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1. Introduction

There has been growing interest in the integro-differential equations related to pure jump processes
owing to their applications in various models in physics, economics, engineering and many others involving
long-range interactions. In this article we study the non-local elliptic equations with the operators
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where the kernel K (x,y) = a(y)J(y) = a(y)j(Jy|) depends only on y,

x(y) =0ifo € (0,1), x(y)=1ly<1ifo=1 x(y) =1ifoe (1,2

The constant o depends on j(|y|) and is defined in (2.7). In particular, if j(|y|) = ¢(d, a)|y|~¢~* for some
a € (0,2) then o = a. Note that if a(y) is symmetric then L = L, and in general we (formally) have

Lu=Lu+b-Vu,

where

wz—/ymwﬂw@ ifoe(01), b= /‘wmwﬂw@ if o e (1,2).
Bl ]Rd\Bl

The main goal of this article is to prove the unique solvability of the equations
Lu—Mu=f and Lu—Xu=/f A>0 (1.1)

in appropriate Ly-spaces and present some L,-estimates of the solutions. Here p > 1. If p = 2, the only
condition we are assuming is that a(y) has positive lower and upper bounds and J(y) is rotationally invariant.
If p # 2, we assume some additional conditions on J(y), which are described in Section 2.

If K(x,y) = c(d,a)|y|~%"%, where a € (0,2) and ¢(d, a) is some normalization constant, then L becomes
the fractional Laplacian operator A®/2 := —(—A)®/2. For the fractional Laplacian operator, L,-estimates
can be easily obtained by the Fourier multiplier theory (for instance, [16]). On the basis of this opera-
tor, many results have been made for kernels K (z,y) = a(z,y)|y|~?~“. In [7], the authors obtained an

‘—d—a

L-estimate of the equation Lu — Au = f with the kernel K(z,y) = a(y)ly , where the coefficient

a(y) is measurable and has lower and upper bounds. For parabolic equations, in [11] the authors handle

the equations with the kernel K(x,y) = a(z,y)|y|~9®

under the condition that the coefficient a(zx,y) is
homogeneous of order zero in y and sufficiently smooth in g, but it is allowed that a also depends on x. The
homogeneity and smoothness conditions with respect to y are dropped in [12,13]. Lately, in [18] L,-maximal
regularity theory was constructed for a class of Lévy measures v(dy) satisfying

v3(B) <v(B) <v§(B), VB e B(R?). (1.2)

Here v, and v, are Lévy measures of a-stable processes taking the form

oo

v(B) ;:/ /135# ;(d6), (1.3)

§d—1 0

where S%71 is the unit sphere in R and ;, i = 1,2, are finite measures on S?~!. See Remark 2.13 for
a comparison between [18] and our results. Briefly speaking, our Lévy measures J(y)dy do not satisfy
(1.3) in general and are related to the subordinate Brownian motions. We also refer to [2], where general
“symmetric” kernels are handled through the theory of martingale transforms. For other works such as
Harnack inequality, Holder estimate and ABP estimate, see [4,5,8,9,15] and the references therein.

From the probabilistic point of view, the fractional Laplacian operator can be described as the infinites-
imal generator of a-stable processes. That is, for any f € C§°

A2 f(z) i= ~(-A)*/2f(a) = lim TB(f (o + X)) — £ (@)
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where X; is an R%valued Lévy process in a probability space (2, P) with the characteristic function
Eeir Xt = [, e Xt dP = ¢7!M". More generally, for any Bernstein function ¢ with ¢(0+) = 0 (equiv-
alently, p(A) = [;°(1 — e=*)u(dt) for some measure p satisfying [ (1 A t)pu(dt) < 00), the operator ¢(A)
is the infinitesimal generator of the process X; := Wg,, where S; is a subordinator (i.e. an increasing Lévy
process satisfying Sy = 0) with Laplace exponent ¢ (i.e. EeM* = exp{t#()\)}) and W; is a d-dimensional
Brownian motion independent of S;. Such process is called the subordinate Brownian motion. Actually ¢ is
a Bernstein function with ¢(0+) = 0 if and only if it is a Laplace exponent of a subordinator.
The operator ¢(A) turns out to be the following integro-differential operator

HA)Vf = —$(—A)f = / (Fx+1) — f@) — V@) - yx() I() dy,
Rd

where f € C§° and J(y) = j(|y|) with j : (0,00) — (0,00) given by

j(r) = / (4mt) =2~/ (). (1.4)
0

For the equations with the kernel K (z,y) = a(y)J(y), an L,-estimate is obtained in aforementioned article
[2] if a(y) is symmetric. However to the best of our mathematical knowledge, if the coefficient a(y) is only
measurable then the L-estimate has not been known yet because J(y)dy is not of the form (1.3). For these
reasons, it is quite natural to consider two equations in (1.1) with a measurable coefficient a(y).

To handle a measurable coeflicient a(y), we estimate the sharp functions of the solutions and apply the
Hardy—Littlewood theorem and the Fefferman—Stein theorem. This approach is typically used to treat the
second-order PDEs with small BMO or VMO coefficients (for instance, see [10]). H. Dong and D. Kim
applied this method to a non-local operator with the kernel K (z,y) = a(y)|y|=9=% ([7]). As in [7], our sharp
function estimates are based on some Holder estimates of solutions. The original idea of obtaining Holder
estimates is from [3]. Nonetheless, since we are considering much general .J(y) rather then c(d, a)|y|~4~<,
many new difficulties arise. In particular, our operators do not have the nice scaling property which is used
in [10] and [7], and this causes many difficulties in the estimates.

The article is organized as follows. In Section 2 we introduce the main results. Section 3 contains the
unique solvability in the Lo-space. In Section 4 we establish some Holder estimates of solutions. Using these
estimates we obtain the sharp function and maximal function estimates in Section 5. In Section 6, the proofs
of main results are given.

We finish the introduction with some notation. As usual R stands for the Euclidean space of points
r = (z%,...,2%, B.(z) == {y € RY : |z —y| < r} and B, := B,(0). For i = 1,...,d, multi-indices
B=(B1,...,B4), B: € {0,1,2,...}, and functions u(z) we set

ou

Yot = g

=D, Du=D%.. .. .D¥u, |Bl=p1+...+fBa

For an open set U C R? and a nonnegative non-integer constant v, by C7(U) we denote the usual Holder
space. For a nonnegative integer n, we write v € C™(U) if w is real-valued and n-times continuously
differentiable in U. By CJ(U) (resp. C§°(U)) we denote the set of all functions in C™(U) (resp. C*=(U))
with compact supports. Similarly by C}'(U) (resp. Cy°(U)) we denote the set of functions in C™(U) (resp.
C*>(U)) with bounded derivatives. The standard L,-space on U with Lebesgue measure is denoted by
L,(U). We simply use L,, C", Cp, C, C°, and C§° when U = R%. We use “:=” to denote a definition.
a A'b = min{a,b} and a Vb = max{a,b}. If we write N = N(a,...,z), this means that the constant
N depends only on a, ...,z The constant N may change from location to location, even within a line.
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By F and F~! we denote the Fourier transform and the inverse Fourier transform, respectively. That is,
F(f)(E) = Jgae ™ f(x)dx and F~1(f)(z) := ﬁ Jga €7 f(€)dE. For a Borel set A C R, we use |4 to
denote its Lebesgue measure and by I4(x) we denote the indicator of A.

2. Setting and main results

Throughout this article, we assume that J(y) is nonnegative and rotationally invariant,
v<a(y) <A (2.5)

for some constants v, A > 0, and

JanP)w dy <. (2:6)

R4

Let e; be a unit vector. Obviously, the condition that J(y) is rotationally invariant can be replaced by
the condition that J(y) is comparable to j(|y|) := J(|y|e1), because J(y)a(y) = j(|y]) - a(y)J ()i~ (|y|) :=
J(lyl)a(y) and @ also has positive lower and upper bounds.

