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A definition of summability is put forward in the framework of general Carleman 
ultraholomorphic classes in sectors, so generalizing k-summability theory as 
developed by J.-P. Ramis. Departing from a strongly regular sequence of positive 
numbers, we construct an associated analytic proximate order and corresponding 
kernels, which allow us to consider suitable Laplace and Borel-type transforms, both 
formal and analytic, whose behavior closely resembles that of the classical ones in 
the Gevrey case. An application to the study of the summability properties of the 
formal solutions to some moment-partial differential equations is included.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to put forward a concept of summability of formal (i.e. divergent in general) power 
series with controlled growth in their coefficients in the framework of general Carleman ultraholomorphic 
classes in sectors, so generalizing the by-now classical and powerful tool of k-summability of formal Gevrey 
power series, introduced by J.-P. Ramis [36,37].

Given a sequence of positive real numbers M = (Mn)n∈N0 , the Carleman ultraholomorphic class ÃM(G)
in a sectorial region G of the Riemann surface of the logarithm consists of those holomorphic functions f
in G whose derivatives of order n ≥ 0 are bounded on every bounded proper subsector of G by, essentially, 
the values n!Mn. Equivalently (see Subsection 2.3), these functions admit a (non-uniform) M-asymptotic 
expansion at 0 in G, given by a formal power series f̂ =

∑
n≥0 anz

n/n! whose coefficients are again suitably 

bounded in terms of M (we write f ∼M f̂ and (an)n∈N0 ∈ ΛM; f is said to be flat if B̃(f) is the null sequence). 
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The map sending f to (an)n∈N0 is the asymptotic Borel map B̃, and its injectivity in ÃM(G) means that 
every function f in such a class is determined by its asymptotic expansion f̂ (in other words, the class does 
not contain nontrivial flat functions). In this case, the class ÃM(G) is said to be quasianalytic, and it makes 
sense to call f the sum of f̂ ; this is the idea behind summability methods in this context.

We will only consider strongly regular sequences M as defined by V. Thilliez [40], which are subject to 
standard conditions guaranteeing good properties for the considered classes (see Subsection 2.2). The best 
known example is that of Gevrey classes, corresponding to Mα = (n!α)n∈N0 , α > 0, for which we use the 
notations Ãα(G), Λα, f ∼α f̂ and so on, for simplicity. Let us denote by Sγ the sector bisected by the 
direction d = 0 and with opening πγ. It is well known that B̃ : Ãα(Sγ) → Λα is injective if, and only if, 
γ > α (Watson’s lemma, see for example [2, Prop. 11]). This result is the departure point for the definition of 
1/α-summability in a direction, introduced by J.-P. Ramis [36,37]. A paradigmatic example of flat function 
in Ãα(Sα) is fα(z) = exp(−z−1/α), and it gives rise to kernels in terms of which one may define formal 
and analytic Laplace and Borel transforms permitting the reconstruction of the sum of a given Gevrey 
formal power series belonging to B̃(Ãα(Sγ)) for some γ > α. The technique of multisummability (in a sense, 
an iteration of a finite number of 1/α-summability procedures) has been proven to apply successfully to a 
plethora of situations concerning the study of formal power series solutions at a singular point for linear 
and nonlinear (systems of) meromorphic ordinary differential equations in the complex domain (see, to cite 
but a few, the works [1,2,4,9,29,38]), for partial differential equations (for example, [3,6,15,27,34]), as well 
as for singular perturbation problems (see [7,11,21], among others).

However, it is known that non-Gevrey formal power series solutions may appear for different kinds of 
equations. For example, V. Thilliez has proven some results on solutions within these general classes for 
algebraic equations in [41]. Also, G.K. Immink in [16,17] has obtained some results on summability for 
solutions of difference equations whose coefficients grow at an intermediate rate between Gevrey classes, 
called of 1+ level, that is governed by a strongly regular sequence. Very recently, the second author [28] has 
studied some singularly perturbed small step size difference-differential nonlinear equations whose formal 
solutions with respect to the perturbation parameter can be decomposed as sums of two formal series, one 
with Gevrey order 1, the other of 1+ level, a phenomenon already observed for difference equations [10].

All these results invite one to try to extend summability tools so that they are able to deal with formal 
power series whose coefficients’ growth is controlled by a general strongly regular sequence, so including 
Gevrey, 1+ level and other interesting examples. Our approach will be inspired by the study of moment 
summability methods, equivalent in a sense to 1/α-summability, developed by W. Balser in [2, Section 5.5]
and which relies on the determination of a pair of kernel functions with suitable asymptotic and growth 
properties, in terms of which to define formal and analytic Laplace- and Borel-like transforms. These summa-
bility methods have already found its application to the analysis of formal power series solutions of different 
classes of partial differential equations (for example, by the second author [25,26] and by S. Michalik [30,31]), 
and also for so-called moment-partial differential equations, introduced by W. Balser and M. Yoshino [8]
and subsequently studied by S. Michalik [32,33].

It seems clear that an analogue of Watson’s lemma should be obtained for a proper definition of summa-
bility, and flat functions in sectors of optimal opening (like fα, see above) should be determined. We recall 
that V. Thilliez [40] introduced a growth index γ(M) ∈ (0, ∞) for every strongly regular sequence M (which 
for Mα equals α), and proved the following facts: if γ < γ(M), then AM(Sγ) contains nontrivial flat func-
tions; and, resting on Whitney-type extension results, he obtained a generalized Borel–Ritt–Gevrey theorem 
(coming with right linear and continuous inverses for the Borel map). By means of these flat functions, the 
authors [20] defined suitable kernels and moment sequences and reproved this last result by the classical 
truncated Laplace transform technique, in the same vein as Ramis’ original proof. In the last section of [20], 
and resting on some partial Watson-like results obtained by the first and third authors [22], some hints 
are given on how to define a Laplace transform which behaves properly with respect to M-asymptotics, 
and a definition of M-summability is suggested. However, the preceding results for general classes are not 
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fully satisfactory, as the quantity γ(M) is not known to be optimal for quasianalyticity and, moreover, flat 
functions are only obtained after restricting ourselves to sectors Sγ with γ < γ(M).

These drawbacks have been recently overcome in the paper [39] by the third author. There, for every 
strongly regular sequence M a new constant ω(M) is introduced, measuring the rate of growth of the 
sequence M, in terms of which quasianalyticity may be properly characterized due to a classical result of 
B.I. Korenbljum [19]. This constant is easily computed (see (7) and (4)), and indeed it is the inverse of 
the order of growth of the classical function M(t) associated with M, namely M(t) = supn∈N0

log(tn/Mn), 
t > 0. So, a definition of M-summability in a direction d may be easily put forward, see Definition 3.3. 
Regarding the construction of flat functions, V. Thilliez [41] had characterized flatness in ÃM(Sγ) in terms 
of non-uniform estimates governed by the function e−M(1/|z|), much in the same way as the function e−|z|−1/α

expresses flatness in the Gevrey case. The theory of proximate orders, which refines the notion of constant 
exponential order, allows one to specify the rate of growth of an entire function in terms of the function 
M(t), and results by V. Bernstein, M.M. Dzhrbashyan, M.A. Evgrafov, A.A. Gol’dberg, I.V. Ostrovskii 
(see [23,14]) and, in our regards, mainly L.S. Maergoiz [24], have been the key for the construction of 
flat functions in Sω(M), whenever M induces a proximate order (which is the case in all the instances of 
strongly regular sequences appearing in the literature). Section 4 is devoted to these results. We mention 
that proximate orders had already been used in the study of some questions regarding multisummability, 
see [5].

Now that we have assured its existence under fairly mild assumptions, we devote Section 3 to the intro-
duction of kernels of M-summability (see Definition 3.4), and the associated formal and analytic transforms, 
in terms of which to reconstruct the sums of M-summable formal power series in a direction, as stated in 
Theorem 3.18. Once our tool has been designed, it is necessary to test its applicability to the study of 
formal solutions of different types of algebraic and differential equations in the complex domain. Our first 
attempt is contained in the last section of the paper. The notion of formal moment-differential operator was 
firstly introduced by W. Balser and M. Yoshino in [8]. Generally speaking, given the sequence of moments 
me = (me(p))p∈N0 of a kernel function e of order k > 0 (in other words and according to Remark 3.19(i), 
a kernel for M1/k-summability), one can define ∂me,z as an operator from C[[z]] into itself given by

∂me,z

⎛
⎝∑

p≥0

fp
me(p)

zp

⎞
⎠ =

∑
p≥0

fp+1

me(p)
zp,

in much the same way as, for the usual derivative ∂, one has ∂
(∑

p≥0
fp
p! z

p
)

=
∑

p≥0
fp+1
p! zp. For two 

sequences of moments m1 = (m1(p))p∈N0 and m2 = (m2(p))p∈N0 of orders k1 and k2, respectively, they 
study the Gevrey order of the formal power series solutions of an inhomogeneous moment-partial differential 
equation with constant coefficients in two variables,

p(∂m1,t, ∂m2,z)û(t, z) = f̂(t, z),

where p(λ, ξ) is a given polynomial. Subsequently, S. Michalik [32] considers the corresponding initial value 
problem

P (∂m1,t, ∂m2,z)u(t, z) = 0, ∂j
m1,tu(0, z) = ϕj(z) for j = 0, . . . , n− 1,

where P (λ, ξ) is a polynomial of degree n with respect to λ and the Cauchy data are analytic in a neigh-
borhood of 0 ∈ C. A formal solution û is constructed, and a detailed study is made of the relationship 
between the summability properties of û and the analytic continuation properties and growth estimates for 
the Cauchy data. We will generalize his results for strongly regular moment sequences of a general kernel 
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of summability. A significant part of the statements are given without proof, since the arguments do not 
greatly differ from those in [32]. On the other hand, complete details are provided when the differences 
between both situations are worth stressing.

2. Preliminaries

2.1. Notation

We set N := {1, 2, . . .}, N0 := N ∪ {0}. R stands for the Riemann surface of the logarithm, and C[[z]] is 
the space of formal power series in z with complex coefficients.

For γ > 0, we consider unbounded sectors

Sγ := {z ∈ R : |arg(z)| < γ π

2 }

or, in general, bounded or unbounded sectors

S(d, α, r) := {z ∈ R : |arg(z) − d| < απ

2 , |z| < r}, S(d, α) := {z ∈ R : |arg(z) − d| < απ

2 }

with bisecting direction d ∈ R, opening απ and (in the first case) radius r ∈ (0, ∞).
A sectorial region G(d, α) with bisecting direction d ∈ R and opening απ will be a domain in R such 

that G(d, α) ⊂ S(d, α), and for every β ∈ (0, α) there exists ρ = ρ(β) > 0 with S(d, β, ρ) ⊂ G(d, α). In 
particular, sectors are sectorial regions.

A sector T is a bounded proper subsector of a sectorial region G (denoted by T 	 G) whenever the 
radius of T is finite and T \ {0} ⊂ G. Given two unbounded sectors T and S, we say T is an unbounded 
proper subsector of S, and we write T ≺ S, if T \ {0} ⊂ S.

