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An M/M/C queueing system operating in a Markovian environment is studied. This 
paper focuses on the stationary behavior and presents the theoretical framework. 
For a special case, analytical results are derived that are analogous to the classical 
solutions for the simple M/M/C queue. The elaborate analysis of a specific case is 
given to illustrate the basic idea of the framework. A technical proof with respect 
to the existence of d − 1 roots is displayed to sustain the corresponding theory.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The vast majority of queueing models assume a stationary process in order to derive performance mea-
sures. In reality, stochastic models whose parameters vary randomly over time depending on the state of 
some external environment arise naturally in practice. These models play an important role in operations 
research, applied probability, management science and queueing theory.

The motivation for treating queueing systems in a random environment comes from several fields. In 
the transportation field, as argued in [2] and [3], the queueing systems equipped with a randomly-varying 
parameters depending on the state of an external environment can be used to evaluate the influence of 
incidents on the congestions of vehicles on a part of a highway. Consider a segment of a road subject 
to traffic incidents. The space occupied by an individual car denotes one queuing server, which starts 
its service when a car joins the link, the service is completed when the car reaches the end of the link. 
A roadway section contains hundreds of such servers, so an M/M/C queueing system is a proper ap-
proximation. If an incident happens, all the cars on the road reduce their speed until the incident is 
cleared. In the financial field, the change of bank rate set by the Central bank affects the conditions 
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under which commercial banks give loans to their clients. These, in turn, significantly influence the in-
tensity of clients’ arrival. In the biological field, we can think of mRNA strings being transcribed and 
degraded in a cell, where these transcriptions usually tend to occur in a clustered environment, as argued 
in [4].

The first systematic study of this field can be found in Yechiali [12]. Yechiali [12] treated an M/M/1
system in a two-state Markovian environment. These investigations were continued into the 2000s and 
2010s. Boxma and Kurkova [5] discussed an M/G/1 queue where the server’s speed alternates between 
two values. Huang and Lee [8] studied the M/G/1 queue in a two-state Markovian environment and 
analyzed the generalized Pollaczek–Khinchin formula. Baykal-Gursoy and Xiao [2] treated an infinite-
server queue with service rate varying depending on the state of an alternating renewal process. In [3], 
the M/M/C systems in a two-state Markovian environment was introduced to model the traffic flow 
on a roadway link subject to incidents. Mahabhashyam and Gautam [11] analyzed an M/G/1 queue 
where the server’s speed varies based on a continuous-time Markov chain. Adan and Kulkarni [1] focused 
on the systems where the service rate changes randomly for the single server queue. Falin [7] studied 
M/M/∞ queue in a semi-Markovian environment and obtained the mean queue length. Blom et al. 
[4] discussed the Markov-modulated infinite-server queue using the stochastic process limit techniques. 
Cordeiro and Kharoufeh [6] and Kim [10] treated queues in a random environment with some classical 
policies. Jiang et al. [9] analyzed an M/G/1 queue in a random environment subject to disasters interrup-
tions.

The M/M/1 queue and M/M/∞ queue in a Markovian environment have been analyzed extensively. But 
the existing literatures involved in the M/M/C queue in an external environment are relatively rare. The 
multi-server queueing systems with varying arrival processes and service intensities possess several practical 
applications. In a multi-product manufacturing network, the arrival rates to different production centers 
may vary depending on the type of jobs it is processing, environmental conditions and operator experience. 
Performance characteristics of a multi-server queueing system with varying arrival rates and service rates 
allow us to analyze the sensitivity of the corresponding model to errors. In a word, the multi-server queue 
equipped with randomly-varying parameters is a practically important model that deserves a renewed 
interest.

The rest of this paper is organized as follows. In section 2, we describe the model in detail and present 
the stability condition. The elaborate proof of a critical theorem is given in section 3. Section 4 is devoted 
to treating the case when all the traffic intensities are equal. The simplest case when C = 2 and d = 2 is 
studied in section 5 and the final expressions are obtained. In section 6, numerical illustrations are added 
to explain the effect of some parameters on the queue length. Finally, potential applications and further 
research are presented in section 7.

2. Model description and stability condition

Our paper will focus on an M/M/C queueing system, where the arrivals and service rates are modulated 
by a random environment for which the underlying process C(t) is an irreducible continuous-time Markov 
chain on a finite state space {1, 2, · · · , d}, d is a positive integer. That is, when the external environment is 
in state i, the system functions as an M(λi)/M(μi)/C queue, with Poisson arrival intensity λi and service 
rate μi by each server.

