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Obtaining a factorization of p-compact linear operators via universal Banach spaces, 
and using the lifting property of quotient maps for p-compact sets we prove a 
factorization result for relatively r-compact subsets of p-compact operators, where 
r ≥ 2, 1 ≤ p ≤ r < ∞. To apply our results to homogeneous polynomials, 
in particular, we show that relatively p-compact subsets of a Banach space of 
p-compact operators are collectively p-compact.
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1. Introduction

W.B. Johnson [20] proved that an operator in the closure of finite rank operators can be factorized through 
a universal Banach space. Following this, T. Figiel [15] proved that compact operators can be factorized 
through a closed subspace of Johnson’s universal Banach space. D.J. Randtke [29], T. Terzioǧlu [34], and 
J. Dazord [9] factorized compact operators defined on some certain Banach spaces, such as L1, L∞. Then 
W.H. Graves and W.M. Ruess [18], extended these works to simultaneous factorization of operators belong-
ing to compact subsets of compact operators. But the (uniform) factorization of compact subsets of compact 
operators on arbitrary Banach spaces was studied by R. Aron, M. Lindström, W.M. Ruess, R. Ryan in [3]. 
Showing that the universal Banach space established by W.B. Johnson [20] and T. Figiel [15] also serves as 
a uniform factorization space for factorization of operators belonging to the space of compact weak*–weak 
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continuous operators, they obtain a factorization of relative compact subsets of compact operators defined 
on an arbitrary Banach space.

As a stronger form of compactness D.P. Sinha and A.K. Karn [31] introduced p-compactness notion, 
which was motivated by the well-known characterization of compact sets due to A. Grothendieck [19]. 
Then plenty of papers appeared related to the p-compactness notion in different directions. We mention 
[4,6,8,11–13,22,26,28,31,32]. As to the factorization of p-compact operators, some factorization results are 
obtained by some researchers. We mention the works done by D.P. Sinha and A.K. Karn [31], Y.S. Choi 
and J.M. Kim [8], D. Galicier, S. Lassalle and P. Turco [17]. But the uniform factorization for (p-compact) 
subsets of p-compact operators, as to our knowledge, has not been considered so far. The purpose of this 
paper is to study simultaneous factorization of operators belonging to a p-compact subset of p-compact 
operators, basing on the paper [3] by R. Aron, M. Lindström, W.M. Ruess, R. Ryan. In this paper we firstly 
consider factorization of p-compact operators via universal Banach spaces, then as a main goal we study 
factorization of relatively r-compact subsets of the Banach space of all p-compact operators.

After giving preliminary material, as a slight improvement of [17, Proposition 2.9] we get a factorization 
of p-compact operators through a universal Banach space in Section 2. In section 3 we study uniform 
factorization of relatively r-compact subsets of p-compact operators. Our approach is based on the use of 
characterization of relatively p-compact sets in the projective tensor product of Banach spaces. For this, 
we strengthen a result given in [2], and then making a careful modification with quantitative strengthening 
of a method given in [3] we show that every p-compact operator in certain relatively r-compact subsets of 
the Banach space of p-compact operators with r ≥ 2 and 1 ≤ p ≤ r < ∞ can be factorized simultaneously 
through a universal Banach space. It should be pointed out that we do not use any selection principal in 
our proof, rather we use the lifting property of quotient maps for p-compact sets. Finally, we prove partial 
p-compact versions of a result of E. Toma [35] for homogeneous polynomials. For this aim, in particular 
we show that for any p ≥ 1 every relatively p-compact subset of a Banach space of p-compact operators is 
collectively p-compact.

2. Notation and preliminaries

The letters X and Y will always represent complex Banach spaces. The symbol BX represents the closed 
unit ball of X, SX represents the unit sphere of X. For any topology τ on X, Mτ will denote the τ -closure 
of a set M in X. The space of all bounded linear operators from X to Y will be denoted by L(X, Y ). The 
subspace of all compact (respectively, finite rank) operators of L(X, Y ) is denoted by K(X, Y ) (respectively, 
F (X, Y )). If X is a Banach space, and 1 ≤ p ≤ ∞ with the conjugate index p∗ given by 1

p + 1
p∗ = 1 (where 

p∗ = 1 if p = ∞), we let �p(X) (1 ≤ p < ∞) (resp., �∞(X)) denote the set of all sequences (xn)∞n=1 in X such 
that 

∑∞
n=1 ‖xn‖p < ∞ (resp., (xn)∞n=1 is bounded), and we let c0(X) denote the set of all sequences (xn)∞n=1

in X such that xn −→ 0 in X. A set K ⊂ X is said to be relatively p-compact if there is a sequence (xn)∞n=1
in �p(X) ((xn)∞n=1 in c0(X) ⊂ �∞(X) if p = ∞) such that K ⊂ {

∑∞
n=1 anxn : (an)∞n=1 ∈ B�p∗ } (see [31]). 