Denote

o:=inf{é >0: / y|°J(y) dy < oo},
lyl<1

x(y)=0if o €(0,1), x(y)=1p, ifo=1, x(y)=1ifo e (1,2]. (2.7)

Note that if J(y) = ¢(d, a)|y| =4~ for some a € (0,2) then we have o = a.
For u € C# we introduce the non-local elliptic operators

Au= [ (e +) = ule) - Vulo)) T) do,

Rd
Lu= [ (uler+3) = (@) ~ y- Valo)x(s) ay)Tw) do.
Rd
fu= [ (ule+9) = u(e) — - Vule) T, 0)) al0) 1) dy.
Rd
u= [ (e +9) = ue) -y Vur) al-u)I () dy

and

L*u = / (u(z+y) —u(z) —y- Vu(z)Ip, (y)) a(—y)J(—y) dy.

We start with a simple but interesting result, which will be used later in the proof of Theorem 2.22.

Lemma 2.1. For any p > 1 and A > 0,

1 -
lullz, < X||Lu— Aullz,, YueCge.
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Proof. Put
B(©) 1=~ [ (€47~ 1= iy )1n)al-0)J(~y) dy
Rd
and
f:=Lu— \u.

Since a(—y)J(—y) is a Lévy measure (i.e. [p.(1 A |y[*)a(—y)J(—y) dy < o), there exists a Lévy process
whose characteristic exponent is —t®(€) (for instance, see Corollary 1.4.6 of [1]). Denoting by pe(t, dz) its
law at ¢, we have

/e_ig‘xpé(t,dm) = /ei(_g).xﬂb(tadx) = 1P (2:8)
Rd R4

In non-probabilistic terminology it can be rephrased that if [5.(1 A |y[*)a(—y)J(—y) dy < oo then there
exists a continuous measure-valued function pg(t, dz) such that pg(t,R%) = 1 and (2.8) holds. Since

(~@(=§) - \Fu=Ff

and Re ®(—¢) > 0, we have

I
[
/N
o
L
2
|
C)
|
>
=
U
~
~
roun)
I
~—
~

Therefore,

and by Young’s inequality,

r 1
fulle, < [ [ poltsde)e dulfls, < 5161,

0 Rd
Hence the lemma is proved. 0O
Definition 2.2. We write u € ’H;,“ if and only if there exists a sequence of functions u, € C§° such that

Up, — win L, and {Au, : n = 1,2,---} is a cauchy sequence in L,. By Au we denote the limit of Au,
in L.
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Lemma 2.3. 7—[;,4 is a Banach space equipped with the norm
[ullgga = llullz, + [ Aullz,
Proof. It is obvious. O
Definition 2.4. We say that u € ’z’-[;]“ is a solution of the equation
Lu—Ju=f in R? (2.9)

if and only if there exists a sequence {u,, € C§°} such that u,, converges to u in 7—[;)4 and Lu,, — Au,, converges
to f in L,. Similarly, we consider the equation

Lu—Xu=f in R? (2.10)
in the same sense.

Lemma 2.5 (Mazimum principle). Let X\ > 0, b(z) be an R¥-valued bounded function on R% and u be a
function in C? satisfying u(x) — 0 as |x| — oo. If Lu + b(z) - Vu — Au = 0 in R, then u = 0. Also, the
same statement is true with L in place of L.

Proof. Suppose that u is not identically zero. Without loss of generality, assume supps v > 0 (otherwise
consider —u). Since u goes to zero as |x| — oo, there exists zyp € R? such that u(wg) = supga u. Thus
Vu(zg) =0 and

Lu(ao) = [ (uleo +3) = ulao) =y Vulao)x(v)) aly) ) dy < 0.
R4

Therefore we reach the contradiction. Indeed,
Lu(zg) + b(xo) - Vu(xg) — Au(zo) < 0.
The proof for L is almost identical. The lemma is proved. 0O
This maximum principle yields the denseness of (L +b-V —A)Cg° and (L +b-V — A\)C§° in L.

Lemma 2.6. Let A > 0 and b € R? be independent of x. Then (L+b-V —A\)C§° := {Lu+b-Vu—\u : u € C°}
is dense in L, for any p € (1,00). Also, the same statement holds with L in place of L.

Proof. Due to the similarity we only prove the first statement. Suppose that the statement is false. Then
by the Hahn-Banach theorem and Riesz’s representation theorem, there exists a nonzero v € Ly,/(,—1) such
that

/(Lu(x) +b-Vu(z) — du(z))v(z) de =0 (2.11)

Rd

for all u € C§°.
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Fixing y € R%, we apply (2.11) with u(y — -). Then, due to Fubini’s Theorem,

0= / (L*u(y —z) = b- Vuly — ) — du(y — z)) v(z) dz
Rd
=L'uxv(y) —b- (Vuxv(y)) — Aduxv(y) = (L* = b-V = A)(uxv)(y).

Therefore from the previous lemma, we have u v = 0 for any u € C§°. Therefore, v = 0 (a.e.) and we have
a contradiction. O

Corollary 2.7 (Uniqueness). Let A > 0. Suppose that there exist u,v € H;;‘ satisfying
Lu—Mu=0, Lv—\v=0.
Then u=v =0.

Proof. By the definition of a solution and the assumption of this corollary, there exists a sequence {u,, € C§°}
such that for all w € C§°

0= / li_>m (Luy, — Aup)w dz = /u(L*w — \w) dz.
R4 R4

Since {L*w — Aw : w € C§°} is dense in L, (,—1) owing to Lemma 2.6, we conclude u = 0, and by the same
argument we have v =0. O

Here is our Lo-theory. We emphasize that only (2.5) and (2.6) are assumed for the Lo-theory. The proof
of Theorem 2.8 is given in Section 3.

Theorem 2.8. Let A > 0. Then for any f € Ly there exist unique solutions u,v € Hz' of equations (2.9) and
(2.10) respectively, and for these solutions we have

[Aullz, + Alullz, < N(d,v, [ f]|z., (2.12)
Az, + Allvllz, < N(d v, [ f]]L,- (2.13)

The issue regarding the continuity of L (or L): 7—[;)4 — L, will be discussed later.

For the case p # 2, we consider the following conditions on J(y) = j(|y|):
(H1): There exist constants k1 > 0 and ag > 0 such that

J(t) < mi(s/t)T05(s), YO0<s<t (2.14)

Moreover, ag < lifo<land 1 <apg<2ifo > 1.
(H2): There exists a constant x2 > 0 such that for all ¢ > 0,

[ it dy < masy ifo e 0,0, (2.15)
ly|<1
[ Ritol) dy < i) ito 1, (2.16)

ly|<1
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Remark 2.9. (i) By taking ¢t = 1 in (2.14),
J()rT s < j(s), V¥ s€(0,1). (2.17)

An upper bound of j(s) near s = 0 is obtained in the following lemma.
(ii) H1 and H2 are needed even to guarantee the continuity of the operator L : H4' — Lo (see Lemma 3.1).

Lemma 2.10. Suppose
Jj(s) > Cj(t), Vs<t, (2.18)
and H2 hold. Then there exists a constant N(d, k2, C) > 0 such that for all 0 < s <t
i) = N(s/)™(s) (if o <), j(t) = N(s/t)""j(s) (if o > 1). (2.19)
On the other hand, if there exists « > 0 so that a < 1 ifo <1, a <2 ifo > 1, and
j(t) > N(s/t)4(s), Y0 <s<t, (2.20)
then H2 holds.
Remark 2.11. By Lemma 2.10, both H1 and H2 hold if 0 < ag < a and
N~ (s/) 1 (s) < j(t) < N(s/t)*(s), V0<s<t.

Example 2.12. Let J(y) = j(|y|) be defined as in (1.4), that is for a Bernstein function ¢(A) = [(1
e~ M)u(dt) and u € CZ,

/47rt d/26_7'2/(4t) u(dt),
0

and

= —F(e(I€*) F (u)(€))-

Then, H1 and H2 are satisfied if ¢ is given, for instance, by any one of

(1) ¢(A) =2 A%, 0 <oy < I

(2) 6(N) = (A+2%)7, a8 € (0, 1);

(3) d(N) = A*(log(1 +N)?, a € (0,1), B € (0,1 — );
(4) 6(A) = A*(log(1 +A))~7 ae( 1), B € (0,0);
(5) ¢(X) = (log(cosh(VA)))*, a € (0, 1)

(6) ¢(X) = (log(sinh(VX)) — 1ogf) € (0,1).

