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1. Introduction

The first results on the wavelet analysis on local fields were obtained by Chinese mathematicians Huikun
Jiang, Dengfeng Li, and Ning Jin in the paper [8]. They introduced the notion of MRA on local fields, for the
fields F(*) of positive characteristic p proved some simple properties, and gave an algorithm for constructing
wavelets for a known scaling function. Using these results they constructed MRA and corresponding wavelets
for the case when a scaling function is the characteristic function of unit ball D. Such MRA is called
usually “Haar MRA” and corresponding wavelets — “Haar wavelets”. In [11] wavelet frame on local field are
constructed, a necessary condition and sufficient conditions for wavelet frame on local fields are given too.
Biswaranjan Behera and Qaiser Jahan [2] constructed the wavelet packets associated with MRA on local
fields of positive characteristic. In the article [3] the same authors proved that a function ¢ € L2(F(®)) is a
scaling function for MRA in L?(F)) if and only if

D 1p(€ + u(k)]> =1 for ae. £ € D, (1.1)
keNg
lim [@(p7¢)| =1 for ae. £ € F®), (1.2)
J—o0

* Corresponding author.
E-mail addresses: LukomskiiSF@info.sgu.ru (S.F. Lukomskii), vam21@yandex.ru (A.M. Vodolazov).

http://dx.doi.org/10.1016/j.jmaa.2015.08.051
0022-247X/© 2015 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jmaa.2015.08.051
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:LukomskiiSF@info.sgu.ru
mailto:vam21@yandex.ru
http://dx.doi.org/10.1016/j.jmaa.2015.08.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.08.051&domain=pdf

1416 S.F. Lukomskii, A.M. Vodolazov / J. Math. Anal. Appl. 433 (2016) 1415-1440

and there exists an integral periodic function mg € L?(D) such that

P(&) = mo(p€)P(pé€) for ae. £ € F) (1.3)

where {u(k)} is the set of shifts, p is a prime element. B. Behera and Q. Jahan [4] proved also if the translates
of the scaling functions of two multiresolution analyses are biorthogonal, then the associated wavelet families
are also biorthogonal. So, to construct MRA on a local field F(*) we must construct an integral periodic
mask mg with conditions (1.1)—(1.3). To solve this problem using prime element methods developed in [16]
is not simple. Currently there are no effective methods for constructing such masks and scaling functions.
In articles [2-4,8,11] only Haar wavelets are obtained.

In this paper, we propose a simple method to construct integral periodic masks and corresponding scaling
step functions that generate non-Haar orthogonal MRA. To construct this mask we use two new ideas. First,
we consider local field as vector space over the finite field GF(p®). Second, we construct a scaling function
by arbitrary tree that have p® nodes. For fixed prime number p there exist p*® ~2) such trees.

By s = 1 the additive group F(U* is a Vilenkin group. Issues of constructing of MRA and wavelets on
Vilenkin groups may be found in [5,6,12-15].

The simplest example of a local field of characteristic zero is the field of p-adic numbers. Issues of
constructing MRA and wavelets on the field of p-adic numbers can be found in [1,9,10].

The paper is organized as follows. We consider local field F*) as a vector space over the finite field
GF(p®). Therefore, in Section 2, we recall some concepts and facts from the theory of finite fields and define
the local field F(®) of positive characteristic p as a set of infinite sequences a = (aj), where a; € GF(p°).

In Section 3 we prove that local field F(*) is a vector space over finite field GF(p®).

In Section 4 we prove that the set X of all characters of local field F(*) also form a vector space over finite
field GF(p®) with product as internal operation and powering as external operation. We define Rademacher
functions, find a general view of characters, and prove a basic property of Rademacher functions.

In Section 5 we discuss the refinable equation and its mask.

In Section 6 we consider refinable equation

¢(x) = mo(x)p(xA™)

with step mask mg and find a necessary and sufficient condition under which an integral periodic function
my is a mask of some refinement equation.

In Section 7 we define (N, M) elementary sets. We prove if E C F(®) is (N, M) elementary set and
|p(x)| = 1(x) on X then the system of shifts (¢(z — h))ren, is an orthonormal system.

In Section 8 we reduce the problem of construction of step refinable function to construction of some tree.
We consider some special class of refinable functions ¢(x) for which |@(x)| is a characteristic function of a
set. We introduce such concepts as “a set generated by a tree” and “a refinable step function generated by a
tree” and prove, that every rooted tree containing p°® nodes generates a refinable step function that generate
an orthogonal MRA on local field F®). For p = s = 2 we give an example of a refinable step function that
generate non-Haar MRA.

Using the results of the article [8] we can construct now corresponding wavelets. This example shows
that MRA on local field gives an effective method to construct multidimensional step wavelets.

2. Preliminaries

We will consider two objects: Vilenkin groups and local fields. Let p be a prime number. Vilenkin group
(&,4) consists of sequences

a=(an)nez = (---,Qn=1,0n, Ant1,-..), a;j =0,p— 1,
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in which only a finite number of terms with negative numbers are nonzero. The operation + is defined as
component wise addition modulo p, i.e.

a+b=(an)+ (bn) = ((an + bn)mod p)nez.
The topology in & is determined by subgroups
G, ={ac®: a=(...,0p_1,an-1,an,Cnt1,--.)}.
The equality

L. an #b,, a;=b;forj<n
p(a,b):{ # J Jj J

p7
0; aj=bjforjeZ

is the non-Archimedian distance on (&, +). If 4 is the Haar measure on & then u(&, +g) = u®, = -,

n € Z. The dilation operator A is defined by the equation

Ala) = (bn)nez, bn = ant1.

It is evident that A&, = &,,_1 and [ f(Au)dp = I%ff(x) d.
& &

By a local field we will mean a field K which is locally compact, non-discrete and totally disconnected.
We will consider local fields with positive characteristic only. By Pontrjagin—-Kovalsky theorem [7] such field
is isomorphic to the set K (z) of formal Laurent series

oo

Z anz" (2.1)

with a,, € GF(p®) where s € N and p is a prime number. Local field of positive characteristic is denote F (s).

Let GF(p) be a ring (field) of residue class on modulo p. The finite field GF(p®) consist of vectors
a=(a®,aM, ... at=V) where al¥) € GF(p). The addition operation (a) + (b) is defined coordinate-wise
ie.

a+b= (a9 +p)) mod p)3—5.

