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We propose a simple method to construct integral periodic mask and corresponding 
scaling step functions that generate non-Haar orthogonal MRA on the local field 
F (s) of positive characteristic p. To construct this mask we use two new ideas. 
First, we consider local field as vector space over the finite field GF(ps). Second, 
we construct scaling function by arbitrary tree that has ps vertices. By fixed prime 
number p there exist ps(ps−2) such trees.
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1. Introduction

The first results on the wavelet analysis on local fields were obtained by Chinese mathematicians Huikun 
Jiang, Dengfeng Li, and Ning Jin in the paper [8]. They introduced the notion of MRA on local fields, for the 
fields F (s) of positive characteristic p proved some simple properties, and gave an algorithm for constructing 
wavelets for a known scaling function. Using these results they constructed MRA and corresponding wavelets 
for the case when a scaling function is the characteristic function of unit ball D. Such MRA is called 
usually “Haar MRA” and corresponding wavelets – “Haar wavelets”. In [11] wavelet frame on local field are 
constructed, a necessary condition and sufficient conditions for wavelet frame on local fields are given too. 
Biswaranjan Behera and Qaiser Jahan [2] constructed the wavelet packets associated with MRA on local 
fields of positive characteristic. In the article [3] the same authors proved that a function ϕ ∈ L2(F (s)) is a 
scaling function for MRA in L2(F (s)) if and only if

∑
k∈N0

|ϕ̂(ξ + u(k))|2 = 1 for a.e. ξ ∈ D, (1.1)

lim
j→∞

|ϕ̂(pjξ)| = 1 for a.e. ξ ∈ F (s), (1.2)
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and there exists an integral periodic function m0 ∈ L2(D) such that

ϕ̂(ξ) = m0(pξ)ϕ̂(pξ) for a.e. ξ ∈ F (s) (1.3)

where {u(k)} is the set of shifts, p is a prime element. B. Behera and Q. Jahan [4] proved also if the translates 
of the scaling functions of two multiresolution analyses are biorthogonal, then the associated wavelet families 
are also biorthogonal. So, to construct MRA on a local field F (s) we must construct an integral periodic 
mask m0 with conditions (1.1)–(1.3). To solve this problem using prime element methods developed in [16]
is not simple. Currently there are no effective methods for constructing such masks and scaling functions. 
In articles [2–4,8,11] only Haar wavelets are obtained.

In this paper, we propose a simple method to construct integral periodic masks and corresponding scaling 
step functions that generate non-Haar orthogonal MRA. To construct this mask we use two new ideas. First, 
we consider local field as vector space over the finite field GF(ps). Second, we construct a scaling function 
by arbitrary tree that have ps nodes. For fixed prime number p there exist ps(ps−2) such trees.

By s = 1 the additive group F (1)+ is a Vilenkin group. Issues of constructing of MRA and wavelets on 
Vilenkin groups may be found in [5,6,12–15].

The simplest example of a local field of characteristic zero is the field of p-adic numbers. Issues of 
constructing MRA and wavelets on the field of p-adic numbers can be found in [1,9,10].

The paper is organized as follows. We consider local field F (s) as a vector space over the finite field 
GF(ps). Therefore, in Section 2, we recall some concepts and facts from the theory of finite fields and define 
the local field F (s) of positive characteristic p as a set of infinite sequences a = (aj), where aj ∈ GF(ps).

In Section 3 we prove that local field F (s) is a vector space over finite field GF(ps).
In Section 4 we prove that the set X of all characters of local field F(s) also form a vector space over finite 

field GF(ps) with product as internal operation and powering as external operation. We define Rademacher 
functions, find a general view of characters, and prove a basic property of Rademacher functions.

In Section 5 we discuss the refinable equation and its mask.
In Section 6 we consider refinable equation

ϕ̂(χ) = m0(χ)ϕ̂(χA−1)

with step mask m0 and find a necessary and sufficient condition under which an integral periodic function 
m0 is a mask of some refinement equation.

In Section 7 we define (N, M) elementary sets. We prove if E ⊂ F (s) is (N, M) elementary set and 
|ϕ̂(χ)| = 1E(χ) on X then the system of shifts (ϕ(x −̇ h))h∈H0 is an orthonormal system.

In Section 8 we reduce the problem of construction of step refinable function to construction of some tree. 
We consider some special class of refinable functions ϕ(χ) for which |ϕ̂(χ)| is a characteristic function of a 
set. We introduce such concepts as “a set generated by a tree” and “a refinable step function generated by a 
tree” and prove, that every rooted tree containing ps nodes generates a refinable step function that generate 
an orthogonal MRA on local field F (s). For p = s = 2 we give an example of a refinable step function that 
generate non-Haar MRA.

Using the results of the article [8] we can construct now corresponding wavelets. This example shows 
that MRA on local field gives an effective method to construct multidimensional step wavelets.

2. Preliminaries

We will consider two objects: Vilenkin groups and local fields. Let p be a prime number. Vilenkin group 
(G, +̇) consists of sequences

a = (an)n∈Z = (. . . , an−1, an, an+1, . . . ), aj = 0, p− 1,
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in which only a finite number of terms with negative numbers are nonzero. The operation +̇ is defined as 
component wise addition modulo p, i.e.

a +̇ b = (an) +̇ (bn) = ((an + bn)mod p)n∈Z.

The topology in G is determined by subgroups

Gn = {a ∈ G : a = (. . . , 0n−1,an−1, an, an+1, . . . )}.

The equality

ρ(a, b) =
{ 1

pn ; am �= bn, aj = bj for j < n

0; aj = bj for j ∈ Z

is the non-Archimedian distance on (G, +̇). If μ is the Haar measure on G then μ(Gn +̇ g) = μGn = 1
pn , 

n ∈ Z. The dilation operator A is defined by the equation

A(a) = (bn)n∈Z, bn = an+1.

It is evident that AGn = Gn−1 and 
∫
G

f(Au) dμ = 1
p

∫
G

f(x) dμ.

By a local field we will mean a field K which is locally compact, non-discrete and totally disconnected. 
We will consider local fields with positive characteristic only. By Pontrjagin–Kovalsky theorem [7] such field 
is isomorphic to the set KL(z) of formal Laurent series

∞∑
n=N

anz
n (2.1)

with an ∈ GF(ps) where s ∈ N and p is a prime number. Local field of positive characteristic is denote F (s).
Let GF(p) be a ring (field) of residue class on modulo p. The finite field GF(ps) consist of vectors 

a = (a(0), a(1), . . . , a(s−1)), where a(j) ∈ GF(p). The addition operation (a) +̇ (b) is defined coordinate-wise 
i.e.

a +̇ b = (a(j) + b(j)) mod p)s−1
j=0.

To define a product ab it is necessary to represent vectors a and b as polynomials

a =
s−1∑
j=0

a(j)tj ,b =
s−1∑
j=0

b(j)tj

and multiply these polynomials over the field GF(p). We obtain the polynomial

Q(t) =
s−1∑
j=0

s−1∑
k=0

a(j)b(k)tj+k =
2s−2∑
l=0

tl
∑

k,j: k+j=l

a(j)b(k)

in which coefficients βl =
∑

k,j: k+j=l

a(j)b(k) are calculated in the field GF(p). Then we take a prime polynomial 

ps(t) of degree s and divide polynomial Q(t) by ps(t) over the field GF(p)

Q(t) = ps(t)q(t) + H(t).
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Coefficients b0, b1, . . . , bs−1 of this rest H(t) are components of product ab. It is know that a prime poly-
nomial ps(t) over the field GF(p) exists but not only one. A prime polynomial ps(t) can be found by 
exhaustion.

We return to local fields. The sum and product of Laurent series (2.1) are defined in the standard way, 
i.e. if

a =
∞∑
j=k

ajt
j , b =

∞∑
j=k

bjt
j

then

a +̇ b =
∞∑
j=k

(aj +̇ bj)tj , aj +̇ bj = ((a(l)
j + b

(l)
j )mod p)s−1

l=0 (2.2)

ab =
∞∑

l=2k

tl
∑

j,ν: j+ν=l

ajbν . (2.3)

Topology in F (s) is given by neighborhood basis of zero

F (s)
n =

⎧⎨
⎩a =

∞∑
j=n

ajt
j : aj ∈ GF(ps)

⎫⎬
⎭ .