This is because all these functions satisfy the conditions

A: 30<51§52<1,

NTING(t) < (M) < NAZ@(E), VA>1,t>1
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B230<(53§(54<1,
N7I\B3¢(t) < p(At) < NA%g(t), VA<1,t<1,

and under these condition one can prove (see [9])

V)T s G = )T

and

N7yl Dyl < J(y) < No(lyl~ )y~ (2.21)

and consequently our conditions H1 and H2 hold. One can easily construct concrete examples of j(r) using
(2.21) and (1)—(6) (just replace A by 7=2). See the tables at the end of [14] for more examples satisfying A
and B.

Remark 2.13. As can be easily checked using (2.21), our J(y)dy does not satisfy (1.3) even for the simplest
example ¢(A) = > A, 0 < a; < 1if o # oy for some i, j. On the other hand, [18] deals with Lévy
measures of type v(dy), which does not necessarily have jump density.

Remark 2.14. If p # 2, our L,-theory does not cover the case when the jump function J(y) is related to the
relativistic a-stable process with mass m > 0 (i.e. a subordinate Brownian motion with the infinitesimal
generator ¢(A) = m — (m?/® — A)*/2). This is because the related jump function decreases exponentially
fast at the infinity (for instance, see [6]) and thus condition H2 fails (see (2.19)).

Proof of Lemma 2.10. Assume (2.18) and H2 hold. We put By = U;2(B(y,), where B(,) = By—n \ By—(n+1).
Due to (2.18) for each n > 0,

k2 (t) > / WZiCtyl) dy =S / wl2i(tly)) dy
lyi<1 "=O5(n)

>N Z 2—(n+l)(d+2)j(t2—n) > N2_(n+1)(d+2)j(t2_n).

n=0

Put s = t)\, where A € (0,1), and take an integer m()\) > 0 such that 2=("+1) < X\ < 27™, Then by (2.18),
J(t) > N27(m ) o= m gy > NATH2 ().

Similarly, j(At) < A~9Lj(t) if o < 1.
For the other direction, put s = t|y| in (2.20). If 0 < 1 then

[ wlitialy s < i) [ |y|j§.t(f)') dy

ly|<1 ly|<1

< Nj(t) / =t dy < Nj(e)

ly|<1
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and otherwise, that is, if 0 > 1 then
. . J(tly
[ it av < x| 2 a
lyl<1 lyl<1

< Nj(t) / =2 dy < Nji(t).

ly|<1

The lemma is proved. O
Define

B(E) = - / (Y — 1~ i(y - )x(y))J (y)dy = / (1 - cos€ - y)J(y)dy.

R R
Then

Au=F 1 =T (&) Fu), VueC.

By abusing the notation, we also use ¥(|£]) instead of U(£) because ¥(€) is rotationally invariant.
The following result will be used to prove the continuity of the operator L.

Lemma 2.15. Suppose that (2.18) holds. Then there exists a constant N(d,C) > 0 such that for all ¢ € R?
Jlel) < NIgI= o (lel ). (2.22)

Proof. By (2.18),

Bl ) = / (1~ cos(y/[E)) T (y) dy = ¢ / (1~ cos(y"))J([Ely) dy

R4 Rd
> lef / (1 — cos(y"))T(1€]y)dy
ly|<1
> Cj(eDlel / (1— cos(yh)) dy = Ni(le)le|".
ly|<1

Hence the lemma is proved. 0O

The following condition will be considered for the case o = 1. This condition is needed even to prove the
continuity of L.

Assumption 2.16. If 0 = 1 then

/ yza(y)‘](y)dsr(y) =0, Vre (07 OO), i=1,--,d, (223)
OB,

where dS, is the surface measure on 0B,.
Here is our L,-theory for equation (2.24) below.

Theorem 2.17. Suppose that H1 and H2 hold and Assumption 2.16 also holds if c = 1. Let A > 0 and p > 1.
Then for any f € L, there exists a unique solution u € 7-[;,4 of the equation



1312 I. Kim, K.-H. Kim / J. Math. Anal. Appl. /34 (2016) 1302-1335

Lu—du=f, (2.24)
and for this solution we have
Aullz, + Mlulz, < N(d,v, A, X, k1, k2, 0)| fllz,- (2.25)
Moreover, L is a continuous operator from ’7'-[;74 to L,, and (2.25) holds for all u € ’H;;‘ with f = Lu — A\u.
The proof of this theorem will be given in Section 6.
Remark 2.18. Since the constant N in (2.25) does not depend on A, for any u € 7-[;)4
[Aullz, < N|[Lullz,.

To study the equations with the operator L, we consider an additional condition, which always holds
when o = 1.

Assumption 2.19 (H3). Any one of the following (i)—(iv) holds:

(i) A is a higher order differential operator than I, Vu, that is for any € > 0 there exists N(g) > 0 so
that for any v € C§°

Loz [ Vullp < ellAullp + N () [[ullp- (2.26)

(ii) o < 1 and

v (al) = la(y) A a(=y)]) Jy)dy =0, Vre(0.1),i=1,.d (2.27)
r<]y|<L1

(iii) o < 1 and there exists a constant x5 > 0 such that for all 0 < ¢ < 1,

[ 1elitelzh d= < maje). 2.9
|z[=1
(iv) 0 > 1 and
y' (a(y) — la(y) A a(—y)]) J(y)dy =0, Vr>1i=1,---.d (2.29)

1<ly|<r
Remark 2.20. (i) Note that (2.26) is satisfied if for some a > 1,
lA®"2ull, < N(llull, + [Aul,p), Ve G5, (2:30)

or, equivalently |£|*(14¥(£))~! is an L,-Fourier multiplier. Thus, certain differentiability of .J(y) is required
(see Lemma 2.21 below).
(ii) It is easy to check that (2.28) holds if for a a > 1,

JOA) S NATT7Y%(t), VY Ae(l,00), 0<t<1. (2.31)

(iii) Obviously, (2.27) holds if a(y) = a(—y) for |y| < 1, and (2.29) holds if a(y) = a(—y) for |y| > 1.
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Below we give a sufficient condition for (2.26).
Lemma 2.21. (i) H3(i) holds if A = ¢(A) for some Bernstein function ¢ satisfying
L+6(I6*) = Nfg|*, Ve e R, (2.32)

where o > 1 and N > 0.
(it) All of H1, H2 and H3 hold if 0 > 1, A = ¢(A) and ¢ satisfies conditions A and B described in
Ezxample 2.12.

Proof. (i). Let ¢(A) = [o(1 — e *)u(dt), where [ (1 A [t))u(dt) < co. Then from t"e™" < N(n)(1 —e™"),
we get

A"ID"P(A)] < No(A). (2.33)
For any u € C§°,

Au = FH(o(I€*) F(u)(©)),
AP = FH([E[* Fu)(€)) = FH (&) (1 + ¢(I€]*)F (u)(€)),

where 1(€) = |€]*(1 + ¢(|€]?)) L. Using (2.32) and (2.33), one can easily check
(D" ()] < N(n)g]™", V¢,
and therefore n is a Fourier multiplier (see Theorem IV.3.2 of [16]) and

1A2u]| < N([lully + | Aul,p),
IVullp < ellA*ull, + N(e)ull, < NellAull, + Nlfull,.

(ii) If A and B hold, then as explained before both H1, H2 hold, and we also have (see (2.21)),
N~ oyl =)y~ < J(y) < Noly =)y~
Thus if [£| > 1, then
S(I€l*) = Nlgl =T (1gl ™) = Nlg™,
where (2.17) is used for the last inequality. Hence the lemma is proved. O
Here is our L,-theory for equation (2.34) below.

Theorem 2.22. Suppose that H1, H2 and H3 hold and Assumption 2.16 also holds if o = 1. Let A\ > 0 and
p > 1. Then for any f € L, there exists a unique solution u € 7—[;,4 of the equation

Lu —Mu = f, (2.34)
and for this solution we have
||.Au||Lp =+ )\H’U,HLP S JV(d7 v, A, )\, o, K1, K2, Iig)”f”LP. (235)

The proof of this theorem will be given in Section 6. The dependence of the constant N can be different
slightly depending on which assumption in H3 is given. Actually the constant N in (2.35) is independent of



1314 I. Kim, K.-H. Kim / J. Math. Anal. Appl. /34 (2016) 1302-1335

A except the case when H3(i) is assumed. Moreover the constant N in (2.35) is independent of k3 except

the case when H3(iii) is assumed.
3. Lo-theory

In this section we prove (2.12) and (2.13). These estimates and Lemma 2.6 yield the unique solvability of
equations (2.9) and (2.10). The Fourier transform and Parseval’s identity are used to prove these estimates.