To define a product ab it is necessary to represent vectors a and b as polynomials
s—1 s—1
a— Za(j)tj, b— Zb(j)tj
Jj=0 Jj=0

and multiply these polynomials over the field GF(p). We obtain the polynomial

s—1s—1 25—2
Q) =33 aDpBth = S S e
§=0 k=0 1=0  kj: kt+j=l
in which coefficients ; = 3. a@Wb*) are calculated in the field GF(p). Then we take a prime polynomial

kji ki=l
ps(t) of degree s and divide polynomial Q(t) by ps(t) over the field GF(p)

Q1) = ps(t)q(t) + H(t).
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Coefficients bg, b1, ...,bs_1 of this rest H(t) are components of product ab. It is know that a prime poly-
nomial ps(t) over the field GF(p) exists but not only one. A prime polynomial ps(t) can be found by
exhaustion.

We return to local fields. The sum and product of Laurent series (2.1) are defined in the standard way,

ie. if
a = Zajtj, b= ijtj
j=k j=k
then
s -
atb=> (a;+b)), a; +b; = ((a) + b} )mod p);=) (2:2)
j=k
ab = Ztl Z a;b, (2.3)
=2k jw:j+v=l

Topology in F*) is given by neighborhood basis of zero

F® ={a= Zajtj : a; € GF(p%)

j=n

If
a= Zajtj, a, #0
Jj=n
then we put by definition ||a|| = —. Consequently
(s) { (#) 1 }
FY)=SzeF¥: < .
psn

By F()* denote the additive group of field F(*). Neighborhoods Fés) are compact subgroups of group F )+,
We will denote them as Fr(LSH. The next properties are fulfilled

1) - C FOTY c BT c P ¢
2) F /&ﬁfGﬂdmﬂM”Wﬂﬁ)p?

Therefore we will assume that a local field F(®) of positive characteristic consists of infinite sequences

Vo d ) e GFR(p?)

_ 0) ¢
a_("'aon—lva'fuan-i-la"")? a; = (J ) ] 3 ) j

in which only finite number of element a; with negative numbers are nonzero. The sum and product are
defined as

a+b=(a; +bj)icz, aj+b; = (agu) + b;y)modp)f;(l), (2.4)
ab=( > (ab;))ez (2.5)

i,Jii+j=l
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In this case

1.
lall = [I(--.,0n—1,an,an41,...)[| = W if a,, # 0,

F,(LS) ={a = (aj)jez: a; € GF(p°®); a; =0Vj < n},

o cFOcFY cFY ...,

E$ are compact subgroups in F®)* and jj(Fff)/FéiL)l) =p°.

It follows that F()+ is a Vilenkin group. The converse is true also: in Vilenkin group (&,+) we can
define product by (2.5). With such operation (&,+,-) will be a field. Since F(V* is a Vilenkin group, it
follows that

[ (o) dv(x) = 1e,(2),
Got

2) st (X, ) dp(z) = 11 (X),

3) 6{ (x; @) dv(x) = p"le, (),

4) @f (@) dp(r) = 5 le1(X)

where &,, = F,(Ll)+.
From the definition of F'*) it follows that additive group F(®)* is also Vilenkin group & and F,(ZSH_ =B,

3. Local field of positive characteristic as vector space over a finite field

Let (&,+) be a Vilenkin group. We can define the multiplication operation on a number A\ € GF(p) by
the equation

ad=a+a+...+a.
—_—

A
Define the modulus of A\ as
1, AM#0
A — ) )
Al { 0, A=0,
and the norm of a € & by the equation
lall =p™" (3.1)

if

a=(...0p_10pn11...),n € ZL,a; € Zp,a, # 0.
Since GF(p) is a field, it follows that (&,+) is a vector space over the field GF(p) and the equation (3.1)
defines a norm in (&, +,-\).

Now we consider local field F(*) with positive characteristic p. Its elements are infinite sequences

6= (00 1,808,041, ),8; € GF(p)
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where
a; = (ag.o),ag.l), .. .,ags_l)), a;-l/) € Zy.

Let A € GF(p®). By the definition ||a| = p%n if a,, # 0. Since

\a

(...0_17>\,01,...) . (...On_l,an,anﬂ,...) =
=A+0x+ 0z +... )(anz™ + ap "+ ) = Aazz” + Aa, " 4=
= ( . .On_l,/\an,)\anH, N )

it follows that the product Aa is defined coordinate wise. With such operations F(*) is a vector space. If we
define the modulus |A| by the equation

1, MN#0,
Al =
0, A=0,
and norm ||a|| by the equation
lall = = an #0 (3.2)

then we can consider the field F*) as a vector normalized space under the field GF(p®).
For brevity we denote K := F()| K, := F{*). Take an element g € K1\ K3 and fix it. It is known [16]
that any element ¢ € K may be written in the form

a= Z)\ng", An €U,

nez

where U is a fixed full set of coset representatives of K in Ky. We can prove a more general statement.

Theorem 3.1. Let (gn)nez be a fized basic sequence in K, i.e. gn € K, \ Kny1. Any element a € K may by
written as sum of the series

a=> Xngn, An € GF(p°). (3.3)
neZ

Proof. Let a € K. If a = 0 then the equation (3.3) is evident. Let a # 0. Then exists n € Z such that
a€ K\ K, . It means that

a=(...0p_1,8,8p41,...), a; € GF(p®),a, # 0.
Show that there exists A\, € GF(p*) such that
a= Xngn + ant1, ang1 € Kppa.

Indeed, since g, € K,, \ K41 it follows that

gn = (.. '0n—17g£L”),gfﬁ£1, ), g%n) £0.
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Since GF(p*) is a field, it follows there exists \,, € GF(p®) such that gl = a,. Therefore
Andn = (... on,l,Xng;"%Xngﬁjﬁl o) =(..0p_1,a4,8041-..)-
Consequently
a=Mgn="_0..0,_1,0,,8,41 —8p41...) = Qpy1 € K:H,
i.e. a = \ygn + any1. Continuing this process, we obtain (3.3). O

Corollary. If g € K1 \ Ko then g™ € K, \ K, +1. Therefore we can take g, = g™ in the equation (3.3).

Definition 3.1. The operator

Ata= angn — angnfl

neEZ nez

is called a dilation operator.

Remark 1. If g, = ¢g" and a = . \,¢" then ag™! = > X\,g"'. So the dilation operation may be defined

nez nez

by equation Az = g~ .

