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A CRITERION FOR THE EXPLICIT RECONSTRUCTION OF A
HOLOMORPHIC FUNCTION FROM ITS RESTRICTIONS ON LINES

AMADEO IRIGOYEN

ABSTRACT. We deal with a problem of the explicit reconstruction of any holomorphic
function f on a ball of C? from its restrictions on a union of complex lines. The validity
of such a reconstruction essentially depends on the mutual repartition of these lines. This
criterion can be analytically described and it is also possible to give geometrical sufficient
conditions. The motivation of this problem also comes from possible applications in
mathematical economics and medical imaging.
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1. INTRODUCTION

1.1. Presentation of the problem and first results.

1.1.1. General formulation of the problem. In this paper we deal with a problem of the
reconstruction of a holomorphic function from its restrictions on analytic submanifolds. f
being a holomorphic function on a domain Q C C" and {Z; }é\le a family of analytic sub-
manifolds of Q, we want to find f from the data f\{Zj}le = {fz, }j\;l One can give
interpolating functions fy € O () that satisfy fN\{Zj}L = f|{Zj}§v=1 (for example if Q is
convex, strictly pseudoconvex or @ = C™, see [1]), but generally fn # f. Then a natural way
is to consider an infinite family of submanifolds {Z;}52, and construct the associated inter-
polating frz,1,., as limy_, fn. In this case the uniqueness of the interpolating function
will certainly be guaranteed but without any assurance of the convergence of the sequence
(fN)n>1- Moreover, this motivates the research of explicit reconstruction formulas.

1.1.2. An explicit interpolation formula. Here we deal with the case of C2, Q = By(0,79) C
C? (where By(0,79) = {z € C2, |21]® + |22|> < 73}), and a family of distinct complex lines
that cross the origin. Such a family can be described as

(1.1) {z €C? 21 —njzo = O}}j21 ,

with 7; € C all different, that we will simply denote by n = {n;};>1 (w.l.o.g. we can forget
the line {z2 = 0} that is associated to 1y = o0). On the other hand, f € O (B3(0,1)) being
1
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given, a way to give one interpolating function fy is the one that uses one of the essential
ideas from [1], whose computation exploits residues and principal values (see [3] and [7]) and
whose motivation is to get a formula that fixes any polynomial function with degree smaller
than N. S5(0,1) being the unit sphere, one has V z € Bs(0, 1),

=0 (270)% Jeesa (0,01, (G —nio)|== TTimy (G — m5G2) (1= < G2 >)
~ lim H;V:1(Zl ‘_27732'2) / . ( ) ANw(C
=0 (2m) ¢€52(0,1),|TTL, (GL-m;¢a)| > szl(Cl - mCz)( - < C,Z >)?

fz) =

where w'({) = (1d¢s — (2d(1, w(¢) = d¢ A d¢s, and Pyn((,2) € ((’) ((C2 X (CQ))2 satisfies
V (¢, 2) € C? x C?,

N N
< Pn(Q),¢—2>= Pni(C2) (G — 21) + Pn2(C2) (G2 — 22) H (G —mi¢2) — H(Zl —1;z2) -
=1 j=1

Both integrals can be explicited and yield the following relation: let f € O (B2(0,r)) (resp.
f € O(C?), one has Vz € By(0,r9) (resp. z € C?),

(1.2) f(z) = En(fin)(z) = BRn(fin)(z Z ak121227

k+I>N

where >, ;50 ak,lz’fzé is the Taylor expansion of f,

iyt S 1
Ex(fin)(z) = Z H (21 —mj22) Z . X
p=1 \j=p+1 a=p Lt [l HJ —p,iqa = 1)
13 T () el o)
. v=0 )
m>N—p 1+ |77(1|2 m' o™ I

) k+l—N-+1

N N 2o + Np2
(1.4) N(f; )( ): H & E ik,lnk (fT p|21

p=1 \j=14#p 7 ] SN

This relation is an application of the main theorem from [8] that is a more general version
for the case of multiple complex lines (i.e. with the restriction of f and its first derivatives
on every line). A direct proof of (1.2) is also given in the Appendix (Proposition 3). On the
other hand, the formula Ex(f;n) is well-defined and has the following properties:

o En(fin) € O(B2(0,70)) (resp. En(fin) € O (C?));
e En(f;m) is an explicit formula that is constructed with the data {f|{z1:n_jzz} }1Sj§N;
e Vj=1,...,N, EN(f;n)l{lenjzz} = flzi=n; 22}

In addition, Exn(f;n) is essentially the unique formula that fixes any polynomial function
with bounded degree: ¥V P € C|z1, 22] with degP < N — 1, Ex(P;n) = P.

As N — oo, the function f — En(f;n) will be a holomorphic function that will vanish on
an increasing number of lines. If En(f;n) were uniformly bounded on any compact subset
(in particular if it converged to some function), then by the Stiltjes-Vitali-Montel Theorem,
there would be a subsequence of f — FEn(f;n) that would converge to a holomorphic function
that would vanish on an infinite number of lines, so this limit would be 0 (in fact, the whole
sequence En(f;n) would converge to f uniformly on any compact subset).
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1.1.3. Applications in Radon transform theory. Our reconstruction problem is also moti-
vated by possible applications in real Radon transform theory that may have consequences
in mathematical economics and medical imaging. Let p be a measure with compact sup-
port K C R? (w.l.o.g. one can assume that 0 € K). We want to reconstruct it from the
knowledge of its Radon transforms on a finite number of directions, i.e. from (Rpu) (Q(j ), s)

with (00),s) € S x Rand j =1,..., N, where S! is the unit sphere of R? and
0

0s {zeR?, 0§”m1+9§”x2§ s}

(1.5) (7zﬂ)<o<ﬂ,s) = u(d) .
The way is the following: we use some properties of the Fantappie transform of i (see [13]).
We consider the dual space K* ¢ CP? (the projective complex space) that is defined as
the open set of the complex lines & of C2 D R? D K that do not cross K, i.e. K* :=
{§ =1[£:&:&)eCP?, <& >#0,Vx € K} , where < &, >:= &y + {121 + Eawa. The
Fantappie transform of p is defined by

(1.6) o, : K* — C
&o o &o
et el )

This function is well-defined and holomorphic on K*. C2 C CP? being the affine space of
CP? defined by the canonical identification z € C? 5 [1 : 21 : 25] € {€ € CP?, & # 0},
a classical calculation yields 7 > 0 such that Bo(0,7x) C K* and, for all § € S? and all
u € C with |u| < rg,

T (Ryu) (6, 5)
1+su

D, ([1:uby :ubs]) = / ds.

It follows that the knowledge of (Ru)(0\),s), 5 = 1,...,N, s € R, allows to know the
restriction of ®, € O (B2(0,7x)) on every line Ly = {(uby,ubs2), u € C} = {z € C?, z; =
n;z2} where

(1.7) n = 609/ cR j=1,... N

(w.l.o.g. one can assume that 95” # 0). Thus, if the interpolation formula Ex(®,;7) con-
verges to ®,,, then by the Martineau’s isomorphism theorem (see [13]), it will be possible to
give an explicit family of measures pn, N > 1 (defined from En(®,;7) under the reciprocal
isomorphism ®~1) that will converge to p in an appropriate topology.

1.1.4. A first observation. The essential problem is that we do not have any control a priori
of the function Ex(f;7n) and do not have any idea if Ex(f;n) is always uniformly bounded
for any given f. Indeed, the following result that will be justified below gives explicit positive
and negative examples of sets {n;};>1.

Proposition 1. (1) Let consider the following sequence defined as

'
n = —,Vj>1.
J

Then the associated interpolation formula En(-;n) does not converge, i.e. there
exists f € O (CQ) such that Ex(f;n) does not converge (uniformly in any compact
subset K C C?). Similarly, for all € > 0, there is f € O (B2(0,70)) and a compact
subset K C By(0,erg) such that Ex(f;n) does not converge in K.
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(2) Let consider any set {n;};>1 C R. Then the associated interpolation formula con-
verges, i.e. for all f € O(C2), En(f;n) converges to f uniformly on any com-
pact subset of C2.  Similarly, ro being given, there is &, > 0 such that, for all
f € O(B2(0,19)), Ex(f;n) converges to f uniformly on any compact subset of
B2(0,€n’/‘0).

The same holds true if we consider any set {n;};>1 C C with |n;| =1,Vj > 1.

On one hand, this fact leads to the following questions: first, which are the sets {n;};>1
whose interpolation formula Ex (+;7) will converge or will not? Next, is there some criterion
that allows to know if a given set {n;};>1 will make converge (or will not) its associated
interpolation formula En(+;1)? These questions will be answered in the following subsection.

On the other hand, the second part of Proposition 1 can be applied in our reconstruction
problem in Radon transform theory (the associated 7);’s are real by (1.7)). It follows that
the measure p can be reconstructed in an appropriate topology by an explicit family of
interpolating measures uy (un interpolates g in the meaning that, for all N > 1 and
k,1 > 0 with k+1 < N, < uy, bl >=< p,2fzl, >). In addition, an application of
some results of Henkin and Shananin from [6] will allow to give some good precision for
this reconstruction. These expected estimates may also be compared to the one of Logan
and Shepp from [12] where they establish the optimal reconstruction formula for p in the
special case of uniformly distributed lines #()’s. This would allow to give some prognosis
for the ability of our reconstruction formula Ex(-;7), at least in the case of real n;’s. All
these results are handled in [11] that is currently in progress.

1.2. An equivalent criterion. Before giving the first essential result, we need to consider
the following operator of divided differences A, of any function ¢ that is defined on the 7;’s
and that looks like the discrete derivative of ¢ with order p (see [5]):

(1.8) Doo(p)(m) = ¢(m),

AP—L(%—hn-Jh)(‘p)(nzﬂrl) - Ap—l,(npq,4..,711)(90)(7717)
Mp+1 — lp .

Then we can give the following equivalent criterion for the convergence of En(+;n) in the

case when the subset {n;};>1 is bounded.