D(z0, r) stands for the disk centered at z0 with radius r > 0.
For an open set U ⊂ R, O(U) denotes the set of holomorphic functions defined in U .
�(z) stands for the real part of a complex number z, and we write �x
 for the integer part of x ∈ R, i.e. 

the greatest integer not exceeding x.

2.2. Strongly regular sequences

Most of the information in this subsection is taken from the works of A.A. Goldberg and I.V. Ostro-
vskii [14], H. Komatsu [18], V. Thilliez [40] and the third author [39], which we refer to for further details 
and proofs. In what follows, M = (Mp)p∈N0 will always stand for a sequence of positive real numbers, and 
we will always assume that M0 = 1.

Definition 2.1. We say M is strongly regular if the following hold:

(α0) M is logarithmically convex: M2
p ≤ Mp−1Mp+1 for every p ∈ N.

(μ) M is of moderate growth: there exists A > 0 such that

Mp+� ≤ Ap+�MpM�, p, � ∈ N0.

(γ1) M satisfies the strong non-quasianalyticity condition: there exists B > 0 such that

∑
�≥p

M�

(� + 1)M�+1
≤ B

Mp

Mp+1
, p ∈ N0.
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Example 2.2.

(i) The best known example of strongly regular sequence is Mα := (n!α)n∈N0 , called the Gevrey sequence 
of order α > 0.

(ii) The sequences Mα,β :=
(
n!α

∏n
m=0 logβ(e + m)

)
n∈N0

, where α > 0 and β ∈ R, are strongly regular.
(iii) For q > 1, M = (qn2)n∈N0 satisfies (α0) and (γ1), but not (μ).

For a sequence M = (Mp)p∈N0 verifying properties (α0) and (γ1) one has that the associated sequence of 
quotients, m = (mp := Mp+1/Mp)p∈N0 , is an increasing sequence to infinity, so that the map hM : [0, ∞) → R, 
defined by

hM(t) := inf
p∈N0

Mpt
p, t > 0; hM(0) = 0, (1)

turns out to be a non-decreasing continuous map in [0, ∞) onto [0, 1]. In fact

hM(t) =
{
Mpt

p if t ∈
[

1
mp

, 1
mp−1

)
, p = 1, 2, . . . ,

1 if t ≥ 1/m0.

Definition 2.3. (See [35,12].) Two sequences M = (Mp)p∈N0 and M′ = (M ′
p)p∈N0 of positive real numbers are 

said to be equivalent if there exist positive constants L, H such that

LpMp ≤ M ′
p ≤ HpMp, p ∈ N0.

In this case, it is straightforward to check that

hM(Lt) ≤ hM′(t) ≤ hM(Ht), t ≥ 0. (2)

One may also associate with such a sequence M the function

M(t) := sup
p∈N0

log
( tp

Mp

)
= − log

(
hM(1/t)

)
, t > 0; M(0) = 0, (3)

which is a non-decreasing continuous map in [0, ∞) with limt→∞ M(t) = ∞.
We now recall the following definitions and facts.

Definition 2.4. (See [14, p. 43].) Let α(r) be a nonnegative and nondecreasing function in (c, ∞) for some 
c ≥ 0. The order of α is defined as

ρ = ρ[α] := lim sup
r→∞

log+(α(r))
log(r) ∈ [0,∞]

(where log+ = max(log, 0)).

Theorem 2.5. (See [39].) Let M be strongly regular, m the sequence of its quotients and M(r) its associated 
function. Then, the order of M(r) is given by

ρ[M ] = lim
r→∞

log(M(r))
log(r) = lim sup

n→∞

log(n)
log(mn) ∈ (0,∞). (4)
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Some additional properties of strongly regular sequences needed in the present work are the following 
ones.

Lemma 2.6. (See [40].) Let M = (Mp)p∈N0 be a strongly regular sequence and A > 0 the constant appearing 
in (μ). Then,

M1/p
p ≤ mp ≤ A2M1/p

p for every p ∈ N0. (5)

Let s be a real number with s ≥ 1. There exists ρ(s) ≥ 1 (only depending on s and M) such that

hM(t) ≤ (hM(ρ(s)t))s for t ≥ 0. (6)

Remark 2.7. The condition of moderate growth (μ) plays a fundamental role in the proof of (6), which will 
in turn be crucial in many of our arguments.

For the sake of completeness we include the following result.

Proposition 2.8. Given two strongly regular sequences M = (Mn)n∈N0 and M′ = (M ′
n)n∈N0 , the product 

sequence M ·M′ := (MnM
′
n)n∈N0 is also strongly regular.

Proof. Properties (α0) and (μ) are easily checked for M ·M′. Regarding (γ1), we will use that, according to 
Lemma 1.3.4 in Thilliez [40], Ms := (Ms

n)n∈N0 is strongly regular for every s > 0, hence M2 and M′2 are. 
Now, Cauchy–Schwarz inequality gives that, for every p ≥ 0,

∑
�≥p

M�M
′
�

(� + 1)M�+1M ′
�+1

≤
(∑

�≥p

M2
�

(� + 1)M2
�+1

)1/2(∑
�≥p

M ′2
�

(� + 1)M ′2
�+1

)1/2
≤

√
BB′ Mp

Mp+1

M ′
p

M ′
p+1

,

where the positive constants B and B′ are the ones appearing in (γ1) for M2 and M′2, respectively. �
2.3. Asymptotic expansions and ultraholomorphic classes

Given a sequence of positive real numbers M = (Mn)n∈N0 , a constant A > 0 and a sector S, we define

AM,A(S) =
{
f ∈ O(S) : ‖f‖

M,A := sup
z∈S,n∈N0

|f (n)(z)|
Ann!Mn

< ∞
}
.

(AM,A(S), ‖ ‖
M,A) is a Banach space, and AM(S) := ∪A>0AM,A(S) is called a Carleman ultraholomorphic 

class in the sector S.
One may accordingly define classes of sequences

ΛM,A =
{
μ = (μn)n∈N0 ∈ CN0 : |μ|

M,A := sup
n∈N0

|μn|
Ann!Mn

< ∞
}
.

(ΛM,A, | |M,A) is again a Banach space, and we put ΛM := ∪A>0ΛM,A.
Since the derivatives of f ∈ AM,A(S) are Lipschitzian, for every n ∈ N0 one may define

f (n)(0) := lim
z∈S,z→0

f (n)(z) ∈ C,

and it is clear that the sequence
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B̃(f) := (f (n)(0))n∈N0 ∈ ΛM,A, f ∈ AM,A(S).

The map B̃ : AM(S) −→ ΛM so defined is the asymptotic Borel map.
Next, we will recall the relationship between these classes and the concept of asymptotic expansion.

Definition 2.9. We say a holomorphic function f in a sectorial region G admits the formal power series 
f̂ =

∑∞
p=0 apz

p ∈ C[[z]] as its M-asymptotic expansion in G (when the variable tends to 0) if for every 
T 	 G there exist CT , AT > 0 such that for every n ∈ N, one has

∣∣∣f(z) −
n−1∑
p=0

apz
p
∣∣∣ ≤ CTA

n
TMn|z|n, z ∈ T.

We will write f ∼M

∑∞
p=0 apz

p in G. ÃM(G) stands for the space of functions admitting M-asymptotic 
expansion in G.

Definition 2.10. Given a sector S, we say f ∈ O(S) admits f̂ as its uniform M-asymptotic expansion in S
of type A > 0 if there exists C > 0 such that for every n ∈ N, one has

∣∣∣f(z) −
n−1∑
p=0

apz
p
∣∣∣ ≤ CAnMn|z|n, z ∈ S.

As a consequence of Taylor’s formula and Cauchy’s integral formula for the derivatives, we have the 
following result (see [2,13]).

Proposition 2.11. Let S be a sector and G a sectorial region.

(i) If f ∈ AM,A(S), then f admits f̂ =
∑

p∈N0
1
p!f

(p)(0)zp as its uniform M-asymptotic expansion in S of 
type A.

(ii) f ∈ ÃM(G) if, and only if, for every T 	 G there exists AT > 0 such that f |T ∈ AM,AT
(T ). Hence, the 

map B̃ : ÃM(G) −→ ΛM is also well defined.

Remark 2.12. Consider a pair of equivalent sequences M and M′. It is obvious that ΛM = ΛM′ ; given 
a sector S, the spaces AM(S) and AM′(S) coincide, and also ÃM(G) and ÃM′(G) agree for a sectorial 
region G.

3. MMM-summability

We are firstly interested in characterizing general ultraholomorphic quasianalytic classes. Due to a clas-
sical result of B.I. Korenbljum [19], the third author has obtained the following one [39].

Theorem 3.1. For a strongly regular sequence M with associated function M(r), put

ω(M) := 1
ρ[M ] ∈ (0,∞). (7)

Then, πω(M) is the optimal opening for M-quasianalyticity, in the sense that the class AM(S) is (respectively, 
is not) quasianalytic whenever the opening of S exceeds (resp. is less than) this quantity.
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Remark 3.2. If the strongly regular sequences M = (Mn)n∈N0 and M′ = (M ′
n)n∈N0 are such that Mn ≤ M ′

n

for every n, then AM(S) ⊂ AM′(S) for any sector S, and so ω(M) ≤ ω(M′). Moreover, if M and M′ are 
equivalent then, by Remark 2.12, we see that ω(M) = ω(M′).

As an easy consequence, we deduce that if the opening of a sectorial region G is greater than πω(M), 
then B̃ : ÃM(G) −→ ΛM is injective. So, we are ready for the introduction of a new concept of summability 
of formal power series in a direction.

Definition 3.3. Let d ∈ R. We say f̂ =
∑

n≥0
fn
n! z

n is M-summable in direction d if there exist a sectorial 

region G = G(d, γ), with γ > ω(M), and a function f ∈ ÃM(G) such that f ∼M f̂ .

In this case, by virtue of Proposition 2.11(ii) we have (fn)n∈N0 ∈ ΛM. According to Theorem 3.1, f is 
unique with the property stated, and will be denoted

f = SM,df̂ , the M-sum of f̂ in direction d.

Our next aim in this section will be to develop suitable tools in order to recover f from f̂ by means 
of formal and analytic transforms, in the same vein as in the classical theory for the Gevrey case and the 
so-called k-summability. We will follow the ideas in the theory of general moment summability methods put 
forward by W. Balser [2]. The case ω(M) < 2 is mainly treated, and indications will be given on how to 
work in the opposite situation.