To completely describe how the external environment C(t) evolves through time, it will suffice to give 
a description of both how long it spends in each state and how it makes transitions from one state to the 
next. The duration of time the external environment C(t) stays in state i is exponentially distributed with 
parameter qi. At the end of this holding time, it makes a transition to another state j with probability 
qij/qi, where j �= i. In other words, the infinitesimal generator of the external environment is
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Q =

⎛
⎜⎜⎜⎜⎝

−q1 q12 · · · q1d
q21 −q2 · · · q2d
...

...
. . .

...
qd1 qd2 · · · −qd

⎞
⎟⎟⎟⎟⎠

.

The stationary distribution of the external environment C(t) is given by (π1, π2, · · · , πd), being a 
d-dimensional vector with non-negative entries summing to 1 through solving (π1, π2, · · · , πd)Q = 0. In 
the following analysis, we assume that qii = 0, i = 1, 2, · · · , d.

A stochastic process {C(t), X(t)} describes the system’s state at time t as follows: C(t) denotes the state 
in which the system operates at time t, while X(t) counts the number of customers present in the system 
at that time. The system is said to be in state (i, m) if C(t) is in state i and there are m customers in the 
system. The stability condition will be given later, let pim be the limiting probability of the system in state 
(i, m). That is, pim = limt→∞ P (C(t) = i, X(t) = m), 1 ≤ i ≤ d, m = 0, 1, 2, · · · .

The steady-state balance equations are given below.
For i = 1, 2, · · · , d and m = 0,

(λi + qi)pi0 = μipi1 +
d∑

j=1
qjipj0. (1)

For i = 1, 2, · · · , d and 1 ≤ m ≤ C − 1,

(λi + mμi + qi)pim = λipi,m−1 + (m + 1)μipi,m+1 +
d∑

j=1
qjipjm. (2)

For i = 1, 2, · · · , d and m ≥ C,

(λi + Cμi + qi)pim = λipi,m−1 + Cμipi,m+1 +
d∑

j=1
qjipjm. (3)

We define pi· =
∑m=∞

m=0 pim, then pi· is the probability of the external environment being at state i. That 
is,

πi = pi· =
∞∑

m=0
pim.

Theorem 1. For the M/M/C queue in an external environment, the stability holds if and only if

μ̄ > λ̄,

where μ̄ =
∑d

i=1 Cμiπi, λ̄ =
∑d

i=1 λiπi.

Proof. Starting with m = 0 and summing each of balance equations (1), (2) and (3) over i, then

d∑
i=1

λipim =
d∑

i=1
(m + 1)μipi,m+1 (0 ≤ m ≤ C − 2),

d∑
λipim =

d∑
Cμipi,m+1 (m ≥ C − 1).
i=1 i=1



Z. Liu, S. Yu / J. Math. Anal. Appl. 436 (2016) 556–567 559
Summing over all m, we obtain

d∑
i=1

λiπi =
d∑

i=1
Cμi(πi − pi0) −

d∑
i=1

C−1∑
k=1

(C − k)μipik.

That is,

d∑
i=1

C−1∑
k=0

(C − k)μipik =
d∑

i=1
Cμiπi −

d∑
i=1

λiπi = μ̄− λ̄, (4)

where μ̄ =
∑d

i=1 Cμiπi, λ̄ =
∑d

i=1 λiπi.
Note that all the probabilities pik in (4) can be expressed by pi0 (i = 1, 2, · · · , d) through solving the 

balance equations.
In addition, from the theory of recurrent events it can be deduced that the probabilities pik (1 ≤ i ≤

d, k ≥ 0) are either all positive or, alternatively, all equal to zero. For the stochastic process {C(t), X(t)}, 
the steady-state regime exists if and only if pi0 > 0 (i = 1, 2, · · · , d). From (4), the necessary and sufficient 
condition for its existence is μ̄ > λ̄.

The proof is finished. �
The intuitive interpretation of the theorem is straightforward: note that μ̄ is the average capacity of the 

system to render service, λ̄ is the average arrival intensity. For steady-state conditions, the average service 
capacity must exceed the average arrival rate.