Lemma 3.1. Let X > 0 be a constant.
(i) For any u € C§°

[Aull, + Alullz, < N(d,v)|[Lu — Aul|L, (3.36)
and
[ Aullz, + AlullL, < N(d,v)[|Lu— Mul|L, - (3.37)

(ii) Let H1 hold and o > 1. Then both L and L are continuous operators from Hfl to Lo, and for any
u € C§°,

ILullz, < NillAullz,, | Lullz, < Noflullyp, (3.38)

where N1 = Ni(d, A, k1,00) and No = Na(d, A, k1, a0,7(1)). Moreover, (3.36) and (3.37) hold for any
u € Hy'.

(iii) Let H1 and H2 hold, and Assumption 2.16 also hold if o = 1. Then the claims of (ii) hold for L
(not for L) for any o € (0,1] with a constant N(d, A, ko).

Proof. (i). Let u € C§°. Taking the Fourier transform, we get

F(Lu)(€) = Fu(€) / (Y — 1~ iy - Ex(y))aly) I (y)dy. (3.39)

Rd

By Parseval’s identity,

[ 1Luta) iz = @m [ 1F@u©Pas

2

> (2m)~¢ / Fu(é)? |Re / (€Y — 1~ iy Ex(y))aly) I (y)dy| d
]Rd Rd

— (2m)~¢ / Fu(©)? / (1 - cos(€ - y))a(y) I (v)dy| de

Rd

2

> (2m)~ 42 / Fule)? / (1~ cos(¢ - y))J(y)dy| de

Rd

Rd
:V2/|Au\2dx,
Rd

where the facts that 1 — cos(€ - y) is nonnegative and a(y) > v are used above.
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Similarly, since uLu is real,

/uLudas— (27)~ /fLu )(€)F(u)(§) dé

Rd

— —(2m)" / F(u)(©)]?Re / (57— 1~ iy - &x O (0)) a(v) I () dyde

~ (2m) / Flu / 1 cos(€ ) a(y)J (y) dydé

| V

? (om)” / Fluw) / 1= cos(€ - ) J(y) dyde
= —%R[uflu dz.

Hence,

/|Lu—)\u|2 dx:/\Lu|2 dm—2)\/uLu dm+)\2/|u|2 dx
R4 R4 Rd

Rd

>v /|.Au|2 d:cf)\y/u.Au dz+)\2/\u|2 dz

Rd

v? A2
1/2/|.Au|2 dx—g/u da:——/|.Au|2 dx+)\2/|u\2 dx
R4 R4 Rd Rd
1/2 5 )\2 5
R Rd

Thus (3.36) holds. Also, (3.37) is proved similarly.

(i)~ (iii). Next, we prove (3.38) for any u € C§°. Unlike the case j(r) = r~9~%, the proof is not completely
trivial. Condition H1 is needed if o > 1, and H2 is additionally needed if o < 1.

By using (3.39) and Parseval’s identity again,

/ Lu(z)Pde = (2m) / | F(Lu)(€)2de
= )| [1FuoP
Rd
+ [1FueP
Rd
< en [ 1Fue)r
Rd

2

dg

Re/(eig'y —1—iy-&x(y)aly)J(y) dy
Rd

2

dg]

Im/(eif'y —1—iy-&x(y)aly)J (y) dy
R4

2

dg

(1 —cos(§ - y))a(y)J(y) dy
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+(@m) / Fu(o)? / (sin(€ ) — - Ex()aly) I(y) dy| de

R4 lyll€]=>1

T (2m) / Fu(e)? / (sin(€ ) — - Ex(v)aly) I(y) dy| de
R4 lyllgl<1

=11 +1s +15.

Similarly,

/|Eu|2dx A

Rd

where Z; are obtained by replacing x(y) in Z; with I, (). Here Z; and 7, are easily controlled by N ||.Au||%2
Due to H1, (2.23), the definition of y, and the change of variables y — I?Z_I’

2

L<N / Fu€)2lg > / (sin<|§—|~y>y%xqg—l))a(%u(%) ay| de
]Rd

ly|>1

<N / Fu(©)2 €241/ l€])?
R4

|/

ly|>1

. 5 § Yy Y —d—a«
— .y)—1, (= - 0 d d
<N [ IR0 /€l) de
]Rd
Hence, by Lemma 2.15,
L <N [1Fu©PWE©)? de =N [ |Auf da,
R4 Rd

Similarly, if o > 1,

T, <N / Fu(€)Ple[~245(1/|€))?

|/

ly|>1

lyl~4=e dy | d
a7l y| d¢

sin(@ y) = Ips1y- é_|1|y|<|5|

<N [ FuORII /€ de <N [ 1Auf da,
R4 Rd
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Also, using the fundamental theorem of calculus, the definition of x and (2.23),

2

Len [1Fu@PR| [ in ) -y exw)a) ) ) de
R4 lyl|€]<1
1 d 2
=N [IFu)P 9 sin(te ) —ty-€x(v)) dt a(u)J(y) dy] de
R4 lyllgl<1 O
1 2
_N / Fule)? / € v) / (cos(te - y) — x()) dt a(y)(y) dy| de
R4 ly]|€]<1 0
1 2
= (,-<1N/|]-'u(§ / /cos t&-y) dt a(y)J(y) dy| d&
R4 |ly|]|zi|<1 0

2

de.

1

€ / (cos(té - y) — 1) dt a(y)J () dy

lyllgl<1 0

+ LN / Fu(e)?

Rd

Observe that by H1, for any ¢ € (0,1),

W(tleh) = [ (1 costty - )Iwdy =t [(1 = cosly 1 y)dy < Neow ().

Rd Rd

Thus, if ¢ > 1,

1 2
I3 < N | |F(u)? ( ‘I’(tlé)df> d < N AullZ,.
frerl]

Also, if o > 1,

2

dg

1

/ ) / cos(té - )y 1 dt aly)J(y) dy

lyllgl<1 0

7y < (2m) / Fu(©)[?

R4

2

T (2m) / Fu(e)? o) / (1 - cos(t€ - y)) dt a(y)J(y) dy| d
R4 [yll€l<1 0
<N/|fu ( / (y)dy) d§+N/|.7-' (/\Il t|§| ) d€
ly|>1 R4 0

< NH“”%;‘

Thus (3.38) is proved if o > 1, and (3.36) and (3.37) are obtained for general u € Hz' owing to (3.38).
Therefore (ii) is proved.
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Now we assume o < 1. To estimate Z3 we use the Fubini’s Theorem, the change of variable |{|ty — y,
H1, H2, and Lemma 2.15

2
1
2| [arg—a [ (£ £ el Yy Y
7= N [ IR | [ e [ weostig  wal I duar] ae
R4 0 lyl<t
1 2
—d —d— Y
<N [1Fu@ e [t [ o) d) e
R 0 lyl<1
1 2
<N [1Fur g [etar [ o) o] ag
R 0 lyl<1

<N / Fu(©)[ 11745 (1)) de < V|| Aul?,.
]Rd

Therefore the lemma is proved. O
Corollary 2.7 and Lemmas 2.6 and 3.1 easily prove Theorem 2.8.
4. Some Holder estimates

In this section we obtain some Hélder estimates for functions u € Hz' N C°. The estimates will be used
later for the estimates of the mean oscillation. Throughout this section we assume Assumption 2.16 holds
ifo=1.

Lemma 4.1. For any o € (0,1), b € R?, and a nonnegative measurable function K(z), there exist m1,m2 €
(0,1/4), depending only on «, such that

/[(\b +22]% + b — 22]* = 2[b|*) K(2)] dz
c

< _29-30(1 — a) / 1Bo2) 22K (=), (4.40)
C

where
C={lz] <mlbl:|z-b] = (1 —n2)[b]|2]}.

