥1 that is locally interpolable by real-analytic curves. First, in Definition 2, we do
not need to assume that {ηj}j≥1 is not dense. The following result specifies that it cannot
be the case.

Lemma 20. The topological closure of a set that is locally interpolable by real-analytic
curves, has empty interior.

Proof. Let assume that it is not the case. Then there are ζ0 ∈ C and ε0 > 0 such that
D (ζ0, ε0) ⊂ {ηj}j≥1. In particular, ζ0 cannot be isolated. Since {ηj}j≥1 is locally inter-

polable by real-analytic curves, by Lemma 18 there are Vζ0 ∈ V (ζ0) and gζ0 ∈ O (Vζ0)
such that, for all ηj ∈ V , gζ0 (ηj) = ηj . By reducing Vζ0 if necessary, one can assume that

Vζ0 ⊂ {ηj}j≥1. For any subsequence (ηjk)k≥1 that converges to ζ0 with ηjk �= ζ0, ∀ k ≥ 1,

one has for all k large enough (so that ηjk ∈ Vζ0)

ηjk − ζ0
ηjk − ζ0

=
g (ηjk)− g (ζ0)

ηjk − ζ0
−−−−→
k→∞

∂g

∂ζ
(ζ0) .

In particular

∣∣∣∣∂g∂ζ (ζ0)

∣∣∣∣ = 1 then
∂g

∂ζ
(ζ0) = eiθ for θ ∈ [0, 2π).

Now let set wp = ζ0 + i e−iθ/2/p with p large enough so that wp ∈ Vζ0 . Since {wp}p≥p0
⊂

Vζ0 ⊂ {ηj}j≥1, for all p ≥ p0, there is ηjp ∈ {ηj}j≥1 such that ηjp ∈ Vζ0 and
∣∣ηjp − wp

∣∣ ≤
1/(2p2) (in particular, (ηjp)p≥p0 converges to ζ0), then

eiθ =
∂g

∂ζ
(ζ0) = lim

p→∞
ηjp − ζ0

ηjp − ζ0
= lim

p→∞
wp − ζ0 + ηjp − wp

wp − ζ0 + ηjp − wp

= lim
p→∞

−ieiθ/2/p+O(1/p2)

ie−iθ/2/p+O(1/p2)
= −eiθ ,

and that is impossible. √

The following result specifies that this geometric condition is not changed by any rotation
of the lines.

Lemma 21. Let assume that {ηj}j≥1 is locally interpolable by real-analytic curves. Then
for all ηc /∈ {ηj}j≥1, so is {θj}j≥1 where θj = hηc(ηj), ∀ j ≥ 1.

Proof. Let fix any ηc and consider the associated θj ’s. First, since hηc is homographic, in

particular it is a topological isomorphism of C then {θj}j≥1 = hηc

(
{ηj}j≥1

)
.

Next, let be ζ0 ∈ {ηj}j≥1 with ζ0 finite. If hηc(ζ0) is finite, then the equivalent geometric
criterion claimed by Lemma 18 is satisfied on hηc(ζ0) since condition (5.1) is invariant under
the action of biholomorphisms. Indeed, let V be a neighborhood of ζ0 and g ∈ O(V ) which
satisfy (5.1) and let recall the definition (1.10) of hηc from Introduction:

hηc : C → C

ζ �→ ηcζ + 1

ζ − ηc
.

In particular h−1
ηc (ζ) =

ηcζ + 1

ζ − ηc
= hηc

(
ζ
)
and one can see that θj = h−1

ηc

[
g
(
h−1
ηc (θj)

)]
,

∀ θj ∈ hηc(V ).
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If hηc(ζ0) = ∞, the same argument holds since the analogous function h−1
ηc ◦ g ◦ h−1

ηc will
be holomorphic in a neighborhood of ∞ (as specified by (1.13) from Introduction).

The case where ζ0 = ∞ and hηc(∞) is finite (resp. = ∞) is analogous. √

Now we can give the proof of Theorem 3.

Proof. Let {ηj}j≥1 be a subset that is locally interpolable by real-analytic curves. If it is
bounded, then Theorem 3 follows by Lemma 19.