Denote the partial generating functions by

Gi(z) =
∞∑

m=0
pimzm, |z| ≤ 1, i = 1, 2, · · · , d.

So the generating function of the steady-state queue length in the system is given by

G(z) =
d∑

i=1
Gi(z).

Multiplying both sides of the balance equations by zm appropriately and summing over all m for state i, 
then

[λiz(1 − z) + qiz + Cμi(z − 1)]Gi(z) −
d∑

j=1
qjizGj(z) = (z − 1)

C−1∑
k=0

(C − k)μiz
kpik. (5)

We define

fi(z) = λiz(1 − z) + qiz + Cμi(z − 1) (i = 1, 2, · · · , d),

A(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1(z) −q21z −q31z · · · −qd1z

−q12z f2(z) −q32z · · · −qd2z

−q13z −q23z f3(z) · · · −qd3z
...

...
...

. . .
...

−q z −q z −q z . . . f (z)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

1d 2d 3d d
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g(z) =

⎛
⎜⎜⎜⎝

G1(z)
G2(z)
· · ·

Gd(z)

⎞
⎟⎟⎟⎠ , b(z) =

⎛
⎜⎜⎜⎝

∑C−1
k=0 (C − k)μ1z

kp1k∑C−1
k=0 (C − k)μ2z

kp2k
· · ·∑C−1

k=0 (C − k)μdz
kpdk

⎞
⎟⎟⎟⎠ .

The equations in (5) can be rewritten as the following matrix equation

A(z)g(z) = (z − 1)b(z).

Applying Cramer’s rule, for all values of z at which A(z) is nonsingular, we have

|A(z)|Gi(z) = |Ai(z)|(z − 1) (i = 1, 2, · · · , d), (6)

where |A| is the determinant of a matrix A and Ai(z) is derived through replacing the ith column of A(z)
with b(z).

All the unknown probabilities in equation (6) can be expressed by pi0 (i = 1, 2, · · · , d) through solving the 
balance equations, we need to obtain the d unknown probabilities pi0 (i = 1, 2, · · · , d). Note that equation 
(4) provides a linear relation for pi0. Since |A(z)| is a polynomial of degree 2d, we define a new polynomial 
Q(z) of degree 2d − 1 by

|A(z)| = (z − 1)Q(z).

Thus

Gi(z) = |Ai(z)|
Q(z) . (7)

Clearly, |Ai(z)| must equal zero whenever Q(z) = 0. The following theorem provides a method to obtain 
the additional d − 1 linear equations for the d unknown probabilities pi0.

Theorem 2. The polynomial Q(z) possesses exactly d − 1 distinct real roots in the interval (0, 1).

The proof of the theorem is fairly delicate and lengthy, we relegate the elaborate proof to the next section.
If we denote the d − 1 distinct real roots of Q(z) in the interval (0, 1) by z1, z2, · · · , zd−1, respectively. It 

immediately follows that

|Ai(zj)| = 0 (j = 1, 2, · · · , d− 1; i = 1, 2, · · · , d). (8)

We have arrived at a critical point, the additional d − 1 linear equations together with the stability 
condition equation (4) provide d equations. Besides, all the unknown probabilities in the d equations can be 
expressed by pi0, i = 1, 2, · · · , d. With known pi0, the generating function G(z) can be eventually obtained 
and the expected number of customers in the system is given by evaluating G′(z)|z=1.

In fact, it is difficult to obtain the explicit expressions for the roots zj (j = 1, 2, · · · , d − 1) and there 
seems to be no elegant and compact formulas relating unknown probabilities pim in the d equations to 
pi0 (i = 1, 2, · · · , d), so the closed form results for the generating functions are difficult to obtain, if at 
all possible. After some technical rearrangement of balance equations, we arrive at a series of recursive 
formulas:

pim = λi

mμi
pi,m−1 + qi

mμi

m−1∑
k=0

pik −
d∑

j=1

qji
mμi

m−1∑
k=0

pjk (1 ≤ m ≤ C − 1; i = 1, 2, · · · , d).
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3. Proof of the theorem

This section is devoted to proving Theorem 2, we introduce a series of polynomials as follows:

Q0(z) = 1, Q1(z) = fd(z), Q2(z) =

∣∣∣∣∣
fd−1(z) −qd,d−1z

−qd−1,dz fd(z)

∣∣∣∣∣ ,

Qk(z) =

∣∣∣∣∣∣∣∣∣∣

fd−k+1(z) −qd−k+2,d−k+1z · · · −qd,d−k+1z

−qd−k+1,d−k+2z fd−k+2(z) · · · −qd,d−k+2z
...