Remark 2. Since additive group F' (8)*+ is Vilenkin group & with F,(LS)Jr = ®,,, it follows that AK,, = K,,_1
and [ f(Au)dp= # [ f(z)dp.
K+ K+

4. Set of characters as vector space over a finite field

Since F®)T is a Vilenkin group it follows that the set of characters is a locally compact zero-dimensional
group with product as group operation

(xp)(a) = x(a) - ¢(a).

Denote the set of characters as X. We want to find the explicit form of characters. Let us define the character
rn, in the following way. If

a= ('"70/€—17ak7ak+1a"')7aj € GF(pS)
and

a; = (a(o),agl), . ,ags_l)), ag-y) € GF(p)

n=—oo

in which the number of factors with positive numbers are finite.
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Proof. Let

Tr = ( . '705Xj7' sy Xy X1 - - ')a Xk = (Iks-i-Oaka-‘rh s axks+(sfl))

Since F*)* is a Vilenkin group, it follows that functions rs () = e F Thot ', are Rademacher functions

on F)*, Therefore any character x may by expressed in the form (4.1). O

Definition 4.1. Write the character x as

IORNEH Q=)
— k k k
X = H Tks-i—Orks-l-l R Tks—i—s—l
keZ
and denote
ar .o a0 ay
r/c T Tks-‘rOTks—i-l e Tks+s—1’
0 —1 . 1,0,...,0) . .
where aj, = (a,(C ), a,(C ), aﬁj )) € GF(p®). The function ry, = r,g ' ) is called Rademacher function.

Definition 4.2. Assume by the definition
(r2%)Pr .= p2:Pk ay by € GF(p®).
In this case

0 1 s—1 0 1 s—1
ap _ (rg,o,...,o))ak _ r](:p,a; ) LaltTh)y al® oM )

_ k k k
- Tks—&-OTks—i-l e Tks—&-s—l‘

Therefore we can write x as the product

X = H ok (4.2)

keZ

Definition 4.3. Define xP, b € GF(p®) as

X" = [P

kEZ

Lemma 4.2. Let v, be a Rademacher function. Then
rz'i"' =rp -1y, u,v € GF(p*).

Proof. Using the definition of Rademacher functions we have for z = (a;,(cl))

s—1 s—
2mi, (1) () 2mi (1) Q)]
(rfrl, ) = (o, o)t ) = [ e v [P s =

=0 =0

s—1

2mi (0 L@y O wiv
— H e r ks+1 T Vs+1)T — (rk ,:,C). O
=0

Theorem 4.1. The set of characters of the field F®) is a vector space (X, *, -CF®")) under the finite field
GF(p®) with product as interior operation and powering as exterior operation.
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Proof. 1) Check YUY = Uy foru,v € GF(p®). Let

L v = I

kEZ keZ

Using Lemma 4.2 we obtain

u. v _ apu_apv __ aip(utv) _ _uiv
X"V = H iRy = r, ="V,
kEZ k€EZ

2) Check the equation x}'x% = (x1x2)". Let

u apu bu
=TT v = T

kEZ kEZ

Using Lemma 4.2 we have

+b
X?XQ H I_aku H I‘bku H réak-‘r Ku _ (X1X2)u'

kEZ kEZ keZ

3) Since the Vector 1= (1,0,. 70) is a unity element of multiplicative group of the field GF(p®) it

follows that ! = X +0) — I1 rak =11 rzk = .
kez kez
4) The equality (x")V = x"V is true by the definition.

So, all axioms for exterior operation are fulfilled. By Lemma 4.2 all axioms for interior operation are
fulfilled too. O

Tt follow from (4.2) that annihilator (F; és))L consists of characters of the form x = ry"'rp* 57 ... It is
evident also that

1) Rademacher system (r;) forms a basis of (X, x, -GF®"),
2) any sequences of characters xi € (Fk(:i)l)L \ (F,g )) forms a basis of (X, *, -GF®)),
B (E) = U (FO)h

ap_1€GF(p*)

The next lemma is the basic property of Rademacher functions on local field with positive characteristic.

Lemma 4.3. Let g; = (...,0,-1,(1,0,...,0);,0j41,...) € FG) ap,u € GF(p®). Then (ri*,ug;) =1 for
any k # j.

Proof. Since ug; = (...,0;_1, (w® ™ 7u(s_l))j, 0j11,...), it follows that

s—1 W W s—1
2mi (1
ay - ) _ 0 __
(rk,ugj)—”epk —||e—1. a
=0 =0

Definition 4.4. Define a dilation operator A on the set of characters by the equation (xA,z) = (x, Ax).

Remark. Since additive group F*)* is Vilenkin group, it follows that g; 4 = g1, (K;))*A = (K )+t

and [ f(xA)dv = 55 [ f(x)dv
X X
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5. MRA on local fields of positive characteristic

We will use Rademacher function to construct MRA on local fields of positive characteristic. We will

assume
gn = (e 0p 1, (1,0, .., 0)n, Ons - .. )-
Let us denote
Hy={heF®: h=a 9 ,+a o9 o+...4a ,9 ,,0cN}, a; € GF(p*),
H? ={he F® h=a_1g1+asgst...Fa o910 €N, a; € GF(p°).
The set Hy is an analog of the set Ng = NU {0}.

Lemma 5.1. Let K = F®) be a local field with characteristic p. Then for any n € Z

[ (eo)dv(x) =p g (o),
(KH)*

2) [ (o) du(e) = 51 gy (X)-
Kt

Proof. First we prove the equation 1). Since K is a zero-dimensional group, it follows

/ (0 ) (x) = 1t (2), / (o 2)dp() = 1 ey (0.

(Kq)L Ky

By the definition of dilation operator
[ 1000 =p [ F0 a0, L @) = 1 (A7),
X X

Using these equations we have

| e = [ 000 =

(KL X

—pm / (A", 2)1 12 (CA™) dir(x) =

X

=p™ / (6 A" )L ey (X) dv(X) = P Lt (A"x) = p* L (2).
X

The second equation is proved by analogy. O

Lemma 5.2. Let xn; = raney' . ..x0" 4" be a character does not belong to (K;7)*. Then

/ (0o 2) dv(x) = P (nas ) Ligs (2).