Theorem 1. Let {n;};>1 be bounded and fix any ro > 0. TFAE:

(1) there is €, > 0 such that, for all f € O(B2(0,r)), the interpolation formula
En(f;n) converges to f, uniformly on any compact subset of Ba(0,e,r0);
(2) forallge O (Cz), the interpolation formula En(g;n) converges to g, uniformly on

any compact subset of C?;
Z q
(1 + |<|2> Vet

(3) 3Ry =1,VYp,q =0,
Furthermore, this result yields the following consequences: first, some precision for the
convergence of En(f;n) to f; next, this convergence is also uniform with respect to f
belonging to any given compact subset.

vp 2 ]., Ap7(np...,7]1)(so)(np+1) =

(]‘9) AP7(77pw-7771) Rg+q :

Corollary 1. When any of the equivalent conditions from the above theorem is satisfied,
one has in addition: for all K C O (B2(0,70)) (resp. O (C?)) and K C B3(0,e,70) (resp.
C?) compact subsets, there are Cxx and ex > 0 such that, for all N > 1,

sup sup |f(z) — En(fin)(2)] < Cix(1—ex)™.
fEK zeK
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This analytic criterion gives a condition on the mutual repartition of the points n;, 7 > 1.
Since the operator A, looks like the iterated derivative, condition (1.9) can be interpreted
as an exponential estimate of the derivatives (as it is always the case for any holomorphic
function). Thus Theorem 1 claims that this repartition of the n;’s must be such that under
the action of A,, p > 1, the (non-holomorphic) functions ¢7/(1 + [¢|?)9, ¢ > 1, should act
as if they were holomorphic.

On the other hand, one can notice the equivalence between (1) and (2) in Theorem 1. As
we will see in all the following, it will always be the case. That is why we want to simplify
some notations and give the following definition.

Definition 1. Let be any fized set {n;};>1.

We say that the interpolation formula Ex (-;n) converges if statement (1) from Theorem 1
is valid for all ro > 0 and so is (2).

Similarly, we say that the interpolation formula En(-;n) does not converge if state-
ment (1) is valid for none ro > 0 and neither is (2).

Now we want to know what happens when the set {7, };>1 is not bounded. The way uses
the symmetry of the problem under any rotation of the lines. By 7° ¢ {n;};>1, we will mean
any number that is different from all n;, j > 1. Let fix any 7° and set 0; := hye(n;), Vj > 1,

where hye is the homographic transformation defined on the Riemann sphere C as
1+n°C
C—me

Then the set {6,},>1 is well-defined and one can give an extension of Theorem 1.

(1.10) hye(C) =

Theorem 2. (1) Let fix any set {n;};>1. If Enx(:;m) converges then for all n° ¢
{nj}is1, there is R,e such that, ¥p,q > 0,

C ' P4
(W) ](hn“(np+1))| < Rnf )

(2) If{nj};5, is not dense, then TFAE:
(a) En(;m) converges;
(b) there is R, such that, for all p, ¢ > 0,

(111) Ap’(hnc(np)v“’hnc(nl))

(ﬁ)] (g (1)

(c) there is ne ¢ {n;};>, (the topological closure of {n;},5,) such that (1.11) is
satisfied with the choice of N° = Ne.
In addition, when any of these equivalent conditions is satisfied, the conclusion
of Corollary 1 holds.

(1.12) sup

< Rp-‘rq;
= °m
n°E{n;}tiz1

Ap (hye (mp)seeshne (1))

First, in part (2) of this theorem, it suffices to satisfy condition (1.11) for one 7. ¢
{n;}j>1 in order to deduce the uniform estimate (1.12). Next, although the assertion is still
open, we expect that the equivalence in part (2) will hold for the case where {1, };>1 is dense
(this would complete part (1)). Finally, as it has been commented above as a property of
holomorphic functions, the exponential estimates from (1.9), (1.11) and (1.12) motivate us
to consider another criterion.

1.3. A geometric criterion. First, we begin with giving the following geometric definition
for any set {n;};>1.
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Definition 2. We say that the set {n;};>1 is locally interpolable by real-analytic curves if
it can be locally embedded in the zero set of a regular real-analytic function.

There is an equivalent formulation of this definition that is justified in this paper (Sec-
tion 5, Lemma 18) and that will be useful in the following: {n;};>1 is locally interpolable
by real-analytic curves if and only if it can locally holomorphically interpolate the conju-
gate function, i.e. for all ¢ € {n;};>1 (the topological closure of {nj}j>1), there exist a
neighborhood V' of ¢ and g € O(V) such that 7; = g(n;), Vn; € V. In particular, when
00 € {n;};>1, then the associated function g is holomorphic in a neighborhood of oo, i.e.
the function defined by

(1.13) C#0 — ; 00— 0,

1
9(1/¢)
is holomorphic in a neighborhood of 0.

First, as it was expected, in such a set the conjugate function (as well as C*/(1 + [¢]),
g > 1) will coincide on the 7;’s with a holomorphic one. Next, this geometric condition is
easier and more natural to be formulated than (1.9) that also seems difficult to be numerically
tested since the computation of A, does not only require the previous one, but rather
the computation of other A,’s (i.e. with some other points 7;, see (1.8)). In addition, this
criterion can be interpreted as a real-analytic dependence of the family ({z1 — 71,22 = O})j>1,
a formulation that can be extended in the case of any family of analytic submanifolds {Z; } ;21
of any domain  C C". Finally, it is a sufficient condition for the convergence of En(+;7).

Theorem 3. If {n;};>1 is locally interpolable by real-analytic curves, then En(-;n) con-
verges. In addition, the conclusion of Corollary 1 holds.

First, an immediate consequence of this theorem is the proof of the second part of Propo-
sition 1 that we have claimed above since R = {¢ € C, ¢ = ¢}. Similarly, the unit circle can
be written as {¢ € C\ {0}, { = 1/¢}.

Next, we do not know if this condition is also necessary. Our first intuition was negative
given the scarcity of the sets {n;};>1 that are locally interpolable by real-analytic curves.
Later, it has been confirmed by a counterexample of an explicit set {n;},;>1 whose topolog-
ical closure has nonempty interior but whose associated interpolation formula En(-;n) does
converge (see [10], Proposition 3). Actually, the essential results from [10] give the following
equivalence: {n;};>1 is locally interpolable by real-analytic curves if and only if the interpo-
lation formula En(+;0(n)) also converges for all o € Gy (the group of the permutations of
N), where o(n) := (ng(j))j>1 (see [10], Theorem 3). Nevertheless, we will give in Section 5

the proof of the following result that is a special case of equivalence for Theorem 3.

Proposition 2. Let (nj)j>1 be any convergent sequence. If the interpolation formula
En(-;m) converges, then {n;};>1 is locally interpolable by real-analytic curves.

In addition, this result allows to easily construct examples of families of complex lines
whose associated interpolation formula does not converge: any convergent sequence that
cannot be embedded in any real-analytic curve. In particular, the set {n;};>1 where
n; = 7/, 7 > 1, is not locally interpolable by real-analytic curves then the associated
interpolation formula Ex(-;n) does not converge (Section 5, Corollary 2). This example
gives the justification of the first part of Proposition 1 and finally completes its whole proof.

Acknowledgements. I would like to thank G. Henkin for having introduced me this in-
teresting problem and J. Ortega-Cerda for all the rewarding ideas and discussions about it.
I would also like to thank the referee for the useful remarks about the improvement of this

paper.
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2. SOME PRELIMINAR RESULTS ON THE DIVIDED DIFFERENCES

In this part, {n;};>1 will be any set of points all differents, and ¢ will be any function
defined on the points 7;, j > 1. The following results can be found in [2] and their proofs
are given in the references therein. They have also been proved independently by the author
in a first version of this paper [9] (except for Lemma 6).

The proof of the first one is an immediate consequence of the definition of A,.

Lemma 1. For allp >0 and 0 < g <p,

Ay ) (@) (p41) = Ary, [CH Byt iy ) (9 ()] (1)
= Ayt ) [ A1 (0) ()] (Mp41)
Dpg (preetars) (€7 Bty () Q)] (p41)
= Avg, (G Ay [ 16 = Ay (0) ()] 1(G)] (pt1) -

Now ¢ being any given function that is defined on the 7;’s (not necessarily with some
regularity condition), the Lagrange polynomial of ¢ is defined as

N N

(2.1) exld) = ST 222 o,

p=1 \j=1p i
and is the unique polynomial function with degree at most N — 1 that coincides with ¢
on the N first points 7;’s. The following result is the Newton formula that gives another
expression of Ly [p](X) with the A,’s (see [5], Chapter 1, 1)3), or [4], Chapter 4, 7)d) ).
Lemma 2. For all N > 1, one has
N-1 p

Lylel(X) = D T =) Apiopn () (p11) -

p=0 j=1
The following result is the Leibniz formula for the divided differences (see [15]).

Lemma 3. For all p > 0 and ¢, 1 functions defined on the 1;’s, one has

p
Ap () @O) pt1) = D Dy rreinas) (@) (p11) Ay o) (W) (lg11) -

q=0
This result is an example of the explicit calculation of the A, of a holomorhic function
(see [14], Chapter 3, and also [4], Chapter 4, 7)c) and 7)d) ).
Lemma 4. Let be ¢ € O(D(wo, 7)) and p(w) = 3, 5o an(w —wo)" its Taylor expansion
for all |lw—wo| < r. Assume that Vj > 1, n; € D(wo,r). Then for all p > 0,

I

n—p
Appni)(®) (pg1) = > an (= wo)" P> " (g —wo) "

nzp 11:0 l2:0
lp_Q lp—l
(2.2) Z (p—1 — wo)'p—2"lr—1 Z(np —wo)' 71 (141 — wo)'r
lp_1=0 1,=0
In particular,
(p)
. ¢ (0)
lim Ap,(np,---,m)(@) (77P+1) = Gp = .