...
. . .

...
−qd−k+1,dz −qd−k+2,dz · · · fd(z)

∣∣∣∣∣∣∣∣∣∣
(1 ≤ k ≤ d− 1),

Q(z) = |A(z)|
z − 1 .

That is, Qk(z) (k = 1, 2, · · · , d − 1) are the determinants of the main-diagonal minors of A(z) starting from 
the lower right-hand corner of the matrix. We present several recursive equations, which is crucial for our 
subsequent analysis.

Qk+1(z) = ak(z)Qk(z) − bk(z)Qk−1(z) (k = 1, 2, · · · , d− 2), (9)

(z − 1)Q(z) = c(z)Qd−1(z) − d(z)Qd−2(z). (10)

These recursive relations are not difficult to obtain. According to Schur’s theorem, if A and D are square 
matrices, D is invertible, then

∣∣∣∣∣
A B
C D

∣∣∣∣∣ = |D| · |A − BD−1C|.

In the case that D is singular, the inverse of D in the equation can be replaced by a generalized inverse.
We define

Ak(z) =

⎛
⎜⎜⎜⎜⎝

fd−k+1(z) −qd−k+2,d−k+1z · · · −qd,d−k+1z

−qd−k+1,d−k+2z fd−k+2(z) · · · −qd,d−k+2z
...

...
. . .

...
−qd−k+1,dz −qd−k+2,dz · · · fd(z)

⎞
⎟⎟⎟⎟⎠

(1 ≤ k ≤ d− 1).

That is, Qk(z) = |Ak(z)| = det(Ak(z)), Ak(z) (k = 1, 2, · · · , d −1) are the main-diagonal minors of A(z)
starting from the lower right-hand corner of the matrix.

Hence, when 1 ≤ k ≤ d − 2, we have

Qk+1(z) = (|fd−k(z) − BA−1
k (z)C| + 1)Qk(z) −Qk(z)

= (|fd−k(z) − BA−1
k (z)C| + 1)Qk(z) − |fd−k+1(z) − DA−1

k−1(z)E| ·Qk−1(z),

and

(z − 1)Q(z) = (|f1(z) − FA−1
d−1(z)G| + 1)Qd−1(z) −Qd−1(z)

= (|f1(z) − FA−1
d−1(z)G| + 1)Qd−1(z) − |f2(z) − HA−1

d−2(z)J| ·Qd−2(z),

where
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B = (−qd−k+1,d−kz, · · · ,−qd,d−kz) , C = (−qd−k,d−k+1z, · · · ,−qd−k,dz)T ,

D = (−qd−k+2,d−k+1z, · · · ,−qd,d−k+1z) , E = (−qd−k+1,d−k+2z, · · · ,−qd−k+1,dz)T ,

F = (−q21z, · · · ,−qd−1,1z,−qd1z) , G = (−q12z, · · · ,−q1,d−1z,−q1dz)T ,

H = (−q32z, · · · ,−qd−1,2z,−qd2z) , J = (−q23z, · · · ,−q2,d−1z,−q2dz)T .

For these d + 1 polynomials, we present six properties as follows:

(A) Q0(z) = 1 has no roots in (0, +∞).
(B) For k = 1, 2, · · · , d − 2, Qk(z) and Qk+1(z) do not possess any joint roots in (0, +∞). If not, let z0 > 0

be a joint root of Qk(z) and Qk+1(z), then we have Qk−1(z0) = 0 from equation (9). Similarly, if 
Qk(z0) = Qk−1(z0) = 0, then Qk−2(z0) = 0 from (9). Iterating, we eventually arrive at Q0(z0) = 0, 
which contradicts property (A). In an analogous fashion, Q(z) and Qd−1(z) do not possess any joint 
roots in (0, +∞).

(C) If z0 > 0, Qk(z0) = 0 (k = 1, 2, · · · , d − 2). Based on (9), Qk−1(z0) and Qk+1(z0) are opposite in sign. 
If Qd−1(z0) = 0 and 0 < z0 < 1, then Qd−2(z0) and Q(z0) are the same in sign. If Qd−1(z0) = 0 and 
z0 > 1, then Qd−2(z0) is opposite in sign to Q(z0). These assertions can be verified from (9) and (10).