(KE) S xn
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Proof. Denote &,, := K,". By analogy with previously we have
[ ) avt0 = [1es, 00062) 00 = [ L 00 00nx. ) () =
S Xn,1 X X

- / (ot D)0 2) dr(x) = p"* (omts 21, (7). O

&
Lemma 5.3. Let hy = an—19n-1 + an—2gn—2 + ...+ an—1gn—1 ¢ K,". Then
1
(X, 2) dp(x) = ﬁ(Xahn,l)l(K:[)i(X)'
K Fhn

This lemma is dual to Lemma 5.2.

Definition 5.1. Let M, N € N. Denote by D (K_n) the set of step-functions f € Ly(K) such that
1) supp f C K_y, and 2) f is constant on cosets Ky + g. Similarly is defined ®_ ny(K37;).

Lemma 5.4. Let M, N € N. f € Dp(K_y) if and only if f € D_n(Kiy).
Proof. It is evident since additive group F'* is Vilenkin group. O

Lemma 5.5. Let ¢ € Ly(K). The system (¢(x — h))hem, is orthonormal if and only if the system
(p? p(A"x — h))heH0 is orthonormal.

Proof. This lemma follows from the equation

/p%w(/l"x S h)pF p(Anz = g)du = /90(96 (e~ g)dp. O

K K

Definition 5.2. A family of closed subspaces V,,, n € Z, is said to be a multiresolution analysis of Lo(K) if
the following axioms are satisfied:

A1) V,, C Vg

A2) Upes Va = La(K) and (1,0 Vi = {0;

A3) f(x) €V, <= f(Azx) € V41 (A is a dilation operator);

A4) f(x) e Vo = f(z—h) €V forall h € Hy (Hy is analog of Z);

A5) there exists a function ¢ € Ly(K) such that the system (p(x — h))pen, is an orthonormal basis for V.

A function ¢ occurring in axiom A5 is called a scaling function.

It is clear that the axiom A5 implies the axiom A4. Next we will follow the conventional approach. Let
¢(z) € L2(K), and suppose that (p(x — h))pen, is an orthonormal system in Lo(K). With the function ¢
and the dilation operator A, we define the linear subspaces L, = (¢(Az — h))nen, and closed subspaces
V, = L,. It is evident that the functions p% ©(Az = h)pepn, form an orthonormal basis for V,,, n € Z.
Therefore the axiom A3 is fulfilled. If subspaces V; form a MRA, then the function ¢ is said to generate
an MRA in Ly(K). If a function ¢ generates an MRA, then we obtain from the axiom Al
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= Z Brp(Az — h) (Z 1Br|? < —|—oo> : (5.1)
h€Hy

Therefore we will look up a function ¢ € Lo(K), which generates an MRA in Lo(K), as a solution of the
refinement equation (5.1). A solution of refinement equation (5.1) is called a refinable function.

Lemma 5.6. Let ¢ € Dy (K_n) be a solution of (5.1). Then

p(x)= > Pup(Az = h) (5.2)

heHSN D
The proof is a repetition of the proof of Lemma 4.1 in [12].

Theorem 5.1. Let p € Dy (K_y) and let (o(z — h))hen, be an orthonormal system. V,, C Vy41 if and only
if the function p(x) is a solution of refinement equation (5.2).

The proof is a repetition of the proof of Theorem 4.2 in [12].

Theorem 5.2. (See [3], Th. 4.1.) Let p € D (K_n) be a solution of the equation (5.2), (p(x — h))hen, an

orthonormal basis in Vo Then [\ V,, = {0}.
nez

Theorem 5.3. (See [3], Th. 4.5.) Let o € D (K_n) be a solution of the equation (5.2), (¢(x — h))hen, an
orthonormal basis in Vo, and $(0) # 0. Then |J Vi, = Lao(K).
nez

The refinement equation (5.2) may be written in the form

@(x) = mo(x)p(xA™1), (5.3)
where
mo(x):is > BulxA 1, h) (5.4)
P heHSNTY

is a mask of the equation (5.3).
Lemma 5.7. Let ¢ € D5 (K_n). Then the mask mo(x) is constant on cosets K-y (.

Proof. We will prove that (y,.A~1h) are constant on cosets K-, (. Without loss of generality, we can assume
that ¢ =2 ...x2 e f KLy If

h = a_19—1 + - —|— a_N_-19-N-1 € H(()N+1), a; € GF(pS)
then
A''h=a_i1gy+...+a_n_19-n EK_N

If x € KX\ ( then x = x_n( where x_n € K*. Therefore (y, A~'h) = (x_~n(, A h) = (¢, A~th). This
means that (y, A~'h) depends on ¢ only. O
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Lemma 5.8. The mask mo(x) is a periodic function with any period r7'r5*...ri" (I € N, a; € GF(p®),
j=11).

Proof. Using the equation (r}:’“,ugj) =1,(k # j) we find

(xrPres? P A7) = (aebieh? Pt a g da g 1 o Fa v g N) =
=(va1goFta g +...+ a_N-19-N) = (Xfrl’h)-

Therefore mo(xr>'r5? ... rP") = mo(x) and the lemma is proved. O
Lemma 5.9. The mask mo(x) is defined by its values on cosets KLtyr® Y ...15° (a; = (a§0)7a§1),...,

o) € GF(p")).

Proof. Let us denote
N .
k= Z +o T e [0,p" VY — 1),
j=

+
Z pt e+l Vp T i e o, prVHD — 1],

Then (5.4) can be written as the system

pS(N+1) 1

1
mo(xx) = » Bilxk, A~ hy), k=0,ps(N+D —1 (5.5)
=0

in the unknowns (;. We consider the characters xj on the subgroup Ki‘ Since A~ h; € KT N it follows

that the matrix p~ 5 (X#s A~1h) is unitary, and so the system (5.5) has a unique solution for each finite
SN+
sequence (mo(xx))h_o . O

Remark. The function mg(x) constructed in Lemma 5.9 may not be a mask for ¢ € Dy (&_p). In the
Section 4 we find conditions under which the function mg(x) will be a mask.