If

a =
∞∑
j=n

ajt
j , an �= 0

then we put by definition ‖a‖ = 1
psn . Consequently

F (s)
n =

{
x ∈ F (s) : ‖x‖ ≤ 1

psn

}
.

By F (s)+ denote the additive group of field F (s). Neighborhoods F (s)
n are compact subgroups of group F (s)+. 

We will denote them as F (s)+
n . The next properties are fulfilled

1) · · · ⊂ F
(s)+
1 ⊂ F

(s)+
0 ⊂ F

(s)+
−1 ⊂ . . .

2) F
(s)+
n /F

(s)+
n+1

∼= GF(ps) and �(F (s)+
n /F

(s)+
n+1 ) = ps.

Therefore we will assume that a local field F (s) of positive characteristic consists of infinite sequences

a = (. . . ,0n−1,an,an+1, . . . , ), aj = (a(0)
j , a

(1)
j , . . . , a

(s−1)
j ) ∈ GF(ps)

in which only finite number of element aj with negative numbers are nonzero. The sum and product are 
defined as

a +̇ b = (aj +̇ bj)i∈Z, aj +̇ bj = (a(ν)
j + b

(ν)
j mod p)s−1

ν=0, (2.4)

ab = (
∑

(aibj))l∈Z (2.5)

i,j:i+j=l
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In this case

‖a‖ = ‖(. . . ,0n−1,an,an+1, . . . )‖ = 1
psn

if an �= 0,

F (s)
n = {a = (aj)j∈Z : aj ∈ GF(ps); aj = 0 ∀j < n},

· · · ⊂ F
(s)
1 ⊂ F

(s)
0 ⊂ F

(s)
−1 ⊂ . . . ,

F
(s)
n are compact subgroups in F (s)+ and �(F (s)

n /F
(s)
n+1) = ps.

It follows that F (1)+ is a Vilenkin group. The converse is true also: in Vilenkin group (G, +̇) we can 
define product by (2.5). With such operation (G, +̇, ·) will be a field. Since F (1)+ is a Vilenkin group, it 
follows that

1)
∫

G0⊥
(χ, x) dν(χ) = 1G0(x),

2)
∫
G0

(χ, x) dμ(x) = 1G⊥
0
(χ),

3)
∫

G⊥
n

(χ, x) dν(χ) = pn1Gn
(x),

4)
∫
Gn

(χ, x) dμ(x) = 1
pn 1G⊥

n
(χ)

where Gn = F
(1)+
n .

From the definition of F (s) it follows that additive group F (s)+ is also Vilenkin group G and F (s)+
n = Gns.

3. Local field of positive characteristic as vector space over a finite field

Let (G, +̇) be a Vilenkin group. We can define the multiplication operation on a number λ ∈ GF(p) by 
the equation

aλ = a +̇ a +̇ . . . +̇ a︸ ︷︷ ︸
λ

.

Define the modulus of λ as

|λ| =
{

1, λ �= 0,
0, λ = 0,

and the norm of a ∈ G by the equation

‖a‖ = p−n (3.1)

if

a = (. . . 0n−1anan+1 . . . ), n ∈ Z, aj ∈ Zp, an �= 0.

Since GF(p) is a field, it follows that (G, +̇) is a vector space over the field GF(p) and the equation (3.1)
defines a norm in (G, +̇, ·λ).

Now we consider local field F (s) with positive characteristic p. Its elements are infinite sequences

a = (. . . ,0n−1,an,an+1, . . . ),aj ∈ GF(ps)
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where

aj = (a(0)
j , a

(1)
j , . . . , a

(s−1)
j ), a

(ν)
j ∈ Zp.

Let λ ∈ GF(ps). By the definition ‖a‖ = 1
psn if an �= 0. Since

λa = (. . .0−1, λ,01, . . . ) · (. . .0n−1,an,an+1, . . . ) =

= (λ + 0x + 0x2 + . . . )(anx
n + an+1x

n+1 + . . . ) = λanx
n + λan+1x

n+1 + · · · =

= (. . .0n−1, λan, λan+1, . . . )

it follows that the product λa is defined coordinate wise. With such operations F (s) is a vector space. If we 
define the modulus |λ| by the equation

|λ| =
{

1, λ �= 0,
0, λ = 0,

and norm ‖a‖ by the equation

‖a‖ = 1
psn

, an �= 0 (3.2)

then we can consider the field F (s) as a vector normalized space under the field GF(ps).
For brevity we denote K := F (s), Kn := F

(s)
n . Take an element g ∈ K1 \K2 and fix it. It is known [16]

that any element a ∈ K may be written in the form

a =
∑
n∈Z

λng
n, λn ∈ U,

where U is a fixed full set of coset representatives of K1 in K0. We can prove a more general statement.

Theorem 3.1. Let (gn)n∈Z be a fixed basic sequence in K, i.e. gn ∈ Kn \Kn+1. Any element a ∈ K may by 
written as sum of the series

a =
∑
n∈Z

λngn, λn ∈ GF(ps). (3.3)

Proof. Let a ∈ K. If a = 0 then the equation (3.3) is evident. Let a �= 0. Then exists n ∈ Z such that 
a ∈ K+

n \K+
n+1. It means that

a = (. . .0n−1,an,an+1, . . . ), aj ∈ GF(ps),an �= 0.

Show that there exists λn ∈ GF(ps) such that

a = λngn +̇ αn+1, αn+1 ∈ Kn+1.

Indeed, since gn ∈ Kn \Kn+1 it follows that

gn = (. . .0n−1,g(n)
n ,g(n)

n+1, . . . ), g(n)
n �= 0.
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Since GF(ps) is a field, it follows there exists λn ∈ GF(ps) such that λng(n)
n = an. Therefore

λngn = (. . .0n−1, λng(n)
n , λng(n)

n+1 . . . ) = (. . .0n−1,an, ãn+1 . . . ).

Consequently

a −̇ λngn = (. . .0n−1,0n,an+1 − ãn+1 . . . ) = αn+1 ∈ K+
n+1,

i.e. a = λngn +̇ αn+1. Continuing this process, we obtain (3.3). �
Corollary. If g ∈ K1 \K2 then gn ∈ Kn \Kn+1. Therefore we can take gn = gn in the equation (3.3).

Definition 3.1. The operator

A : a =
∑
n∈Z

λngn 	−→
∑
n∈Z

λngn−1

is called a dilation operator.

Remark 1. If gn = gn and a =
∑
n∈Z

λng
n then ag−1 =

∑
n∈Z

λng
n−1. So the dilation operation may be defined 

by equation Ax = g−1x.

Remark 2. Since additive group F (s)+ is Vilenkin group G with F (s)+
n = Gns it follows that AKn = Kn−1

and 
∫

K+
f(Au) dμ = 1

ps

∫
K+

f(x) dμ.

4. Set of characters as vector space over a finite field

Since F (s)+ is a Vilenkin group it follows that the set of characters is a locally compact zero-dimensional 
group with product as group operation

(χϕ)(a) = χ(a) · ϕ(a).

Denote the set of characters as X. We want to find the explicit form of characters. Let us define the character 
rn in the following way. If

a = (. . . ,0k−1,ak,ak+1, . . . ),aj ∈ GF(ps)

and

aj = (a(0)
j , a

(1)
j , . . . , a

(s−1)
j ), a

(ν)
j ∈ GF(p)

then rn(a) = e
2πi
p a

(l)
k , where n = ks + l, 0 ≤ l < s.

Lemma 4.1. Any character χ ∈ X can be expressed uniquely as product

χ =
+∞∏

n=−∞
rαn
n (αn = 0, p− 1 ), (4.1)

in which the number of factors with positive numbers are finite.



1422 S.F. Lukomskii, A.M. Vodolazov / J. Math. Anal. Appl. 433 (2016) 1415–1440
Proof. Let

x = (. . . ,0,xj , . . . ,xk,xk+1, . . .), xk = (xks+0, xks+1, . . . , xks+(s−1))

Since F (s)+ is a Vilenkin group, it follows that functions rks+l(x) = e
2πi
p xks+l , are Rademacher functions 

on F (s)+. Therefore any character χ may by expressed in the form (4.1). �
Definition 4.1. Write the character χ as

χ =
∏
k∈Z

r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1

and denote

rak

k := r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1,

where ak = (a(0)
k , a(1)

k , . . . , a(s−1)
k ) ∈ GF(ps). The function rk = r(1,0,...,0)

k is called Rademacher function.