Proof. We repeat the proof of Lemma 4.2 in [7] with few minor changes. Put n(t) := b + 2tz and ¢(t) :=
[b+ 2tz|* = |n(t)|* for z € C. Then

d
¢ (t) Z (ala = 2)(m(®) (i ()] + Lijaln(t)|*7?) 42z

)

~

da(a = 2)In(t)|* " In(t) - 2[* + 4aln(t)|* 72|z
4alb+ 2tz (a — 2)[(b+ 2t2) - 2|* + |b + 2tz)?|2]2].
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For t € [-1,1] and z € C, observer that,
b+ 2tz < (14 2m)°[b]?
and

|(b+2tz) - z| = [b- 2+ 2t]z*| > |b- 2| — 22|
> (L= n2)[bl|2| = 2]21* > (1 = 2 — n2)|2|[b].

Thus
" a—4 2 2 2 2
¢"(t) < dala + 2tz[* (@ — 2)(1 — 21 —12)” + (1 + 2m)7][b7[2[". (4.41)

Since (1—2n; —12)? — 1 and (1+27n1)% — 1 as 1,12 J 0, one can choose sufficiently small 5y, 72 € (0,1/4),
depending only on « € (0,1), such that

(a=2)(1=2np —m2)* + (1+2m)* < (a—1)/2.
By combining this with (4.41)
@ (t) < —2a(1 — a)|b+ 2tz|* (b |22 (4.42)
Furthermore observe that
b+ 2t2]%7% > (14 2m)4p|* ™4 > 2074 p| o4
Therefore, from (4.42)
O"(t) < =22 3a(l — a)p|*722)?, te[-1,1], z€C.
In addition to this, to prove (4.40), it is enough to use the fact that there exists tg € (—1,1) satisfying
(1) + o(=1) = 2¢(0) = " (to),
which can be shown by the mean value theorem. The lemma is proved. O
Before going further, we introduce some notation used in the following theorem. For a nonnegative
function h, by Li(R% h) we denote the classe of integrable functions with the measure h(y)dy, i.e. f €

LR h) i [ou|f(y)|h(y)dy < oo. For a function f and an open set U, [f]ca(y) denotes the Holder

semi-norm with the order a on U, i.e.

[f]Ca(U)Z sup M

cyelaty [T —yY|*

The notation oscy f means the difference between the maximum of f and the minimum of f on U, that is,

oscy f 1= mgxf — mUin I
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Theorem 4.2. Let R >0, A > 0 and H1 hold. Suppose f € Loo(Br) and u,i € CZ(Br) N L1 (R4, wg), where
wr(z) = m. Also assume
Lu—Mu= f, Li—Mi=f in Bg. (4.43)

(i) For any o € (0, min{1, ap}) and 0 < r < R, it holds that

[uca(s,) < Ny ullL.(Br)

u
+N|,(|1L)%(r;2 / 220 (2) dz + Lycary ! / |21 (2) d2)
Jr1)ry B e

1 1
+N(4 u wr) + ——————o0sc )7 4.44
Tf—’_aj(R) || HLl(Rd, R) j(rl)rf'm BRf ( )

where 11 = (R —1)/2 and N = N(d,v, A, k1, ap, @).
Consequently, if H2 is additionally assumed, then

oscp f
nwhmwm+f—4Lj, (1.45)

1
[ulce(p,y < N (T_a||U|LOC Br) T —Tra o p
(&) ' R Jlrori™

J(R)
N = N(d,v, A, k1, ka, ap, @).
(i) In addition to H1, let one of H3(ii)-H3(iv) hold. Then (4.44) holds for 4. Consequently, if H2
additionally holds, (4.45) holds for .
Proof. We adopt the method used in [7] (cf. [3]). Assume that u is not identically zero in B,. Set

ri=(R-7r)/2, ro=(R+71)/2, w(t,x)=Ip,(@)u(t, x).

Then u(x) = w(z) and Vu(z) = Vw(z) for all z € B,,. Thus

Lu(z) = Lw(x) + / (u(z + 2) —w(x + 2)) a(z)J(2)dz.

[2|>r1

So in B,
Lw(z) — Aw = g(x) + f(x), (4.46)

where

Note that by H1

j(r1)
J(R)

where N = N(d, A, k1). Indeed, this comes from the fact that for all |z| > r; and |z| < R,

ORI i)
iR TGt 2) = NiR)

l9llL(Br) < N 1wl 2, (mewpr) s (4.47)




I. Kim, K.-H. Kim / J. Math. Anal. Appl. 484 (2016) 1302-1335 1321
For xy € B, and « € (0, min{1, ap}), we define
M (z,y) == w(z) —w(y) = Clz —y|* = 8r?||ull Lyl — o,

where C' is a positive constant which will be chosen later so that it is independent of zo and

sup M(z,y) <0. (4.48)
z,y€R?
For # € R\ B,, /5(x0) and y € RY,
w(z) —w(y) < 2l|ullr.zr) < 87 ullL (Bl — 0l (4.49)

This shows
M(z,y) <0, xR\ B, (z0).

Assume that there exist x,y € R? such that M(z,y) > 0. We will get the contradiction by choosing an
appropriate constant C. Due to (4.49), x € Br1/2($0)~ Moreover

w(z) —w(y) > Clz —yl|?,
which implies

2|l (Br)

«
— <
|z —yl C

(4.50)
If we take C' large enough so that C' > 2(r1/2)™%||u| L (By), then
Yy S BT+T1.

Therefore, there exist z,y € By4,, satisfying

sup M(z,y) = M(Z,y) > 0.

z,yER?

Moreover, from (4.46)

< Lw(z) — Lw(y) :=T. (4.51)

Ki(z) :=K(z) NK(—2), Ki(z):=K(z)— Ki(2).
By L and Lo, respectively, we denote the operators with kernels K; and Ks. Then

I:Il +12a
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where
Il = Ll”LU(i') — Llw(gj) and IQ = ng(f) — LQ”LU(Q)
Since K is symmetric (i.e. K1(z) = K1(—2)),

1

Il = § /j(ivng)Kl(z)dZ7

Rd
where
T(Z, 9, 2) =w(@ + 2) + (T = 2) = 2w(Z) —w(y + 2) — w(y — 2) + 2w(y).
Also, since M (z,y) attains its maximum at (Z, ),
w(Z + 2) —w(§ +2) = Cl7 = " = 8 ?||ull Ly (Br) 17 + 2 — 20|
< w(@) —w(y) - Clz — gl = 87 ||ull L (5|7 — w0l (4.52)
and
w(Z = 2) —w(§ —2) = Clz = g™ = 81 *||ull Ly (B) 1T — 2 — 0|
< w(@) —w(y) = Oz —g|* = 8r°|[ull Loy () 1T — o] (4.53)
for all z € R%. By combining these two inequalities,
J(%,7,2) <87 2 ullsr) (1242 = 2of” + |7 — 2 — 0f* = 2|7 — zo*) . (4.54)
Similarly,
w(Z +2) —w(f — 2) = ClF = §+ 22| = 8 |[u]l Ly (8 [T + 2 — w0
< w(@) —w(f) — Ol = §|* = 8r *|[ull pow (B [T — w0l

w(@ —z) = w(f +2) = Clz = § = 22|% = 87 ||ull L ()T — 2 — w0|

< w(@) —w(y) = Ol — G| = 8r 2 [lull Ly (B 1T — 20|
It follows that, for any z € RY,

j(‘%agvz) < C(@‘ZJ-&-QZVY + |i._g_2z|a _2|i_g‘a)
—|—8rf2\|u||Loc(BR) (|§c 4+ 2z — ac0|2 +|z—2z— x0|2 — 2|z — m0|2) . (4.55)

Put b = & —y. Since (Z, y) satisfy (4.50), [b] < r1/2if C > 2(r1/2)"%||ul|L (BR)- Also set for 01,12 € (0,1/4)
specified in Lemma 4.1,

C={lzl <mlbl:[z-b] = (1 —n2)[bl|z[}.
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Then
o= [ TJ@ramE s [ I@aKe) b
|z[>r1 /2 Bry2\C

+ /j(f7gvz)Kl(z) dz =T +Tiz + 13- (4.56)
C

Note that by H1,
T < Nj(rl/2)rf||u||Loc(BR)‘
Indeed,
Lo Nuleewe [ I d:
[2|>r1/2

< Nl [ T2/2) ds
|z|>1

< Nijtra /2 lullo o) / PR

[z|>1
On the other hand from (4.54), it follows that
Tio < 82 lull o () / (174 2 — 2ol + |7 — = — z0l® — 2/ — 20l?) K1 (2) d=
B, /2\C

< Nri2llullo o) / 2120 (2) da.