(D) Qk(1) > 0 (k = 1, 2, · · · , d − 1), Q(1) > 0. Setting z = 1 in the expressions of Qk(z), these results can 
be derived after some manipulations.

(E) Sign[Qk(0)] = (−1)k, k = 1, 2, · · · , d − 1, where Sign[x] = 1 if x > 0 and Sign[x] = −1 if x < 0. Note 
that fk(0) = −Cμk < 0, when 1 ≤ k ≤ d − 1, Qk(0) = (−1)k · Cμd−k+1 · Cμd−k+2 · · · ·Cμd. Besides, 
Q(z) = |A(z)|

z−1 and Sign[|A(0)|] = (−1)d, it follows that Sign[Q(0)] = (−1)d+1.
(F) Sign[Qk(∞)] = (−1)k, k = 1, 2, · · · , d − 1, note that the highest-power term of the polynomial Qk(z)

is (−1)k · λd−k+1 · λd−k+2 · · · ·λdz
2k.

To give properties (B) and (C), equations (9) and (10) are needed. We have to point out that when 
Qk(z0) = Qk+1(z0) = 0, equation (9) can be used. The inverses of Ak(z0) and Ak−1(z0) do not exist, but 
when Ak(z0) is singular, the inverse of matrix Ak(z0) can be replaced by a generalized inverse, such as the 
Moore–Penrose pseudoinverse.

The theorem can be proved as follows:
According to (D), (E) and (F), the quadratic polynomial Q1(z) possesses a root z1,1 in (0, 1) and the 

other root z1,2 in (1, ∞). Based on property (C), Q2(z1,1) < 0 and Q2(z1,2) < 0. From (D), (E) and (F) 
together with the fact that Q2(z) is a quartic polynomial, we can conclude that each of the intervals (0, z1,1), 
(z1,1, 1), (1, z1,2) and (z1,2, ∞) contains exactly one root of Q2(z). Similarly, each of the intervals (0, z2,1), 
(z2,1, z2,2), (z2,2, 1), (1, z2,3), (z2,3, z2,4) and (z2,4, ∞) contains exactly one root of Q3(z), and so on.

Repeating this procedure, then Qd−1(z) possesses 2d − 2 real roots in which d − 1 real roots lie in 
(0, 1) and d − 1 roots lie in (1, ∞). The 2d − 2 real roots are denoted, in an increasing order, by zd−1,i
(i = 1, 2, · · · , 2d − 2), respectively. According to these properties, we have

Sign[Qd−2(zd−1,i)] = (−1)d+i−1 (i = 1, 2, · · · , d− 1),

Sign[Qd−2(zd−1,i)] = (−1)d+i (i = d, d + 1, · · · , 2d− 2).

Based on these relations and property (C), we get

Sign[Q(zd−1,i)] = (−1)d+i−1 (i = 1, 2, · · · , 2d− 2).

Clearly, there is at least one real root of Q(z) between any consecutive roots of Qd−1(z). Since 
Sign[Q(0)] = (−1)d+1 and Sign[Q(zd−1,1)] = (−1)d, Q(z) has a root in (0, zd−1,1). In addition, Q(1) > 0
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and Sign[Q(zd−1,d−1)] = (−1)2d−2 > 0, so Q(z) has no root in (zd−1,d−1, 1). Similarly, Sign[Q(zd−1,d)] =
(−1)2d−1 < 0, Q(z) possesses a root in (1, zd−1,d). Note that Q(z) is a polynomial of degree 2d −1. It follows 
that Q(z) possesses exactly d − 1 real roots in the interval (0, 1).

The proof is finished.

4. A special case: λi/μi = θ for all i

Similar to the M/M/1 queue and M/M/∞ queue in a multi-phase Markovian random environment, 
there is one case where a specialized assumption causes the final expressions to be of extreme simplicity. 
This is the case when all the traffic intensities λi/μi (i = 1, 2, · · · , d) are equal, then the system possesses 
properties similar to a standard M/M/C queue and an explicit simple solution can be derived.