Definition 4.2. Assume by the definition

(rak

k )bk := rakbk

k , ak,bk ∈ GF(ps).

In this case

rak

k = (r(1,0,...,0)
k )ak = r(a(0)

k ,a
(1)
k ,...,a

(s−1)
k )

k = r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1.

Therefore we can write χ as the product

χ =
∏
k∈Z

rak

k . (4.2)

Definition 4.3. Define χb, b ∈ GF(ps) as

χb :=
∏
k∈Z

(rak

k )bk .

Lemma 4.2. Let rk be a Rademacher function. Then

ru+̇v
k = ruk · rvk , u,v ∈ GF(ps).

Proof. Using the definition of Rademacher functions we have for x = (x(l)
k )

(rukrvk , x) = (ruk , x)(rvk , x) =
s−1∏
l=0

e
2πi
p u

(l)
ks+lx

(l)
k ·

s−1∏
l=0

e
2πi
p v

(l)
ks+lx

(l)
k =

=
s−1∏
l=0

e
2πi
p (u(l)

ks+l+v
(l)
ks+l)x

(l)
k = (ru+̇v

k , x). �

Theorem 4.1. The set of characters of the field F (s) is a vector space (X, ∗, ·GF(ps)) under the finite field 
GF(ps) with product as interior operation and powering as exterior operation.
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Proof. 1) Check χu+̇v = χuχv for u, v ∈ GF(ps). Let

χu =
∏
k∈Z

raku
k , χv =

∏
k∈Z

rakv
k .

Using Lemma 4.2 we obtain

χuχv =
∏
k∈Z

raku
k rakv

k =
∏
k∈Z

rak(u+̇v)
k = χu+̇v.

2) Check the equation χu
1χ

u
2 = (χ1χ2)u. Let

χu
1 =

∏
k∈Z

raku
k , χu

2 =
∏
k∈Z

rbku
k .

Using Lemma 4.2 we have

χu
1χ

u
2 =

∏
k∈Z

raku
k

∏
k∈Z

rbku
k =

∏
k∈Z

r(ak+̇bk)u
k = (χ1χ2)u.

3) Since the vector 1 = (1, 0, . . . , 0) is a unity element of multiplicative group of the field GF(ps) it 
follows that χ1 = χ(1,0,...,0) =

∏
k∈Z

rak·1
k =

∏
k∈Z

rak

k = χ.

4) The equality (χu)v = χuv is true by the definition.
So, all axioms for exterior operation are fulfilled. By Lemma 4.2 all axioms for interior operation are 

fulfilled too. �
It follow from (4.2) that annihilator (F (s)

k )⊥ consists of characters of the form χ = rak−1
k−1 rak−2

k−2 . . . . It is 
evident also that

1) Rademacher system (rk) forms a basis of (X, ∗, ·GF(ps)),
2) any sequences of characters χk ∈ (F (s)

k+1)⊥ \ (F (s)
k )⊥ forms a basis of (X, ∗, ·GF(ps)).

3) (F (s)
k )⊥ = �

ak−1∈GF(ps)
(F (s)

k−1)⊥rak−1
k−1 .

The next lemma is the basic property of Rademacher functions on local field with positive characteristic.

Lemma 4.3. Let gj = (. . . , 0j−1, (1, 0, . . . , 0)j , 0j+1, . . . ) ∈ F (s), ak, u ∈ GF(ps). Then (rak

k , ugj) = 1 for 
any k �= j.

Proof. Since ugj = (. . . , 0j−1, (u(0), u(1), . . . , u(s−1))j , 0j+1, . . . ), it follows that

(rak

k ,ugj) =
s−1∏
l=0

e
2πi
p a

(l)
k u(l)

=
s−1∏
l=0

e0 = 1. �

Definition 4.4. Define a dilation operator A on the set of characters by the equation (χA, x) = (χ, Ax).

Remark. Since additive group F (s)+ is Vilenkin group, it follows that gjA = gj+1, (K+
n )⊥A = (K+

n+1)⊥
and 

∫
X

f(χA) dν = 1
ps

∫
X

f(χ) dν.
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5. MRA on local fields of positive characteristic

We will use Rademacher function to construct MRA on local fields of positive characteristic. We will 
assume

gn = (. . . ,0n−1, (1, 0, . . . , 0)n,0n+1, . . . ).

Let us denote

H0 = {h ∈ F (s) : h = a−1g−1 +̇ a−2g−2 +̇ . . . +̇ a−σg−σ, σ ∈ N}, aj ∈ GF(ps),

H
(σ)
0 = {h ∈ F (s) : h = a−1g−1 +̇ a−2g−2 +̇ . . . +̇ a−σg−σ}, σ ∈ N, aj ∈ GF(ps).

The set H0 is an analog of the set N0 = N ∪ {0}.

Lemma 5.1. Let K = F (s) be a local field with characteristic p. Then for any n ∈ Z

1)
∫

(K+
n )⊥

(χ, x) dν(χ) = psn1K+
n

(x),

2)
∫

K+
n

(χ, x) dμ(x) = 1
psn 1(K+

n )⊥(χ).

Proof. First we prove the equation 1). Since K+ is a zero-dimensional group, it follows
∫

(K+
0 )⊥

(χ, x)dν(χ) = 1K+
0

(x),
∫

K+
0

(χ, x)dμ(x) = 1(K+
0 )⊥(χ).

By the definition of dilation operator
∫
X

f(χA) dν(χ) = ps
∫
X

f(χ) dν(χ), 1K+
n

(x) = 1K+
0

(Anx).

Using these equations we have
∫

(K+
n )⊥

(χ, x) dν(χ) =
∫
X

1(K+
n )⊥(χ)(χ, x) dν(χ) =

= psn
∫
X

(χAn, x)1(K+
n )⊥(χAn) dν(χ) =

= psn
∫
X

(χ,Anx)1(K+
0 )⊥(χ) dν(χ) = psn1K+

0
(Anx) = psn1K+

n
(x).

The second equation is proved by analogy. �
Lemma 5.2. Let χn,l = ran

n ran+1
n+1 . . . ran+l

n+l be a character does not belong to (K+
n )⊥. Then

∫
(K+

n )⊥χn,l

(χ, x) dν(χ) = pns(χn,l, x)1K+
n
(x).
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Proof. Denote Gn := K+
n . By analogy with previously we have

∫
G⊥

n χn,l

(χ, x) dν(χ) =
∫
X

1G⊥
n χn,l

(χ)(χ, x) dν(χ) =
∫
X

1G⊥
n
(χ)(χn,lχ, x) dν(χ) =

=
∫
G⊥

n

(χn,l, x)(χ, x) dν(χ) = pns(χn,l, x)1Gn
(x). �

Lemma 5.3. Let hn,l = an−1gn−1 +̇ an−2gn−2 +̇ . . . +̇ an−lgn−l /∈ K+
n . Then

∫
K+

n +̇hn,l

(χ, x) dμ(x) = 1
pns

(χ, hn,l)1(K+
n )⊥(χ).

This lemma is dual to Lemma 5.2.

Definition 5.1. Let M, N ∈ N. Denote by DM (K−N ) the set of step-functions f ∈ L2(K) such that 
1) supp f ⊂ K−N , and 2) f is constant on cosets KM +̇ g. Similarly is defined D−N (K⊥

M ).

Lemma 5.4. Let M, N ∈ N. f ∈ DM (K−N ) if and only if f̂ ∈ D−N (K⊥
M ).

Proof. It is evident since additive group F+ is Vilenkin group. �
Lemma 5.5. Let ϕ ∈ L2(K). The system (ϕ(x −̇ h))h∈H0 is orthonormal if and only if the system (
p

ns
2 ϕ(Anx −̇ h)

)
h∈H0

is orthonormal.