My 3MpsMp+1 W0 p!
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In addition, if ¢ is a polynomial function, then for any subset {n;};>1 C C and all p > deg ¢,

A177(77[),...,771)(90) (77;04-1) = 0.
Next, we give the following result whose proof is given in [4], Chapter 4, 7)a).
Lemma 5. For allp > 0 and o0 € S,41 (the permutation group of the p+ 1 first integers),
one has
Ap,(no@)-,---mo(l))(@) (na(pﬂ)) = Dy p,.m) (®) (Mpt1) -

This assertion can also be deduced from the following identity whose proof is given in [5],
Chapter 1: for all p > 0,

p+1

@(nq)
Ap,(np,...,m)(@)(ﬁpﬂ) = Z I .
q=1 H?L,#q(ﬁq - ﬂj)

Now the next result is the Hermite formula of the integral representation for divided
differences. Its proof can be found in [5], Chapter 1, 4)3).

Lemma 6. Let fix p > 0 and let D(Co,7) be a disc that contains m,...,Mp+1. On the
other hand, let ¢ be any holomorphic function defined on a neighborhood of the closed disc
D(Co,r). Then one has

1
AP,(ﬂpww"l)(@)(np*'l) - % ‘C_C \7 %dg
ol=r 11j=

As an application, one has the following estimate:

©(¢)
[1551(¢ =)

(2:3) ’Ap,(np,---,m)(@)(ﬁpﬂ)| < r . S?II)
—col=r

3. ON THE EQUIVALENCE WITH THE EXPONENTIAL ESTIMATE OF THE DIVIDED
DIFFERENCES

In this section, we will prove Theorem 1. Its proof requires some preliminar results that
will also be useful in the other sections. In all the following, we will mean the Taylor
expansion of any function f € O (B2(0,70)) (resp. f € O (C?)), that absolutely converges
in any compact subset of Bs(0,7) (resp. C?), by

(3.1) flz) = Zak,lzfzé~
k120

When it is not specified, the simple expression Ay () will mean Ay, o, 0 (@) (Mp+1)-

We begin with the following preliminar result: it gives the equivalence between the con-
vergence of En(f;n) to f and the control of Ry (f;7).

Lemma 7. r¢g > 0 being fized, let consider f € O (B2(0,19)) (resp. f € O ((C2)) and K any
compact subset of Ba(0,7¢9) (resp. C2). Then for all N > 1, one has

ZSg}ng(Z)—EN(f;n)(Z)I < ZSSEIRN(f;n)(Z)IJrCK(NH) sup |f(2)] (1 —ex)™,

Izl <rx

where ||z|| = \/|21]2 + |22|? is the usual norm on C? and Ck, rx depend only on K.
In particular, Ex(f;n) converges to f if and only if so does Rn(f;n) to 0.
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Proof. First, let fix any z € B3(0,79). Since ||z|| < rg, there is € > 0 such that one still

has ||z||> < ||z]|* + 2e < rd. Since D2(0, (\/|z1]2 + &, /|22 +¢)) C B2(0,/]|z]|> + 2¢) C
Bs(0,79), then one has by Cauchy’s estimates for all k, [ > 0,

ot = [ s | J(6,6)daudes | SPeenao,y/Trrze M O1
@2 s yEPrleyiEre TG | T (VIalP k(P te)

It follows that, for all N > 1,

A

1
|21 |22
3 Jarallafflzl < sup AL D (
k+1>N ¢eB3(0,4/]|z]12+2¢) k+I>N Vi6zl? +e Vel +¢

sup Q1Y (m+ 1)L =&)m,
CeB0/IF72)  mzN

m (N+2)(1 —5’)N
e <), Y pen(m+ 1)1 - < T
N +2
> Jadlallal € S22 s [fQa-2)Y,
k+I>N ceBr 0 /ToTP )

Now, let K C B(0,79) being fixed. By the maximum principle, there is zx € K such

that sup,cx ’Ek-s-lzN ak,lz’fzé‘ = |2 hrisN ar1(2x)¥(2K)5|. The lemma follows by (1.2)

and the above estimate applied to zx with the associated choices of e, €%, Cx = 1/5’K2
and rx = /|2 ||? + 2ek.

Now if f € O ((C2), the proof is still valid with the choice of any arbitrary ex. Notice
that in this case the associated 1 — ¢’ can be made arbitrarily small.
v

3.1. A comparison for the convergence of Ey(f;7) betwen O (B3(0,7)) and O (C?).
We prove this result that will be useful in all the following.

Lemma 8. Let ro > 0 be fized. If there is e, > 0 such that, ¥V f € O (B2(0,70)), Rn(f;n)
converges to 0 uniformly on any compact subset of B2(0,e,r0), then Vg € O (Cz), Rn(g;m)
converges to 0 uniformly on any compact subset of C2.

Proof. Let g € O ((CQ) and K C C? being fixed. There is Rx > 0 such that K C B(0, Rx)
then, by setting ex = igj, one has ex K C By(0,,70).
K
On the other hand, the function defined as f(2) := g(z/ek), z € C2, is still entire (then

holomorphic on B (0, r0)). Moreover, g(z) = >, ;5 2§ 2 being the Taylor expansion of g,

IN

where ¢/ = 1 — max;—1 2 On the other hand, by a classical calculation (since

, then

a
one immediatly has f(2) = >, ;5 %z’fzé This yields for all z € C?,
20 gk
N N 0z . 29 Tz | TN
. o N—-1 1= g2 A k_k+l—N+1 2 p~1
Ry(fimexz) = Y ex ' ] P > T EK (T,”z)
p=1 j=lj#p P VU kti>N K p
N N _ -
Z1 — 122 k[ ?2 + TIpZ1 RN
=2 D DL 1+ [, |2 ’
p=1j=tizp W kizN e
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that is exactly Ry (g;n)(%). It follows that

(3.2) sup |[Ry(g;m)(2)] = sup |Rn(f;n)(2)] ——— 0,
zeK z€exg K N—+o0

the last assertion coming from hypothesis since e K is a compact subset of B2(0,e,70).

v/

3.2. On the necessity of the estimate (1.9). In this part, we deal with the necessity of
the estimate (1.9) to make converge the associated interpolation formula En(f;n).

Remark 3.1. In particular, we will see that no one condition is required for the set {n;};>1
yet, like boundedness.

We begin with this result.

Lemma 9. For all f € O(CQ), N >1andky > N,

L o c ki—N+1
— ———L=o[Bn([;m)(2)] = AN_1.(9n_1...om — apCk :
BBV D) = Ao ((1 o) T ) ()
Proof. First, we claim that

N—-1 P
(3.3) Ry(fim(z) =Yz Pzt =02 Ap.npeen) (€ (G, 2)) (1)

p=0 7j=1

. —|—ZZ m—N-+1

with rn (¢, 2) = 32,5 <12+—|C21) Y kti—m ar,C*. Indeed, by Lemma 2,

N N N 4 48 2+ T k+l—N+1
—1
R (f;m)(2) 279 ] =—= > wm (—’”)

. 2
p=1j=tjep M pisN L+ [y |
N-1 p o+ k+l—N+1
_ 2 1
= 5 H(Zl/’z? = 05)8p, () Z ai.i¢* (W)
p=0 j=1 k+I>N
It follows that
N—-1 P
Rn(fim)(z) = 2 TP A (P S (nsp) | Ap(ra (G 2))

p=0 r=0
N-1 N-1

= Z Z{Zé\]ilir (_1);0_7421777”(7717---anp)A;D(TN(C7z))a
r=0 p=r

where X, (n1,...,1p) = Zl§j1<.“<ﬁ§p Mjy = Nj.. Thus

IS . 1 om N-1
k—l!az—,fllz:o[RN(f,ﬂ)(Z)] = k_ﬂaz—{“|z:0 [0 T An-1(rn (€, 2))]

1 oM No
= AN_1,(gn_1sm) (C > k—l!@b:o 21 17’N(C,2)]> (nw)-

(Mp+1) -
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Since k1 > N, one has for all ( € C

1 akl N1 1 8k1—N+1 i (22+C21
TS 2=0 |% r ) % = = Ok,
] LG B oy e W T L n;m;m B T
- k1—N+1
= X alek< ¢ )1 ;
7 1+[¢f?

k+1=k;

and the proof is achieved.

As an application, we get the following result.

Lemma 10. For all f € O (CQ) andp>0,q>1, one has

= q
Ap (npseim) (ﬁ) Z akJCk (Mp+1)| < sup  [Rp1(fin)(2)] -

k+l=p+q 2€B5(0,7/2)

Proof. By applying Lemma 9 with k; = p+¢, N = p+1 (that is possible since p+q > p+1)
and by Cauchy’s formula, one has

oprta

¢\ 1
Ap.(preeeim) (W) kHE:;ﬂak,le (Mpt1) = mwbzomml(ﬁn)(z)]

)

m—N+1

(2im)?

_ 1 / Ryi1 (f3m)(C1, o) da A G
[C1]=]¢2]=1

Fat1
TG

The lemma follows by estimating the last integral on the closed ball Bs(0, \/5)

Vv

We finish this part with this result that gives the necessity of the estimate (1.9) in the
general case.

Lemma 11. Let be {n;};>1 such that, for all f € O (C?), Ry(f;n) is uniformly bounded
on any compact subset of C2. Then the estimate (1.9) from Theorem 1 is satisfied.