Brl /2
Next using (4.55) we obtain

T3 < C’/(|:Efgj+2z|a+\£75722|a72|§77g|a)K1(z) dz
c

+8T;2‘|u||LOO(BR)/(|£’+Z—x0|2+|{f—2—{[}0|2—2|{Z'_LL'O|2) Kl(z) dz
C
= Ti31 + Li32.

The term Z;39 is again bounded by

N el [ 1PIC) de
BT’1/2

Furthermore, from Lemma 4.1

Tig1 < —29-3Ca(1 — ) / b2 2K, (2)dz.
C
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Combining all these facts above, we obtain

T < Nl | 30/2r8 07 [ I dz

B1'1/2
—99-3C0(1 - a) / 1B°2)2 2K, (2)dz. (4.57)
c
For Z,, we first consider the case o < 1. In this case,
I, = (w(Z +2) —w(Z) —w(y + 2) + w(y)) Ka(z) dz

|z[=r1/2

+ / (W +2) —w(@) —w(y + 2) + w(y)) K2(2) dz := To1 + L.

B, /2

Analogously to Z1, we bound Zo; by Nj(r1/2)r||ul|r_(5,). For the other term Ty, since | — xo| < r1/2,
from (4.52)

Too < er_2||u||Lm(BR) / (|a_: +z—20) — |z — J:0|2) Ks(z) dz

Bv‘1/2

< Nep¥lullo s / (12 + 2/2][7 — xo]) J(2) dz

B, /2

< N7 ullp () / 21 (2) de.

Bry/2
So
L < Nl (3/2r8 07t [ 1) d2). (4.59
Br1/2
By combining (4.47), (4.51), (4.57) and (4.58),
(7 . _
0<MN (OSCBRf + %”ulLl(Rd’wR) +lullLo (BR) [j(rl/Q)Tf +r] 1 / |z|J(2) dz])

Bry/2

—2“‘36’04(1—a)/|b|°‘_2|z|2K1(z) dz.
C

Thus, if C' > Cy := 2(r1/2)"||lul|L_ () and

) (7
C > Cy:=N1Cs (OSCBRf + %HulLl(Rd,wR)

e [ja/20 #7116 d2]),

B, /2
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then

J(r . _
0 = N (oscmgf + 2 Nl sy + Wil [ira /2 4 [ 12100 a])
B'r'1/2

X (1 — 032 %a(1 — a) / |b]* 2|22 K1 (2) dz)
C
= (1 - 0304(b))

If we take C3 so that C3 = 1/C5 for a C5 = Cs(r1,a) < Cy(b) which does not depend on b and will be
chosen below, we get the contradiction. To select Cs, observe that with H1 and the fact |b] < /2
Ca(b) = 23 (1 — a)/\b|a_2|z|2K1(z)dz
c
> 12°3a(l — a) / 6|22 T (2)dz
c

> w712 30 (1 — a)j(m b)) / b|2|2[2d2
C

> k029301 — ) b)]b|* b+ / 2[2dz
Cog

> w220 -30(1 — ) (b)) bl / |2[2d2
Cn2

> /{1_21/]'(7"1/2)(7’1/2)‘”6‘7]?“20‘*304(1 —a) / |z\2dz
CTI2

= j(r/2)r{T*N(a,n1,m2) = Cs,

=t > (1 —ny)}. Therefore, (4.48) holds

where C = {|z| <mlb| : |z-b] > (L —n2)|bl|2|} and C,p, = {]2| < 1: GIE

with C'= C} + Cs. Since C' is independent of zg, (4.44) is proved.
Next we consider the case 0 = 1. Note that, because K7 is symmetric, both K; and K, satisfy (2.23).
Therefore, we can replace 1p, with I B,, in the definition of Ly, and get Zo = Zoy + Zoo, where

Ty = / (w(E + 2) — w(F) — w(F + 2) + w(@) Ka(2) dz,
[z|>71/2

Ty = / (W@ +2) —w@) —wy+2)+w@) — 2z (Vw(z) — Vw(y))) K2(z) dz.

B, /2

75, is already estimated in the previous case. Thus we only consider Zyo. Since M (z, y) attains its maximum
at the interior point (z,y), we have V,M(-,y)(Z) =0, V,M(z,-)(y) = 0, and therefore

Vw(z) — Vw(y) = 16r;>|ul| 1 (5 (Z — o). (4.59)
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We use (4.52) and (4.59) to get
T <872l [ HPR(2) d

Bryy/2

< 8y / 1220(2) dallull s (5.
BT1/2

Therefore, (4.44) is proved following the argument in the case o < 1.
Finally, let ¢ > 1. Now we have Ty = 751 + Zo2, where
Ty = / [w(Z+ 2) —w(@) —w(y+ 2) +w(y) — z- (Vw(x) — Vw(y))] Ka(z) dz,
|z[>r1/2

Tog = / W@+ 2) —w(@) —w(y+2) +w(y) — 2z (Vw(x) — Vw(y))] Ka(z) dz.

Bryy2
Since o > 1, |Z — xo| < r1/2, by (4.59) and H1

Tn< [ Wl + /2 ul ol Ka) dz

|z|2r1/2

< Nrij(r1/2)|[ull Loy (a)-
For Zss, we apply (4.52) and (4.59) to get
T < NPl [ 1RI() d
Bryy2

So we again argue as in the first case to get the contradiction. Hence (i) is proved.
The proof of (ii) is quite similar to that of (i). Denote the counter parts of w and g by w and g, respectively.
Also we introduce Z; and Z, similarly. That is Z; is the same as before, and Z, is given by

L= [ [o@+2)- 0@ -G+ +am)

= To1 + Las.

All of the differences are as follows. If r1/2 > 1, then by using (4.52) and (4.59),

Tos < No il | [ PR dit [ (5P 4 @ 00) - 2)Kale) ds

B, 1<|z|<r1/2
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< Nloarri il oo om / 121 (2) d

Bv‘l /2

- NLpsary il ) / 220(2) dz.
By /2

In the above, we also used f1<|2|<7"1/2 21 Ky(2)dz = 0 if 0 > 1 (due to H3(iv)).
Let o < 1 and r1/2 < 1. If H3(ii) hold, then by (2.14),

Igl S NHu”Loc(BR) / J(Z) dZ
|z|=r1/2

— N / J(r12/2)dz < Nj(r/2)rull o).

[z]=1
Also, if H3(iii) holds, then by using (4.59),

Tor < llulli i) / 1+ 8 Y| Ka(2) d

|z[=r1/2

< Nj(r/2)ri el (5r)-

This completes the proof of the theorem. O

1327

We remove supg,u on the right hand side of (4.45) in the following corollary. Recall wg(z) =

1
1/j(R)+1/J(=/2)"

Corollary 4.3. Suppose that H1 and H2 hold. Let A > 0, f € Lo(Bgr), and u,@ € C}(Bg) N L1(R%, wg)

satisfy
Lu—Xu=f, Li—Xa=f in Bpg.
(i) For any o € (0, min{1, ap}), it holds that

N
[U]CQ(BR/Z) < j(R)Rd+a (”uHLl(Rd,wR) + OSCBRf) )

where N = N(d,v, A, k1, ka, ag, @).
(i) If one of H3(ii)—(iv) is additionally assumed, then (4.61) holds for .

Proof. Forn=1,2,..., set
rn = R(1—27").

Observe that (7,41 —7,)/2 = R27""2 < R and by H1

1
J(rn+1)

J(rn+1)
|z|<2R |z|>2R

1 .
lall oy g, < / fu()] dz + - / ()] (2/2) d=

(4.60)

(4.61)
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<N / |u<z>|dz+j%R) / u(2)\(2/2) d

|z|<2R |z|>2R

1
< Nm¥|u(z)w3(z) dz.