Otherwise, we know by Lemma 20 that {ηj}j≥1 cannot be dense, then there is η∞ /∈
{ηj}j≥1. Let consider the associated bounded subset {θj}j≥1, where θj = hη∞(ηj), j ≥ 1
(where hη∞ is defined as in (1.10) from Introduction with the choice of ηc := η∞). Then
{θj}j≥1 is bounded (the justification is the same as in the proof of part (2) from Theorem 2).
On the other hand, by Lemma 21, {θj}j≥1 is still locally interpolable by real-analytic curves.
It follows by Lemmas 19 and 7 that there is εη > 0 such that RN (f ; θ) converges to 0
uniformly on any compact subset of B2(0, εηr0) (resp. C

2), for any f ∈ O (B2(0, r0)) (resp.
O (C2

)
). Finally, by Lemma 16, this holds for RN (·; η) (hence for EN (·; η) by lemma 7) and

this proves the theorem. √

5.3. A special case of equivalence with the geometric condition. In this part we
give the proof of Proposition 2 claimed in Introduction.

Proof. First, the set {ηj}j≥1 is bounded since the sequence (ηj)j≥1 is convergent. One

has in addition {ηj}j≥1 = {η∞} ∪ {ηj}j≥1. It follows that, ζ0 ∈ {ηj}j≥1 being given, one
can assume that ζ0 = η∞ (otherwise ζ0 is one of the ηj ’s that are isolated). Since EN (·; η)
converges (in the meaning of Definition 1), then in particular EN (f ; η) converges to f on any
compact subset of C2 and for all f ∈ O (C2

)
. By applying Theorem 1 and the estimate (1.9)

for q = 1, it follows that there is Rη such that, ∀ p ≥ 0, one has∣∣∣∣Δp,(ηp,...,η1)

[
ζ �→ ζ

1 + |ζ|2
]
(ηp+1)

∣∣∣∣ ≤ Rη
p+1 .(5.4)

For all N ≥ 1, let consider LN [ϕ], the Lagrange interpolating polynomial of ϕ(ζ) = ζ/(1 +
|ζ|2) (see (2.1)). We know by Lemma 2 that

LN [ϕ](ζ) =

N−1∑
p=0

⎛⎝ p∏
j=1

((ζ − η∞)− (ηj − η∞))

⎞⎠Δp,(ηp,...,η1)[ζ �→ ϕ(ζ)] (ηp+1) .

Let be p0 such that, ∀ j ≥ p0, |ηj − η∞| ≤ 1/(3Rη) and let consider V = D (η∞, 1/(3Rη)).
One has by (5.4) for all N ≥ p0 and ζ ∈ V ,

|LN (ϕ)(ζ)| ≤
p0−1∑
p=0

⎛⎝ p∏
j=1

(|ζ|+ |ηj |)
⎞⎠∣∣Δp,(ηp,...,η1)[ϕ] (ηp+1)

∣∣
+

N∑
p=p0

⎛⎝ p0∏
j=1

(|ζ|+ |ηj |)
p∏

j=p0+1

(|ζ − η∞|+ |ηj − η∞|)
⎞⎠∣∣Δp,(ηp,...,η1)[ϕ] (ηp+1)

∣∣
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≤
p0−1∑
p=0

(
|η∞|+ 1/(3Rη) + max

1≤j≤p0

|ηj |
)p

Rp+1
η

+
N∑

p=p0

(
|η∞|+ 1/(3Rη) + max

1≤j≤p0

|ηj |
)p0
(

2

3Rη

)p−p0

Rp+1
η .

It follows that there is Cp0
large enough such that ∀N ≥ p0,

sup
N≥p0

sup
ζ∈V

|LN (ϕ)(ζ)| ≤ sup
N≥p0

(
Cp0 + Cp0

N∑
p=p0

(2/3)
p−p0

)
< +∞ .