Proof. Let fix any f € O ((CQ). In particular, Vp > 0, SUP_ 50 v3) |Rp1(fim)(2)] < M(f).
Then for all p > 0 and g > 1, one has by Lemma 10

q
Ap (1) (TCKQ) S aralt| (i) < M(f).

k+l=p+q

Now let consider any function entire on C, w(() = >_,,5,bn(", and set fi,(2) 1= w(22).
Then f,, € O ((CQ) and for all p >0, ¢ > 1,

Z an1(fu)C" = aopiq(fu) = bpiq-

k+l=p+q
It follows with the choice of f,, that Vp >0, Vg > 1,

(%)] (1)

< M(h) =M (fu),

|bp+q| Ap,(np,~.7171)
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(ﬁ)q] (Mp+1)

Since w € O(C), limsup,,_, ., [b,|*/" = 0. Conversely, if (¢,),>; is any sequence that
converges to 0, the function w.(¢) := >, <, (™ is entire on C and

(Hﬁqz)q] (1)

Now the estimate (1.9) that we want to prove is equivalent to the following one:

(ﬁ)] ()

Indeed, if ¢ = 0, p > 1, one has |Ap7(,7p7m7m)(§ — 1)(np+1)| =0and |[Ag(C— 1)(m)|=1=
R%, then the proof will be achieved.

The estimate (3.5) will be an application of the Banach-Steinhaus Theorem. First, let
consider the (complex) space Cy of the sequences (¢,,),,>1 that tend to 0 as n tends to infinity,
with the supremum norm. Then (Cp, || - ||) is a Banach space as a subspace of the set of
the bounded sequences (with the same norm). On the other hand, let consider the family
of linear forms (A;)m>1 on Co defined as:

then
1
p+q

sup \bp+q|ﬁ A < 4o00.

Dy (MpseesM1)
p>0,g>1

1
p+aq

(3.4) sup leprql |Dp,mn < +00.

----- n1)
p>0,¢>1 .

1
pta
(3.5) R, = sup A
20,921

D5 (Npseesm1) < +00.

Am - Ch, — C
¢ v
(En)n>1 = Em pZO,qulé?;(Jrq:m Ap (npye.im) (qu) ] (p+1)
Then )\, is well-defined and for all m > 1, its operator norm is
Rk v
Amll = pZO,qunl?I)Jiq:m Bp.(rgseeim) <W> ](UP—H) = e

Now one has from the above estimate (3.4) that Ve € Co, sup,,>; [Am(e)| < +oo. It
follows by the Banach-Steinhaus Theorem that

<ﬁ)q1 (Mp+1)

and this proves the estimate (3.5).

1
p+q
sup A

Dy (Npy--sM1)
p>0,q>1 e

= sup |Am|] < oo,
m>1

Vv

3.3. On the equivalence when {7;};>1 is bounded. In this part we deal with the
equivalence between the convergence of the interpolation formula En(f;7) and the validity
of the estimate (1.9), i.e. we give the proof of Theorem 1. First, we assume that the set
{n;};>1 is bounded,

(3.6) 1llee = supn;| < o0,
Jj=1

and satisfies (1.9). We begin with the following result that is a little stronger consequence.
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Lemma 12. There is R% > 1 such that, for all p,q,s > 0 with 0 < s < g, one has

=S

‘Ap,(np,...,m) l( = Ofw] ()| < R
Proof. Set
R = max(1,R,)
(3.7) Q = max(3,R,),
S = 3max(1, [[n]ls)
and
(3.8) R, = [max(R.Q,)" = [max(3,3||nll, Ry)]" .

In order to prove the lemma, it will suffice to prove the following estimate: Vp, q,s > 0 with
s<4q,
—=S

(3.9) AV lC — @W] (Mp+1)

< RPQISIS.

Indeed, we will get for all p,q,s > 0 with s < ¢,

Ap,(npv---,m) (m) (Mp+1)

The estimate (3.9) will be proved by induction on p+¢—s > 0. If p+¢g—s = 0 then since
p,q — s > 0, necessarily p = 0 and s = ¢ > 0. One has by the Cauchy-Schwarz inequality

ptq
< RPQISY < R% .

¢ _ i V14 |m? ! 0 0
Ay <(1+<|2)q> (771) - ‘(1+|771|2)q < <_1 +—‘771|2 ) < R QQS .

Ifp+qg—s=1, theneitherp=1land g=s>0,or p=0and 0 <s=¢g— 1. In the first
case, since {n;};>1 satisfies (1.9),

q
(ﬁ> 1(”2) < RS RIQISS.

A17771

In the second case, one has for all ¢ > 1

!
Ao (W) (m)

Now let be m > 1 and assume that (3.9) is true for all p,q,s > 0 with s < ¢ and such
that p + ¢ — s < m. Let consider p,q,s > 0 with s < g and such that p+q¢—s =m + 1.
One has different cases:

e if p =0 then

ZS
Ag (W) (m)
e if s = ¢ then by (1.9)

_ ! m [

LA m? 1+ | ]?

<1 < R'QIS*.

-
(1+[ml[?)

1 — < 1 < ROQqu_S;
(L4 |m )

P:(Mps-em) szJrq < RPQSY;
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e otherwise p > 1 and 0 < s < ¢ — 1 (in particular ¢ > 1). On one hand, one has by
Lemmas 3 and 4

—=s+1
Ap,(nm---,m) (ﬁ) (Mp+1)

p ZS+1
Z I T—— <m> (Mr41) Bpr(rpsemon) (€ ) (Tp41)

zs-s-l Zq+1
p—1,(Np—1,...,m1) (W) (Up) X1+ A (Mp e sm1) (W) (Up+1) X Mp+1 -
On the other hand,

—s 1o
Ap,(npv---,m) <(13_||i~|2)q> (Mp+1) =

¢ ¢
= Ap,(np 77777 ) <(1 + |<2)q1> (77p+1) - Ap,(np,‘..,m) ((1 I |C|2)q> (%H).
Thus

I
g

=S

Apa(npv---ﬂh) (ufqg)q) (77p+1) - A:u,(np,-wm) ((1_*_'2"2)(1—1) (7717+1)

—s+1

4 o
= Bp 1, (ny_1,m) (W) (1) = Np+18p, () (W) (Mpt1) -

Sinces<g—land (p—1)+qg—(s+1)<p+(¢g—1)—s=p+qg—(s+1)=m, by
induction and (3.7) it follows that

A ¢

pinpseem) \ T ey | (o)

S

< REQUTISTTHRAQ + nllwRQ)

r59

N

1ot

RpleQ*ISQ*Sfl ( + RQ>

3
and this proves (3.9).

Vv

In the following the constant R, will mean R from Lemma 12. One can deduce as a
consequence the next result.

Lemma 13. For all p,q > 0 and z € C?,
Z2+Zzl !
Apy(np ----- 1) [CH (1+ C|2> ] (77p+1>

Proof. Indeed, Lemma 12 yields

<22 +ZZ1>q
1+ |C|2 (np+1)

< ROC2R,[lz])?

q

q' q—u u
< kaz\ |21]

u=0

A

D5 (Nps--sM1)

Azn(np ----- 1) (@W) (Mp+1)
q

q!
o1 g T = el R,
u=0 :

IN
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Now we need the following combinatorial result.

Lemma 14. For all n,p > 0,
(n+p)!
nlpl
Proof. First, we admit that if p = 0 and n > 0, then A% = 1. Next, if n = 0 and p > 1,
then AP = 1. Finally, if n > 1 and p = 1, then A2 =n + 1.
So one can assume that n > 1, p > 2 and prove this result by induction on n +p > 2. If
n + p = 2, then we are already done. One can consider n + p > 3 and claim that

AP = card{(ly,...,l,) eNP, n>1l; >l >--->1, >0} =

A= AT+ AT
Indeed, for any (I4,...,1,) such that n > 1y >--- > 1, > 0, either [y =n or {y <n—1. Then
AL = card{(la,...,l,) ENPT! n >y > >0, >0}

+card{(s1,...,8p) ENP.n— 1> >..->5,>0} = A1 4 AP .

This proves the claim and the lemma follows by applying the induction hypothesis to AZ~*
and AP ..
\/

Now Lemmas 13 and 14 lead to the following result.
Lemma 15. Let be f € O(B2(0,79)) and set
1
2v2 (1 + [Inllec)? R
Forall N >1,p=0,...,N —1 and z € C%, r < rq such that ||z|| < e,r, one has

En =

— m—N-+1
22 + (21
AP7(77P7"')771) CH Z (1+ |C|2> Z ak,le (77p+1) S
m>N k+l=m
2 N p
Sl B2z (ﬁ ||n||ooRn> (Rnu + |nw>>
11lloo (1 = 2v/2 [[n]loo R2||2]| /) r [17l]o0
with
[fll- == sup [f(2)].
2€B2(0,r)
Proof. First, for all z € C? and m > N, one has by Lemma 3
5 +ZZ m—N+1
2 1
(3.10) Ay m) <72) > anilt| (np1) =
1+ K‘ k+l=m
p = m—N-+1
22 + (21 :
= ZAv,(nv ..... 1) (ﬁ) (7711+1)Ap7v,(77p ..... Not1) Z ak,le (anrl)-
v=0 + ‘<| k+l=m

Next, for all 0 < v < p and m > N (> p), one has by Lemmas 4 and 14

‘AP—U7("7P7-~7"74J+1) (Z ak*m—kck> (Mp+1)
k=0

<
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m k—p+v lp—v—1
< Z |ak,m—k| Z |771)+1|I€7p+v41 Z ‘nﬂlpivililpﬂ|77p+1‘lpﬂ
k=p—v 11=0 lp—0v=0
m
k!
— |ak7m ’f‘HnHoo (p—v)'(k—p+v)'

k=p—v
On the other hand, for all r1, o > 0, let consider the bidisc

Dy (0, (r1,m2)) = D1(0,71) x D(0,72) = {z € C?, || <11, 22| < T2} .