Definition 3.4. Let M be strongly regular with ω(M) < 2. A pair of complex functions e, E are said to be 
kernel functions for M-summability if:

(i) e is holomorphic in Sω(M).
(ii) z−1e(z) is locally uniformly integrable at the origin, i.e., there exists t0 > 0, and for every z0 ∈ Sω(M)

there exists a neighborhood U of z0, U ⊂ Sω(M), such that the integral 
∫ t0
0 t−1 supz∈U |e(t/z)|dt is 

finite.
(iii) For every ε > 0 there exist c, k > 0 such that

|e(z)| ≤ chM

(
k

|z|

)
= c e−M(|z|/k), z ∈ Sω(M)−ε, (8)

where hM and M are the functions associated with M, defined in (1) and (3), respectively.
(iv) For x ∈ R, x > 0, the values of e(x) are positive real.
(v) If we define the moment function associated with e,

me(λ) :=
∞∫
0

tλ−1e(t)dt, �(λ) ≥ 0,

from (i)–(iv) we see that me is continuous in {�(λ) ≥ 0}, holomorphic in {�(λ) > 0}, and me(x) > 0
for every x ≥ 0. Then, the function E given by

E(z) =
∞∑ zn

me(n) , z ∈ C,

n=0
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is entire, and there exist C, K > 0 such that

|E(z)| ≤ C

hM(K/|z|) = CeM(|z|/K), z ∈ C. (9)

(vi) z−1E(1/z) is locally uniformly integrable at the origin in the sector S(π, 2 − ω(M)), in the sense 
that there exists t0 > 0, and for every z0 ∈ S(π, 2 − ω(M)) there exists a neighborhood U of z0, 
U ⊂ S(π, 2 − ω(M)), such that the integral 

∫ t0
0 t−1 supz∈U |E(z/t)|dt is finite.

Remark 3.5.

(i) The existence of such kernels may be deduced, as we will show in Section 4, by taking into account 
the construction of flat functions in ÃM(Sω(M)) accomplished by the third author in [39], whenever 
the function M(r) associated with M is such that d(r) = log(M(r))/ log(r) is a proximate order in 
the sense of E. Lindelöf (see, for example, the book by B.Ya. Levin [23]). This is the case for all the 
strongly regular sequences appearing in applications, as it has also been shown in [39].

(ii) According to Definition 3.4(v), the knowledge of e is enough to determine the pair of kernel functions. 
So, in the sequel we will frequently omit the function E in our statements.

(iii) In case ω(M) ≥ 2, condition (vi) in Definition 3.4 does not make sense. However, we note that for a 
positive real number s > 0 the sequence of 1/s-powers M(1/s) := (M1/s

n )n∈N0 is also strongly regular 
(see Lemma 1.3.4 in [40]) and, as it is easy to check,

hM(1/s)(t) =
(
hM(ts)

)1/s
, t ≥ 0, (10)

and ω(M(1/s)) = ω(M)/s. So, following the ideas of Section 5.6 in [2], we will say that a complex function 
e is a kernel for M-summability if there exist s > 0 with ω(M)/s < 2, and a kernel ẽ : Sω(M)/s → C for 
M(1/s)-summability such that

e(z) = ẽ(z1/s)/s, z ∈ Sω(M).

If one defines the moment function me as before, it is plain to see that me(λ) = mẽ(sλ), �(λ) ≥ 0. 
The properties verified by ẽ and mẽ are easily translated into similar ones for e, but in this case the 
function

E(z) =
∞∑

n=0

zn

me(n) =
∞∑

n=0

zn

mẽ(sn)

does not have the same properties as before, and one rather pays attention to the kernel associated 
with ẽ,

Ẽ(z) =
∞∑

n=0

zn

mẽ(n) =
∞∑

n=0

zn

me(n/s)
, (11)

which will behave as indicated in (v) and (vi) of Definition 3.4 for such a kernel for M(1/s)-summability.
It is worth remarking that, once such an s as in the definition exists, one easily checks that for any 
real number t > ω(M)/2 a kernel ê for M(1/t)-summability exists with e(z) = ê(z1/t)/t.

Definition 3.6. Let e be a kernel for M-summability and me its associated moment function. The sequence 
of positive real numbers me = (me(p))p∈N0 is known as the sequence of moments associated with e.



1184 A. Lastra et al. / J. Math. Anal. Appl. 430 (2015) 1175–1206
The following result is a consequence of the estimates, for the kernels e and E, appearing in (8) and (9)
respectively. We omit its proof, since it may be easily adapted from the proof of Proposition 5.7 in [39].

Proposition 3.7. Let M = (Mp)p∈N0 be a strongly regular sequence, e a kernel function for M-summability, 
and me = (me(p))p∈N0 the sequence of moments associated with e. Then M and me are equivalent.

Remark 3.8.

(i) In the Gevrey case of order α > 0, Mα = (p!α)p∈N0 , it is usual to choose the kernel

eα(z) = 1
α
z1/α exp(−z1/α), z ∈ Sα.

Then we obtain that meα(λ) = Γ(1 + αλ) for �(λ) ≥ 0. Of course, the sequences Mα and meα =
(mα(p))p∈N0 are equivalent.

(ii) Indeed, for any kernel e for M-summability one may prove that the sequence of moments me =
(me(p))p∈N0 is also strongly regular: Firstly, up to multiplication by a constant scaling factor, one 
may always suppose that me(0) = 1. Property (α0) is a consequence of Hölder’s inequality, since for 
every p ∈ N one has

me(p)2 = ‖tp−1e(t)‖2
1 ≤ ‖(tp−2e(t))1/2‖2

2‖(tpe(t))1/2‖2
2 = me(p− 1)me(p + 1)

(where ‖ · ‖1 and ‖ · ‖2 are the standard L1 and L2 norms). Condition (μ) for me is deduced from the 
equivalence of M and me (Proposition 3.7) and condition (μ) for M: for every �, p ∈ N0,

me(p + �) ≤ Ap+�Mp+� ≤ Ap+�Bp+�MpM� ≤ Ap+�Bp+�CpC�me(p)me(�),

for suitable positive constants A, B, C. Finally, one can find in the work of H.-J. Petzsche [35, Corol-
lary 3.2] that condition (γ1) remains invariant under equivalence of sequences.
Bearing this fact in mind, in Definition 3.4 one could depart not from a strongly regular sequence M, 
but from a kernel e, initially defined and positive in direction d = 0, whose moment function me(λ) is 
supposed to be well-defined for λ ≥ 0, and such that the sequence me is strongly regular. This allows one 
to consider the constant ω(me), which would equal ω(M) according to Proposition 3.7 and Remark 3.2, 
and also the function hme

, in terms of which one may rephrase all the items in Definition 3.4, specially 
the estimates in (8) and (9), with exactly the same meaning, according to the relationship between 
hme

and hM indicated in (2). This insight will be fruitful in Section 5, when dealing with so-called
moment-partial differential equations.

The next definition resembles that of functions of exponential growth, playing a fundamental role when 
dealing with Laplace and Borel transforms in k-summability for Gevrey classes. For convenience, we will 
say a holomorphic function f in a sector S is continuous at the origin if limz→0, z∈T f(z) exists for every 
T 	 S.

Definition 3.9. Let M = (Mp)p∈N0 be a sequence of positive real numbers verifying (α0) and (γ1), and consider 
an unbounded sector S in R. The set OM(S) consists of the holomorphic functions f in S, continuous at 0 
and having M-growth in S, i.e. such that for every unbounded proper subsector T of S there exist r, c, k > 0
such that for every z ∈ T with |z| ≥ r one has

|f(z)| ≤ c

hM(k/|z|) . (12)
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Remark 3.10. Since continuity at 0 has been asked for, f ∈ OM(S) implies that for every T ≺ S there exist 
c, k > 0 such that for every z ∈ T one has (12).

We are ready for the introduction of the M-Laplace transform.
Given a kernel e for M-summability, a sector S = S(d, α) and f ∈ OM(S), for any direction τ in S we 

define the operator Te,τ sending f to its e-Laplace transform in direction τ , defined as

(Te,τf)(z) :=
∞(τ)∫
0

e(u/z)f(u)du
u
, |arg(z) − τ | < ω(M)π/2, |z| small enough, (13)

where the integral is taken along the half-line parameterized by t ∈ (0, ∞) �→ teiτ . We have the following 
result.

Proposition 3.11. For a sector S = S(d, α) and f ∈ OM(S), the family {Te,τf}τ in S defines a holomorphic 
function Tef in a sectorial region G(d, α + ω(M)).

Proof. Let τ ∈ R be a direction in S, i.e., such that |τ − d| < απ/2. We will show that for every β with 
0 < β < ω(M), there exists r = r(f, τ, β) > 0 such that Te,τf is holomorphic in S(τ, β, r). Hence, Te,τf will 
be holomorphic in Gτ := ∪0<β<ω(M)S(τ, β, r), which is a sectorial region Gτ = G(τ, ω(M)).

For every u, z ∈ R with arg(u) = τ and |arg(z) − τ | < ω(M)π/2 we have that u/z ∈ Sω(M), so that the 
expression under the integral sign in (13) makes sense. We fix a > 0, and write

∞(τ)∫
0

e(u/z)f(u)du
u

=
aeiτ∫
0

e(u/z)f(u)du
u

+
∞(τ)∫
aeiτ

e(u/z)f(u)du
u
.

Since f is continuous at the origin, and because of Definition 3.4(ii), it is straightforward to apply Leibnitz’s 
rule for parametric integrals and deduce that the first integral in the right-hand side defines a holomorphic 
function in S(τ, ω(M)). Regarding the second integral, for u as before and by Definition 3.9 there exist 
c1, k1 > 0 such that

|f(u)| ≤ c1
(
hM(k1/|u|)

)−1
.

Also, for z such that |arg(z) − τ | < βπ/2 we have that u/z ∈ Sβ , and Definition 3.4(iii) provides us with 
constants c2, k2 > 0 such that

|e(u/z)| ≤ c2hM(k2|z|/|u|),

so that

∣∣ 1
u
e(u/z)f(u)

∣∣ ≤ c1c2
|u|

hM(k2|z|/|u|)
hM(k1/|u|)

.

Let ρ(2) > 0 be the constant appearing in (6) for s = 2, and consider r := k1/(ρ(2)k2) > 0. For any 
z ∈ S(τ, β, r) we have that ρ(2)k2|z| < k1, and from (6) and the monotonicity of hM we deduce that

∣∣ 1 e(u/z)f(u)
∣∣ ≤ c1c2 h

2
M

(ρ(2)k2|z|/|u|) ≤ c1c2
hM(k1/|u|).
u |u| hM(k1/|u|) |u|
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By the very definition of hM we have that hM(k1/|u|) ≤ M1k1/|u|, so the right-hand side of the last 
inequality is an integrable function of |u| in (a, ∞), and again Leibnitz’s rule allows us to conclude the 
desired analyticity for the second integral.