Proof. This lemma follows from the equation

∫
K

p
ns
2 ϕ(Anx −̇ h)pns

2 ϕ(Anx −̇ g) dμ =
∫
K

ϕ(x −̇ h)ϕ(x −̇ g) dμ. �

Definition 5.2. A family of closed subspaces Vn, n ∈ Z, is said to be a multiresolution analysis of L2(K) if 
the following axioms are satisfied:

A1) Vn ⊂ Vn+1;
A2)

⋃
n∈Z

Vn = L2(K) and 
⋂

n∈Z
Vn = {0};

A3) f(x) ∈ Vn ⇐⇒ f(Ax) ∈ Vn+1 (A is a dilation operator);
A4) f(x) ∈ V0 =⇒ f(x −̇ h) ∈ V0 for all h ∈ H0 (H0 is analog of Z);
A5) there exists a function ϕ ∈ L2(K) such that the system (ϕ(x −̇h))h∈H0 is an orthonormal basis for V0.

A function ϕ occurring in axiom A5 is called a scaling function.

It is clear that the axiom A5 implies the axiom A4. Next we will follow the conventional approach. Let 
ϕ(x) ∈ L2(K), and suppose that (ϕ(x −̇ h))h∈H0 is an orthonormal system in L2(K). With the function ϕ

and the dilation operator A, we define the linear subspaces Ln = (ϕ(Ax −̇ h))h∈H0 and closed subspaces 
Vn = Ln. It is evident that the functions pns

2 ϕ(Ax −̇ h)h∈H0 form an orthonormal basis for Vn, n ∈ Z. 
Therefore the axiom A3 is fulfilled. If subspaces Vj form a MRA, then the function ϕ is said to generate
an MRA in L2(K). If a function ϕ generates an MRA, then we obtain from the axiom A1
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ϕ(x) =
∑
h∈H0

βhϕ(Ax −̇ h)
(∑

|βh|2 < +∞
)
. (5.1)

Therefore we will look up a function ϕ ∈ L2(K), which generates an MRA in L2(K), as a solution of the 
refinement equation (5.1). A solution of refinement equation (5.1) is called a refinable function.

Lemma 5.6. Let ϕ ∈ DM (K−N ) be a solution of (5.1). Then

ϕ(x) =
∑

h∈H
(N+1)
0

βhϕ(Ax −̇ h) (5.2)

The proof is a repetition of the proof of Lemma 4.1 in [12].

Theorem 5.1. Let ϕ ∈ DM (K−N ) and let (ϕ(x −̇ h))h∈H0 be an orthonormal system. Vn ⊂ Vn+1 if and only 
if the function ϕ(x) is a solution of refinement equation (5.2).

The proof is a repetition of the proof of Theorem 4.2 in [12].

Theorem 5.2. (See [3], Th. 4.1.) Let ϕ ∈ DM (K−N ) be a solution of the equation (5.2), (ϕ(x −̇ h))h∈H0 an 
orthonormal basis in V0 Then 

⋂
n∈Z

Vn = {0}.

Theorem 5.3. (See [3], Th. 4.3.) Let ϕ ∈ DM (K−N ) be a solution of the equation (5.2), (ϕ(x −̇ h))h∈H0 an 
orthonormal basis in V0, and ϕ̂(0) �= 0. Then 

⋃
n∈Z

Vn = L2(K).

The refinement equation (5.2) may be written in the form

ϕ̂(χ) = m0(χ)ϕ̂(χA−1), (5.3)

where

m0(χ) = 1
ps

∑
h∈H

(N+1)
0

βh(χA−1, h) (5.4)

is a mask of the equation (5.3).

Lemma 5.7. Let ϕ ∈ DM (K−N ). Then the mask m0(χ) is constant on cosets K⊥
−Nζ.

Proof. We will prove that (χ, A−1h) are constant on cosets K⊥
−Nζ. Without loss of generality, we can assume 

that ζ = ra−N

−N . . . ra−N+s

−N+s /∈ K⊥
−N . If

h = a−1g−1 +̇ . . . +̇ a−N−1g−N−1 ∈ H
(N+1)
0 , aj ∈ GF(ps)

then

A−1h = a−1g0 +̇ . . . +̇ a−N−1g−N ∈ K−N .

If χ ∈ K⊥
−Nζ then χ = χ−Nζ where χ−N ∈ K⊥

−N . Therefore (χ, A−1h) = (χ−Nζ, A−1h) = (ζ, A−1h). This 
means that (χ, A−1h) depends on ζ only. �
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Lemma 5.8. The mask m0(χ) is a periodic function with any period ra1
1 ra2

2 . . . ral

l (l ∈ N, aj ∈ GF(ps), 
j = 1, l ).

Proof. Using the equation (rbk

k , ugj) = 1, (k �= j) we find

(χrb1
1 rb2

2 . . . rbl

l ,A−1h) = (χrb1
1 rb2

2 . . . rbl

l ,a−1g0 +̇ a−2g−1 +̇ . . . +̇ a−N−1g−N ) =

= (χ,a−1g0 +̇ a−2g−1 +̇ . . . +̇ a−N−1g−N ) = (χA−1, h).

Therefore m0(χrb1
1 rb2

2 . . . rbl

l ) = m0(χ) and the lemma is proved. �
Lemma 5.9. The mask m0(χ) is defined by its values on cosets K⊥

−Nra−N

−N . . . ra0
0 (aj = (a(0)

j , a(1)
j , . . . ,

a
(s−1)
j ) ∈ GF(ps)).

Proof. Let us denote

k =
N∑
j=0

(a(0)
−j + a

(1)
−jp + . . . + a

(s−1)
−j ps−1)psj ∈ [0, ps(N+1) − 1],

l =
N+1∑
j=1

(α(0)
−j + α

(1)
−jp + · · · + α

(s−1)
−j ps−1)ps(j−1) ∈ [0, ps(N+1) − 1].

Then (5.4) can be written as the system

m0(χk) = 1
ps

ps(N+1)−1∑
l=0

βl(χk,A−1hl), k = 0, ps(N+1) − 1 (5.5)

in the unknowns βl. We consider the characters χk on the subgroup K+
−N . Since A−1hl ∈ K+

−N , it follows 
that the matrix p−

s(N+1)
2 (χk,A−1hl) is unitary, and so the system (5.5) has a unique solution for each finite 

sequence (m0(χk))p
s(N+1)−1

k=0 . �
Remark. The function m0(χ) constructed in Lemma 5.9 may not be a mask for ϕ ∈ DM (G−N ). In the 
Section 4 we find conditions under which the function m0(χ) will be a mask.

Lemma 5.10. Let f̂0(χ) ∈ D−N ((K+
1 )⊥). Then

f̂0(χ) = 1
ps

∑
h∈H

(N+1)
0

βh(χ,A−1h). (5.6)

Proof. Since 
∫

(K+
0 )⊥

(χ, g)(χ, h) dν(χ) = δh,g for h, g ∈ H0 it follows that 
∫

(K+
1 )⊥

(χA−1, g)(χA−1, h) dν(χ) =

pδh,g. Therefore we can consider the set 
(

A−1h√
ps

)
h∈H

(N+1)
0

as an orthonormal system on (K+
1 )⊥. We know 

(Lemma 5.7) that (χ, A−1h) is a constant on cosets (K+
−N )⊥ζ. It is evident the dimension of D−N ((K+

1 )⊥)
is equal to ps(N+1). Therefore the system 

(
A−1h√

ps

)
h∈H

(N+1)
0

is an orthonormal basis for D−N ((K+
1 )⊥) and 

the equation (5.6) is valid. �
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6. Non-Haar wavelets

In this section we find the necessary and sufficient condition under which a step function ϕ(x) ∈
DM (K−N ) generates an orthogonal MRA on the local field with positive characteristic. We will prove 
also that for any n ∈ N there exists a step function ϕ such that 1) ϕ generate an orthogonal MRA, 2) 
supp ϕ̂ ⊂ K⊥

n , 3) ϕ̂(K⊥
n \K⊥

n−1) �≡ 0.
Note that the results of Sections 6, 7 and 8, there are analogues of the corresponding results for Vilenkin 

groups [14]. Moreover, we use the same methods. This is possible since the basic property of Rademacher 
functions (Lemma 4.3) is satisfied.

First we give a test under which the system of shifts (ϕ(x −̇ h))h∈H0 is an orthonormal system.