Theorem 3. If λi/μi = θ for all i, i = 1, 2, · · · , d, then

pim = πip0
θm

m! (0 ≤ m ≤ C − 1),

pim = πip0
( θ
C )m−CθC

C! (m ≥ C),

p0 = [
C−1∑
k=0

θk

k! + θC

C!(1 − θ
C )

]−1,

where i = 1, 2, · · · , d and m = 0, 1, 2, · · · .

Proof. Clearly, since (π1, π2, · · · , πd)Q = 0, then qiπi =
∑d

j=1 qjiπj . When 0 ≤ m ≤ C − 1, adding same 

terms to both sides of the equation qiπi =
∑d

j=1 qjiπj , then

(λi + mμi + qi)πi = mμiπi + λiπi +
d∑

j=1
qjiπj .

Multiplying by θm and using the assumption that λi/μi = θ for all i (i = 1, 2, · · · , d), we arrive at

(λi + mμi + qi)πiθ
m = mλiπiθ

m−1 + μiπiθ
m+1 +

d∑
j=1

qjiπjθ
m.

Dividing by m! and multiplying by p0, then

(λi + mμi + qi)πip0
θm

m! = λiπip0
θm−1

(m− 1)! + (m + 1)μiπip0
θm+1

(m + 1)! +
d∑

j=1
qjiπjp0

θm

m! . (11)

Setting pim = πip0
θm

m! (0 ≤ m ≤ C − 1) in (11) results in the steady-state balance equations (1) and (2) in 
section 2. Since these equations possess a unique solution, pim = πip0

θm

m! (0 ≤ m ≤ C − 1) is that solution.
Now, we need to prove the theorem is valid for m = C.
According to (λi + (C − 1)μi + qi)pi,C−1 = λipi,C−2 + Cμipi,C +

∑d
j=1 qjipj,C−1 together with the fact 

that qiπi =
∑d

j=1 qjiπj , we get

pi,C = pi,C−1(
θ

C
+ qi

Cμi
+ C − 1

C
) −

d∑ qji
Cμi

pj,C−1 −
θ

C
pi,C−2
j=1
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= p0 ·
θC−1

(C − 1)! [πi(
θ

C
+ qi

Cμi
+ C − 1

C
) −

d∑
j=1

qji
Cμi

πj − πi
C − 1
C

]

= πip0
θC

C! .

The remaining proof will be by induction. Assume that the theorem holds up to some m ≥ C, we need to 
prove it holds for m + 1 as well. In fact, the procedure is quite similar to the previous proof.

From (λi + Cμi + qi)pim = λipi,m−1 + Cμipi,m+1 +
∑d

j=1 qjipjm (m ≥ C), we have

pi,m+1 = pim( θ
C

+ qi
Cμi

+ 1) −
d∑

j=1

qji
Cμi

pjm − θ

C
pi,m−1

= p0 ·
( θ
C )m−CθC

C! [πi(
θ

C
+ qi

Cμi
+ 1) −

d∑
j=1

qji
Cμi

πj − πi]

= πip0
( θ
C )m+1−CθC

C! ,

the expression of p0 follows from the normalization condition.
The proof is finished. �

5. The case when C = 2 and d = 2

In this section, we present an example to illustrate the related procedure discussed in section 2. If the 
number of servers and states are not too large, we can get the explicit expressions after some algebraic 
operations. When the number of servers and states increase, the related expressions are rather complicated, 
numerical methods can be employed to solve any specific case. The proof in section 3 suggests also a 
numerical method for determining the roots.

When C = 2 and d = 2, Q(z) has a unique root z0 in (0, 1), equations (4) and (8) can be rewritten as

q2z0(2μ2p20 + μ2z0p21) + (2μ1p10 + μ1z0p11)[λ2z0(1 − z0) + q2z0 + 2μ2(z0 − 1)] = 0,

2μ1p10 + μ1p11 + 2μ2p20 + μ2p21 = μ̄− λ̄.

The unknown probabilities p11 and p21 can be eliminated by using balance equations, then

p11 = λ1 + q1
μ1

p10 −
q2
μ1

p20, p21 = λ2 + q2
μ2

p20 −
q1
μ2

p10.