Let σ ∈ R with |σ − d| < απ/2. The map Te,σf is a holomorphic function in a sectorial region Gσ =
G(σ, ω(M)) which will overlap with Gτ whenever τ and σ are close enough. Since we know that

lim
t→∞

thM(1/t) = 0,

by Cauchy’s residue theorem we easily deduce that Te,τf(z) ≡ Te,σf(z) whenever both maps are defined. 
Thus the family {Te,τf}τ in S defines a holomorphic function Tef in the union of the sectorial regions Gτ , 
which is indeed again a sectorial region G = G(d, α + ω(M)). �

We now define the generalized Borel transforms.
Suppose ω(M) < 2, and let G = G(d, α) be a sectorial region with α > ω(M), and f : G → C be 

holomorphic in G and continuous at 0. For τ ∈ R such that |τ−d| < (α−ω(M))π/2 we may consider a path 
δω(M)(τ) in G like the ones used in the classical Borel transform, consisting of a segment from the origin 
to a point z0 with arg(z0) = τ + ω(M)(π + ε)/2 (for some suitably small ε ∈ (0, π)), then the circular arc 
|z| = |z0| from z0 to the point z1 on the ray arg(z) = τ − ω(M)(π + ε)/2 (traversed clockwise), and finally 
the segment from z1 to the origin.

Given kernels e, E for M-summability, we define the operator T−
e,τ sending f to its e-Borel transform in 

direction τ , defined as

(T−
e,τf)(u) := −1

2πi

∫
δω(M)(τ)

E(u/z)f(z)dz
z
, u ∈ S(τ, ε0), ε0 small enough.

In case ω(M) ≥ 2, choose s > 0 and a kernel ẽ for M(1/s)-summability as in Remark 3.5(iii), and let T−
ẽ,τ

be defined as before, where the kernel under the integral sign is the function Ẽ given in (11). Then, if φs is 
the operator sending a function f to the function f(zs), we define T−

e,τ by the identity

φs ◦ T−
e,τ = T−

ẽ,τ ◦ φs, (14)

in the same way as in [2, p. 90].

Proposition 3.12. For G = G(d, α) and f : G → C as above, the family

{T−
e,τf}τ ,

where τ is a real number such that |τ − d| < (α − ω(M))π/2, defines a holomorphic function T−
e f in the 

sector S = S(d, α− ω(M)). Moreover, T−
e f is of M-growth in S.

Proof. Due to the identity (14), it is clearly sufficient to prove our claim in the case ω(M) < 2. Since f is 
holomorphic in G and continuous at 0, for every τ ∈ R such that |τ − d| < (α − ω(M))π/2 the condition 
in Definition 3.4(vi) implies that T−

e,τf is holomorphic in the sector S(τ, εω(M)/π), where ε > 0 is the one 
entering in the definition of δω(M)(τ), and it is small enough so that u/z stays in the sector S(π, 2 −ω(M)) as 
u ∈ S(τ, εω(M)/π) and z runs over the two segments in δω(M)(τ). Cauchy’s theorem easily implies that the 
family {T−

e,τf}, when τ ∈ R and |τ −d| < (α−ω(M))π/2, defines a holomorphic function T−
e f in the sector 

S = S(d, α−ω(M)). Let us finally check that T−
e f is of M-growth in S. By compactness, it suffices to work 

on a proper unbounded subsector T of S(τ, εω(M)/π), for τ and ε as before. Put δω(M)(τ) = δ1 + δ2 + δ3, 
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where δ1 and δ3 are the aforementioned segments in directions, say, θ1 and θ3, and δ2 is the circular arc 
with radius r2 > 0. As f is continuous at the origin, there exists M > 0 such that |f(z)| ≤ M for every z
in the trace of δω(M)(τ). So, for every u ∈ T and j = 1, 3 we have

∣∣∣−1
2πi

∫
δj

E(u/z)f(z)dz
z

∣∣∣ ≤ M

2π

r2∫
0

1
t
|E(ue−iθj/t)|dt = M

2π

r2/|u|∫
0

1
s
|E(ei(arg(u)−θj)/s)|ds,

after the change of variable t = |u|s. According to the condition in Definition 3.4(vi), these expressions 
uniformly tend to 0 as u tends to infinity in T . On the other hand, the estimates for E in (9) allow us to 
write

∣∣∣−1
2πi

∫
δ2

E(u/z)f(z)dz
z

∣∣∣ ≤ M(θ1 − θ3)
2π max

|z|=r2
|E(u/z)| ≤ CM(θ1 − θ3)

2πhM(Kr2/|u|)
.

So, this integral has the desired growth and the conclusion follows. �
In the next paragraph we follow the same ideas as in [2, p. 87–88] in order to justify the forthcoming 

definition of formal Laplace and Borel transforms.
Let M = (Mp)p∈N0 be a strongly regular sequence, e a kernel for M-summability and S = Sα. It is 

clear that for every λ ∈ C with �(λ) ≥ 0, the function fλ(z) = zλ belongs to the space OM(S). From 
Proposition 3.11, one can define Tefλ(z) for every z in an appropriate sectorial region G. Moreover, for 
z ∈ G and an adequate choice of τ ∈ R one has

Tefλ(z) =
∞(τ)∫
0

e
(u
z

)
uλ−1du.

In particular, for z ∈ R with arg(z) = τ , the change of variable u/z = t turns the preceding integral into

Tefλ(z) =
∞∫
0

e(t)zλ−1tλ−1zdt = me(λ)zλ. (15)

Next, we recall the following result by H. Komatsu, which was useful in the proof of Proposition 3.7.

Proposition 3.13. (See [18, Proposition 4.5].) Let M(r) be the function associated with a sequence M verifying 
(α0). Given an entire function F (z) =

∑∞
n=0 anz

n, z ∈ C, the following statements are equivalent:

(i) F is of M-growth.
(ii) There exist c, k > 0 such that for every n ∈ N0, |an| ≤ ckn/Mn.

Taking this characterization into account, one may justify termwise integration to obtain that, for such 
a function F ,

TeF (z) =
∞∑

n=0
anme(n)zn

whenever |z| is small enough. In case ω(M) < 2, and particularizing this result for F = E (the kernel 
function corresponding to e), we deduce that for every z �= 0 and w �= 0 such that |z/w| < 1 one has
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w

w − z
=

∞(τ)∫
0

e(u/z)E(u/w)du
u
, (16)

a formula which remains valid as long as both sides are defined. Suppose now that f is holomorphic in 
a sectorial region G(d, α), with α > ω(M), and continuous at the origin. By Propositions 3.12 and 3.11, 
TeT

−
e f is well defined; a change in the order of integration and the use of (16) prove that

TeT
−
e f = f. (17)

Finally, since fλ (defined above) is continuous at the origin, it makes sense to compute

T−
e fλ(u) = −1

2πi

∫
δω(M)(τ)

E(u/z)zλ−1dz.

Putting u/z = t, the integral is changed into

T−
e fλ(u) = uλ

2πi

∫
γz

E(t)t−λ−1dt,

for a corresponding path γz. However, Cauchy’s theorem allows one to choose one and the same path of 
integration as long as z runs in a suitably small disk, and we deduce, by the identity principle, that T−

e fλ(u)
is a constant multiple of uλ in S(d, α− ω(M)). According to (15) and (17), we conclude that

T−
e fλ(u) = uλ

me(λ) . (18)

Observe that, taking into account (14), the same will be true if ω(M) ≥ 2. Therefore, it is adequate to make 
the following definitions.

Definition 3.14. Given a strongly regular sequence M and a kernel for M-summability e, the formal e-Laplace 
transform T̂e : C[[z]] → C[[z]] is given by

T̂e

( ∞∑
p=0

apz
p
)

:=
∞∑
p=0

me(p)apzp,
∞∑
p=0

apz
p ∈ C[[z]].

Accordingly, we define the formal e-Borel transform T̂−
e : C[[z]] → C[[z]] by

T̂−
e

( ∞∑
p=0

apz
p
)

:=
∞∑
p=0

ap
me(p)

zp,

∞∑
p=0

apz
p ∈ C[[z]].

The operators T̂e and T̂−
e are inverse to each other.

The next result lets us know how these analytic and formal transforms interact with general asymptotic 
expansions. Given two sequences of positive real numbers M = (Mn)n∈N0 and M′ = (M ′

n)n∈N0 , we consider 
the sequences M · M′ = (MnM

′
n)n∈N0 and M′/M = (M ′

n/Mn)n∈N0 . We note that if both sequences are 
strongly regular, M ·M′ is again strongly regular (see Proposition 2.8), but M′/M might not be.
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Remark 3.15. One may easily prove (see Remark 5.8 in [39]) that given K > 0, there exist C, D > 0 such 
that for every p ∈ N one has

∞∫
0

tp−1hM(K/t)dt ≤ CDpMp. (19)

Theorem 3.16. Suppose M is strongly regular and e is a kernel for M-summability. For any sequence M′ of 
positive real numbers the following hold:

(i) If f ∈ OM(S(d, α)) and f ∼M′ f̂ , then Tef ∼M·M′ T̂ef̂ in a sectorial region G(d, α + ω(M)).
(ii) If f ∼M′ f̂ in a sectorial region G(d, α) with α > ω(M), then T−

e f ∼M′/M T̂−
e f̂ in the sector S(d, α −

ω(M)).

Proof. (i) From Proposition 3.11 we know that g := Tef ∈ O(G(d, α + ω(M))) for a sectorial region 
G = G(d, α + ω(M)). Put f̂ =

∑∞
n=0 fnu

n. Given δ ∈ (0, α), there exist c, k > 0 such that for every 
u ∈ S(d, δ, 1) and every n ∈ N one has

∣∣f(u) −
n−1∑
k=0

fku
k
∣∣ ≤ cknM ′

n|u|n.

Then, we deduce that |fn| ≤ cknM ′
n for every n. Also, since f is of M-growth, for every u ∈ S(d, δ) we have, 

by suitably enlarging the constants,

∣∣f(u) −
n−1∑
k=0

fku
k
∣∣ ≤ c1k

n
1M

′
n|u|n

hM(k1/|u|)
. (20)

Observe that, by (15), for every z ∈ G we have

g(z) −
n−1∑
k=0

me(k)fkzk = Te

(
f(u) −

n−1∑
k=0

fku
k
)
(z).

So, given τ ∈ R with |τ − d| < απ/2 and z ∈ S(τ, β) with β ∈ (0, ω(M)) and |z| small enough, we have

g(z) −
n−1∑
k=0

me(k)fkzk =
∞(τ)∫
0

e(u/z)
(
f(u) −

n−1∑
k=0

fku
k
)du
u
.

Since u/z ∈ Sβ , by Definition 3.4(iii) there exist c2, k2 > 0 such that

|e(u/z)| ≤ c2hM(k2|z|/|u|),

and so, taking into account (20) and (6),

∣∣∣e(u/z)
u

(
f(u) −

n−1∑
k=0

fku
k
)∣∣∣ ≤ c1c2k

n
1M

′
n|u|n−1hM(k2|z|/|u|)

hM(k1/|u|)
≤ c1c2k

n
1M

′
n|u|n−1h

2
M

(ρ(2)k2|z|/|u|)
hM(k1/|u|)

.