Theorem 6.1. Let ϕ(x) ∈ DM (K−N ). A shift’s system (ϕ(x −̇h))h∈H0 will be orthonormal if and only if for 
any α−N , α−N+1, . . . , α−1 ∈ GF(ps)

∑
α0,α1,...,αM−1∈GF(ps)

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 )|2 = 1. (6.1)

Proof. First we prove that the system (ϕ(x −̇ h))h∈H0 will be orthonormal if and only if
∑

α−N ,...,α0,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rαM−1
M−1 )|2 = pNs (6.2)

and for any vector (a−1, a−2, . . . , a−N ) �= (0, 0, . . . , 0), (aj ∈ GF(ps))

∑
α−1,...,α−N

exp
(

2πi
p

(a(0)
−1α

(0)
−1 + · · · + a(s−1)

−1 α
(s−1)
−1 + · · · + a(0)

−Nα
(0)
−N + · · · + a(s−1)

−N α
(s−1)
−N )

)
×

×
∑

α0,α1,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rαM−1
M−1 )|2 = 0 (6.3)

Let (ϕ(x −̇ h))h∈H0 be an orthonormal system. Using the Plancherel equality and Lemma 5.1 we have

δh1h2 =
∫

K+

ϕ(x −̇ h1)ϕ(x −̇ h2) dμ(x) =
∫

(K+
M )⊥

|ϕ̂(χ)|2(χ, h2 −̇ h1) dν(χ) =

=
∑

α−N ,...,α0,...,αM−1

∫
(K+

−N )⊥r
α−N
−N ...rα0

0 ...r
αM−1
M−1

|ϕ̂(χ)|2(χ, h2 −̇ h1) dν(χ) =

=
∑

α−N ,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rαM−1
M−1 |2

∫
(K+

−N )⊥r
α−N
−N ...r

αM−1
M−1

(χ, h2 −̇ h1) dν(χ) =

= p−sN1K+
−N

(h2 −̇ h1) ×

×
∑

α−N ,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 |2(rα−N

−N . . . rα0
0 . . . rαM−1

M−1 , h2 −̇ h1).

If h2 = h1, we obtain the equality (6.2). If h2 �= h1 then

h2 −̇ h1 = a−1g−1 +̇ . . . +̇ a−Ng−N ∈ K+
−N (6.4)

or
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h2 −̇ h1 = a−1g−1 +̇ . . . +̇ a−Ng−N +̇ . . . +̇ a−lg−l ∈ K+\K+
−N . (6.5)

If the condition (6.5) is fulfilled, then 1(K+
−N )(h2 −̇ h1) = 0. If the condition (6.4) is fulfilled, then

1K+
−N

(h2 −̇ h1) = 1,

(rα−N

−N . . . rα0
0 . . . rαM−1

M−1 , h2 −̇ h1) = (ra−N

−N , α−Ng−N ) . . . (ra−1
−1 , α−1g−1).

Using the equality (rak

k , ugk) =
s−1∏
l=0

e
2πi
p u(l)a

(l)
k we obtain the equality (6.3). The converse may be proved by 

analogy.
Let as show now if for any vector (a−1, a−2, . . . , a−N ) �= (0, 0, . . . , 0) the conditions (6.2), (6.3) are 

fulfilled, then for any α−N , α−N+1, . . . , α−1 ∈ FG(ps)

∑
α0,α1,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 )|2 = 1. (6.6)

Let us denote

n =
N∑
j=1

s−1∑
l=0

a
(l)
−jp

s(j−1), k =
N∑
j=1

s−1∑
l=0

α
(l)
−jp

s(j−1),

Cn,k = exp 2πi
p

⎛
⎝ N∑

j=1

s−1∑
l=0

α
(l)
−ja

(l)
−j

⎞
⎠

and write the equalities (6.2) and (6.3) as the system

C0,0x0 + C0,1x1 + · · · + C0,psN−1xpsN−1 = psN

C1,0x0 + C1,1x1 + · · · + C1,psN−1xpsN−1 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CpsN−1,0x0 + CpsN−1,1x1 + · · · + CpsN−1,psN−1xpsN−1 = 0 (6.7)

with unknowns

xk =
∑

α0,α1,...,αM−1

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 )|2.

The matrix (Cn,k) is orthogonal. Indeed, if (a−1, a−2, . . . , a−N ) �= (a′
−1, a′

−2, . . . , a′
−N ), i.e., n �= n′ we 

obtain

pN−1∑
k=0

Cn,kCn′,k =
∑

α−1,...,α−N

exp

⎛
⎝2πi

p

N∑
j=1

s−1∑
l=0

(a(l)
−j − a

′ (l)
−j )α(l)

−j

⎞
⎠ = 0,

so at least one of differences a−l−a′
−l �= 0. So, the system (6.7) has unique solution. It is evident that xk = 1

is a solution of this system. This means that (6.6) is fulfilled, and the necessity is proved. The sufficiency is 
evident. �
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Now we obtain a necessary and sufficient conditions for function m0(χ) to be a mask on the class 
D−N ((K+

M )⊥), i.e. there exists ϕ̂ ∈ D−N ((K+
M )⊥) for which

ϕ̂(χ) = m0(χ)ϕ̂(χA−1). (6.8)

If m0(χ) is a mask of (6.8) then

P1) m0(χ) is constant on cosets (K+
−N )⊥ζ,

P2) m0(χ) is periodic with any period rα1
1 rα2

2 . . . rαl

l , αj ∈ GF(ps),
P3) m0((K+

−N )⊥) = 1.

Therefore we will assume that m0 satisfies these conditions. Let

Ek ⊂ (K+
k )⊥ \ (K+

k−1)
⊥ , (k = −N + 1,−N + 2, . . . , 0, 1, . . . ,M,M + 1)

be a set, on which m0(Ek) = 0. Since m0(χ) is constant on cosets (K+
−N )⊥ζ, it follows that Ek is a union 

of such cosets or Ek = ∅.

Theorem 6.2. m0(χ) is a mask of some equation on the class D−N ((K+
M )⊥) if and only if

m0(χ)m0(χA−1) . . .m0(χA−M−N ) = 0 (6.9)

on (K+
M+1)⊥ \ (K+

M )⊥.

Proof. Indeed, if (6.9) is true we set

ϕ̂(χ) =
∞∏
k=0

m0(χA−k) ∈ D−N ((K+
M )⊥).

Then ϕ̂(χ) = m0(χ)ϕ̂(χA−1) and

m0(χ) =
∑

h∈H
(N+1)
0

βh(χA−1, h)

for some βh. Therefore m0(χ) is a mask. Conversely let m0(χ) be a mask, i.e. ϕ̂(χ) = m0(χ)ϕ̂(χA−1) ∈
D−N ((K+

M )⊥). From it we find

ϕ̂(χ) = m0(χ)m0(χA−1) . . .m0(χA−M−N )ϕ̂(χA−M−N−1),

and ϕ̂(χA−M−N−1) = 1 on (K+
M+1)⊥. Since ϕ̂(χ) = 0 on (K+

M+1)⊥ \ (K+
M )⊥, it follows

m0(χ)m0(χA−1) . . .m0(χA−M−N ) = 0

on (K+
M+1)⊥ \ (K+

M )⊥. �
Lemma 6.1. Let ϕ̂ ∈ D−N ((K+

M )⊥) be a solution of the refinement equation

ϕ̂(χ) = m0(χ)ϕ̂(χA−1)

and (ϕ(x −̇ h))h∈H0 be an orthonormal system. Then for any α−N , α−N+1, . . . , α−1 ∈ GF(ps)∑
α0∈GF(ps)

|m0((K+
−N )⊥rα−N

−N rα−N+1
−N+1 . . . rα−1

−1 rα0
0 )|2 = 1. (6.10)
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Proof. Since ϕ̂ ∈ D−N ((K+
M )⊥), it follows that ϕ̂((K+

M+1)⊥ \ (K+
M )⊥) = 0. Using Theorem 6.1 we have

1 =
∑

α0,α1,...,αM−1∈GF(ps)

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 )|2 =

=
∑

α0,...,αM−1,αM∈GF(ps)

|ϕ̂((K+
−N )⊥rα−N

−N . . . rα0
0 . . . rαM−1

M−1 rαM

M )|2 =
p−1∑
α0=0

|m0((K+
−N )⊥rα−N

−N . . . rα0
0 )|2

·
∑

α1,...,αM−1,αM∈GF(ps)

|ϕ̂((K+
−N )⊥rα−N+1

−N . . . rα0
−1r

α1
0 . . . rαM−1

M−2 rαM

M−1)|2 =

=
∑

α0∈GF(ps)

|m0((K+
−N )⊥rα−N

−N . . . rα0
0 )|2. �

Theorem 6.3. Suppose the function m0(χ) satisfies the conditions P1, P2, P3, (6.9), and the function

ϕ̂(χ) =
∞∏

n=0
m0(χA−n)

satisfies the condition (6.1). Then ϕ ∈ DM (K+
−N ) and generates an orthogonal MRA.