The sequence (LN (ϕ))N≥1 of polynomials is uniformly bounded on V . By the Stiltjes-

Vitali-Montel Theorem, there is a subsequence (LNk
(ϕ))k≥1 that uniformly converges on

any compact K ⊂ V to a function g that is holomorphic on V . One has in addition for all
ηj ∈ V ,

g (ηj) = lim
k→∞,Nk≥j

LNk
(ϕ) (ηj) = lim

k→∞,Nk≥j
ϕ (ηj) = ϕ (ηj) ,

i.e. the (nonholomorphic) function ϕ coincides with g on V ∩ {ηj}j≥1. In particular, this
yields

ηj =
g (ηj)

1− ηjg(ηj)
.(5.5)

On the other hand,

|η∞g (η∞)| = lim
j→∞

|ηjg (ηj)| = lim
j→∞

|ηjϕ (ηj)| = |η∞ϕ (η∞)| =
|η∞|2

1 + |η∞|2 < 1 .

Then by reducing V if necessary, the following function

g̃ : V −→ C

ζ �→ g(ζ)

1− ζg(ζ)
,

is well-defined, holomorphic and satisfies by (5.5) the geometric criterion (5.1). The proof
follows by applying Lemma 18. √

Remark 5.2. One can see from this proof that, in order to prove the assertion, it suffices to
assume that EN (f ; η) converges to f on any compact subset of C2 and for all f ∈ O (C2

)
(part (2) from Theorem 1).

As a consequence we get an effective process to construct examples of sets {ηj}j≥1 for
which the associated interpolation formula EN (·; η) does not converge: any convergent se-
quence that cannot be embedded in any real-analytic curve like in the following result.

Corollary 2. Let consider the following sequence defined as

ηj :=
ij

j
, ∀ j ≥ 1 .

Then the associated interpolation formula EN (·; η) does not converge (in the meaning of
Definition 1).
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Proof. By Lemma 8, in order to prove that EN (·; η) does not converge in the meaning of
Definition 1, it suffices to prove that EN (·; η) does not satisfy part (2) from Theorem 1, i.e.
it is false that EN (f ; η) converges to f uniformly on any compact subset of C2 and for all
f ∈ O (C2

)
. If it were true, then by Proposition 2 and Remark 5.2, the convergent sequence

(ηj)j≥1 would be locally interpolable by real-analytic curves. By Lemma 18, there would

exist a neighborhood V of 0 and g ∈ O(V ) that satisfy condition (5.1). In particular, one
would have for all j large enough that g(η2j) = g((−1)j/(2j)) = (−1)j/(2j) = η2j (resp.
g(η2j+1) = g((−1)j i/(2j + 1)) = −(−1)j i/(2j + 1) = −η2j+1), hence by the uniqueness
theorem, ζ = g(ζ) = −ζ. This is impossible in any neighborhood of 0. √
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Appendix: Proof of relation (1.2) from Introduction

In this part we want to prove the following result.

Proposition 3. Let be f ∈ O (B2(0, r0)) (resp. f ∈ O (C2
)
) and

∑
k,l≥0 ak,lz

k
1z

l
2 its Taylor

expansion. One has, for all N ≥ 1 and z ∈ B2(0, r0) (resp. z ∈ C
2),

f(z) = EN (f ; η)(z)−RN (f ; η)(z) +
∑

k+l≥N

ak,lz
k
1z

l
2 ,(5.6)

where

EN (f ; η)(z) :=
N∑

p=1

⎛⎝ N∏
j=p+1

(z1 − ηjz2)

⎞⎠ N∑
q=p

1 + ηpηq
1 + |ηq|2

1∏N
j=p,j �=q(ηq − ηj)

×

×
∑

m≥N−p

(
z2 + ηqz1
1 + |ηq|2

)m−N+p
1

m!

∂m

∂vm
|v=0[f(ηqv, v)]

and

RN (f ; η)(z) :=
N∑

p=1

⎛⎝ N∏
j=1,j �=p

z1 − ηjz2
ηp − ηj

⎞⎠ ∑
k+l≥N

ak,lη
k
p

(
z2 + ηpz1
1 + |ηp|2

)k+l−N+1

.