For z ∈ S(τ, β, k1/(ρ(2)k2)) we have ρ(2)k2|z|/|u| < k1/|u| and, hM being increasing, we obtain that
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∣∣∣e(u/z)
u

(
f(u) −

n−1∑
k=0

fku
k
)∣∣∣ ≤ c1c2k

n
1M

′
n|u|n−1hM(ρ(2)k2|z|/|u|),

what implies that

∣∣∣g(z) − n−1∑
k=0

me(k)fkzk
∣∣∣ ≤ c1c2k

n
1M

′
n

∞∫
0

sn−1hM(ρ(2)k2|z|/s)ds.

Making the change of variable s = |z|t and applying (19) leads to the conclusion.
(ii) From Proposition 3.12, g := T−

e f belongs to O(S(d, α− ω(M))). As in the proof of that proposition, 
we limit ourselves to the case ω(M) < 2. It suffices to obtain estimates on a bounded subsector T =
S(τ, εω(M)/π, ρ) 	 S(d, α−ω(M)), for τ and ε entering in the definition of the path δω(M)(τ) = δ1 +δ2 +δ3
within G(d, α) (δ1 and δ3 are segments in directions θ1 and θ3, respectively, and δ2 is a circular arc with 
radius r > 0). If f̂ =

∑∞
n=0 fnu

n, there exist c, k > 0 such that for every z in the trace of δω(M)(τ) and 
every n ∈ N one has

∣∣f(z) −
n−1∑
k=0

fkz
k
∣∣ ≤ cknM ′

n|z|n. (21)

By (18), for every u ∈ T we have

g(u) −
n−1∑
k=0

fk
me(k)u

k = T−
e

(
f(z) −

n−1∑
k=0

fkz
k
)
(u) = −1

2πi

∫
δω(M)(τ)

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z

= −1
2πi

3∑
j=1

∫
δj

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z
. (22)

By applying (21) and (9), we see that

∣∣∣ ∫
δ2

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z

∣∣∣ ≤ c(θ1 − θ3)knM ′
nr

n max
|z|=r

|E(u/z)| ≤ cC(θ1 − θ3)knM ′
nr

n

hM(Kr/|u|) .

So, for n large enough we may choose r = |u|/(Kmn) and, since hM(1/mn) = Mn/m
n
n, we deduce that

∣∣∣ ∫
δ2

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z

∣∣∣ ≤ cC(θ1 − θ3)knM ′
n|u|n

KnMn
. (23)

On the other hand, again (21) implies that for j = 1, 3,

∣∣∣ ∫
δj

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z

∣∣∣ ≤ cknM ′
n

r∫
0

tn
|E(ue−iθj/t)|

t
dt

= cknM ′
n|u|n

r/|u|∫
0

sn
|E(ei(arg(u)−θj)/s)|

s
ds,

after the change of variable t = |u|s. The same choice of r as before leads to
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∣∣∣ ∫
δj

E(u/z)
(
f(z) −

n−1∑
k=0

fkz
k
)dz
z

∣∣∣ ≤ cknM ′
n|u|n

1/(Kmn)∫
0

sn
|E(ei(arg(u)−θj)/s)|

s
ds

≤ cknM ′
n|u|n

1
Knmn

n

1/(Kmn)∫
0

|E(ei(arg(u)−θj)/s)|
s

ds. (24)

Since limn→∞ mn = ∞, the last integral admits an upper bound independent of u and n because of 
condition (vi) in Definition 3.4. According to (5), (22), (23) and (24), the conclusion is reached. �

We are ready for giving a definition of summability in a direction with respect to a kernel e of 
M-summability. Let Te be the corresponding Laplace operator, and recall that me is strongly regular and 
equivalent to M, so that, on one hand, ΛM = Λme

and, on the other hand, it makes sense to consider the 
space Ome(S) for any unbounded sector S and, moreover, Ome(S) = OM(S) (see (2)).

Definition 3.17. We say f̂ =
∑

n≥0
fn
n! z

n is Te-summable in direction d ∈ R if:

(i) (fn)n∈N0 ∈ Λme
, so that g := T̂−

e f̂ =
∑

n≥0
fn

n!me(n)z
n converges in a disc, and

(ii) g admits analytic continuation in a sector S = S(d, ε) for some ε > 0, and g ∈ Ome(S).

The next result states the equivalence between M-summability and Te-summability in a direction, and 
provides a way to recover the M-sum in a direction of a summable power series by means of the formal and 
analytic transforms previously introduced.

Theorem 3.18. Given a strongly regular sequence M, a direction d and a formal power series f̂ =
∑

n≥0
fn
n! z

n, 
the following are equivalent:

(i) f̂ is M-summable in direction d.
(ii) For every kernel e of M-summability, f̂ is Te-summable in direction d.
(iii) For some kernel e of M-summability, f̂ is Te-summable in direction d.

In case any of the previous holds, we have (after analytic continuation)

SM,df̂ = Te(T̂−
e f̂)

for any kernel e of M-summability.

Proof. (i) =⇒ (ii) Let f = SM,df̂ , the M-sum of f̂ in direction d. Then f ∼M f̂ in a sectorial region G(d, α)
with α > ω(M), and moreover (fn)n∈N0 ∈ ΛM. If we put M′ = (1)n∈N0 (the constant sequence whose terms 
are all equal to 1), item (ii) in Theorem 3.16 states that g := T−

e f ∼M′ T̂−
e f̂ , what implies that T̂−

e f̂

converges to g in a disk, and g is, by Proposition 3.12, of M-growth in a small unbounded sector around d, 
as we intended to prove.

(ii) =⇒ (iii) Trivial.
(iii) =⇒ (i) Since g := T̂−

e f̂ converges in a disc and admits analytic continuation in a sector S = S(d, ε)
for some ε > 0, we have that g ∼M′ T̂−

e f̂ in S with M′ = (1)n∈N0 . Moreover, g ∈ Ome(S) = OM(S), and due 
to (i) in Theorem 3.16, we obtain that the function f := Teg is holomorphic in a sectorial region of opening 
greater than πω(M) and f ∼M f̂ there, so we are done. �
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Remark 3.19.

(i) In case M = M1/k, the summability methods described are just the classical k-summability and 
Te-summability (in a direction) for kernels e of order k > 0, as defined by W. Balser.

(ii) If M and M′ are equivalent strongly regular sequences, the respective families of kernels of summability 
coincide, as it is easily deduced from (2), hence the summability methods just introduced for M and 
M′ are all the same, as well as the sums provided for every M- (or equivalently, M′-) summable series 
in a direction. Note that, by Remark 3.2, one also has ω(M) = ω(M′); however, it is important to 
note that for general (non-Gevrey) kernels the value ω(M) does not determine the equivalence class of 
strongly regular sequences, nor the summability methods, we are dealing with. This fact will be taken 
into account throughout the last section of this paper.

(iii) In particular, consider a kernel e, its moment function me and the strongly regular sequence of mo-
ments me, as in Remark 3.8(ii). According to Definition 3.4, Remark 3.5(iii) and Remark 3.8(ii), 
for every s > 0 one may deduce that e(s)(z) := e(z1/s)/s is a kernel for m(s)

e -summability (re-
call that m(s)

e = (ms
e(n))n∈N0) with moment function me(s)(λ) = me(sλ) and sequence of moments 

me(s) = (me(sn))n∈N0 , and consequently, m(s)
e and me(s) are equivalent (Proposition 3.7) and

ω((me(sn))n∈N0) = ω(m(s)
e ) = sω(me) = sω((me(n))n∈N0). (25)

Moreover, by (2) and (10), there exist A, B > 0 such that for every t ≥ 0 one has(
hme

(At)
)s = h

m
(s)
e

(Asts) ≤ hm
e(s)

(ts) ≤ h
m

(s)
e

(Bsts) =
(
hme

(Bt)
)s
. (26)

4. Kernels of summability from proximate orders

In this section we show how one can construct kernels of summability for a strongly regular sequence M
by relying on the notion of analytic proximate orders, appearing in the theory of growth of entire functions 
and developed, among others, by E. Lindelöf, G. Valiron, B.Ja. Levin, A.A. Goldberg, I.V. Ostrovskii and 
L.S. Maergoiz (see the references [42,23,14,24]).

Definition 4.1. (See [42].) We say a real function ρ(r), defined on (c, ∞) for some c ≥ 0, is a proximate order
if the following hold:

(i) ρ(r) is continuous and piecewise continuously differentiable in (c, ∞),
(ii) ρ(r) ≥ 0 for every r > c,
(iii) limr→∞ ρ(r) = ρ < ∞,
(iv) limr→∞ rρ′(r) log(r) = 0.

Definition 4.2. Two proximate orders ρ1(r) and ρ2(r) are said to be equivalent if

lim
r→∞

(
ρ1(r) − ρ2(r)

)
log(r) = 0.

Remark 4.3. If ρ1(r) and ρ2(r) are equivalent and limr→∞ ρ1(r) = ρ, then limr→∞ ρ2(r) = ρ and 
limr→∞ rρ1(r)/rρ2(r) = 1.

Definition 4.4. Let ρ(r) be a proximate order and f be an entire function. The type of f associated with 
ρ(r) is

σf (ρ(r)) = σf := lim sup
r→∞

log max|z|=r |f(z)|
rρ(r)

.

We say ρ(r) is a proximate order of f if 0 < σf < ∞.
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Remark 4.5. If ρ(r) → ρ > 0 is a proximate order of f , then f is of exponential order ρ and there exists 
K > 0 such that for every z ∈ C with |z| large enough one has

|f(z)| ≤ exp(K|z|ρ(|z|)).

Moreover, and according to Remark 4.3, the type of f does not change if we substitute a proximate order 
of f by an equivalent one.

The following result of L.S. Maergoiz [24] will be the key for our construction. For an arbitrary sector 
bisected by the positive real axis, it provides holomorphic functions whose restriction to (0, ∞) is real and 
has a growth at infinity specified by a prescribed proximate order.

Theorem 4.6. (See [24, Thm. 2.4].) Let ρ(r) be a proximate order with ρ(r) → ρ > 0 as r → ∞. For every 
γ > 0 there exists an analytic function V (z) in Sγ such that:

(i) For every z ∈ Sγ ,

lim
r→∞

V (zr)
V (r) = zρ,

uniformly in the compact sets of Sγ.
(ii) V (z) = V (z) for every z ∈ Sγ (where, for z = (|z|, arg(z)), we put z = (|z|, − arg(z))).
(iii) V (r) is positive in (0, ∞), monotone increasing and limr→0 V (r) = 0.
(iv) The function t ∈ R → V (et) is strictly convex (i.e. V is strictly convex relative to log(r)).
(v) The function log(V (r)) is strictly concave in (0, ∞).
(vi) The function ρ0(r) := log(V (r))/ log(r), r > 0, is a proximate order equivalent to ρ(r).

Remark 4.7. We denote by B(γ, ρ(r)) the class of such functions V . Given a strongly regular sequence M
and its associated function M(r) (see (3)), suppose the function d(r) = log(M(r))/ log(r) is a proximate 
order. The main results in [39] rested on the fact that, for every V ∈ B(2ω(M), d(r)), the function G given 
by G(z) = exp(−V (1/z)) is a flat function in the class ÃM(Sω(M)). We will make use of some of its properties 
in the next result.