Since, for all r < rq, Da(0, (r/v/2,7/v/2)) C B2(0,7) C Ba(0,70) and f € O (B(0,70)), one
has

171,
RN

|a.i

1 / f(C1,G2) dC A dGe
[¢1]=]C2|=r/V2

(2im)? R

Thus by Cauchy’s formula,

Ap—m(np,--mwl) (Z akﬂnk&) (Mp41)| <
k=0
N AN m NANEE! m gk gy
< I (%) ommmtene 2] = 10 () 5 [ Lol dt
T (p—w)! otr N r 2im Jiyj=r, (t = [nllec)?="F
< 1. (L2 B 1 < ot (Fav2) T L
r ) @y )1 - 1Ry e\ ) T

since by (3.8), R, > max(2]|7||sc,2). Then (3.10) and Lemma 13 yield
- m—N-+1
29 + (21 k
(i) X o ] Vet

k+l=m

A <

Dy (Mpseeesm1)

21l Ro (Riv2\" e ”
=) @Ryl2]) Z (Ryllnllee)”

llnlloo

2|1 £l Ry 2V2 Il B2\ " 1 (Ry(1+ ]yt — 1
[7]]oo (2Ry|[2])N 1 r I Ry(1+[nfle) — 1

4|\ f|l- R, 2v2 ||nll Ry |I=| (Rna + n||oo>>”
[1l]oc (2R, |[2])N T r 7]l

Now by the definition of e, from the statement of the lemma, for all ||z|| < e,ro, there

is r < 7o such that one still has |z|| < e,r < ;2, then for all N > 1 and
2V2 ||| oo R2
p=0,....,N—1,

29+ Cz meNE

2 1 k

Ap (o) Z(W) > ariCt| (npr1)| <
m>N

k+l=m
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4)|fll- R, <Rn<1+||n||m>)”Z 2v2 [l 2121\ "
[17]]oo (2Ry|[2] )N T 1]l

r
m>N

8|1l B2l (ﬁ ||n||ooRn>N (Rna + ||n||oo>)”
[loo (L — 2V2 [l B2[1211/7) " [loo

We can finally give the proof of Theorem 1.

Proof. The proof of (1) = (2)is exactly Lemma 8, as well as (2) = (3) follows by Lemma 11.

(8) = (1): f € O(B2(0,r0)) and K any compact subset of Bs(0,¢&,ro) being fixed, there
is rg < 1o such that one still has sup,c ||2]| < eyrk, Y2z € K. It follows from (3.3) and
Lemma 15 that for all N > 1,

[Ry(fim)(2)] <

Sl B0 (VE Il R )™ 3 ( 1+||n||oo>)
Il = 2wl 2 2 I HV”'J' T

p=0

8|1 llrsc 725 V2 nllaoRallzl ™ (1 + [0l R/ lnlloc)™ ~ 1
~ nlleo( = 2v2 ]Il B3 121l/7 ) K (L4 lInlloe)® Bn/linlloo =1

16]| £ Ry (ﬂ R2(1+ n|oo>2||z||>N

L+ [I7ll00)2(1 = 2v2 [l oo B2 2ll/7 ) TK
Since
sup ||z < eyrx = E 'K ,
€K 2V2 (1 +||nll)?R2
then
161 £l 12 1

(3.11) sup [Ry(f;m)(2)] < oN
2K (L +[7ll00)2(1 = 22 [nlloc B sup. e ¢ |2 /rrc) 2V N—oo

and the proof of Theorem 1 is achieved.

Vv

We finish this section with the proof of Corollary 1 that gives some precision for the
convergence of En(f;n) to f as well as the uniform property.

Proof. The case of O (B2(0,79)) follows from Lemma 7 and the estimate (3.11) of the last
proof above. In addition, this also proves the case for O (CZ) by applying again Lemma 7
on one hand, Lemma 8 and the estimate (3.2) from its proof on the other hand.

\/

4. ON THE GENERALIZATION TO THE CASE OF ANY SET {7;};>1

In this part, we will give the proof of Theorem 2. First, let consider U(2, C) to be the group
of 2 x 2 matrices that are isometric with respect to the Hermitian structure of C?. We need
to consider the action of (a subset of) (2, C) on the complex lines {z1 — 122 =0}, j > 1
and O (Bz(0,70)) (resp. O (C?)).
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4.1. On the rotation of the lines. Let fix any n¢ ¢ {nj}j>1 and consider the matrix
defined as -

1 w1
4.1 Up = —— .-
(@) n = (7 )

1 ¢ 1
4.2 Us. = U = —— (77 —) = U=
( ) n n 1+|77°‘2 1 _77(: n

Upe({z1 =122 = 0}) = {22 =0},
U;c({ZQ = 0}) = {21 — 77622 = 0}
We remind the definition of 6; = h,c(n;) associated to n° (Introduction, (1.10)):
1 4+ 7%n.
vis1e, = LETU
nj —n°

and we give the proof of this preliminar result.

Lemma 16. Let be f € O (Bx(0,79)) (resp. f € O(C?)). For all N >1 and z € B2(0,70)
(resp. z € C?),
Rn(f;n)(z) = RN (fo UJC;Q) (Uyez) .
Proof. Tt is sufficient to consider the case of f € O (Bz(0,rp)) with z € B2(0,79). We set w =
Upez. Since Uy is unitary, then Ry (f oUpe; 0) is well-defined (and so is E (f oUpe; 9) (Uye2)).
1+ n°0; _
On the other hand, z = Uzzw and n; = # (notice that 6; # n°, Vj > 1, since n; is
g

supposed to be finite). First, one has for all p=1,..., N,

nwy +wy 1+, wi —nws
ﬂ Az ﬂ VIHP 0 -0 1+ [P
Np — 1) 1+n°0, B 1+n°0;
ep -n° Hj -n°

J=1j#p J=1j#p

—(14 n°[*)wr + (1 + [n°*)8;w,
(T4 [n¢2)0; — (1 + [n°]2)6,

o 7o N-1
S N Rl i ) 11
/ 2
( L+ || J=L1.j#p
o N-1
_ < 9;,;—770 > H wl—ijg
cl2 _f0.
V1] =gy Op 0
Next, one has
w1 7?102 I 1+F@ncwl+’w2
Z2 + Mp21 _ V1 ne? Op —m° /14 [n°|?
L+ [ny? 1+1%, 14760,
ep —n° @ —n°
Op —1° (L4 [n°P)0pwr + (L+ [n°[PHwa 6, —1° wa + Gpun

S mE AP AR LR

1+




A CRITERION FOR THE RECONSTRUCTION OF A HOLOMORPHIC FUNCTION 19

It follows that, for all N > 1,

k+l—N+1
anQ k Z2+77pzl + *
o = 1j 2, okt 1+ ||
p=1j=1,j#p J k+I>N p

N — \N-L N
- (et ) T e
= f1+|n z) A 00

i o\ kH-N41 D
X Z akz(1+ncﬁ”) Op —1° (w2+9p’w1>
k>N "\ Op e V14 [nef? 1+ 16,]2

N (f3m)(2)

L[]+
e

k+I-N+1

_ ZN: H — 9, itz <w12 +@u2)1>m‘N“ $ g, 10 O =)
p=1j=1, Op —0; m>N + 16y ktl—m (V14 [ne2)m
Now notice that for all m > 0 and all k,[ with & + [ = m, one has
(0, + M6, — ) = S WkDey,
utv=m

where b,(ff;l) is the coefficient of X“Y" of the polynomial (n°X + Y)¥(X — 7°Y)! (that is
homogeneous with total degree k + 1 = m). It follows that

Z ar (N0, + )5 (0, —nf)! = Z o Z g b0

k+l=m ut+v=m k+l=m

1
Now we claim that, for all u,v > 0, ——=—> "1, ;_ akylbgf{,l) is the Taylor coefficient

WETRE

of wiwj of the function foUp.. Indeed,

k l
. ncwi + wa w1 — Nws
(folUy)(w) = %l( , ) ( - )
’ Z Vit ) \Vi+nP?
1 k — Al
= > > ara(nwi +wy) (wy — )
m>0 ( 1+ |Tic\2)m k+l=m

1 u
B Z(\/TW D ars D b wiwg

m>0 k+l=m utv=m
1
= w“fwg oy g, lb(k l)] .
u,vZZm ( \% 1 + |nc|2)m k-&—lz=m

The claim follows by the uniqueness of the Taylor expansion of f o Up.. Finally,

m—N—+1

— 0ws wa + Opwy u 1 (k1)
R ZH —— Z(HWZP) > O 2 et

p=1j#p m2N utv=m

that is exactly the formula Ry (f o Uy;6)(w). The lemma is proved.

4.2. Proof of part (1) from Theorem 2.

Proof. By Definition 1, since En(+;n) converges, then in particular for all f € O ((Cz), the
interpolation formula Ex(f;n) converges to f, uniformly on any compact subset of C2.



20 AMADEO IRIGOYEN

Let fix any n¢ ¢ {n;};>1, f € O (C?) and let consider the associated 0; = hye(n;), j > 1.
By Lemmas 7 and 16, one has that [Ry(f;0)] o Uye = Ry (f o Upe;n) converges to zero
uniformly on any compact subset of C?, then also Ry(f;6) since U, is an isometry. By
applying Lemma 7 again, it follows that Ex(f;0) converges to f, uniformly on any compact
subset of C2. Thus the assertion is a consequence of Lemma 11 (since there is no condition
for the set {6;};>1, see Remark 3.1).

\/

4.3. Proof of part (2) from Theorem 2. First, we give the proof of the following result
that will be useful in order to prove the second part of Theorem 2.