Proof. It is evident that ϕ̂ ∈ D−N ((K+
M )⊥), ϕ̂(χ) = m0(χ)ϕ̂(χA−1), and (ϕ(x −̇h))h∈H0 is an orthonormal 

system. From Theorems 5.1, 5.2, 5.3 we find that the function ϕ generates an orthogonal MRA. �
7. (N, M)-elementary sets

So, to find a refinable function that generates orthogonal MRA, we need take a function m0(χ) that 
satisfies conditions P1, P2, P3, (6.9), construct the function

ϕ̂(χ) =
∞∏
k=0

m0(χA−k) ∈ D−N ((K+
M )⊥)

and check that the system ϕ(x −̇ h)h∈H0 is orthonormal. We want to give a simple condition under which 
the system of shifts ϕ(x −̇ h)h∈H0 is orthonormal.

Definition 7.1. Let N, M ∈ N. A set E ⊂ X is called (N, M)-elementary if E is disjoint union of psN cosets

(K+
−N )⊥ζj = (K+

−N )⊥ rα−N

−N rα−N+1
−N+1 . . . rα−1

−1︸ ︷︷ ︸
ξj

rα0
0 . . . rαM−1

M−1︸ ︷︷ ︸
ηj

= (K+
−N )⊥ξjηj ,

j = 0, 1, . . . , psN − 1, j =
∑N−1

l=0 (α(0)
−N+l + α

(1)
−N+lp + · · · + α

(s−1)
−N+lp

s−1)psl (αν ∈ GF(ps)) such that

1)
psN−1�
j=0

(K+
−N )⊥ξj = (K+

0 )⊥, (K+
−N )⊥ξ0 = (K+

−N )⊥,

2) for any l = 0,M + N − 1 the intersection ((K+
−N+l+1)⊥ \ (K+

−N+l)⊥) 
⋂
E �= ∅.

Lemma 7.1. The set H0 ⊂ K is an orthonormal system on any (N, M)-elementary set E ⊂ X.
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Proof. Let h, g ∈ H0. Using the definition of (N, M)-elementary set we have

∫
E

(χ, h)(χ, g) dν(χ) =
psN−1∑
j=0

∫
(K+

−N )⊥ζj

(χ, h)(χ, g) dν(χ) =

=
psN−1∑
j=0

∫
X

1(K+
−N )⊥ζj

(χ)(χ, h)(χ, g) dν(χ) =

=
psN−1∑
j=0

∫
X

1(K+
−N )⊥ζj

(χηj)(χηj , h)(χηj , g) dν(χ) =

=
psN−1∑
j=0

∫
X

1(K+
−N )⊥ξj

(χ)(χ, h)(χ, g)(ηj , h)(ηj , g) dν(χ).

Since

(ηj , h) = (rα0
0 rα1

1 . . . rαM−1
M−1 ,a−1g−1 +̇ a−2g−2 +̇ . . . +̇ a−lg−l) = 1,

(ηj , g) = (rα0
0 rα1

1 . . . rαM−1
M−1 ,b−1g−1 +̇ b−2g−2 +̇ . . . +̇ b−lg−l) = 1,

then

∫
E

(χ, h)(χ, g) dν(χ) =
psN−1∑
j=0

∫
(K+

−N )⊥ξj

(χ, h)(χ, g) dν(χ) =

=
∫

(K+
0 )⊥

(χ, h)(χ, g) dν(χ) = δh,g. �

Theorem 7.1. Let K = F (s) be a local field with positive characteristic p, E ⊂ (K+
M )⊥ an (N, M)-elementary 

set. If |ϕ̂(χ)| = 1E(χ) on X then the system of shifts (ϕ(x −̇ h))h∈H0 is an orthonormal system on K.

Proof. Let H̃0 ⊂ H0 be a finite set. Using the Plancherel equation we have∫
K

ϕ(x −̇ g)ϕ(x −̇ g) dμ(x) =
∫
X

|ϕ̂(χ)|2(χ, g)(χ, h)dν(χ) =
∫
E

(χ, h)(χ, g)dν(χ) =

=
psN−1∑
j=0

∫
(K+

−N )⊥ζj

(χ, h)(χ, g) dν(χ).

Transform the inner integral∫
(K+

−N )⊥ζj

(χ, h)(χ, g) dν(χ) =
∫
X

1(K+
−N )⊥ζj

(χ)(χ, h)(χ, g) dν(χ) =
∫
X

1(K+
−N )⊥ζj

(χηj)(χηj , h −̇ g) dν(χ) =

=
∫
X

1(K+
−N )⊥ξj

(χ)(χηj , h −̇ g) dν(χ) =
∫

(K+ )⊥ξ

(χηj , h −̇ g) dν(χ).
−N j
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Repeating the arguments of Lemma 7.1 we obtain∫
K

ϕ(x −̇ h)ϕ(x −̇ g) dμ(x) = δh,g. �

8. Trees and wavelets

Let K = F (s) be a local field of characteristic p. In this section we reduce the problem of construction of 
step refinable function on the field K to construction of some tree.

We will consider some special class of refinable functions ϕ(χ) for which |ϕ̂(χ)| is a characteristic function 
of a set. Define this class.

Definition 8.1. A mask m0(χ) is called N -elementary (N ∈ N0) if m0(χ) is constant on cosets (K+
−N )⊥χ, 

its modulus m0(χ) has two values only: 0 and 1, and m0((K+
−N )⊥) = 1. The refinable function ϕ(x) with 

Fourier transform

ϕ̂(χ) =
∞∏

n=0
m0(χA−n)

is called N -elementary too. N -elementary function ϕ is called (N, M)-elementary if ϕ̂(χ) ∈ D−N (K⊥
M ). In 

this case we will call the Fourier transform ϕ̂(χ) (N, M)-elementary, also.

Definition 8.2. Let Ẽ = �
α−1,α0

(K+
−1)⊥rα−1

−1 rα0
0 ⊂ (K+

1 )⊥ be an (1, 1)-elementary set. We say that the set 

ẼX is a periodic extension of Ẽ if

ẼX =
∞⋃
l=1

�
α1,...,αl∈GF(ps)

Ẽrα1
1 rα2

2 . . . rαl

l .

We say that the set Ẽ generates an (1, M) elementary set E, if 
∞⋂

n=0
ẼXAn = E.

Let us write the set GF(ps) in the form

{0,u1,u2, . . . ,uq, α1, α2, . . . , αps−q−1} = V, 0 = u0,

where 1 ≤ q ≤ ps − 1. We will consider the set V as a set of vertices. By T (0, u1, u2, . . . , uq, α1, α2, . . . ,
αps−q−1) = T (V ) we will denote a rooted tree on the set of vertices V , where 0 is a root, u1, u2, . . . , uq are 
first level vertices, α1, α2, . . . , αps−q−1 are remaining vertices.

For example for p = 3, s = 2, q = 2, u1 = (2, 1), u2 = (1, 0) we have trees (see Fig. 1 or Fig. 2) and so 
on.

For any tree path

Pj = (0 → uj → αl−1 → αl−2 → · · · → α0 → α−1)

we construct the set of cosets

(K+
−1)⊥ruj

−1, (K
+
−1)⊥rαl−1

−1 ruj

0 , (K+
−1)⊥rαl−2

−1 rαl−1
0 , . . . , (K+

−1)⊥rα0
−1r

α1
0 , (K+

−1)⊥rα−1
−1 rα0

0 . (8.1)

For example for the tree from Fig. 2 and the path
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Fig. 1. Each pair is present in the tree exactly 1 times.

Fig. 2. The tree contains the same vertices, the root of the tree is the pair (0, 0).

(0, 0) → (1, 0) → (0, 2) → (2, 0)

we have 3 cosets

(K+
−1)⊥r(1,0)

−1 , (K+
−1)⊥r(0,2)

−1 r(1,0)
0 , (K+

−1)⊥r(2,0)
−1 r(0,2)

0 ,

for the path (0, 0), (2, 1), (2, 2) we have two cosets

(K+
−1)⊥r(2,1)

−1 , (K+
−1)⊥r(2,2)

−1 r(2,1)
0 .