Lemma 5.10. Let fo(x) € D_n((K7)L). Then

fo(X)ZZ% S BoATh). (5.6)

heHNHD

Proof. Since [ (x,9)(x, h) dv(x) = O for h,g € Hy it follows that [ (xA~',9)(x AL, h)dv(x) =
(EdH* (K)*+

; A 'h
pdn,g. Therefore we can consider the set ( N

) as an orthonormal system on (K;")*. We know
heHNHD

(Lemma 5.7) that (y, A71h) is a constant on cosets (KT 5)L¢. It is evident the dimension of ®_ n((K;")*)

is equal to p*N+1). Therefore the system (A\;p%h)h (v41, 18 an orthonormal basis for D_n((K{)?*) and
€H

the equation (5.6) is valid. O



1428 S.F. Lukomskii, A.M. Vodolazov / J. Math. Anal. Appl. 433 (2016) 1415-1440

6. Non-Haar wavelets

In this section we find the necessary and sufficient condition under which a step function ¢(x) €
D (K_n) generates an orthogonal MRA on the local field with positive characteristic. We will prove
also that for any n € N there exists a step function ¢ such that 1) ¢ generate an orthogonal MRA, 2)

supp ¢ C K, 3) @G \ Kyy) #0.
Note that the results of Sections 6, 7 and 8, there are analogues of the corresponding results for Vilenkin
groups [14]. Moreover, we use the same methods. This is possible since the basic property of Rademacher

functions (Lemma 4.3) is satisfied.
First we give a test under which the system of shifts (¢(z — h))nen, is an orthonormal system.

Theorem 6.1. Let p(x) € Dy (K_n). A shift’s system (p(x — h))hen, will be orthonormal if and only if for
any @_N,0-N+11,---,0-1 € GF(p®)

> Ip((KF ) edo e )2 = 1. (6.1)

Qp,ai,...,an—1€GF(p*®)

Proof. First we prove that the system (p(x — h))pen, will be orthonormal if and only if

> UKLy el )2 = p™ (6.2)

QN XQyee e, M — 1

and for any vector (a_1,a_s,...,a_n) # (0,0,...,0), (a; € GF(p®))

27 s— s— s— s—
S e (200l a0l ek a%al a0

Q_1,..,0_N

xS (KT T ) =0 (6.3)
Let (¢(x = h))nen, be an orthonormal system. Using the Plancherel equality and Lemma 5.1 we have

Shahe = / @~ h)p(e = ) du(z) = / GOOR (s ha = h) d() =

K+ (K~
- X / P00 0x s~ ) dv(x) =
GOy 7()[1\/[71(I(ir1\,)ir?;,N rg ...r?}{;l
=Y KR / (o = B dv() =

a_N M -1
(CAOrNOES SRS S¥ i

X Z (K ) e g e e o ey M g hy).

If ho = h1, we obtain the equality (6.2). If ho # hy then
hg;hlza,lg,l—i—...—i-a,Ng,NerN (64)

or
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ha - hi = a_19-1 + - —|— A_NG-N + - —|— a_jg—; € K+\K—_i_N. (65)
If the condition (6.5) is fulfilled, then 1(KfN)(h2 = h1) = 0. If the condition (6.4) is fulfilled, then
lKirN(hQ = hl) =1
(23 g ey he ) = (0 A vgon) - (0 A ig).

s—1
. . wi (1) o (1)
Using the equality (r3*,ugy) = [] e
I=0

we obtain the equality (6.3). The converse may be proved by

analogy.
Let as show now if for any vector (a_j,a_s,...,a_y) # (0,0,...,0) the conditions (6.2), (6.3) are
fulfilled, then for any @_n,@_n41,...,0_1 € FG(p®)

D (/06 e S v EO SV [ B (6.6)

Q0,01 5.+, XM —1

Let us denote

N s—1 N s—1
Z a(l) s(i— 1)’ k= Z a(l) s(j— 1’
j=11=0 Jj=11=0
i N s—1
(1 1)
Rl 3
j=11=0

and write the equalities (6.2) and (6.3) as the system

sN
CO’QLI}O + 0071.’171 + -+ Co7psN_1.fL‘psN_1 =p

Croro+Crazi + -+ CLpsN_la?psN_l =0

OpSN—l,OmO + CpSN—l,lxl + e + CpsN_LpsN_l[EpsN_l = 0 (67)
with unknowns
Ty = Z |@((KfN)Lr(i;VN...rgo...rifﬂ’fﬂz.
A0, Q150 ;XM —1
The matrix (C,, ) is orthogonal. Indeed, if (a_1,a_9,...,a_n) # (a’q,al,,...,a" y), i.e, n # n' we
obtain
p -1 o N 51
1 Dy (
D Corlui= 30 e | =233 () —dfhally ) =0,
k=0 Ty BN L e

so at least one of differences a_;—a’ ; # 0. So, the system (6.7) has unique solution. It is evident that z;, = 1
is a solution of this system. This means that (6.6) is fulfilled, and the necessity is proved. The sufficiency is
evident. O



1430 S.F. Lukomskii, A.M. Vodolazov / J. Math. Anal. Appl. 433 (2016) 1415-1440

Now we obtain a necessary and sufficient conditions for function mg(x) to be a mask on the class
D_N((K;)?1), i.e. there exists ¢ € D_n((K};)*) for which

P(0) = mo()P(xA™). (6.8)
If mo(x) is a mask of (6.8) then

P1) mg(x) is constant on cosets (KjN)J-_C’ B
a0

P2) mg(x) is periodic with any period r{*r5 ...I'la’, a; € GF(p®),
P3) mo((K*y)") = 1.

Therefore we will assume that mq satisfies these conditions. Let
Ey C (KO \ (K )t ,(k=—-N+1,-N+2,...,0,1,...,M,M +1)

be a set, on which mq(E})) = 0. Since mg(x) is constant on cosets (K *y)*(¢, it follows that Ej is a union
of such cosets or E}, = 0.