Moreover, the function EN (f ; η) satisfies the following properties:

(1) EN (f ; η) ∈ O (B2(0, r0)) (resp. EN (f ; η) ∈ O (C2
)
);

(2) EN (f ; η) is an explicit formula that is constructed with the data{
f|{z1=ηpz2}

}
1≤p≤N

;

(3) ∀ p = 1, . . . , N ,

EN (f ; η)|{z1=ηpz2} = f|{z1=ηpz2} ;

(4) ∀P ∈ C[z1, z2] with degP ≤ N − 1, EN (P ; η) ≡ P .

This result allows to justify relation (1.2) that has been claimed in Introduction. Before
giving its proof, we begin with the following preliminar lemma.

Lemma 22. EN (f ; η)(z) (resp. RN (f ; η)(z)) is well-defined for all z ∈ B2(0, r0) and is
holomorphic on B2(0, r0). Similarly, if f ∈ O (C2

)
, then EN (f ; η), RN (f ; η) ∈ O (C2

)
.

Proof. We just consider EN (f ; η) (the case of RN (f ; η) is similar). It will suffice to show
that the series is absotulely convergent for any z ∈ B2(0, r0). First, by the Taylor expansion
of f , one has that, for all m ≥ 0 and q = 1, . . . , N ,

1

m!

∂m

∂vm
|v=0[f(ηqv, v)] =

∑
k+l≥0

ak,lη
k
q

1

m!

∂m

∂vm
|v=0

[
vk+l

]
=

∑
k+l=m

ak,lη
k
q .(5.7)

For all N ≥ 1, p = 1, . . . , N , by using the Cauchy-Schwarz inequality (one can assume that
z �= 0 otherwise the assertion is obvious), this leads to

∑
m≥N−p

∣∣∣∣z2 + ηqz1
1 + |ηq|2

∣∣∣∣m−N+p
1

m!

∣∣∣∣ ∂m

∂vm
|v=0[f(ηqv, v)]

∣∣∣∣ ≤
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≤
∑

m≥N−p

(
‖z‖√1 + |ηq|2

1 + |ηq|2
)m−N+p ∑

k+l=m

|ak,l| |ηq|k

≤
(√

1 + |ηq|2
‖z‖

)N−p ∑
k+l≥N−p

|ak,l|
(

|ηq| ‖z‖√
1 + |ηq|2

)k( ‖z‖√
1 + |ηq|2

)l

,

This sum is finished since f ∈ O (B2(0, r0)) and∥∥∥∥∥
(

|ηq| ‖z‖√
1 + |ηq|2

,
‖z‖√

1 + |ηq|2

)∥∥∥∥∥ =
‖z‖√

1 + |ηq|2
√
|ηq|2 + 1 = ‖z‖ < r0 ,

then one has

(
|ηq| ‖z‖√
1 + |ηq|2

,
‖z‖√

1 + |ηq|2

)
∈ B2(0, r0) and the Taylor expansion (also any

partial sum) on z is finished.
Thus EN (f ; η) is well-defined and holomorphic on B2(0, r0). Finally, the case of f ∈

O (C2
)
follows by restriction on B2(0, r0) where r0 can be taken arbitrary large. √

The next result is the proof of (5.6).

Lemma 23. One has for all N ≥ 1 and z ∈ B2(0, r0),

f(z) = EN (f ; η)(z)−RN (f ; η)(z) +
∑

k+l≥N

ak,lz
k
1z

l
2 .

Proof. We prove this equality by induction on N ≥ 1. For N = 1, by using (5.7), one has
for all z ∈ B2(0, r0),

E1(f ; η)(z) =
∑

k+l≥0

ak,lη
k
1

(
z2 + η1z1√
1 + |η1|2

)k+l

and

R1(f ; η)(z) =
∑

k+l≥1

ak,lη
k
1

(
z2 + η1z1√
1 + |η1|2

)k+l

.

It follows that

E1(f ; η)(z)−R1(f ; η)(z) +
∑

k+l≥1

ak,lz
k
1z

l
2 = a0,0 +

∑
k+l≥1

ak,lz
k
1z

l
2 = f(z) ,

and this proves the lemma for N = 1.