Lemma 17. Let {n;};>1 be such that the interpolation formula En(f;n) converges to f,
uniformly on any compact subset of C*> and also on any f in any compact subset of O (((:2).
Then the estimate (1.12) from Theorem 2 is satisfied, i.e. AR,, Vp,q >0,

(ﬁ)q] (hnC(Up+1))| < Rbte,

Proof. First, it follows by Lemma 7 that Ry (-;n) converges to 0, uniformly on any com-
pact subsets of C2 and O ((CQ) repectively. Next, let fix any n° ¢ {77j}j>1 and set 0; :=
hye(n;), Vj > 1. On the other hand, let fix any f € O ((CQ) and consider its Taylor expan-
sion f(z) = Zk,l>0 ay12¥24. By applying Lemma 10 to the 0;’s and f, one has for all p > 0,
g>1 -

SUDyeg ()51 |Dp, (e (1), hge (1))

Z q
By (6y.--01) (1+CI2 Y | Opaa)| < swp [Rpna(f:0)(2)]
ktl=p+q 2€52(0,v2)
= sup  |[Rpy1(foUpesn)(2)]
2€B2(0,V2)

the last equality coming from Lemma 16 and the fact that U, is unitary. Since the family
{f o Upe},eqqy,y 18 a relatively compact subset of O (C?), it follows by hypothesis that

SUPped(n;} sup [Rpra(folUpesm)(2)]| < M(f) < +o0,
p>0, 26 B2(0,V/2)

thus

Z q
SUPne ¢ {n;},0>0,4>1 | Bp,(hye (1), hne (1)) <1+|C|2 Z ak,lgk (hne(Mp+1))| < +00.
k+l=p+q

Now the end of the proof uses the same argument from Lemma 11: first, we deduce that
for all sequence (g,,),>1 that converges to 0,

1
p+q

<1+C|<|>] (1)

By replacing (Am)m>1 With (Am ye)m>1me¢(n;},5,, Where

)\m’nc . C() — (C

< +o00.

sup |€p+al [ Bp, (e (1), -woshome (1))

n¢{n;};>1,p>0,¢>1

(En)n>1 — Em max

p>0,¢>1,p+q=m A (hye (1) e ()

(%)] )|
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and
1
p+q

Ampell = max

0. AX B (e (1) (1))

(%)] (1)

the last above estimate means that for all € € Co, SUPm>1meg¢in;},5, [Ampe(e)| < +oo. It
follows by the Banach-Steinhaus Theorem that sup,,>1,ye¢{n, | Am el < 400, i.e.

biza
Z q p-il—q
sup <W> 1 (he (Mp+1)) < 4o

' Ap (hye (mp)seeeshne (1))
ne¢{n;};>1,0>0,¢>1,p+q=m

and the lemma is proved.

Now we can give the proof of part (2) from Theorem 2.

Proof. 2a) = 2b): Once again, by Definition 1 and Lemma 7, for all f € O ((CQ), Rn(f;m)
converges to 0, uniformly on any compact subset of C%. On the other hand, since {n;};>1
is not dense, then

(4.3) e €C, Feeo >0, Vi >1, 0 — Noo| > €0

(w.l.o.g. one can assume that 7., # 0). Let consider 8; = h,_ (n;), Vj > 1. We claim that
{0;}j>1 is bounded. Indeed, if |n;| < 2|9, then by (4.3)

_ w12

16,1
! nj — Mool Eoo

+00.

Otherwise |1;]| > 2|neo| then

_ e mil o [neel + 1/ 2l
1= /ms| 1-1/2

Now by Lemma 16 applied to 1° := 1, it follows that for all f € O ((CQ), Ry(f;0) =
[Rn(foUy,._;n)]o U, also converges to 0 uniformly on any compact subset (and so does
En(f;0) to f by Lemma 7). In particular, Corollary 1 can be deduced to the (bounded) set
{60,},>1 that satisfies one of the equivalent conditions of Theorem 1. As a consequence, the
convergence of En(f;0) to f is also uniform on any f belonging to any relatively compact
subset of O ((Cz). By applying Lemmas 7 and 16 again, Ex(f;n) converges to f too,
uniformly on any compact subset and on any f belonging to any relatively compact subset
of O ((CQ). Finally, an application of Lemma 17 leads to the required estimate (1.12).

1051 = 2(I70el +1/(2nee])) < +o0.

2b) = 2c¢): It is an immediate consequence since C\ {n;};>1 is not empty.

2c¢) = 2a): Once again, let consider 6; = h,__(n;), Vj > 1 as above. Then the bounded
set {0;};>1 satisfies (1.9). Let fix any r¢ > 0. It follows by Theorem 1 that there is eg > 0
such that, for all f € O(B2(0,70)), En(f;6) converges to f uniformly on any compact
subset of By (0,e47). By applying Lemmas 7 and 16, so does Ex(f;7n) to f uniformly on
any compact subset of By(0,e970) for any f € O (B2(0,79)). Finally, one can deduce by
Lemma 8 that En(-;7) converges in the meaning of Definition 1.
In addition, as it has been specified above, the statement of Corollary 1 is still valid as a
consequence of one of these equivalent conditions.
v
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5. ABOUT THE GEOMETRIC CRITERION

5.1. Proof of Theorem 3 when {7;};>1 is bounded. Before giving the proof of this
result, we want to prove the following lemma that has been claimed in Introduction and
that will be usefull in all the following.

Lemma 18. The set {n;};>1 is locally interpolable by real-analytic curves if and only if it

can locally holomorphically interpolate the conjugate function, i.e. for all { € {n;};>1, there
are a neighborhood V' of ¢ and g € O (V') such that

(5.1) mo= gm), Vo V.

Proof. Let be (o € {nj}j>1. If there are Vi, € V((y), g € O (V) such that 7; = g(n;),
Vn; € V, then any 7; is in the zero set of h(z,y) := « — iy — g(x + iy). h is real-analytic in

the neighborhood of (z¢, yo) := (R (o, 3 (o) and regular since Vh(zo,yo) = (1— g—g(go), —i—
x

%) #0.

Conversely, assume that there are Ve, € V((p) and a real-analytic curve C¢, such that
{n;j}j>1 NV¢, CC¢,- Let be h real-analytic on V¢, such that Ce, = {¢ € V,, h(R¢,S¢) =0}
with Vh(zg,y0) # 0. By considering the Taylor expansion of h on (R(y,J¢g) and the
change of variables using the Euler’s formulas for ¢, there is iNL(z,w) which is holomorphic
on a neighborhood of ({p, (o) such that (after reducing V¢, if necessary), for all { € V¢,,

-~  _ h h h
h(%<7SC) =h (C?C) MOI’GOVGI', Z_Z(manO) = % (%(mOvyO) +Zg_y(x07y0)> 7& 0 since h

is real and Vh(zg,yo) # 0. By the holomorphic implicit function Theorem, there exist a
neighborhood U, x W of (o, (o) and g € O (Ug,) such that, ¥ (2,w) € Ulco o) h(z,w) =0

if and only if w = g(z). In particular, since for all { € C¢,, 0 = h(R(, () = E(C,Z), then
after reducing V¢, if necessary, one has ¢ = g(¢), V¢ € V¢,. It follows that 9v, €0 (V)
satisfies the required conditions for all n; € V¢, .

\/

Now we will give the proof of Theorem 3 in the special case when {n;};>1 is bounded.

Lemma 19. Let {n;};>1 be bounded and locally interpolable by real-analytic curves. Then
Theorem 3 is valid in this case.

Proof. First, it will suffice to prove that any bounded set {n};>1 that is locally interpolable
by real-analytic curves satisfies (1.9). Indeed, an application of Theorem 1 will allow to
deduce that En(-;n) converges in the meaning of Definition 1, as well as the statement of
Corollary 1.

Let fix any (o € {nj};>1. First, by Lemma 18, 3V, € V(¢o), 9¢, € O(Ve,), such

. - . gCo(CO)
that V7, € Ve,, M7 = 9¢,(nj). In particular, (o = g¢,(Co). Next, since | —="—"—| =
A J Cor Iy Co( J) Co( ) 1+COQC0(CO)
Co 1 . : 9¢(€)
< < 1, then by reducing V¢, if necessary, one has |——22- | < 2,
’1 +160l?| = Vit Gl © L+ 96, (€)

for all ¢ € V¢,. This proves that there is €4, small enough such that

9¢0(€) —_—
9o and 71 n ngo (C) eO (D(CO, 25(0)) )
(5.2) Vn; € D(Cos2¢6¢,)s T = 9¢o(5) 5

V¢ € D(Co, 26c,) ‘947(4)‘ <2,

1+ CgCo (C)
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This last property is true for all ¢ € {n;};>1, it follows that {n;},;>1 C UCGW D(¢,e¢).
- - 2572

On the other hand, since it is a compact subset, by the Lebesgue’s number Lemma, there
is g9 > 0 (with g9 < 1) that satisfies: for all ¢ € {n;};>1, there is ¢’ € {n;},;>1 such that
D(C,20) € D(Crecr):

Now the estimate (1.9) will be deduced as a consequence of the following stronger one
that we will prove for all ¢ > 0 and by induction on p > 0:

P
- (s
€o

Z q
Ap iy emis) [C ~ (qu) ] (i)

where there is no condition on the choice for the p + 1 first points. This estimate being
obvious for p = 0 and all ¢ > 0, one can assume that p > 0 and consider p + 2 arbitrary
points from the 7;’s.

First, if there are j, k with 1 < j < k < p + 2 and such that |n;, — 7, | > €o, then by
Lemma 5

(5.3)

<ﬁ> ‘1] .y

N N
‘Apv(nip+27--<7@7@7---711'1) [<1+?g|2> ] (mi;)] + |Ap7(mp+27---,%n7’z}7~.-,m) [(1+?g|2) ] (Mir.)
|772J N nlkl

A

P+, (Mg 5eMiy)

TV RTINS

2(2/gq)P24
€o

(the notation 7; means that 7; has been removed), and this proves the induction.
Otherwise, one has that [n;, — n;,| < €0, Vj = 2,...,p + 2. By the above property,

there is o € {nj};>1 such that D(n;,,e0) C D(Co,e¢,). In particular, e, > 9. An
application of the estimate (2.3) from Lemma 6 that is guaranteed by (5.2) and the choice

of 9407(0 c0O (D(T%co)) with r = 2¢¢,, yields

1+ CQCO (C)
9¢o (€) a _
‘Apa(n'ipv“vnil) |:<1 + gg% (<)> ] (771;)+1)

< 2g  sup

(ﬁ)] (1)

A

Dy (Mige--sMiq )

1 < 9¢(¢) >q
T2 (¢ —mi,) \1+¢g¢0(C)

[¢=Col=22¢y | 1 Lj=1
1 q
< 28,77 2%,
&¢
0

the last estimate coming from (5.2) and the fact that 7;,,...,7;,,, € D(n;,,€0) C D(Co,€¢,)-
Since e¢, > €¢ and g9 < 1, it follows that

¢\’ 2 00 < 27 0
Ap,(m‘p’m,ml) (1 T C|2) (ni,,+1) < %2 < s 2
0

and this proves (5.3) in the second case. The proof of the lemma is finished.