Theorem 4.8. Suppose M is a strongly regular sequence with ω(M) < 2 and such that the function d(r) =
log(M(r))/ log(r) is a proximate order. Then, for every V ∈ B(2ω(M), d(r)), the function eV defined in 
Sω(M) by

eV (z) = 1
ω(M)z exp(−V (z))

is a kernel of M-summability.

Proof. Since V is holomorphic in S2ω(M) and real in (0, ∞), the same is true for eV , so that (i) and (iv) in 
Definition 3.4 hold. Properties (ii) and (iii) in that definition have been obtained, with a slight modification 
in the first case, in Lemma 5.3 of [39], as a consequence of the following result.

Proposition 4.9. (See [24, Property 2.9].) Let ρ > 0, ρ(r) be a proximate order with ρ(r) → ρ, γ ≥ 2/ρ and 
V ∈ B(γ, ρ(r)). Then, for every α ∈ (0, 1/ρ) there exist constants b > 0 and R0 > 0 such that

�(V (z)) ≥ bV (|z|), z ∈ Sα, |z| ≥ R0.
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Note that, since d(r) is a proximate order and, by (4) and (7), we have that

lim
r→∞

d(r) = ρ[M ] = 1
ω(M) ,

we may apply Proposition 4.9 with ρ = 1/ω(M), ρ(r) = d(r) and γ = 2ω(M).
Then, the moment function associated with eV ,

mV (λ) :=
∞∫
0

tλ−1eV (t)dt = 1
ω(M)

∞∫
0

tλe−V (t)dt,

is well defined in {�(λ) ≥ 0}, continuous in its domain and holomorphic in {�(λ) > 0}; clearly, mV (x) > 0
for every x ≥ 0. Moreover, we have the following result.

Proposition 4.10. (See [24, Thm. 3.3].) The function

EV (z) =
∞∑

n=0

zn

mV (n) , z ∈ C,

is entire and of proximate order d0(r) = log(V (r))/ log(r).

According to Remark 4.5, from this fact we deduce that there exist constants C1, K1 > 0 such that for 
every z ∈ C one has

|EV (z)| ≤ C1 exp(K1V (|z|)).

Since d0(r) is a proximate order equivalent to d(r) = log(M(r))/ log(r), by Remark 4.3 we have

|EV (z)| ≤ C̃ exp(K̃M(|z|))

for every z ∈ C and suitably large constants C̃, K̃ > 0, and so condition (v) in Definition 3.4 is satisfied. 
Finally, we take into account the following.

Proposition 4.11. (See [24, (3.25)].) Let ρ(r) be a proximate order with ρ > 1/2, γ ≥ 2/ρ and V ∈ B(γ, ρ(r)). 
Then, for every ε > 0 such that ε < π(1 −1/(2ρ)) we have, uniformly as |z| → ∞, that (in Landau’s notation)

EV (z) = O

(
1
|z|

)
,

π

2ρ + ε ≤ |arg z| ≤ π.

This information easily implies that also condition (vi) in Definition 3.4 is fulfilled, what concludes the 
proof. �
Remark 4.12. In case ω(M) ≥ 2, we consider s > 0 and M(1/s) := (M1/s

n )n∈N0 as in Remark 3.5(iii), in such 
a way that ω(M(1/s)) = ω(M)/s < 2. With obvious notation, we have that d(1/s)(r) = sd(rs) − log(s)/ log(r)
for r large enough, and

r(d(1/s))′(r) log(r) = srsd′(rs) log(rs) + log(s)
log(r)

whenever both sides are defined. So, it is clear that d(r) is a proximate order if, and only if, d(1/s)(r) is. 
Were this the case, by the previous result we would have kernels ẽ for M(1/s)-summability, and the function 
e(z) = ẽ(z1/s)/s will be a kernel for M-summability.
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Regarding the question of whether d(r) is a proximate order or not, we have the following characterization 
and result.

Proposition 4.13. (See [39, Prop. 4.9].) Let M be a strongly regular sequence, and d(r) its associated function. 
The following are equivalent:

(i) d(r) is a proximate order,
(ii) limp→∞ mpd

′(m+
p ) log(mp) = 0,

(iii) lim
p→∞

p + 1
M(mp)

= 1
ω(M) = ρ[M ].

Corollary 4.14. (See [39, Corollary 4.10].) If

lim
p→∞

p log
(mp+1

mp

)
exists (finite or not), (27)

then its value is a fortiori ω(M), d(r) is a proximate order and, moreover,

ω(M) = lim
p→∞

log(mp)
log(p) (instead of lim inf

p→∞
, see (7)).

Remark 4.15.

(i) The previous condition (27) holds for every sequence Mα,β, so that in any of these cases d(r) is a 
proximate order and it is possible to construct kernels. Indeed, we have not been able yet to provide an 
example of a strongly regular sequence for which d(r) is not a proximate order, i.e., for which condition 
(iii) in Proposition 4.13 does not hold.

(ii) If M is such that d(r) is not a proximate order, but there exists a proximate order ρ(r) and constants 
A, B > 0 such that eventually A ≤ (d(r) − ρ(r)) log(r) ≤ B, then one may also construct kernels for 
M-summability.

(iii) The method described in this section provides kernels, but not all. For example, for k > 0 the function 
e(z) = kzke−zk gives rise to the standard Laplace and Borel (with Mittag–Leffler kernel) transforms 
of order k, and it is a kernel for M1/k-summability. However, it does not arise from the previous 
construction, as it would correspond to the function V (r) = rk − (k − 1) log(r) which does not have 
the required properties.

5. Application to some moment-PDE

Following the idea of W. Balser and M. Yoshino [8], given a sequence of moments m := (m(p))p∈N0 let 
us consider the operator ∂m,z, from C[[z]] into itself, given by

∂m,z

⎛
⎝∑

p≥0

fp
m(p)z

p

⎞
⎠ =

∑
p≥0

fp+1

m(p)z
p.

S. Michalik [32] has studied the initial value problem for linear moment-partial differential equations of the 
form

P (∂m1,t, ∂m2,z)u(t, z) = 0, (28)

with given initial conditions
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∂j
m1,tu(0, z) = ϕj(z) ∈ O(D), j = 0, . . . , n− 1, (29)

for some n ∈ N, and some neighborhood of the origin D, say D(0, r) for some r > 0. Here, P (λ, ξ) ∈ C[[λ, ξ]]
is a polynomial of degree n in the variable λ, and m1 = (m1(p))p∈N0 and m2 = (m2(p))p∈N0 are given 
moment sequences corresponding to kernels e1 and e2 of orders k1 > 0 and k2 > 0, respectively, as defined 
by W. Balser in [2]. In this last section we aim at stating analogous results to those in [32], now in the case 
when these kernels are associated with general strongly regular sequences (which might not be equivalent to 
Gevrey ones). So, our setting is as described in Remark 3.8(ii). Although the class of linear moment-partial 
differential equations under study has been enlarged, the main ideas do not greatly differ from the ones 
in [32], so we will omit some proofs requiring only minor modifications with respect to the ones provided in 
that work.

The approach in [32] is based on the reduction of the initial problem (28), (29) into a finite number of 
problems which are easier to handle. For this purpose, we put

P (λ, ξ) = P0(ξ)(λ− λ1(ξ))n1 · · · (λ− λ�(ξ))n� , (30)

where n1, . . . , n� ∈ N with n1 + · · · + n� = n. For every j = 1, . . . , �, the function λj(ξ) is an algebraic 
function, holomorphic for |ξ| > R0, for some R0 > 0, and with polynomial growth at infinity. The existence 
is proven of a normalized formal solution û to the main problem (28), (29), chosen so as to satisfy also the 
equation

(∂m1,t − λ1(∂m2,z))n1 · · · (∂m1,t − λ�(∂m2,z))n� û = 0 (31)

(the meaning of λj(∂m2,z) to be specified). Indeed, Theorem 1 in [32] states that one can recover û as

û =
�∑

α=1

nα∑
β=1

ûαβ , (32)

ûαβ being the formal solution of

⎧⎪⎨
⎪⎩

(∂m1,t − λα(∂m2,z))βûαβ = 0,
∂j
m1,tûαβ(0, z) = 0, j = 0, . . . , β − 2,

∂β−1
m1,tûαβ(0, z) = λβ−1

α (∂m2,z)φαβ(z),
(33)

where φαβ(z) :=
∑n−1

j=0 dαβj(∂m2,z)φj(z) ∈ O(D(0, r)), and dαβj(ξ) are holomorphic functions of polynomial 
growth at infinity for every α and β. One may easily check that the formal solution of (33) is given by

ûαβ(t, z) =
∞∑

j=β−1

(
j

β − 1

)
λj
α(∂m2,z)φαβ(z)

m1(j)
tj . (34)

We do not enter into details about this point, for the proof of this result is entirely analogous in our situation. 
We will focus our attention on the convergence of the formal solution, and also on the growth rate of its 
coefficients when it has null radius of convergence, but firstly we recall the meaning of the pseudodifferential 
operators λ(∂me,z) (like the ones appearing in (31), (33) and (34)), where λ(ξ) is an element in the set 
{λj : j = 1, . . . , �} and me = (me(p))p∈N0 is the strongly regular sequence of moments of a kernel e with 
moment function me(λ). Given r > 0, one can check (see Proposition 3 in [32]) that the differential operator 
∂me,z is well-defined for any φ ∈ O(D(0, r)), and for 0 < ε < r and every z ∈ D(0, ε) one has
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∂n
me,zφ(z) = 1

2πi

∮
|w|=ε

φ(w)
∞(θ)∫
0

ξnE(zξ)e(wξ)
wξ

dξdw,

for every n ∈ N0, where θ ∈ (− arg(w) − ω(me)π
2 , − arg(w) + ω(me)π

2 ) and E is the second kernel in Defini-
tion 3.4.

This expression inspires the definition of the pseudodifferential operator λ(∂me,z) as

λ(∂me,z)φ(z) := 1
2πi

∮
|w|=ε

φ(w)
∞(θ)∫
ξ0

λ(ξ)E(ξz)e(ξw)
ξw

dξdw,

for every φ ∈ O(D(0, r)), where ξ0 = R0e
iθ with suitably large R0 > 0 and θ as before (see Definition 8 

in [32]).
Next we study the growth rate of the formal solution of (33), given in (34). To this end, we need the 

following definition and lemmas.

Definition 5.1. Let U ⊆ C be a neighborhood of ∞, and Ψ ∈ O(U). The pole order q ∈ Q and the leading 
term ψ ∈ C \ {0} associated with Ψ are the elements satisfying

lim
z→∞

Ψ(z)
zq

= ψ,

if they exist.

Lemma 5.2. Let e, me and me be as before, λ(ξ) have pole order q and leading term λ0, and let φ ∈ O(D(0, r)). 
There exist r0, A, B > 0 such that

sup
|z|<r0

|λ(∂me,z)φ(z)| ≤ |λ0|ABqme(q).