Now we assume that the assertion is true for N , i.e. it is true for any function f ∈
O (B(0, r0)) and any N -set of different points η1, . . . , ηN . Then we consider EN+1(f ; η)(z)
and RN+1(f ; η)(z) (with z ∈ B2(0, r0) being fixed). First, by using (5.7) and isolating the
index p = 1 in the below sum, one has

EN+1(f ; η)(z) =
N+1∑
p=1

⎛⎝ N+1∏
j=p+1

(z1 − ηjz2)

⎞⎠N+1∑
q=p

1 + ηpηq
1 + |ηq|2

1∏N+1
j=p,j �=q(ηq − ηj)

×

×
∑

k+l≥N+1−p

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−(N+1)+p

= AN+1 +BN+1 ,(5.8)
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where

AN+1 =

N+1∏
j=2

(z1 − ηjz2)

N+1∑
q=1

1 + η1ηq
1 + |ηq|2

1∏N+1
j=1,j �=q(ηq − ηj)

∑
k+l≥N

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

and

BN+1 =
N+1∑
p=2

⎛⎝ N+1∏
j=p+1

(z1 − ηjz2)

⎞⎠N+1∑
q=p

1 + ηpηq
1 + |ηq|2

∑
k+l≥N+1−p ak,lη

k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N−1+p

∏N+1
j=p,j �=q(ηq − ηj)

=
N∑

p=1

⎛⎝ N∏
j=p+1

(z1 − ηj+1z2)

⎞⎠ N∑
q=p

1 + ηp+1ηq+1

1 + |ηq+1|2

∑
k+l≥N−p ak,lη

k
q+1

(
z2 + ηq+1 z1
1 + |ηq+1|2

)k+l−N+p

∏N
j=p,j �=q(ηq+1 − ηj+1)

.

In particular,

BN+1 = EN (f ; η′) (z) ,(5.9)

where

η′ := (η2, η3, . . .) .(5.10)

Next, we claim that

RN+1(f ; η)(z) =
N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ ∑
k+l≥N

ak,lη
k
q

(
z2 + ηq z1
1 + |ηq|2

)k+l−N

−
∑

k+l=N

ak,lz
k
1z

l
2 .(5.11)

Indeed, for all z2 �= 0 (that will suffice since the involved functions are holomorphic), one
has

RN+1(f ; η)(z) =
N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ ∑
k+l≥N+1

ak,lη
k
q

(
z2 + ηq z1
1 + |ηq|2

)k+l−(N+1)−1

=

N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ ∑
k+l≥N

ak,lη
k
q

(
z2 + ηq z1
1 + |ηq|2

)k+l−N

−zN2
∑

k+l=N

ak,l

⎡⎣N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1/z2 − ηj
ηq − ηj

⎞⎠ ηkq

⎤⎦ .

On the other hand, since 0 ≤ k ≤ k + l = N < N + 1, then the Lagrange polynomial
LN+1(X

k) on the N + 1 points η1, . . . , ηN+1, is exactly Xk, hence

zN2
∑

k+l=N

ak,l

⎡⎣N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1/z2 − ηj
ηq − ηj

⎞⎠ ηkq

⎤⎦ =
∑

k+l=N

ak,lz
k
1z

N−k
2

and this proves the claim.
Finally, the last part with which we have to deal is AN+1. Since for all q = 1, . . . , N + 1,

one has
N+1∏
j=2

(z1 − ηjz2) =

N+1∏
j=1,j �=q

(z1 − ηjz2)− z2 (ηq − η1)

N+1∏
j=2,j �=q

(z1 − ηjz2) ,
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then

AN+1 =

N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ 1 + η1ηq
1 + |ηq|2

∑
k+l≥N

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

−
N+1∑
q=2

⎛⎝z2 (ηq − η1)

N+1∏
j=2,j �=q

(z1 − ηjz2)

⎞⎠ 1 + η1ηq
1 + |ηq|2

∑
k+l≥N ak,lη

k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

(ηq − η1)
∏N+1

j=2,j �=q(ηq − ηj)

=
N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ 1 + η1ηq
1 + |ηq|2

∑
k+l≥N

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

−z2

N∑
q=1

⎛⎝ N∏
j=1,j �=q

z1 − ηj+1z2
ηq+1 − ηj+1

⎞⎠ 1 + η1ηq+1

1 + |ηq+1|2
∑

k+l≥N

ak,lη
k
q+1

(
z2 + ηq+1 z1
1 + |ηq+1|2

)k+l−N

.