After some tedious operations, we arrive at

q2z0[(2μ2 + λ2z0 + q2z0)p20 − q1z0p10]

+ [(2μ1 + λ1z0 + q1z0)p10 − q2z0p20][λ2z0(1 − z0) + q2z0 + 2μ2(z0 − 1)] = 0,

(2μ1 + λ1)p10 + (2μ2 + λ2)p20 = μ̄− λ̄ =
2∑

i=1
2μiπi −

2∑
i=1

λiπi,

thus

p10 = q2z0(μ̄− λ̄)(−λ2z
2
0 + 2μ2z0 − 4μ2)

[(2μ1 + λ1z0 + q1z0)(2μ2 + λ2) + q2z0(2μ1 + λ1)]f2(z0) − g1(z0) − q1q2z2
0(2μ2 + λ2)

,

where f2(z0) = λ2z0(1 − z0) + q2z0 + 2μ2(z0 − 1), g1(z0) = q2z0(2μ1 + λ1)(2μ2 + λ2z0 + q2z0).
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In an analogous fashion,

p20 = q1z0(μ̄− λ̄)(−λ1z
2
0 + 2μ1z0 − 4μ1)

[(2μ2 + λ2z0 + q2z0)(2μ1 + λ1) + q1z0(2μ2 + λ2)]f1(z0) − g2(z0) − q1q2z2
0(2μ1 + λ1)

,

and f1(z0) = λ1z0(1 − z0) + q1z0 + 2μ1(z0 − 1), g2(z0) = q1z0(2μ2 + λ2)(2μ1 + λ1z0 + q1z0). Note that the 
status of state 1 and state 2 are symmetric, so these results are not surprising.

Therefore,

G1(z) = q2z[(2μ2 + λ2z + q2z)p20 − q1zp10] + [(2μ1 + λ1z + q1z)p10 − q2zp20]f2(z)
Q(z) ,

where f2(z) = λ2z(1 − z) + q2z + 2μ2(z − 1).

G2(z) = q1z[(2μ1 + λ1z + q1z)p10 − q2zp20] + [(2μ2 + λ2z + q2z)p20 − q1zp10]f1(z)
Q(z) ,

and f1(z) = λ1z(1 − z) + q1z + 2μ1(z − 1). In this special case, the expression of Q(z) is

Q(z) =λ1λ2z
3 − (λ1λ2 + λ1q2 + 2μ2λ1 + λ2q1 + 2μ1λ2)z2

+ (2μ2λ1 + 2μ2q1 + 2μ1λ2 + 2μ1q2 + 4μ1μ2)z − 4μ1μ2.

Besides, we have

dG′
1(z)
dz

|z=1 = M1(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1) − q2[2μ2p20 + λ2p20 + 2μ1p10 + λ1p10] ·Q′(1)
(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1)2

,

dG′
2(z)
dz

|z=1 = M2(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1) − q1[2μ1p10 + λ1p10 + 2μ2p20 + λ2p20] ·Q′(1)
(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1)2

,

where

M1 = 3λ2q2p20 + (2λ1q2 + 2μ1q2 + 4μ1μ2 − 2λ2μ1 + 2λ1μ2 − λ1λ2 + 2q1μ2 − λ2q1)p10,

M2 = 3λ1q1p10 + (2λ2q1 + 2μ2q1 + 4μ1μ2 − 2λ1μ2 + 2λ2μ1 − λ1λ2 + 2q2μ1 − λ1q2)p20,

Q′(1) = lim
z→1

Q′(z) = λ1λ2 − 2λ1q2 − 2μ2λ1 − 2λ2q1 − 2μ1λ2 + 2μ2q1 + 2μ1q2 + 4μ1μ2.

Hence, the expected number of customers in the system is

E(X) = dG′
1(z)
dz

|z=1 + dG′
2(z)
dz

|z=1,

the final expression of E(X) is

(M1 + M2)(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1) − (q1 + q2)[2μ2p20 + λ2p20 + 2μ1p10 + λ1p10] ·Q′(1)
(2μ1q2 + 2μ2q1 − λ1q2 − λ2q1)2

.

So already one of the simplest queueing models leads to a difficult expression, when the number of servers 
and states increase we can only expect more complexity. Besides, contrary to vacation queues and M/M/∞
queue in a Markovian random environment discussed in [2], the system we studied does not exhibit the 
stochastic decomposition property. The M/M/∞ queue in a Markovian random environment has been 
studied in [2,4,7].
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Table 1
Expected number of customers in the system with μ1 = 2μ2, λ1 = λ2 = 1, q2 = 0.5.