Theorem 6.2. mq(x) is a mask of some equation on the class D_n((K;;)1) if and only if
mo(x)mo(xA™") ... mo(x A~ ") =0 (6.9)
on (K )=\ (K™

Proof. Indeed, if (6.9) is true we set

p(x) = [ mo(xA™") € D_n((Kf)").
k=0

S
=
P

\_":‘
®
=]
a

Then ¢(x) = mo(x)

mo)= S BulxA L)

heH{NTD

for some Bj,. Therefore mg() is a mask. Conversely let mg(x) be a mask, i.e. 4(x) = mo(x)p(x A1) €
D_n((K;;)1). From it we find

P(x) = mo()mo(xA™") ... mo(xA™ M M)p(xA™M N,
and p(xA™M~N=1) =1 on (KJ, ;)" Since $(x) =0 on (K, 1)+ \ (Kj)*, it follows
mo(xX)mo(xA ™) ...mo(xA" M) =0
on (Kipy)* \ (K{)*. O
Lemma 6.1. Let ¢ € D_n((K;;)") be a solution of the refinement equation
P00 = mo()P(xA™)

and (p(x = h))hen, be an orthonormal system. Then for any @_n,a_N41,...,0-1 € GF(p®)

S Imo((KE ) e et et 0P = 1 (6.10)
EQEGF(])S)
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Proof. Since ¢ € D_y((K;;)*), it follows that ¢((K;;,)*" \ (K;;)*) = 0. Using Theorem 6.1 we have

1= > UK TR xge )P =
@0, a1,..,anm—1EGF(p?)
= > (K ) e e e e )P = S mo (K ) e ) xo) 2
ao,...,aM,17aMEGF(pS) @p=0
> (K ) e et e )P =

@i,...,anm—1,anm € GF(p*)

> mo((KE )23 g2 o
ap€ GF(p*)

Theorem 6.3. Suppose the function mo(x) satisfies the conditions P1, P2, P3, (6.9), and the function

500 = [ mo(xA™)
n=0

satisfies the condition (6.1). Then o € D (KTy) and generates an orthogonal MRA.

Proof. It is evident that ¢ € D_n((K;,)b), ¢(x) = mo(x)@(xA™1), and (¢(z = h))hen, is an orthonormal
system. From Theorems 5.1, 5.2, 5.3 we find that the function ¢ generates an orthogonal MRA. O

7. (N, M)-elementary sets

So, to find a refinable function that generates orthogonal MRA, we need take a function mg(x) that
satisfies conditions P1, P2, P3, (6.9), construct the function

2(x) = [T moxA™) e D _n((K{)Y)
k=0

and check that the system ¢(z — h)pen, is orthonormal. We want to give a simple condition under which
the system of shifts ¢(z = h)pep, is orthonormal.

Definition 7.1. Let N, M € N. A set E C X is called (N, M)-elementary if E is disjoint union of p*" cosets

(KfN)J‘Cj = (K+N)J‘ ri}VNrﬁng:f S v rgo . rif”:ll = (KfN)J‘fjnj,

& Ul

j=0,1,...,p°N —1,j = Z\igl(ag)\,ﬂ + oz(jI)VHp + -+ oz(f;[i)lps_l)p” (@, € GF(p®)) such that

DU ) = () (K7 e = (K%,

2) for any [ =0, M + N — 1 the intersection ((K*y_ . )"\ (KX, )H)NE #0.

Lemma 7.1. The set Hy C K is an orthonormal system on any (N, M)-elementary set E C X.
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Proof. Let h,g € Hy. Using the definition of (N, M )-elementary set we have

Janaan=3 [ nlegda -
5 GRS

> /1<wa>i<j(x)(><,h)(x,g)du(x):
=0 %

p*N—1
= / Ligetoyee, 0an) Oxngs ) (g, 9) dv(x) =
Jj=0 X
PN 1
= Y [t 00O W90y )Ty 0.
Jj=0 X
Since
(n;,h) = (x§orft .. .r?jﬂ’f,a,lgq ‘a9 o+...+a94)=1,
(nj,9) = (rgor? ... zv}w Jbo1go1+boog ot ...+ bygy) =1,
then
L psN_l L
Jantaao=3 [ anieada -
E I=0 (Kt )t
= / (Xv h)(ng) dV(X) = 6h,g~ O
(K3)+

Theorem 7.1. Let K = F'®) be a local field with positive characteristic p, E C (K;;)* an (N, M)-elementary
set. If |p(x)| = 1g(x) on X then the system of shifts (o(x — h))nhen, is an orthonormal system on K.

Proof. Let Hy C Hy be a finite set. Using the Plancherel equation we have

/ oz 9o =) / B0 xo B (x) = / (0 M 0x 9)dv(x) =
K E

sN

p°—1 .
=y / (x; h)(x; 9) dv(x)-

j=0
! (KjN)LC‘)

Transform the inner integral

[ emteaant = [ L 06MTeaT 00 = [ Lo, o) = 6) dvl) =
X X

(KjN)iCj

:/1(KfN)L§j(X)(X"7jah;g) dv(x) = / (xnj, h = g) dv(x).
X

(KX y)tg;



S.F. Lukomskii, A.M. Vodolazov / J. Math. Anal. Appl. 433 (2016) 1415-1440 1433

Repeating the arguments of Lemma 7.1 we obtain

/ o h)p@ g)du(z) = by O

K

8. Trees and wavelets

Let K = F(®) be a local field of characteristic p. In this section we reduce the problem of construction of
step refinable function on the field K to construction of some tree.

We will consider some special class of refinable functions ¢(x) for which |@(x)| is a characteristic function
of a set. Define this class.

Definition 8.1. A mask mg(x) is called N-elementary (N € Np) if mo(x) is constant on cosets (K*y)Lx,
its modulus mg(x) has two values only: 0 and 1, and mo((K*)t) = 1. The refinable function ¢(z) with
Fourier transform

= H m
n=0
is called N-elementary too. N-elementary function ¢ is called (N, M)-elementary if ¢(x) € ®_y(Ki;). In
this case we will call the Fourier transform ¢(x) (N, M)-elementary, also.

Definition 8.2. Let £ = [ | (K)*r"'r5° c (K;7)* be an (1,1)-elementary set. We say that the set

a—1,00

Ex is a periodic extension of E if

(@

[, — (A ay
Ex = Er{'rd S A

a@y,..., a1 €EGF(p®)

N
I
—

We say that the set E generates an (1, M) elementary set F, if (| ExA" = F

n=0
Let us write the set GF(p®) in the form
{07 up,ug,... ,uq,al,ag, . ,aps,q,l} =V, 0= ug,
where 1 < ¢ < p® — 1. We will consider the set V as a set of vertices. By T(0,u;,us, ..., uq, @1, 0o, ...,
Qps—q—1) = T(V) we will denote a rooted tree on the set of vertices V', where 0 is a root, uy, us, ..., u, are

first level vertices, @1, @2, ..., 0ps—g—1 are remaining vertices.
For example for p =3, s =2, ¢ =2, uy = (2,1), uy = (1,0) we have trees (see Fig. 1 or Fig. 2) and so
on.
For any tree path
P; = (0—>Uj — Q|1 — Q|2 — - — QO —)571)
we construct the set of cosets

() ey, () el ey (K ey eeg ' (K ) T2, (KT g, (8.1)

For example for the tree from Fig. 2 and the path
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(1,1) (2,0)
/ /!
1.2) (2, ,
( )/(,22) 0,2)
(2,1) (1,0)

Fig. 2. The tree contains the same vertices, the root of the tree is the pair (0, 0).