Proof. One may choose R0 > 0 such that |λ(ξ)| ≤ 2|λ0||ξ|q for every ξ with |ξ| ≥ R0. Let w ∈ C with 
0 < |w| = ε < r, and put θ = − arg(w) and ξ0 = R0e

iθ. One has∣∣∣∣∣∣∣
∞(θ)∫
ξ0

λ(ξ)E(ξz)e(ξw)
ξw

dξ

∣∣∣∣∣∣∣ ≤ 2|λ0|
∞∫

R0

sq|E(seiθz)| |e(se
iθw)|
sε

ds. (35)

The properties of the kernel functions e and E stated in Definition 3.4, rephrased according to Remark 3.8(ii), 
allow us to write

|E(seiθz)e(seiθw)| ≤ c1

hme

(
c2
s|z|

)hme

( c3
sε

)

for some c1, c2, c3 > 0 and for every s ∈ [R0, ∞). From (6) one has

c1

hme

(
c2
s|z|

)hme

( c3
sε

)
≤

c1h
2
me

(ρ(2)c3
sε

)
hme

(
c2
s|z|

) . (36)

Let r0 > 0 be such that r0 ≤ c2ε/(ρ(2)c3), so that ρ(2)c3/(sε) ≤ c2/(s|z|) for every z ∈ D(0, r0). For such z, 
the expression in the right-hand side of (36) is upper bounded by c1hme

(
ρ(2)c3/(sε)

)
, and one obtains that 

the last expression in (35) can be upper bounded by
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2c1|λ0|
∞∫

R0

sq−1

ε
hme

(ρ(2)c3
sε

)
ds.

In turn, by the very definition of hme
, the previous quantity is less than

2c1|λ0|(ρ(2)c3)�q�+2 1
ε�q�+3me(�q
 + 2)

∞∫
R0

1
s3+�q�−q

ds.

The last integral is easily seen to be bounded above by some constant independent of q. Moreover, the 
moderate growth property of me leads to an estimate of the form

|λ0|A0B
�q�
0 me(�q
).

Finally, we observe that the function x ∈ [0, ∞) → me(x) is continuous, strictly convex (since m′′
e (x) > 0

for every x > 0) and limx→∞ me(x) = ∞, so it reaches its absolute minimum me(x0) > 0 at a point 
x0 ≥ 0, and it is decreasing in [0, x0) (if x0 > 0) and increasing in (x0, ∞). So, we deduce that whenever 
x0 ≤ x ≤ y we have me(x) ≤ me(y), while if 0 ≤ x < x0 and x ≤ y, then me(x)/me(y) ≤ me(0)/me(x0). 
In conclusion, there exists a constant A1 > 0 such that me(x) ≤ A1me(y) whenever 0 ≤ x ≤ y, and in 
particular, me(�x
) ≤ A1me(x) for every x > 0, what leads to the final estimate. �

For j ∈ N, the function λj(ξ) has pole order jq and leading term λj
0. So, an argument similar to the 

previous one provides the proof for the following result.

Corollary 5.3. Let j ∈ N. Under the assumptions of Lemma 5.2, one has

sup
|z|<r0

|λj(∂me,z)φ(z)| ≤ |λ0|jABjqme(qj)

for some r0, A, B > 0.

Remark 5.4. The previous estimates, according to Remark 3.19(iii), could also be expressed as
|λ0|jABjq

1 (me(j))q for suitable B1 > 0.

As indicated before (see (33) and (34)), a problem of the form

⎧⎪⎨
⎪⎩

(∂m1,t − λ(∂m2,z))β û = 0,
∂j
m1,tû(0, z) = 0, j = 0, . . . , β − 2,

∂β−1
m1,tû(0, z) = λβ−1(∂m2,z)φ(z),

(37)

where β ∈ N and φ ∈ O(D(0, r)), has

û(t, z) =
∞∑

j=β−1

(
j

β − 1

)
λj(∂m2,z)φ(z)

m1(j)
tj =:

∞∑
j=0

uj(z)tj (38)

as its formal solution, and Corollary 5.3 allows us to claim that

sup |uj(z)| ≤ CDjm2(qj)
m (j) ,
|z|<r0 1
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for some r0, C, D > 0 and for every j ∈ N0. Hence, convergence or divergence of û in some neighborhood of 
the origin is a consequence of the growth rate of the sequence (m2(qj)

m1(j) )j≥0. More precisely, one has

Corollary 5.5. If

limj→∞

(
m2(qj)
m1(j)

)1/j

< ∞,

then û in (38) defines a holomorphic function u(t, z) on D1 ×D(0, r0) for some neighborhood of the origin 
D1 ⊆ C, and u solves (37).

We now turn our attention to the determination of sufficient conditions for u(t, z) to admit analytic 
continuation in an unbounded sector with respect to the variable t and with adequate growth. We first need 
some notation, starting with Ome(S) (see Definition 3.9), where S is an unbounded sector in R and me is 
a strongly regular sequence of moments for a kernel e.

Definition 5.6. We write f ∈ Ome(Ŝ) if f ∈ Ome(S) ∩ O(S ∪D) for some disc D = D(0, r).
Let D = D(0, r). We say f(t, z), holomorphic in S ×D, belongs to Ome(S ×D) if for every T ≺ S and 

r1 ∈ (0, r) there exist c, k > 0 such that

sup
z∈D(0,r1)

|f(t, z)| ≤ c

hme
(k/|t|) , t ∈ T.

Analogously, we write f ∈ Ome(Ŝ ×D) if f ∈ O((S ∪D1) ×D) ∩ Ome(S ×D) for some disc D1 around 
the origin. We also write Ome(Ŝ(d)) and Ome(Ŝ(d) × D) whenever the sector S is of the form S(d, ε) for 
some inessential ε > 0.

From Proposition 3.13 we deduce the following result.

Corollary 5.7. If there exists a strongly regular sequence of moments me = (me(j))j∈N0 and C, D > 0 such 
that

m2(qj)me(j) ≤ CDjm1(j)

for every j ≥ 0, then û in (38) defines a function u ∈ O(C ×D(0, r0)), and one has

sup
|z|<r0

|u(t, z)| ≤ c

hme
(k/|t|) ,

for some c, k > 0 and for every t ∈ C.

Remark 5.8. In the particular case that m1 = M1/k1 and m2 = M1/k2 for some k1, k2 > 0 with 1/k1 > q/k2, 
we would have that û ∈ O(C ×D(0, r0)), with exponential growth in the variable t of order ( 1

k1
− q 1

k2
)−1, 

namely

sup
|z|<r0

|u(t, z)| ≤ CeD|t|
k1k2

k2−qk1 , t ∈ C,

for some C, D > 0, as stated in Proposition 5 of [32].
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In order to go further in our study, by an argument entirely analogous to that in Lemma 4 in [32] one 
can prove that, under the assumptions of Corollary 5.5, the actual solution of (37) can be written in a 
neighborhood of (0, 0) in the form

u(t, z) = tβ−1

(β − 1)!∂
β−1
t

1
2πi

∮
|w|=ε

φ(w)
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξdw, (39)

with θ ∈ (− arg(w) − π
2ω(m2), − arg(w) + π

2ω(m2)), and where E1 and E2 are the kernels corresponding to 
e1 and e2, respectively.

We are ready to relate the properties of analytic continuation and growth of the initial data with those 
of the solution. In these last results we assume the kernels e1, E1 have been constructed following the 
procedure in Section 4.

Lemma 5.9. Let q = μ/ν ∈ Q, with gcd(μ, ν) = 1 and β ≥ 1. We assume the moment functions m1(λ) and 
m2(λ) are such that

m2(qj) ≤ C0A
j
0m1(j), j ∈ N0, (40)

and

m1(j/q) ≤ C1A
j
1m2(j), j ∈ N0, (41)

for suitable C0, C1, A0, A1 > 0. Let u(t, z) be a solution of
{

(∂m1,t − λ(∂m2,z))βu = 0,
∂j
m1,tû(0, z) = φj(z) ∈ O(D(0, r)), j = 0, . . . , β − 1,

(42)

for some r > 0. If there exists a strongly regular sequence of moments m = (m(j))j∈N0 such that:

(i) there exist C, A > 0 with

m(j) ≤ CAjm1(j), j ∈ N0, (43)

(ii) φj ∈ Om
(1/q)(Ŝ((d + arg(λ))/q + 2kπ/μ)) for every k = 0, . . . , μ − 1 and j = 0, . . . , β − 1, and some 

d ∈ R,

then u(t, z) ∈ Om(Ŝ(d + 2nπ/ν) ×D(0, r)) for n = 0, . . . , ν − 1.

Remark 5.10. According to Remark 3.19(iii), (m2(qj))j∈N0 (respectively, (m1(j/q))j∈N0) is equivalent to 
m

(q)
2 (resp. to m(1/q)

1 ). Together with this fact, the inequalities (40) and (41) amount to the equivalence of 
m

(q)
2 and m1, and so, we deduce by (25) that

qω(m2) = ω(m1). (44)

Proof. With the help of Lemma 3 in [32], which may be reproduced in our setting without modification, 
one can show that the general situation may always be taken into the case ω(m1) < 2, which will be the 
only one we consider. The principle of superposition of solutions allows us to reduce the study of (42) to 
that of some problems of the form (37), where λβ−1(∂m2,z)φ in (37) turns out to be a function belonging to 
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Om
(1/q)(Ŝ((d + arg(λ))/q + 2kπ/μ)) for every k = 0, . . . , μ − 1 and j = 0, . . . , β− 1. Moreover, Corollary 5.5

and (40) guarantee the existence of a holomorphic solution u(t, z) of (42), defined on some neighborhood of 
the origin in C2, which can be written in the form (39). Next, we claim that the function

t �→
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξ, (45)

which is holomorphic in {t ∈ C : |t| ≤ C2|w|q} for some C2 > 0, can be analytically continued to the set

Ω = {t ∈ R : arg(t) + 2kπ + arg(λ) �= (arg(w) + 2nπ)q for every k, n ∈ Z}.

Indeed, the equality (44) entails that, as long as t ∈ Ω, one can replace θ in (45) by a direction θ̃ such that

arg(t) + 2kπ + arg(λ) + qθ̃ ∈
(
πω(m1)/2, 2π − πω(m1)/2

)
for some k ∈ Z

and

arg(w) + 2nπ + θ̃ ∈
(
− πω(m2)/2, πω(m2)/2

)
for some n ∈ Z,

what makes the continuation possible by ensuring the adequate asymptotic behavior of the integrand as 
ξ → ∞, arg(ξ) = θ̃. The rest of the proof, intended to estimate u, also follows the arguments in [32, Lemma 5], 
but estimates will be carefully given in order to highlight the techniques in this general situation. Suppose 
z is small relative to w. We deform the integration path |w| = ε in order to write

u(t, z) = tβ−1

(β − 1)!∂
β−1
t (u1(t, z) + u2(t, z)) ,

with

u1(t, z) =
μ−1∑
k=0

1
2πi

∮
γR
2k

φ(w)
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξdw,

and

u2(t, z) =
μ−1∑
k=0

1
2πi

∮
γ2k+1

φ(w)
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξdw.