μ1 = 0.7 μ1 = 1.0 μ1 = 1.3 μ1 = 1.6 μ1 = 1.9 μ1 = 2.2
q1 = 0.4 p10 0.02729999 0.13693487 0.21001681 0.26193485 0.30058807 0.33042015

p20 0.01374642 0.07237547 0.11572248 0.14952405 0.17680442 0.19936045
E(X) 13.04750731 2.42908805 1.44766644 1.05794575 0.84281979 0.70435483

q1 = 0.5 p10 0.01433563 0.11520633 0.18258561 0.23049639 0.26617561 0.29370901
p20 0.00917322 0.07719050 0.12725731 0.16612122 0.19736451 0.22311605
E(X) 22.75236290 2.65553983 1.53618829 1.11155841 0.88143138 0.73474338

q1 = 0.6 p10 0.00487983 0.09818415 0.16066035 0.20514359 0.23829220 0.26387885
p20 0.00380602 0.07999649 0.13588340 0.17910370 0.21373579 0.24220445
E(X) 61.39558137 2.87415890 1.61507282 1.15784397 0.91421837 0.76029577

Table 2
Expected number of customers in the system with μ1 = 5μ2, λ1 = λ2 = 1, q2 = 0.5.

μ1 = 1.0 μ1 = 1.3 μ1 = 1.6 μ1 = 1.9 μ1 = 2.2 μ1 = 2.5
q1 = 0.4 p10 0.08269894 0.16271610 0.22069180 0.26452250 0.29874196 0.32338640

p20 0.02913719 0.05906421 0.08251015 0.10180733 0.11827071 0.13217806
E(X) 5.62680348 2.72388159 1.89175413 1.48141197 1.23077531 1.05363180

q1 = 0.5 p10 0.05521334 0.13035429 0.18498906 0.22638715 0.25875293 0.28468821
p20 0.02454285 0.05968720 0.08722315 0.10985322 0.12911392 0.14593537
E(X) 7.95097884 3.22224069 2.14572773 1.64974022 1.35690637 1.16030043

q1 = 0.6 p10 0.03390628 0.10476759 0.15646844 0.19573235 0.22647505 0.25113271
p20 0.01825278 0.05808634 0.08931032 0.11494483 0.13672059 0.15569278
E(X) 12.17106966 3.78325539 2.40044081 1.80924337 1.47235279 1.25085869

6. Numerical examples

We derive the explicit expression to the M/M/2 queueing system subject to random interruption in 
section 5. As argued in [2] and [3], M/M/C queueing model under service interruptions could be used to 
evaluate the traffic flow on a roadway that is subject to incidents. State 1 denotes a normal traffic flow, 
while state 2 stands for the system is experiencing an interruption. During interruptions, all servers work 
at lower efficiency. We present numerical examples to illustrate the impact of some parameters on the mean 
queue length in the system in equilibrium.

Realizing that the stability condition must be satisfied. Table 1 represents the case with minor inter-
ruptions, which reduce the service rate to half of its normal value. Table 2 denotes the case with serious 
interruptions where interruptions cause the service rate to drop to one fifth of the normal service rate.

We can conclude that the number of customers in the system decreases as service rate increases. In both 
tables, higher q1 values (i.e., higher incident frequency) lead to more customers in the system. Through 
comparing Table 1 and Table 2, it can be seen that serious interruptions result in the value of q1 to have 
more significant influence on the mean queue length in the system than the minor interruption cases.

7. Conclusions and further research

The research was conducted on the M/M/C queue operating in a Markovian random environment. 
Generally speaking, the multi-phase generalization of the M/M/C queue will not yield closed-form solutions. 
For an interesting case when λi/μi = θ for all i, simple and elegant results are obtainable. We illustrate the 
basic idea through analyzing the case when C = 2 and d = 2, for large C, the associated calculation will be 
lengthy and we can only expect more complexity.

There are many potential applications of the queueing model studied in this paper. The applications in 
the field of transportation, finance and manufacturing network have been presented in the introduction. 
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In modern libraries, the librarians have to check-in and checkout of books manually during the routine 
maintenance. Our model can evaluate the impact of the special situations.

The M/M/C queue in a semi-Markovian random environment is a direct extension to our study. One 
can also consider other policies such as the case of random disastrous system’s failures, impatient customers 
and vacations. Another topic is relate our results to an M/M/∞ queue in a random environment discussed 
in the literatures.
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