Remark 5.1. The proof can also be direct without using Theorem 1 (see [9]).
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5.2. Proof of Theorem 3 in the general case. We start by giving some comments about
a set {n;};>1 that is locally interpolable by real-analytic curves. First, in Definition 2, we do
not need to assume that {n;};>1 is not dense. The following result specifies that it cannot
be the case.

Lemma 20. The topological closure of a set that is locally interpolable by real-analytic
curves, has empty interior.

Proof. Let assume that it is not the case. Then there are (5 € C and g9 > 0 such that
D (Co,€0) C {nj},;5,- In particular, (o cannot be isolated. Since {n;};>1 is locally inter-
polable by real-analytic curves, by Lemma 18 there are Vi, € V ((y) and g¢, € O (Vg,)
such that, for all n; € V, g¢, (n;) = 7;. By reducing V,, if necessary, one can assume that

Veo C {nj}j>1. For any subsequence (7;, ), that converges to (o with n;, # (o, Vk > 1,
one has for all k large enough (so that n;, € V)

() @(Co)

g_g (Co)| =1 then g—g (Co) = € for 0 € [0,2m).

Now let set w, = (o +ie~"/2 /p with p large enough so that w, € V,. Since {wp}p>p0 C

In particular

Veo € {115} 54, for all p > po, there is n;, € {1}, such that 7, € V¢, and [n;, —w,| <
1/(2p*) (in particular, (n;, )p>p, converges to (o), then

e = @(Co) = lim _L‘CO = lim w_pngr@fw_p
¢ p=oon;, —Co  p=oowy — (o + 1y, — Wy
_ii0/2 1/p2 )
i D900

p—oo je~ /2 /p + O(1/p?)

and that is impossible.

Vv

The following result specifies that this geometric condition is not changed by any rotation
of the lines.

Lemma 21. Let assume that {n;};>1 is locally interpolable by real-analytic curves. Then
for alln® & {n;}j>1, so is {0;};>1 where 05 = hye(n;), Vj = 1.

Proof. Let fix any 7° and consider the associated 6;’s. First, since h,c is homographic, in

particular it is a topological isomorphism of C then {0;};>1 = hye ({Wj }jzl)-

Next, let be (o € {n,};>1 with (o finite. If hye({o) is finite, then the equivalent geometric
criterion claimed by Lemma 18 is satisfied on h,c((o) since condition (5.1) is invariant under
the action of biholomorphisms. Indeed, let V' be a neighborhood of (4 and g € O(V) which
satisfy (5.1) and let recall the definition (1.10) of h, from Introduction:

h,nc : @ — C
7t 1
¢ = iU <+c .
¢—=n
I : -1 _ 770C+1 o - -1 1
n particular h, (¢) = e hye (¢) and one can see that 6; = h,' [g (k2 (6;))],
-n

V0; € hye (V).



A CRITERION FOR THE RECONSTRUCTION OF A HOLOMORPHIC FUNCTION 25

If hye(Co) = oo, the same argument holds since the analogous function h;} ogo h;cl will
be holomorphic in a neighborhood of oo (as specified by (1.13) from Introduction).
The case where (yp = 0o and h,.(00) is finite (resp. = 00) is analogous.

Vv

Now we can give the proof of Theorem 3.

Proof. Let {n;};>1 be a subset that is locally interpolable by real-analytic curves. If it is
bounded, then Theorem 3 follows by Lemma 19.

Otherwise, we know by Lemma 20 that {n;};>1 cannot be dense, then there is 7. ¢
{n;}j>1. Let consider the associated bounded subset {6;};>1, where 6; = h,_(n;), j > 1
(where h,,_ is defined as in (1.10) from Introduction with the choice of n° := 7.). Then
{0;};>1 is bounded (the justification is the same as in the proof of part (2) from Theorem 2).
On the other hand, by Lemma 21, {6;},>1 is still locally interpolable by real-analytic curves.
It follows by Lemmas 19 and 7 that there is €, > 0 such that Ry(f;6) converges to 0
uniformly on any compact subset of B(0,e,70) (resp. C?), for any f € O (Bs(0,70)) (resp.
O (C?)). Finally, by Lemma 16, this holds for Ry (+;7) (hence for Ex(-;n) by lemma 7) and
this proves the theorem.

Vv

5.3. A special case of equivalence with the geometric condition. In this part we
give the proof of Proposition 2 claimed in Introduction.

Proof. First, the set {n;};>1 is bounded since the sequence (n;) is convergent. One

j>1
has in addition {n;};>1 = {Nec} U {n;},;>1. It follows that, (o € {n;};>1 being given, one
can assume that {y = 7o (otherwise (y is one of the n;’s that are isolated). Since En(-;7)
converges (in the meaning of Definition 1), then in particular Ex (f;n) converges to f on any
compact subset of C? and for all f € O ((Cz). By applying Theorem 1 and the estimate (1.9)
for ¢ =1, it follows that there is R, such that, Vp > 0, one has

(5.4) R,PT.

Ap,(np,ecimn) [C = HC|C|2:| (Mp+1)

For all N > 1, let consider £y][p], the Lagrange interpolating polynomial of ¢(¢) = /(1 +
IC]?) (see (2.1)). We know by Lemma 2 that

N-—-1 P
Lalel©) = D TT € —=m00) = = n0)) | Aptipc) (€ 7 0(O)] (p11) -
p=0 \j=1

Let be po such that, ¥j > po, |1, — 1| < 1/(3R,) and let consider V' = D (1, 1/(3R,;)).
One has by (5.4) for all N > pg and ( € V,

po—1 p
Lx (@)1 < Y TS+ i) | 1 Ap ) (] (1))
p=0 \j=1

Po p

N
+ Z H |<| + |77j H (‘C - 7700| + |77j - 7700|) |Ap,(np,...,7]1)[90] (77?+1)|

p=po \Jj=1 Jj=po+1
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. P+
§_: (el #1760, + e )

Po 2 pP—Po 1
+ Z (|1700 +1/(3Rn)+1ga_<);0 |n]> (3R77> R"'] !

p=Po

It follows that there is C,, large enough such that V.V > po,

sup sup |Ln(p)(C)] < sup <Cp0+CpD Z (2/3)"" po) < +0o.

NZ>po CEV NZ>po Jrm—

The sequence (Ln(¢))y>; of polynomials is uniformly bounded on V. By the Stiltjes-
Vitali-Montel Theorem, there is a subsequence (L, (¢)),~; that uniformly converges on
any compact K C V to a function g that is holomorphic on V. One has in addition for all
n; €V,
. = 1' . = 1. . = .
gln) = M Ln(p) () =, lim o) = @),

i.e. the (nonholomorphic) function ¢ coincides with g on V' N {7n;},;>1. In particular, this
yields

_ g (n;)
5.5 7= 4\
(5:5) ! 1 —n;9(n;)
On the other hand,
oeg ()| = Timn Inyg ()] = Tun Iyo ()] = oo ()] = 121 <1
j—o0 J J j—o0 7 7 1+‘7700|2

Then by reducing V' if necessary, the following function
g:V — C

¢ 9(9)
1-¢g(¢)’
is well-defined, holomorphic and satisfies by (5.5) the geometric criterion (5.1). The proof

follows by applying Lemma 18.
Vv

Remark 5.2. One can see from this proof that, in order to prove the assertion, it suffices to
assume that Ex(f;n) converges to f on any compact subset of C2 and for all f € O (Cg)
(part (2) from Theorem 1).

As a consequence we get an effective process to construct examples of sets {n;};>1 for
which the associated interpolation formula Ex(-;7) does not converge: any convergent se-
quence that cannot be embedded in any real-analytic curve like in the following result.

Corollary 2. Let consider the following sequence defined as
'
77j = - Vj Z 1.
J

Then the associated interpolation formula Ex(-;n) does not converge (in the meaning of
Definition 1).
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Proof. By Lemma 8, in order to prove that En(-;n) does not converge in the meaning of
Definition 1, it suffices to prove that Ex(-;7) does not satisfy part (2) from Theorem 1, i.e.
it is false that Ex(f;n) converges to f uniformly on any compact subset of C? and for all
f € O(C?). If it were true, then by Proposition 2 and Remark 5.2, the convergent sequence
(nj)j>1 would be locally interpolable by real-analytic curves. By Lemma 18, there would
exist a neighborhood V of 0 and g € O(V) that satisfy condition (5.1). In particular, one
would have for all j large enough that g(n2;) = g((—=1)7/(25)) = (—1)7/(24) = na; (resp.
g(m2jy1) = g((=1)7 /(25 + 1)) = —(=1)74/(2j + 1) = —n2;41), hence by the uniqueness
theorem, ¢ = ¢g({) = —¢. This is impossible in any neighborhood of 0.

\/
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APPENDIX: PROOF OF RELATION (1.2) FROM INTRODUCTION

In this part we want to prove the following result.

Proposition 3. Let be f € O (B3(0,r)) (resp. f €O ((CZ)) and Zk,lzo a2y 2y its Taylor
expansion. One has, for all N > 1 and z € By(0,7q) (resp. z € C?),

(5.6) f(2) = En(fim)(z) = Rn(fim)(z) + > argztah,
kHI>N
where
N N N
1+ n,74 1
Ev(fimz) = > | I[ r—m=) ] > ; x
p=1 \j=p+1 q= p1+|nQ| H] pnfq(nq_nj)
N+p
zz—i—nqzl) 1 om
x = lv=0[f(nqv, )]
mgv:p(”lnql2 m! dv !
and

N N J— k+l—N
= Z H L Z ar [ 22 + Mp21 A
; ST 2 |

p=1 \j=1jzp '~ | SN

Moreover, the function Ex(f;n) satisfies the following properties:
(1) Ex(fin) € O(B2(0,79)) (resp. Ex(fin) € O (C?));
(2) En(f;n) is an explicit formula that is constructed with the data
{f|{21=77p22}}1§p§1v )
(3) Vp=1,...,N,

EN(fimi{zi=nz2y = Sl{zi=npza)s
(4) VP € Clz1, 20) with degP < N — 1, Ex(P;n) = P.