Here, the path γ2k+1 is parameterized by

s ∈ I2k+1 :=
(
d + arg(λ)

q
+ 2kπ

μ
+ δ

3 ,
d + arg(λ)

q
+ 2(k + 1)π

μ
− δ

3

)
�→ εeis,

for some small enough δ > 0. On the other hand, for large enough R > 0 the path γR
2k is γR,−

2k +γR,1
2k −γR,+

2k , 
where

γR,�(s) = se
i
(

d+arg(λ)
q + 2kπ

μ � δ
3

)
= seiθ	 , � ∈ {−,+}, s ∈ [ε,R],
2k
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and

γR,1
2k (s) = Reis, s ∈

(
d + arg(λ)

q
− 2kπ

μ
− δ

3 ,
d + arg(λ)

q
+ 2kπ

μ
+ δ

3

)
.

We now give growth estimates for u1 and u2 in order to conclude the result. We first give bounds for 
u2(t, z). We take k ∈ {0, . . . , μ − 1}. Let t be as above with |t| ≥ 1, and consider ξ and w in the trace of the 
corresponding path defined by the path integrals in the definition of u2. From the properties of the kernel 
functions in Definition 3.4, one has that

∣∣∣∣E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

∣∣∣∣ ≤ C11|E1(tλ(ξ))|
hm2

(
C12
|ξ|ε

)
hm2

(
C13
|ξ||z|

)
|ξ|ε

,

for some C11, C12, C13 > 0.
Taking into account (6) we have

J1 :=

∣∣∣∣∣∣∣
∮

γ2k+1

φ(w)
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξdw

∣∣∣∣∣∣∣
≤ C11

∫
s∈I2k+1

∣∣φ(εeis)
∣∣ ∞∫
|ξ0|

hm2

(
ρ(2)C12

|ξ|ε

)
|E1(tλ(|ξ|eiθ))|

hm2

(
ρ(2)C12

|ξ|ε

)
hm2

(
C13
|ξ||z|

)
|ξ|ε

d|ξ|ds.

We assume z satisfies |z| ≤ C13ε/(ρ(2)C12). This entails

hm2

(
ρ(2)C12

|ξ|ε

)
≤ hm2

(
C13

|ξ||z|

)
.

By the careful choice of the direction θ above and because of Proposition 4.11 applied to E1, we deduce there 
exists δ > 0 such that the function (t, |ξ|) �→ |E1(tλ(|ξ|eiθ))| admits a maximum at a point, say (t1, |ξ1|), as 
(t, |ξ|) runs over (S(d + 2nπ/ν, δ) ∩ {t : |t| ≥ 1}) × [|ξ0|, ∞). Then, for every such t and |ξ| ≥ |ξ0|, one easily 
obtains constants C14, C15 > 0 such that

|E1(tλ(|ξ|eiθ))| ≤ |E1(tλ(|ξ1|eiθ))| ≤
C14

hm1

(
C15
|t|

) .
Moreover,

∞∫
|ξ0|

hm2

(
ρ(2)C12

|ξ|ε

)
1

|ξ|εd|ξ| < ∞,

so

J1 ≤ C16

hm1

(
C15
|t|

) ∫
s∈I2k+1

∣∣φ(εeis)
∣∣ ds.

Taking into account that

sup
|w|=ε

|φ(w)| < ∞,

one concludes that u2 ∈ Om1(Ŝ(d + 2nπ/ν) ×D(0, r)) for some r > 0 and for n = 0, . . . , ν − 1.
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We now give estimates on u1(t, z). The inner integral in the definition of each term in the sum of u1 can 
be upper bounded as before. We arrive at

J2 :=

∣∣∣∣∣∣∣
∮
γR
2k

φ(w)
∞(θ)∫
ξ0

E1(tλ(ξ))E2(ξz)
e2(ξw)
ξw

dξdw

∣∣∣∣∣∣∣
≤ C21

R∫
ε

(
|φ(seiθ+)| + |φ(seiθ−)|

)
ds

1
hm1

(
C22
|t|

) + C23

θ+∫
θ−

|φ(Reiθ)|dθ 1
hm1

(
C22
|t|

) ,

for some positive constants C21, C22, C23. Since φ ∈ Om
(1/q)(Ŝ((d +arg(λ))/q+2kπ/μ)), it is straightforward 

to check that the previous expression can be upper bounded by

C24

hm(1/q)
(
C25
R

)
hm1

(
C22
|t|

) ,

for some C24, C25 > 0. Cauchy’s theorem allows us to choose R to be R = |t|1/q. In addition to this, from 
property (10) one has

hm(1/q)

(
C25

|t|1/q
)

=
(
hm

(
Cq

25
|t|

))1/q

.

If 0 < q ≤ 1, one can apply property (6) to obtain

(
hm

(
Cq

25
|t|

))1/q

≥ hm

(
Cq

25
ρ(1/q)|t|

)
,

and if q ≥ 1, hm(s) ≤ 1 for all s ∈ (0, ∞), so that

(
hm

(
Cq

25
|t|

))1/q

≥ hm

(
Cq

25
|t|

)
.

These facts entail, for some C26 > 0,

J2 ≤ C24

hm

(
C26
|t|

)
hm1

(
C22
|t|

) .
From the hypothesis (43) we have, by (2), that hm(v) ≤ Chm1(Av) for every v > 0, and so, putting 
C27 = min{C22/A, C26}, one gets that

J2 ≤ CC24

hm

(
C26
|t|

)
hm

(
C22
A|t|

) ≤ CC24(
hm

(
C27
|t|

))2 ≤ CC24

hm

(
C27

ρ(2)|t|

) ,

where (6) has been used in the last inequality. So, one obtains that u1 ∈ Om(Ŝ(d + 2nπ/ν) ×D(0, r)) for 
some r > 0 and for n = 0, . . . , ν − 1, and the conclusion is immediate. �

Lemmas 6 and 7 in [32] can be easily rewritten in our context, and they lead us straightforward to the 
next result, an analogue of Theorem 3 in [32].
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Theorem 5.11. Let q = μ/ν ∈ Q, with gcd(μ, ν) = 1. Let m1(λ), m2(λ) and m be as in Lemma 5.9. If u(t, z)
is the solution of (37), then for every d ∈ R the following statements are equivalent:

1. φ ∈ Om
(1/q)(Ŝ((d + arg(λ))/q + 2kπ/μ)) for every k = 0, . . . , μ − 1.

2. u ∈ Om(Ŝ(d + 2nπ/ν) ×D(0, r)), for n = 0, 1, . . . , ν − 1.

Although all the treatment of summability in this paper has been limited to complex valued functions, 
it can be extended without any difficulty to functions taking their values in a general complex Banach 
algebra. In particular, we may take this algebra to consist of the bounded holomorphic functions in a fixed 
neighborhood of the origin in the z plane with the norm of the supremum, and consider summability of 
formal power series in the t variable with such coefficients. The following definition is natural under this 
point of view.

Definition 5.12. Let û(t, z) =
∑∞

j=0 uj(z)tj be a formal series with coefficients in O(D(0, r)) for some r > 0
(independent of j), and let me = (me(j))j∈N0 be the strongly regular moment sequence of a kernel e. We 
say û is me-summable in direction d ∈ R if

T̂−
e (t, z) =

∞∑
j=0

uj(z)
me(j)

tj ∈ Ome(Ŝ(d) ×D(0, r)),

where S(d) is an unbounded (small) sector bisected by d.

We are now able to establish a characterization of summability for the formal solutions of (37) and also 
for the initial problem (28), (29), under appropriate conditions regarding the moment functions involved.

Proposition 5.13. Let û be a formal solution of (37). Let q = μ/ν ∈ Q, with gcd(μ, ν) = 1, and d ∈ R. We 
assume a strongly regular sequence of moments m = (m(p))p∈N0 exists with

m2(qj) ≤ C0A
j
0m(j)m1(j), j ∈ N0, (46)

and

m(j/q)m1(j/q) ≤ C1A
j
1m2(j), j ∈ N0, (47)

for suitable C0, C1, A0, A1 > 0. Then, û is m-summable in direction d + 2nπ/ν for n = 0, . . . , ν − 1 if, and 
only if, φ ∈ Om

(1/q)(Ŝ((d + arg λ)/q + 2kπ/μ)) for k = 0, . . . , μ − 1.

Remark 5.14. As in the previous Remark 5.10, the inequalities (46) and (47) amount to the equivalence of 
m

(q)
2 and m ·m1. One may note that in the Gevrey case treated by S. Michalik [32], in which the order (in 

the sense of W. Balser) of a kernel completely determines the summability method under consideration, one 
just imposes (instead of (46) and (47)) suitable conditions on the orders of the kernels e1 and e2. Moreover, 
in that situation the summability of û is characterized by the analytic continuation of φ with a (constant) 
order of exponential growth. As explained before (see Remark 3.19(ii)), this is not enough now, since these 
constants do not completely determine the summability method whose application is to be justified.

Proof. Let n ∈ {0, . . . , ν − 1}. By Definition 5.12, û is m-summable in direction d + 2nπ/ν if, and only if,

v(t, z) :=
∞∑ (

j

β − 1

)
λj(∂m2,z)φ(z)
m1(j)m(j) tj ∈ Om(Ŝ(d + 2nπ/ν) ×D(0, r)).
j=β−1
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If we put m̃ = (m̃(p))p≥0, with m̃(p) = m1(p)m(p), then m̃ turns out to be a sequence of moments, as it 
may be deduced along the same lines as in the Gevrey case (see [2, Section 5.8]). One can observe that 
v turns out to be the solution of (37) when substituting m1 by m̃. From Theorem 5.11, we know that 
v ∈ Om(Ŝ(d + 2nπ/ν) ×D(0, r)) if, and only if, φ ∈ Om

(1/q)(Ŝ((d + arg λ)/q + 2kπ/μ)) for k = 0, . . . , μ − 1, 
as desired. �

Finally, we consider the normalized formal solution for (28) given in (32). We make the following:

Assumption (A): There exists q = μ/ν ∈ Q with gcd(μ, ν) = 1 such that P (λ, ξ) in (30) satisfies that

lim
z→∞

λα(z)
zq

∈ C \ {0},

for every α = 1, . . . , �, i.e., q ∈ Q is the common order pole of λα for every α = 1, . . . , �.

The previous results lead to the main result of this last section.

Theorem 5.15. Let d ∈ R. Suppose a strongly regular sequence of moments m = (m(p))p∈N0 exists such 
that (46) and (47) hold. Let û be the normalized formal solution of (28), (29). Then, under Assumption (A), 
û is m-summable in any direction of the form d +2nπ/ν for n = 0, . . . , ν−1 if, and only if, φ ∈ Om

(1/q)(Ŝ((d +
arg(λαβ))/q + 2kπ/μ)) for every k = 0, . . . , μ − 1, every α = 1, . . . , � and every β = 1, . . . , nα.
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