By applying (5.11), one has

AN+1 −RN+1(f ; η)(z) =
N+1∑
q=1

⎛⎝ N+1∏
j=1,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠[1 + η1ηq
1 + |ηq|2 − 1

] ∑
k+l≥N

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

− z2

N∑
q=1

⎛⎝ N∏
j=1,j �=q

z1 − ηj+1z2
ηq+1 − ηj+1

⎞⎠ 1 + η1ηq+1

1 + |ηq+1|2
∑

k+l≥N

ak,lη
k
q+1

(
z2 + ηq+1 z1
1 + |ηq+1|2

)k+l−N

+
∑

k+l=N

ak,lz
k
1z

l
2 .

The first sum becomes

N+1∑
q=2

z1 − η1z2
ηq − η1

⎛⎝ N+1∏
j=2,j �=q

z1 − ηjz2
ηq − ηj

⎞⎠ ηq(η1 − ηq)

1 + |ηq|2
∑

k+l≥N

ak,lη
k
q

(
z2 + ηqz1
1 + |ηq|2

)k+l−N

=

= −
N∑
q=1

⎛⎝ N∏
j=1,j �=q

z1 − ηj+1z2
ηq+1 − ηj+1

⎞⎠ ηq+1(z1 − η1z2)

1 + |ηq+1|2
∑

k+l≥N

ak,lη
k
q+1

(
z2 + ηq+1z1
1 + |ηq+1|2

)k+l−N

.

Since for all q = 1, . . . , N , ηq+1(z1 − η1z2) + z2(1 + η1ηq+1) = z2 + ηq+1z1, it follows that

AN+1 −RN+1(f ; η)(z) =

= −
N∑
q=1

⎛⎝ N∏
j=1,j �=q

z1 − ηj+1z2
ηq+1 − ηj+1

⎞⎠ z2 + ηq+1z1
1 + |ηq+1|2

∑
k+l≥N

ak,lη
k
q+1

(
z2 + ηq+1z1
1 + |ηq+1|2

)k+l−N

+
∑

k+l=N

ak,lz
k
1z

l
2

= −RN (f ; η′) (z) +
∑

k+l=N

ak,lz
k
1z

l
2 ,

with the same definition of η′ as in (5.10). We can finally deduce by applying (5.8) and (5.9)
that

EN+1(f ; η)(z)−RN+1(f ; η)(z) +
∑

k+l≥N+1

ak,lz
k
1z

l
2 =

= −RN (f ; η′) (z) +
∑

k+l=N

ak,lz
k
1z

l
2 + EN (f ; η′) (z) +

∑
k+l≥N+1

ak,lz
k
1z

l
2 ,

that is exactly f(z) by applying the induction hypothesis and the lemma follows. √
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Now we can prove Proposition 3.

Proof. The relation (5.6) is Lemma 23, property (1) is Lemma 22 and property (2) follows
from the definition of EN (f ; η).

In order to prove property (3), let fix N ≥ 1 and p with 1 ≤ p ≤ N . For all z ∈ B2(0, r0)
with z1 = ηpz2, one has

RN (f ; η) (ηpz2, z2) = zN−1
2

∑
k+l≥N

ak,lη
k
pz

k+l−N+1
2 =

∑
k+l≥N

ak,l (ηpz2)
k
zl2 ,

that is exactly the restriction on the complex line {z1 = ηpz2} of the remainder part∑
k+l≥N ak,lz

k
1z

l
2. The required property follows by (5.6).

Finally, property (4) is an immediate consequence of (5.6) since, for all k, l with k + l ≥
N > degP , ak,l(P ) =

1

k! l!

∂k+l

∂zk1∂z
l
2

|z=0 [P (z)] = 0 .
√