This result allows to justify relation (1.2) that has been claimed in Introduction. Before
giving its proof, we begin with the following preliminar lemma.

Lemma 22. En(f;n)(2) (resp. Ry(f;n)(z)) is well-defined for all z € Bs(0,1¢) and is
holomorphic on By(0,1o). Similarly, if f € O (C?), then Ex(f;n), Rn(f;n) € O (C?).

Proof. We just consider En(f;n) (the case of Ry(f;n) is similar). It will suffice to show
that the series is absotulely convergent for any z € B2(0, 7). First, by the Taylor expansion
of f, one has that, forallm >0and g=1,...,N

)

1 o™ 1 0m
(5.7) m! dvm lo=0lf (1, v)] Z Ok, mk m! dum |”7 k+l Z Ok mq
k4+1>0 k+l=m

Forall N > 1, p=1,...,N, by using the Cauchy-Schwarz inequality (one can assume that
z # 0 otherwise the assertion is obvious), this leads to

D

m>N—p

— m—N-+p m
29 + Mgz 110

<
a,Um|U O[f(nq )] s

L+ g2 ml
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m—N—+
121v/T + 12 ' "
P T > lakl gl

2
m>N—p 1+ |77q| k+l=m

5 N—p k l
V117 S ol [1q| 1|2 5]
||Z|| k+I>N—p ’ V 1 + |77q|2 V 1 yi |T]‘J|2

This sum is finished since f € O (Bz(0,rp)) and

1]l
= \Ving?+1 = |lz]| < ro,
\/1JF|77q|2 !

IN

LANE &l
VI 1+ g2
AN 2]

VI 1+ gl
partial sum) on z is finished.

Thus En(f;n) is well-defined and holomorphic on Bs(0,rg). Finally, the case of f €
@) ((CQ) follows by restriction on Bs(0,rg) where ry can be taken arbitrary large.
v

then one has ( ) € Bs(0,79) and the Taylor expansion (also any

The next result is the proof of (5.6).

Lemma 23. One has for all N > 1 and z € B(0, ro)
f(z) = Ex(£in)(z) = Rn(fsm)(z)+ Y arizfz.
k>N

Proof. We prove this equality by induction on N > 1. For N = 1, by using (5.7), one has
for all z € B2(0,79),

k+1
Zzo + M1z
Ei(fin)(z) = ap iy | ———
k;zo V 1+ ‘771|2

and

k41
29 + M1z1
o = ¥ et (22"
k;zl Lt |m?
It follows that

Er(f;m)(2) — Ra(fim)( Z aRiztzy = aoo+ Z ar2i 2 = f(2),

k+I>1 k+1>1
and this proves the lemma for N = 1.
Now we assume that the assertion is true for NN, i.e. it is true for any function f €
O (B(0,79)) and any N-set of different points #1,...,ny. Then we consider Eny1(f;1)(2)

and Ry11(f;m)(2) (with z € By(0,79) being fixed). First, by using (5.7) and isolating the
index p =1 in the below sum, one has

N+1 [ N+1 N+1 1+ 70 1
Bun(fimE = 3| II Gr=mz) | 3 5= .
p=1 \j=p+1 a=p Mal” [1j=p,54 (M = 1)

(24T ktl—(N+1)+p
X Z Qk,17q 71 T |77 |2

k+I>N+1—p a
(5.8) = Any1+ Bnga,
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where
N+1 N+1 _ _ k+l—N
L+m7n 1 22 +Tg21
Avir = [ (1 —mjz) D T+ |§ NTT > anig ﬁ
j=2 q=1 Tal™ TTi= g (e = 3) 135N Mlq
and
2y + %Zl k+l—-N—-1+4p

N+1 [ N+1 N1y —Zk+z>1v+1 » @k, mq T

B _ o + MpTy + [7q]
N+1 — Z H (Zl 77]22) Z 1+ ‘ |2 N+1
p=2 \j=p+1 q=p la Hj p];ﬁq(nq 77])
— k+l—N+p
N N N Y ke N—p @RITE <w‘1+1z21>
_ _ L+ Npt17lg41 = L+ |ng11]
- Z H (21 = nj4122) Z 1+ 2 N

p=1 \j=p+1 a=p Mla+1 Hj:p,j;éq(nq-'rl — Nj+1)
In particular,
(5.9) Byny1 = En(fin) (%),
where
(510) 77/ = (7725 n3, .- ) .

Next, we claim that

Ry11(fim)(2)

Il
&
A
I
3
I
[ V)

_ k+l-N
Z ap it <Z2+7lqzl> -
g 2
K+ N 1+ [nq]

(5.11) - Z a2z .

Indeed, for all zo # 0 (that will suffice since the involved functions are holomorphic), one
has

N4l fONEL 0z 2+ T2 kl—(N+1)—1
11— 1522 2 1
Ryia(fim(z) = H —— Z @iy (1+|q|2)
g=1 \j=1,j%#q Mg = 1j k+I1>N+1 Mlq
N+1 [ N+1 k+l—N
- z1 —Mj22 2o + Mg 22 +7g 21
y, 11 g = 1 2, arly L[>
a=1 \j=lj#q '* Y | k+I>N
N N+1 [ N+1 /2 - .
Y | ST )
k=N a=1 \j=lj#q 7 Y

On the other hand, since 0 < k < k+1 = N < N + 1, then the Lagrange polynomial
Lx+1(X*) on the N + 1 points 71, ...,mn11, is exactly X*, hence

N+1 N+1

N z1/22 — k k N—Fk

22 E Akl E H — | = g Q121 %5
k+l=N g=1 \j=1,j#q Mg = 1l; k+l=N

and this proves the claim.
Finally, the last part with which we have to deal is Ay ;1. Since for all g =1,..., N +1,
one has
N+1 N+1 N+1
I[[G-mz= = I G-mz=)-z=m-m) [[ -z,

Jj=2 J=1,j#q J=2,j#q
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then
N+1 [ N1 _  k4I-N
A _ z1— 22 | 1+mmny w22\
e 11 ng—=n; ) 1+ |ngl? 2 okl 14 [1g/?
q=1 \j=lj#q ¢ 'V 1 k>N q
. k+l—N
N1 N1 > ag,m (M) i
z2 (g — M) H (21 —nj22) Lty =HEN AT [ngl?
q J 2 N+1
q=2 i=2.j#q Lot g (g = m) I1j=2,524 (11a — 1)

N+1 N+1

_ — \ktl-N
_ z1—mnjz2 | 1+ mmnq k[ 72 tTgz1 N
o H Z AeiNg \ =12

Ng —Nj 1+|77q‘2 kHISN 1JF|77¢1|2

N N

z Nit1% 1+ mng+1 2o + Ngr1 21 k=N
1= Mj+122
_zQZ H i+ a+ Z ak:,l"7§+1 <7Q+> .

a=1 \j=1,j#q Tat1 ~ Ti+1 L+ |ng+1]? K ISN 14 |ng+1]?

By applying (5.11), one has

N+1 N+1

21 — 129 1+mny z2 +Mg21 N
L
Ant1— By(fin)(z) = Z H : [ 3 } Z a 11y ( : >

— . 2 2
a=1 \j=1jzq Mo~ 1+ [q] k>N 1+ [ng]

al N 21— Nj+122 | 1+ Mgt 22 + Ngt1 21 PN
3 II it S ety (7+) ©Y et

_m. 2 2
T\t gg Nt — i1 | LA ngn|* ) Gy L+ [ng41] W

The first sum becomes

N+1 N+1 — k+l=N
Z 21 — M 22 H 21 — 122 nq Z i <2’2 + nq21) _

_ — . 2 q 2
=M\, M) L + Inql VN 1+ g

N N  \ktl-N

_ Z H 21— Nj4122 | Tgr1(2z1 — M 22) Z a lTI " (2’2 + 77q+121>
— . q 2 :
= i e =i | T enlt gy 1+ [ng+1]

Since for all g =1,..., N, Tgr1(21 — mi22) + 22(1 + MTgg1) = 22 + Tgr121, it follows that
Ant1 = Bya(fim)(z) =

N N N Y I v
21 — Mj+122 | 22 +TMgr1%1 k Z2 +Ngt121 I
oy I Aomee) e s e (R )T 5
a=1 \j=1,jsq lat1 ~ "li+1 Ma+11™ 3 SN Mlg-+1 k=N
= =Ry (fin)(2)+ > axi2tzh,
k+i=N

with the same definition of 7’ as in (5.10). We can finally deduce by applying (5.8) and (5.9)
that

Ena(f;m)(2) = Rvaa(fm)2) + > araztsh =

E+1>N+1
= —Ry(fin') (2 Z a2 % + Ex (f31') (2) + Z a2 %
k=N kH>N+1
that is exactly f(z) by applying the induction hypothesis and the lemma follows.



32 AMADEO IRIGOYEN

Now we can prove Proposition 3.

Proof. The relation (5.6) is Lemma 23, property (1) is Lemma 22 and property (2) follows
from the definition of En(f;n).

In order to prove property (3), let fix N > 1 and p with 1 < p < N. For all z € By(0,r9)
with z; = 9,29, one has

- - k
Ry (fin) (npza,22) = 230 D apumpab N = N ap i ()t 4,
k+HI>N k+I>N
that is exactly the restriction on the complex line {z; = 7,22} of the remainder part

Do ktisN ay12¥Z4. The required property follows by (5.6).
Finally, property (4) is an immediate consequence of (5.6) since, for all k,l with k+1 >

L 0" P = 0.

N > deg P, ay,(P) = kN 02592
b 1 2

v/