(0,0) — (1,0) — (0,2) — (2,0)
we have 3 cosets
(), (R e P, (R ) e e,
for the path (0,0), (2,1),(2,2) we have two cosets
(B () P,

1 . Tq
We will represent the tree T'(V') as the tree (m 6 where T are tree branches of T'(V') with u; as a root.
By E; denote a union of all cosets (8.1) for fixed j and set

E = <|i| Ej> | (k)™ (8.2)

It is clear that F is an (1,1) elementary set and E C (K;")*.
Definition 8.3. Let Ex be a periodic extension of E. We say that the tree T(V) generates a set F, if

E = ﬁ ExA".

n=0

Lemma 8.1. Let T(V) be a rooted tree with 0 = (0,0,...,0) as a root. Let E C X be a set generated by the
tree T(V), H a height of T(V). Then E is an (1, H — 2)-elementary set.

Proof. Let us denote
m(x) =15, (x); M(x) =[] mOxA™).
n=0

First we note that M (x) = 1g(x). Indeed
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lp(x)=lexeEeVn YA "€ Ex &Vn, 1 (x\A™") =1%

Vn, m(xA™") =1< H m(xA ") =1 M(x) =1.

n=0

It means that M(x) = 1g(x). Now we will prove, that 1x(x) = 0 for x € (K )%\ (K7 _,)*. Since
Ex D (K*))* it follows that 15 (K )" A ) =15 ((K)*) = 1. Consequently

9] H-1
T1ie.0a™ =[] 16, (x4A™)
n=0 n=0

for x € (Kj;_ )"\ (Kj_,)*. Let us denote m((K™))*rl ;rX) = Ak By the definition of cosets (8.1)
m((K*))*ri rk) # 0 < the pair (k,i) is an edge of the tree T/(V).
We need prove that

(K)o e ) = 0

for @y _o # 0. Since Ex is a periodic extension of E it follows that the function m(x) = 15, (x) is periodic

with any period r{'r?.. .rlal, 1 €N, ie m(xr{'ry? ...rlal) = m(x) when y € (K;")*. Using this fact we

can write M(x) for x € (K7;_,)* \ (K#_,)* in the form
M((KZ) Q) = M) el =
= m((K4) ey g ) m((K ) rrg)
m((KX) e gy m (K ) ) =

= /\571750)‘50751 s AaH—37aH—2>\aH—2,O7 QaH—2 7& 0.

If A o = 0 then M((K*))*(¢) = 0. Let A\a,,_,.0 # 0. It means that a@y_» = u; for some j = 1,q. If
A =0 then M((K*,)*¢) = 0. Assume that A\g,,_, ay_, # 0. It is true iff the pair (@y_o2, @y _3)
is an edge of T'(V'). Repeating these arguments, we obtain a path

O H -2,
OH-3,00H—2
(0—>uj =Qg_2 —> Ofg_3 —>--'—>al)

of the tree T'(V). Since height(T) = H it follows that [ > 0. Consequently (@;,@;—1) is not edge and
Xy, @ =0, where [ > 0. It means that M ((K*;)+¢) = 0.
Now we prove that E is (1, H — 2)-elementary set. Indeed, any path

(0—>Uj =1 —)al_2—>"'—>50—>a_1)

defines the coset (K*)tr®'r§o...r";" C E. But for any @_; € GF(p®) there exists unique path with
endpoint @_; and starting point zero. It means that E is (1, H — 2)-elementary set. O

Theorem 8.1. Let M,s € N, p* > 3. Let E C (Kj;)* be an (1, M)-elementary set, p € D_1((K};)"L),
[2(x)| = 1E(x), ¢(x) the solution of the equation

G(x) = mo(x)P(xA™), (8.3)

where mo(x) is an 1-elementary mask. Then there exists a rooted tree T(V') with height(T) = M + 2 that
generates the set E.
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Proof. Since the set E is (1, M)-elementary set and |¢(x)| = 1g(x), it follows from Theorem 7.1 that the
system (¢o(z = h))nem, is an orthonormal system in Ly(K). Using the Theorem 6.1 we obtain that for any
a_1 € GF(p®)

> () e e e = 1 (8.4)

@, a1,...,ap —1EGF(p?)

Since ¢ is a solution of refinement equation (8.3) it follows from Lemma 6.1 that for @_1 € GF(p®)

Do Imo((BF) e F =1 (8.5)

ToE GF(p*)

Let as denote Ag_, w, := mo((K*,)*r%7'r3?). Then we write (8.5) in the form

Z |)‘a—1750‘2 =1 (86)

ageGF(p*)

Since the mask mo(x) is 1-elementary it follows that |A; 5| take two values only: 0 or 1.
Now we will construct the tree 7. Let i be a family of cosets (K')*¢ < (Kj,;)* such that
S((K*))1¢) # 0 and (KT))+ ¢ 4. We can write a coset (K,)+(¢ € &l in the form

(Kir )L a11r30~ ?\ZM 1
It (KH))4¢ © (K \ (K7,)* (1< M) then
(KI)R ¢ = (KD e o'y, @y # 0.

Let u # 0. By Ty, we denote the set of vectors (u,a@,_1,...,a@,a-) for which (K*,)tr®'ro. ..
rz" Tirt € i We will name the vector (w,@p,—1,...,%),@—1) as a path too. So T, is the set of paths
with starting point u, for which ¢((K*))*r _111'8‘0 rf:" 7'rY) # 0. Denote (it follow from (8.5)),
if o((K)Lr® ' efo .. e0m'r) # 0 then ¢((K*)tr®'rg0 .. r0 'rY rZEl) = 0 for any @,+1 # O.
We will show that Ty, is a rooted tree with u as a root.

1) All vertices @;, u of the path (u,@,_1,..., @, @_1) are pairwise distinct. Indeed

GIKT) e 5o el ' r) = Aoy o Mo,y - - - Ay w0 7 0, w # 0.

n—1

If @,—1 = u then |Ay ul = [Au,0| = 1 that contradicts the equation (8.5).