Then by Theorem 4.2(i) and HI,

[ulga(p,,) < NR™*2%" sup |uf
Tn+1

2(d+a)n

j(R22)
=] b o L CTNRR N,

2(d+a)n

< N[R*a2°‘" sup |u| + -

[l + 5o (el sy + o5 ) (462

In order to estimate the term supp_ » |u| above, we use the following:

sup [u] < (e7n41) [l ) + N(Erne) lullLy s ee(0,1). (4.63)

B Tn+1)’

Tn+41

Actually this inequality can be easily obtained as follows. For all € € (0,1), x € B
BE?”n-H (:E)a

and y € By, N

Tn419

|B7'n+1 N Bsm+1(x)| ’ |U($)|

[ () —uw)l+ ) dy

Br,,41NBer,, 4, ()

IN

< |B7“n+1 n Bsrn+1(‘r)| ' (5rn+1)a[u]ca(3 ) + / ‘u(y)| dy

Brn+1 mBsrn+1 (1)

Tn+41

Now it is enough to note that |B,., ., N Bey,,, (z)| ~ (erp41)? because € € (0,1) and z € B
Take N from (4.62) and define € so that

Tn41°

e = N7127an273d'
Then by combining (4.62) and (4.63),

) <273 ga(p, .y + NR™7T22Mu| L p

[ulce(s,, _— 1)
9(d+a)n
+ NWqWHLl(R%wR) + o0scp f)
<27 ¥[ulgucp,, )+ NR™2P" ullL, 8, )
22dn
+NW(H“HL1(R‘1,U}R) + oscpy f).- (4.64)

Multiply both sides of (4.64) by 273%™ and take the sum over n to get

o0 o] (o]
> 27" gas,,) < 327" D uoas,, )+ N Y 27RO 1y, )
n=1

n=1 n=1
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(22 dn) Rd+a(”u”L1(Rd,wR) + Noscp, f)-

Since [u]ca(B,, ) < [U]ca(Bg) < 00 and by H1

J(R)

N
lulless., 0 < ol s = 5qy el e = syl e w,

J

(i) is proved.
(ii) is proved similarly by following the proof of (i) with Theorem 4.2(ii). O

5. Some sharp function and maximal function estimates

For g € LLlOC(Rd), the maximal function and sharp function are defined as follows:

Mg(z) = sup ][ lg(y)| dy :=Supm / l9(y)| dy,

r>0 r>0
By (z) By ()
and
g% (x) = sup ][ 19(y) = (9) B, ()| dy == SUD B @] / l9(y) = (9) B, dy,
By (z)
where (9)p,(z) = 15 (a:)l fB (y) dy the average of g on B, (z).

Lemma 5.1. Suppose that H1 and H2 hold. Let A > 0, R > 0, f € C§°, and f = 0 in Bag. Assume that
u, @ € Hi' N Cpe satisfy

Lu—\u=f, Li—Mi=f. (5.65)

(i) Then for all € (0, min{1, ap}),

[uoa (g < NR™OY 27K (Jul) gy, . (5.66)
k=1
[Aulca (B, < NRT® (Z 27208 (| Aul) g, , + Mf(0)> , (5.67)
k=1

where N depends only on d, v, A, k1, Ko, ag, and a.
(i) If one of H3(ii)—(iv) is additionally assumed, then (5.66) and (5.67) hold for .

Proof. By Corollary 4.3 and the assumption that f =0 in Bag,
1
[ulce(Br,) < NWHUHLI(W,M)- (5.68)

Set

By = Br, By = Boxg\ Bor-1p, k=>1.
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Observe that

1
[ull 2y (R,) :/'“(y)|1/j(R)+1/j(|y\/2) w
R4

1
=> / VRS VI b

F=0B,

B [ u) dy+ NS i@2R) [ July)l d
Bi y)| dy kZ:zJ B!R y)| dy

< N | SR B ul) gy + 3 220 / fuy)| dy
k=2

<N (j(R)R%ul)BzR - Z2‘(’“‘2)“*%)2’“%(}%)}%%IUI>B2kR>

k=2
< Nj(R)R* (Z 2—“0’“(|u|>32kk> :
k=1

where the first and second inequalities come from H1. Therefore we get (5.66).
To prove (5.67), we apply the operator A to both sides of Lu — Au = f and obtain

(L —M)(Au) = Af.
By applying Corollary 4.3 again,

1

[Aulentgy < Nz (AUl + k471

The first term on the right hand side of (5.69) is bounded by

R~ (Z 2a°k(Au|)szR> .
k=0

In order to estimate the second term, we recall the definition of A. For |z| < R,

Af(2)] = / @t y) — F@)] @) dy

oo

< / £ + )i (ly) dy
F=1g,

<NZ] (271R) /|fx+y\dy
k=1 B

oo

Z (h=Ddteo) (R )/If(fv+y)|dy

Bokg

(5.69)
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oo

DI / £ dy

Bykt1pg

< Nj(R)R* (i 2‘*°’“(|f)32k+13> < Nj(R)R'MF(0),

k=1

where the first inequality is due to the assumption f(z) = 0 if |z] < 2R and both the second and the third
inequality are owing to H1. Therefore (i) is proved. Also, (ii) is proved similarly with Corollary 4.3(ii). O

The above lemma easily yields the following mean oscillation estimate.

Corollary 5.2. Suppose that H1 and H2 hold. Let A > 0, r > 0, and k > 2. Assume f € C§°, f =0 in Bay,,
and u, % € Hi' N Cpe satisfy

Lu— Au = f, La—\u = f.

(1) Then for all € (0,min{1, ap}),

(lu—(u)B,))p, < Nk~ 22 *Flulp,, (5.70)
(\Au — A’U,)B,,_ )Br < Nr™¢ <Z Q—QUk‘AU|Bka + ./\/lf(O)) s (571)
k=1

where N depends only on d, v, A, k1, k2, ag, and a.
(i) If one of H3(ii)—(iv) is additionally assumed, then (5.70) and (5.71) hold for .

Proof. It is enough to use the following inequality
(Ju—(u)B.) B, <2%T%ulca() < 2T [ulca(kr)2)
and apply Lemma 5.1 with R=kr. 0O
Next we show that the mean oscillation of u is controlled by the maximal functions of u and Lu — A\u.

Lemma 5.3. Suppose that H1 and H2 hold. Let A >0, k > 2,7 > 0, and f € C3°. Assume u,i € Hs' N Cf°
satisfy

Lu—\u=f, Lu—Ju=f. (5.72)
(i) Then for all o € (0, min{1, ap}),

Mlu = (), )b, + ([Au — (Au) B, [) B,
< N&™ (AMu(0) + M(Au)(0)) + N&¥2(M(f?)(0))1/2, (5.73)

where N depends only on d, v, A, k1, Ko, ag and .
(ii) If one of H3(ii)-(iv) is additionally assumed, then (5.73) holds for .
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Proof. Due to the similarity of the proof, we only prove the assertion (i).
Take a cut-off function n € C§°(Bay,) satisfying n = 1 in Ba,,. By Theorem 2.8, there exists a unique
solution v in Hj' satisfying

Lw — Aw =nf (5.74)
and
Alwllz, + | AwllL, < Nlnfllz,- (5.75)
From (5.75), Jensen’s inequality, and the fact nf has its support within By, for any R > 0,

Mlw)sn + ([Aw) s, < NR™Y2 (AJwlz, + [ Aw]|z,)

< NR™2|lnf| L,

< NR™2(r) 2 (M(f2)(0))12. (5.76)
Furthermore, for any v > 0, taking (1 — A)" to both sides of (5.74) and using the fact (1 — A)YLw =
L(1 — A)Yw, we can easily check that w € Cg°® by Sobolev’s inequality. By setting v := u — w, from (5.74)
and (5.72)

Lv— = (1-n)f, veCenHs.