We will represent the tree T (V ) as the tree where Tj are tree branches of T (V ) with uj as a root. 
By Ej denote a union of all cosets (8.1) for fixed j and set

Ẽ =
(

q�
j=1

Ej

)
�(K+

−1)⊥. (8.2)

It is clear that Ẽ is an (1, 1) elementary set and Ẽ ⊂ (K+
1 )⊥.

Definition 8.3. Let ẼX be a periodic extension of Ẽ. We say that the tree T (V ) generates a set E, if 
E =

∞⋂
n=0

ẼXAn.

Lemma 8.1. Let T (V ) be a rooted tree with 0 = (0, 0, . . . , 0) as a root. Let E ⊂ X be a set generated by the 
tree T (V ), H a height of T (V ). Then E is an (1, H − 2)-elementary set.

Proof. Let us denote

m(χ) = 1ẼX
(χ), M(χ) =

∞∏
n=0

m(χA−n).

First we note that M(χ) = 1E(χ). Indeed
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1E(χ) = 1 ⇔ χ ∈ E ⇔ ∀n, χA−n ∈ ẼX ⇔ ∀n, 1ẼX
(χA−n) = 1 ⇔

∀n, m(χA−n) = 1 ⇔
∞∏

n=0
m(χA−n) = 1 ⇔ M(χ) = 1.

It means that M(χ) = 1E(χ). Now we will prove, that 1E(χ) = 0 for χ ∈ (K+
H−1)⊥ \ (K+

H−2)⊥. Since 
ẼX ⊃ (K+

−1)⊥ it follows that 1ẼX
((K+

H−1)⊥A−H) = 1ẼX
((K+

−1)⊥) = 1. Consequently

∞∏
n=0

1ẼX
(χA−n) =

H−1∏
n=0

1ẼX
(χA−n)

for χ ∈ (K+
H−1)⊥ \ (K+

H−2)⊥. Let us denote m((K+
−1)⊥ri−1rk0 ) = λi,k. By the definition of cosets (8.1)

m((K+
−1)⊥ri−1rk0 ) �= 0 ⇔ the pair (k, i) is an edge of the tree T (V ).

We need prove that

1E((K+
−1)⊥rα−1

−1 rα0
0 . . . rαH−2

H−2 ) = 0

for αH−2 �= 0. Since ẼX is a periodic extension of Ẽ it follows that the function m(χ) = 1ẼX
(χ) is periodic 

with any period rα1
1 rα2

2 . . . rαl

l , l ∈ N, i.e. m(χrα1
1 rα2

2 . . . rαl

l ) = m(χ) when χ ∈ (K+
1 )⊥. Using this fact we 

can write M(χ) for χ ∈ (K+
H−1)⊥ \ (K+

H−2)⊥ in the form

M((K+
−1)⊥ζ) = M((K+

−1)⊥rα−1
−1 rα0

0 . . . rαH−2
H−2 ) =

= m((K+
−1)⊥rα−1

−1 rα0
0 )m((K+

−1)⊥rα0
−1r

α1
0 ) . . .

m((K+
−1)⊥rαH−3

−1 rαH−2
0 )m((K+

−1)⊥rαH−2
−1 ) =

= λα−1,α0λα0,α1 . . . λαH−3,αH−2λαH−2,0, αH−2 �= 0.

If λαH−2,0 = 0 then M((K+
−1)⊥ζ) = 0. Let λαH−2,0 �= 0. It means that αH−2 = uj for some j = 1, q. If 

λαH−3,αH−2 = 0 then M((K+
−1)⊥ζ) = 0. Assume that λαH−3,αH−2 �= 0. It is true iff the pair (αH−2, αH−3)

is an edge of T (V ). Repeating these arguments, we obtain a path

(0 → uj = αH−2 → αH−3 → · · · → αl)

of the tree T (V ). Since height(T ) = H it follows that l ≥ 0. Consequently (αl, αl−1) is not edge and 
λαl−1,αl

= 0, where l ≥ 0. It means that M((K+
−1)⊥ζ) = 0.

Now we prove that E is (1, H − 2)-elementary set. Indeed, any path

(0 → uj = αl−1 → αl−2 → · · · → α0 → α−1)

defines the coset (K+
−1)⊥rα−1

−1 rα0
0 . . . rαl−1

l−1 ⊂ E. But for any α−1 ∈ GF(ps) there exists unique path with 
endpoint α−1 and starting point zero. It means that E is (1, H − 2)-elementary set. �
Theorem 8.1. Let M, s ∈ N, ps ≥ 3. Let E ⊂ (K+

M )⊥ be an (1, M)-elementary set, ϕ̂ ∈ D−1((K+
M )⊥), 

|ϕ̂(χ)| = 1E(χ), ϕ̂(χ) the solution of the equation

ϕ̂(χ) = m0(χ)ϕ̂(χA−1), (8.3)

where m0(χ) is an 1-elementary mask. Then there exists a rooted tree T (V ) with height(T ) = M + 2 that 
generates the set E.
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Proof. Since the set E is (1, M)-elementary set and |ϕ̂(χ)| = 1E(χ), it follows from Theorem 7.1 that the 
system (ϕ(x −̇ h))h∈H0 is an orthonormal system in L2(K). Using the Theorem 6.1 we obtain that for any 
α−1 ∈ GF(ps)

∑
α0,α1,...,αM−1∈GF(ps)

|ϕ̂((K+
−1)⊥rα−1

−1 rα0
0 . . . rαM−1

M−1 )|2 = 1. (8.4)

Since ϕ̂ is a solution of refinement equation (8.3) it follows from Lemma 6.1 that for α−1 ∈ GF(ps)

∑
α0∈GF(ps)

|m0((K+
−1)⊥rα−1

−1 rα0
0 )|2 = 1. (8.5)

Let as denote λα−1,α0 := m0((K+
−1)⊥rα−1

−1 rα0
0 ). Then we write (8.5) in the form

∑
α0∈GF(ps)

|λα−1,α0 |2 = 1. (8.6)

Since the mask m0(χ) is 1-elementary it follows that |λα,β | take two values only: 0 or 1.
Now we will construct the tree T . Let U be a family of cosets (K+

−1)⊥ζ ⊂ (K+
M )⊥ such that 

ϕ̂((K+
−1)⊥ζ) �= 0 and (K+

−1)⊥ /∈ U. We can write a coset (K+
−1)⊥ζ ∈ U in the form

(K+
−1)⊥rα−1

−1 rα0
0 . . . rαM−1

M−1 .

If (K+
−1)⊥ζ ⊂ (K+

l )⊥ \ (K+
l−1)⊥ (l ≤ M) then

(K+
−1)⊥ζ = (K+

−1)⊥rα−1
−1 rα0

0 . . . rαl−1
l−1 , αl−1 �= 0.

Let u �= 0. By Tu we denote the set of vectors (u, αn−1, . . . , α0, α−1) for which (K+
−1)⊥rα−1

−1 rα0
0 . . .

rαn−1
n−1 run ∈ U. We will name the vector (u, αn−1, . . . , α0, α−1) as a path too. So Tu is the set of paths 

with starting point u, for which ϕ̂((K+
−1)⊥rα−1

−1 rα0
0 . . . rαn−1

n−1 run) �= 0. Denote (it follow from (8.5)), 
if ϕ̂((K+

−1)⊥rα−1
−1 rα0

0 . . . rαn−1
n−1 run) �= 0 then ϕ̂((K+

−1)⊥rα−1
−1 rα0

0 . . . rαn−1
n−1 runr

αn+1
n+1 ) = 0 for any αn+1 �= 0. 

We will show that Tu is a rooted tree with u as a root.
1) All vertices αj , u of the path (u, αn−1, . . . , α0, α−1) are pairwise distinct. Indeed

ϕ̂((K+
−1)⊥rα−1

−1 rα0
0 . . . rαn−1

n−1 run) = λα−1,α0λα0,α1 . . . λαn−1,uλu,0 �= 0, u �= 0.

If αn−1 = u then |λu,u| = |λu,0| = 1 that contradicts the equation (8.5).
If αn−1 = 0 then |λ0,u| = |λ0,0| = 1 that contradicts the equation (8.5) too. Consequently αn−1 /∈ {0, u}. 