If @,—1 = 0 then |A\o,u| = |Xo,0| = 1 that contradicts the equation (8.5) too. Consequently @,_1 ¢ {0,u}.
By analogy we obtain that @; ¢ {0,u,@,_1,..., 12, @11}

2) If two paths (w,@x_1,..., a0, a_1) and (u,3;_y,...,Bg, B_;) have the common subpath (u,@_1,.. .,

ak‘—j_Jrlvak—j) = (W31, Bij11,B—;) and @p_j 1 # By_;_ then {@_1, @, ..., 1} (B _1, B0,
~~,ﬁl,j,1} = (). Indeed, let

{5717507 cee aakfjfl} 0{5717307 s 7Blfj*1} # 0.

Then there exists v € {@_1, @0, ..., @—j—1} (W{B_1, B0, - - - ,Bl_j_l}. Assume that v # @g_j_1. Then v =

ay, - 1<v<k-j—-2andv=p, -1<pu<Il-j—1 It follows that
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(u :aka-“aak—j)ak—j—l)'"761/-‘1-17&1/ = ﬁ;ﬁﬁp—l?"'?BO?B—l) S

Tu
(ll = Bla e 7317]‘ = ak*jaglfjflv‘ .. 7B#+173p,73p,717 s 3307371) €T,

So we have two different paths with the same sheet 3_,. But this contradicts Theorem 6.1. This means that
T, has no cycles, consequently Ty, is a graph with u as a root.

3) By analogy we can proof that different trees T, an Ty, has no common vertices. It follows that the
graph T' = (0, Ty,, ..., Ty,) is a tree with 0 as a root.

4) It is evident that this tree generates refinable function ¢ with a mask mg. Show that height(7T") = M +2.
Indeed, since ¢ € D_;((K;;)") it follows that there exists a coset (KT })=r* ' r50 ... x5M ", @1 # 0 for
which

G e ) = L

This coset generates a path (0,ap -1 = u,d@p-—2,...,0%),a@—1) of T. This path contain M + 2 vertex.
It means that height(7) > M + 2. On the other hand there isn’t coset (K )*( € 4 with condition
(K))¢ € (Kfq)" \ (K;;)*, consequently there isn’t path with L > M +2. So height(7) = M + 2. Since
supp @(x) is (1, M)-elementary set, it follows that the set of all vertices of the tree T is the set GF(p®). The
theorem is proved. O

Definition 8.4. Let T'(V') be arooted tree with 0 as a root, H a height of T(V'), V = GF(p®). Usmg cosets (8.1)
we define the mask mg(x) in the subgroup (K;)* as follows: mo((K*,)*) = 1,mo((K*))*r r*’) A
Aijl =1 when (KT)rl ) € E, (q.v. (8.2)), |Aijl = 0 when (KF))ri v c (K;F)L\ E. Let us extend
the mask mg(x) on the X \ (K;")* periodically, i.e. mo(xr'ry?...r") = mo(x). Then we say that the tree

T(V) generates the mask mg(x). Set ¢(x) = [[ mo(xA™™). It follows from Lemma 8.1 that

n=0

]') p@( ) (KI+{72)L7
2) ¢(x) is (1, H — 2)-elementary function,
3) (v

(x = h))nemn, is an orthonormal system.

In this case we say that the tree T'(V') generates the refinable function ¢(z).
Theorem 8.2. Let p > 2 be a prime number, s € N, p® > 3,

V ={0,uj,us,...,ug,as,as,...,8p_¢_1}

a set of vertices, T(V) a rooted tree, O the root, ui,Ug,...,uq a first level vertices. Let H be are height
of T(V). By ¢(x) denote the function generated by the T(V'). Then p(x) generate an orthogonal MRA
on F®),

Proof. Since T(V) generates the function ¢, it follows that 1) ¢ € D_1((K{)1), 2) 4(x) is (1, H — 2)
elementary function, 3) @(x) is a solution of refinable equation (8.3), 4) (¢(z — h))nen, is an orthonormal
system. From the Theorem 6.3 it follows that ¢(x) generates an orthogonal MRA. O

Remark. Now we can give a simple algorithm for constructing non-Haar refinable function ¢(z). Let T'(V)
be a tree on the set V' = GF(p®). Construct a finite sequence (\;j)i jegr(pe) as follows: Ao o = 1, [Ny 3| = 1 if
the pair (j, 1) is an edge of T'(f). For any vertex &@_; we take the path (0 = &1, u; = @, @—1,...,Q0, 1)
and suppose
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(0,1) (1,1) (1,0)
Tole

Fig. 3. All nonzero vertices have the first level.

Fig. 5. One nonzero vertex has the first level.

@((Kirl)Lréilrgo te rlaiilrlalr?+1> = )‘571,50 : )‘50751 e Aal—lxal ’ )‘51,0'
Otherwise we suppose $((K*,)*¢) = 0. Then ¢ generates an orthogonal MRA on the field GF(p*).

Example. Let p = s = 2. For these values we have trees (see Figs. 3-5) and so on. For the tree in
Fig. 5 we obtain ¢(x) in the form @(K*,) = 1, (KT = Ay, o((KH)2e O ey = Aoy,
@((Kfl)Lr(_liO)rél’l)) = Aio- [Aij| = 1 and ¢((KT))1¢) = 0 otherwise. Suppose for simplicity \;; = 1.
Then we can calculate the scaling function

o(z) = / 20006 2)dw(x) = / (o) w(x) + / (o x)dw(x) +

X (KT (KT)LtrY
+ / (x,z)dv(x) + / (x,z)dv(x) = 2_2(1Kf1($) +
(KT +elO ety (K) el Orfh)

+r8 @)1 (@) + 0GP @)Y @)1 (@) + 150 (@)l (@)1 e+ (@) = 1a(2)
where

E =K | (K 4 (0,0)9-1) (K + (1,1)g-1) |_J(& + (1,0)9-1 + (1,1)g0)
L (KT +(0,1)g-1 + (1,1)g0).

We can consider additive group KT as product & x & of Cantor groups. In this case ¢ and ¢ may be defined
on the product &1 x & and &_; x &_; respectively by Figs. 6 and 7.

Since suppp # (K )+ and suppp # (K;"), it follows that ¢ generates non-Haar MRA. From this example
we see that MRA on local field gives an effective method to construct multidimensional step wavelets.
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&) @l

Fig. 6. The table of the Fourier transform ¢.

1100 0o ||G

&y &,

Fig. 7. The table of the refinable function ¢.
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