By applying Corollary 5.2 to v,

(Alv = (v)B, DB, + (JAV = (Av) B, |) B,

Y2 (o)) s, + (A5, ]+ Mf(0)>
k=1

(ZQ “F(|ul) 5 (IAu)BM]>

R <22 “FA(lwl)s +(|Awl)Bm,,]+Mf(0)>

o <Z2 @k (\(Ju|)p (|Au)32kmv]>

KO <Z 27K [27 2 (M(f2)(0)?] + Mf(0)>

< Nxk™©¢

< Nk~ (AMu(O) + M(Au)(0) + (M( f2)(0))1/2) , (5.77)

where (5.76) is used for the third inequality with R = 2¥xr, and for the last inequality we use M f(0) <
(M(£2)(0))'/2. By combining (5.76) and (5.77),

AM|u = (w)B,|)B, + (Au — (Au)B,|)B,
<N (v = (v)s, B, + ([ Av = (Av) B, |) B, + A(|w]) B, + (JAW])B,)
< N~ AMu(0) + M(Au)(0)) + N(M(f?)(0))"/2.

Therefore, the lemma is proved. 0O
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We make full use of Lemma 5.1 to get the mean oscillation of Lu.

Lemma 5.4. Suppose that H1 and H2 hold. Let A > 0, k > 2, r > 0, and f € C§°. Assume u € Hs' N (O
satisfy

Au — du = f.
Then for all oo € (0, min{1, ap}),

Mlu = (u)B, B, + (|Lu — (Lu)B,|) B,
< N~ (AMu(0) + M(Lu)(0)) + N2 (M(£2)(0))*/2,

where N depends only on d, v, A, k1, Ko, ag, and a.

Proof. Exchanging the roles of A and L in the proof of Lemma 5.1, we easily get

[Lulco(By,) < NR™® (Z 27" Lu)p,,  + Mf(0)> :

k=0

Therefore, the lemma is proved as we follow the proof of Lemma 5.3. O
6. Proof of Theorems 2.17 and 2.22

Proof of Theorem 2.17. The case p = 2 was already proved in Theorem 2.8. Due to Corollary 2.7 and
Lemma 2.6, it is sufficient to prove

| AulL, + Mull, < N|Lu—Xullp,, YueC, (6.78)

where N = N(d,v, A, k1, ke, ap).
First, assume p > 2. Put f := Lu — Au. From Lemma 5.3, for all @ € (0, min{1, ap})

AMJu— (u)B,|)B, + (JAu — (Au) B, |)B,
< N&~ (AMu(0) + M(Au)(0)) + N&¥2(M(£2)(0))/2.

By translation, it is easy to check that the above inequality holds for all B,(x) with € R and r > 0. By
the arbitrariness of r,

A (z) + (Au)# (z)
< Nk (AMu(x) + M(Au)(z)) + Ne¥2(M(f2)(2)) /2.

Therefore, by the Fefferman—Stein theorem and Hardy-Littlewood maximal theorem (see, for instance,
chapter 1 of [17]), we get

Mullz, + [ Aullz, < N~ (Alullr, + [Aullz,) + N&¥?| f]|z, -
By choosing x > 2 large enough so that Nk~ < 1/2,

Mlullz, +[lAullz, < Nf]z,-
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We use the duality argument for p € (1,2). Put ¢ := p/(p — 1). Then since ¢ € (2,00), for any g € C§°
there is a unique vy € H, 54 satisfying

L*vg —Avg =g in R

Therefore, by applying (6.78) with ¢ € (2, 00), for any u € C§°,

M, < s [lgdu] do

llgllLy,=1, g€CF _

= sup /|(L*vg — Avg)Aul dz
Rd

llgllLy=1, geCg®

= sup /|Avg(Lu — Au)| dx
llgllLy,=1, geCé”Rd

< sup [ AvgllL, || Lu — AullL,
lgll,=1, geC5
< sup Nllgllz,[[1Lu — Aul|, = N[ Lu — Au| 1,

lgllz,=1, g€C8

Similarly,
Az, < NllLu = Xullz,
Finally, we prove the continuity of the operator L by showing
| LullL, < N|Aul,, YueCg. (6.79)

Recall that we proved (6.78) based on Lemma 5.3. Similarly, using Lemma 5.4, one can prove

| LullL, < N[ Au—AullL, Yuec C5®, VYA>0.
Since N is independent of A, this leads to (6.79). The theorem is proved. O

Proof of Theorem 2.22. The proof is identical to that of Theorem 2.17 if one of H3(ii)—(iv) holds. So it only
remains to prove

| Aullz, + Mullz, < NEu - Xulz,, Vue 5

under the condition H3(i). Define

w:_/yawﬂw@ if o €(0,1), b= / y'a(y)J(y)dy if o€ (1,2).
B RI\ By
Then under H1 and H2, |b| < oo and for any u € C§°, we have
Lu=Lu+b-Vu,
and therefore
lullz, + | Aullz, < N|[Lu =, < N(||Lu = ullz, + [|Vulz,).

Take ¢ = 1/(2N) in H3(i) and apply Lemma 2.1. Then, the theorem is proved. O



I. Kim, K.-H. Kim / J. Math. Anal. Appl. 484 (2016) 1302-1335 1335

Acknowledgments
The authors are very grateful to the anonymous referee for valuable comments.

References

[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.
[2] R. Baifiuelos, K. Bogdan, Lévy processes and Fourier multipliers, J. Funct. Anal. 250 (1) (2007) 197-213.
[3] G. Barles, E. Chasseigne, C. Imbert, Holder continuity of solutions of second-order non-linear elliptic integro-differential
equations (English summary), J. Eur. Math. Soc. (JEMS) 13 (1) (2011) 1-26.
[4] R.F. Bass, Harnack inequalities for non-local operators of variable order, Trans. Amer. Math. Soc. 357 (2) (2005) 837-850.
[5] R.F. Bass, Holder continuity of harmonic functions with respect to operators of variable order, Comm. Partial Differential
Equations 30 (2005) 1249-1259.
[6] Z.Q. Chen, P. Kim, R. Song, Sharp heat kernel estimates for relativistic stable processes in open sets, Ann. Probab. 40 (1)
(2012) 213-244.
[7] H. Dong, D. Kim, On L,-estimates for a class of non-local elliptic equations, J. Funct. Anal. 262 (3) (2012) 1166-1199.
[8] H. Dong, D. Kim, Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dyn. Syst. 33 (6) (2013)
2319-2347.
[9] P. Kim, R. Song, Z. Vondracek, Global uniform boundary Harnack principle with explicit decay rate and its application,
Stochastic Process. Appl. 124 (2014) 235-267.
[10] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, American Mathematical Society, 2008.
[11] R. Mikulevicius, H. Pragarauskas, On the Cauchy problem for certain integro-differential operators in Sobolev and Hélder
spaces, Liet. Mat. Rink. 32 (2) (1992) 299-331.
[12] R. Mikulevicius, H. Pragarauskas, On the Cauchy problem for integro-differential operators in Sobolev classes and the
martingale problem, J. Differential Equations 256 (4) (2014) 1581-1626.
[13] R. Mikulevicius, H. Pragarauskas, On the Cauchy problem for integro-differential operators in Hélder classes and the
uniqueness of the martingale problem, Potential Anal. 40 (4) (2014) 539-563.
[14] R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications, de Gruyter Stud. Math., vol. 37,
Walter de Gruyter, Berlin, 2010.
[15] L. Silvestre, Holder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ.
Math. J. 55 (3) (2006) 1155-1174.
[16] E. Stein, Singular Integrals and Differentiability Properties of Functions, 1970, Princeton, NJ.
[17] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press,
1993.
[18] X. Zhang, LP-maximal regularity of nonlocal parabolic equation and applications, Ann. Inst. H. Poincaré Anal. Non
Linéaire 30 (4) (2013) 573-614.


http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6170706C65s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib626232s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib626369s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib626369s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6261737331s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6261737332s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6261737332s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6368656Es1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib6368656Es1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib646B696Ds1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib646B696D32s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib646B696D32s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4B535638s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4B535638s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4B72626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D5032s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D5032s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D5032303134s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D5032303134s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D503230313432s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib4D503230313432s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib535356s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib535356s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib53s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib53s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib53746532s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib537465s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib537465s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib5A68s1
http://refhub.elsevier.com/S0022-247X(15)00904-X/bib5A68s1

	An Lp-theory for a class of non-local elliptic equations related to nonsymmetric measurable kernels
	1 Introduction
	2 Setting and main results
	3 L2-theory
	4 Some Hölder estimates
	5 Some sharp function and maximal function estimates
	6 Proof of Theorems 2.17 and 2.22
	Acknowledgments
	References