By analogy we obtain that αi /∈ {0, u, αn−1, . . . , αi+2, αi+1}.
2) If two paths (u, αk−1, . . . , α0, α−1) and (u, βl−1, . . . , β0, β−1) have the common subpath (u, αk−1, . . . ,

αk−j+1, αk−j) = (u, βl−1, . . . , βl−j+1, βl−j) and αk−j−1 �= βl−j−1 then {α−1, α0, . . . , αk−j−1} 
⋂
{β−1, β0,

. . . , βl−j−1} = ∅. Indeed, let

{α−1, α0, . . . , αk−j−1}
⋂

{β−1, β0, . . . , βl−j−1} �= ∅.

Then there exists v ∈ {α−1, α0, . . . , αk−j−1} 
⋂
{β−1, β0, . . . , βl−j−1}. Assume that v �= αk−j−1. Then v =

αν , −1 ≤ ν ≤ k − j − 2 and v = βμ, −1 ≤ μ ≤ l − j − 1. It follows that
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(u = αk, . . . , αk−j , αk−j−1, . . . , αν+1, αν = βμ, βμ−1, . . . , β0, β−1) ∈ Tu

(u = βl, . . . , βl−j = αk−j , βl−j−1, . . . , βμ+1, βμ, βμ−1, . . . , β0, β−1) ∈ Tu.

So we have two different paths with the same sheet β−1. But this contradicts Theorem 6.1. This means that 
Tu has no cycles, consequently Tu is a graph with u as a root.

3) By analogy we can proof that different trees Tu an Tv has no common vertices. It follows that the 
graph T = (0, Tu1 , . . . , Tuq

) is a tree with 0 as a root.
4) It is evident that this tree generates refinable function ϕ̂ with a mask m0. Show that height(T ) = M+2. 

Indeed, since ϕ̂ ∈ D−1((K+
M )⊥) it follows that there exists a coset (K+

−1)⊥r
α−1
−1 rα0

0 . . . rαM−1
M−1 , αM−1 �= 0 for 

which

|ϕ̂((K+
−1)⊥rα−1

−1 rα0
0 . . . rαM−1

M−1 )| = 1.

This coset generates a path (0, αM−1 = u, αM−2, . . . , α0, α−1) of T . This path contain M + 2 vertex. 
It means that height(T ) ≥ M + 2. On the other hand there isn’t coset (K+

−1)⊥ζ ∈ U with condition 
(K+

−1)⊥ζ ⊂ (K+
M+1)⊥ \ (K+

M )⊥, consequently there isn’t path with L > M +2. So height(T ) = M +2. Since 
supp ϕ̂(χ) is (1, M)-elementary set, it follows that the set of all vertices of the tree T is the set GF(ps). The 
theorem is proved. �
Definition 8.4. Let T (V ) be a rooted tree with 0 as a root, H a height of T (V ), V = GF(ps). Using cosets (8.1)
we define the mask m0(χ) in the subgroup (K+

1 )⊥ as follows: m0((K+
−1)⊥) = 1, m0((K+

−1)⊥ri−1r
j
0) = λi,j, 

|λi,j| = 1 when (K+
−1)⊥ri−1r

j
0 ⊂ Ẽ, (q.v. (8.2)), |λi,j| = 0 when (K+

−1)⊥ri−1r
j
0 ⊂ (K+

1 )⊥ \ Ẽ. Let us extend 
the mask m0(χ) on the X \ (K+

1 )⊥ periodically, i.e. m0(χrα1
1 rα2

2 . . . rαl

l ) = m0(χ). Then we say that the tree 

T (V ) generates the mask m0(χ). Set ϕ̂(χ) =
∞∏

n=0
m0(χA−n). It follows from Lemma 8.1 that

1) supp ϕ̂(χ) ⊂ (K+
H−2)⊥,

2) ϕ̂(χ) is (1, H − 2)-elementary function,
3) (ϕ(x −̇ h))h∈H0 is an orthonormal system.

In this case we say that the tree T (V ) generates the refinable function ϕ(x).

Theorem 8.2. Let p ≥ 2 be a prime number, s ∈ N, ps ≥ 3,

V = {0,u1,u2, . . . ,uq,a1,a2, . . . ,aps−q−1}

a set of vertices, T (V ) a rooted tree, 0 the root, u1, u2, . . . , uq a first level vertices. Let H be are height 
of T (V ). By ϕ(x) denote the function generated by the T (V ). Then ϕ(x) generate an orthogonal MRA 
on F (s).

Proof. Since T (V ) generates the function ϕ, it follows that 1) ϕ̂ ∈ D−1((K+
1 )⊥), 2) ϕ̂(χ) is (1, H − 2)

elementary function, 3) ϕ̂(χ) is a solution of refinable equation (8.3), 4) (ϕ(x −̇ h))h∈H0 is an orthonormal 
system. From the Theorem 6.3 it follows that ϕ(x) generates an orthogonal MRA. �
Remark. Now we can give a simple algorithm for constructing non-Haar refinable function ϕ(x). Let T (V )
be a tree on the set V = GF(ps). Construct a finite sequence (λi,j)i,j∈GF(ps) as follows: λ0,0 = 1, |λi,j| = 1 if 
the pair (j, i) is an edge of T (f). For any vertex α−1 we take the path (0 = αl+1, uj = αl, αl−1, . . . , α0, α−1)
and suppose
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Fig. 3. All nonzero vertices have the first level.

Fig. 4. Two nonzero vertices have the first level.

Fig. 5. One nonzero vertex has the first level.

ϕ̂((K+
−1)⊥rα−1

−1 rα0
0 . . . rαl−1

l−1 rαl

l r0l+1) = λα−1,α0 · λα0,α1 · · · · · λαl−1,αl
· λαl,0.

Otherwise we suppose ϕ̂((K+
−1)⊥ζ) = 0. Then ϕ generates an orthogonal MRA on the field GF(ps).

Example. Let p = s = 2. For these values we have trees (see Figs. 3–5) and so on. For the tree in
Fig. 5 we obtain ϕ̂(χ) in the form ϕ̂(K+

−1) = 1, ϕ̂((K+
−1)⊥r(1,1)

−1 ) = λ1,1, ϕ̂((K+
−1)⊥r(0,1)

−1 r(1,1)
0 ) = λ0,1, 

ϕ̂((K+
−1)⊥r(1,0)

−1 r(1,1)
0 ) = λ1,0. |λi,j | = 1 and ϕ̂((K+

−1)⊥ζ) = 0 otherwise. Suppose for simplicity λi,j = 1. 
Then we can calculate the scaling function

ϕ(x) =
∫
X

ϕ̂(χ)(χ, x)d ν(χ) =
∫

(K+
−1)⊥

(χ, x)d ν(χ) +
∫

(K+
−1)⊥r(1,1)

−1

(χ, x)d ν(χ) +

+
∫

(K+
−1)⊥r(0,1)

−1 r(1,1)
0

(χ, x)d ν(χ) +
∫

(K+
−1)⊥r(1,0)

−1 r(1,1)
0

(χ, x)d ν(χ) = 2−2(1K+
−1

(x) +

+ r(1,1)
−1 (x)1K+

−1
(x) + r(0,1)

−1 (x)r(1,1)
0 (x)1K+

−1
(x) + r(1,0)

−1 (x)r(1,1)
0 (x)1K+

−1
(x)) = 1E(x)

where

E = K+
1 �(K+

1 +̇ (0, 0)g−1)�(K+
1 +̇ (1, 1)g−1)�(K+

1 +̇ (1, 0)g−1 +̇ (1, 1)g0)

�(K+
1 +̇ (0, 1)g−1 +̇ (1, 1)g0).

We can consider additive group K+ as product G ×G of Cantor groups. In this case ϕ̂ and ϕ may be defined 
on the product G⊥

1 ×G⊥
1 and G−1 ×G−1 respectively by Figs. 6 and 7.

Since suppϕ̂ �= (K+
0 )⊥ and suppϕ �= (K+

0 ), it follows that ϕ generates non-Haar MRA. From this example 
we see that MRA on local field gives an effective method to construct multidimensional step wavelets.
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Fig. 6. The table of the Fourier transform ϕ̂.

Fig. 7. The table of the refinable function ϕ.
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