A relatively p-compact and closed set will be called p-compact. We denote this last set by p-co{(xn)∞n=1} and 
we will call it a fundamental p-compact set since these sets form a fundamental system of p-compact sets 
of X. From Grothendieck’s characterization of compact sets (see [19] or [23, Proposition 1.e.2]), a subset 
K of a Banach space X is relatively compact if and only if there is a sequence (xn)∞n=1 in c0(X) such 
that K ⊂ {

∑∞
n=1 anxn : (an)∞n=1 ∈ B�1}. Thus, by the above definition one can consider compact sets as 

∞-compact. Also, note that p-compact sets are q-compact if 1 ≤ p < q ≤ ∞. For 1 ≤ p ≤ ∞ an operator 
T ∈ L(X, Y ) is said to be p-compact if T (BX) is a relatively p-compact set in Y (see [31]). The subspace of 
all p-compact operators of L(X, Y ) will be denoted by Kp(X, Y ). If T belongs to Kp(X, Y ), we define

kp(T ) = inf {‖(yn)∞n=1‖p : (yn)∞n=1 ∈ �p(Y ) and T (BX) ⊂ p-co{(yn)∞n=1}}
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where k∞ coincides with the supremum norm (see [13]). It is easy to see that kp is a norm on Kp(X, Y ), 
and that (Kp, kp) is a Banach ideal (see [31,12]).

We recall that a mapping P : X → Y is an n-homogeneous polynomial if there is an n-linear mapping 
A : X × . . . × X → Y such that P (x) = A(x, . . . , x) for all x ∈ X. Let P (nX, Y ) denote the space 
of all continuous n-homogeneous polynomials from X to Y , endowed with the usual sup norm. Given a 

polynomial P ∈ P (nX, Y ), there is a unique symmetric continuous n-linear mapping 
∨
P∈ L(nX, Y ) such that 

P (x) =
∨
P (x, . . . , x︸ ︷︷ ︸

n times

). It is well known that the correspondence 
∨
P←→ P is a topological isomorphism between 

Ls(nX, Y ), the space of all symmetric continuous n-linear mappings from X to Y , and P (nX, Y ) (see, for 
example, [24, Theorem 2.2]). The space of n-homogeneous polynomials that are weakly uniformly continuous 
on bounded subsets of X is denoted Pwu(nX, Y ) and the corresponding space of symmetric n-linear mappings 
is denoted by Ls

wu(nX, Y ). When Y = C, instead of Pwu(nX, Y ), Ls(nX, Y ) and Ls
wu(nX, Y ) we will shortly 

write Pwu(nX), Ls(nX) and Ls
wu(nX), respectively. For each n-homogeneous polynomial P there is a linear 

operator TP : X → Ls(n−1X), defined by TP (x1)(x2, . . . , xn) = A(x1, x2, . . . , xn). It is known that P
belongs to Pwu(nX) if and only if the operator TP is compact (see [5]).

Following R.M. Aron, M. Maestre and P. Rueda [4] we say that an n-homogeneous polynomial is 
p-compact if for each x ∈ X there is a neighborhood Vx of x such that P (Vx) is relatively p-compact 
in Y . We denote by PKp

(nX, Y ) the space of p-compact n-homogeneous polynomials. By [4, Proposition 1]
an n-homogeneous polynomial P is p-compact if and only if P (BX) is relatively p-compact in Y . On 
PKp

(nX, Y ) we define

kp(P ) = inf{‖(xn)∞n=1‖p : (xn)∞n=1 ∈ �p(Y ), P (BX) ⊂ p-co{(xn)∞n=1}}

which is a norm satisfying that ‖P‖ ≤ kp(P ) for any p-compact homogeneous polynomial P . Also, 
(PKp

(nX, Y ), kp) is a Banach space (see [22]).
X ⊗π Y denotes the tensor product of X and Y endowed with the projective norm π, which is defined 

as π(u) = inf{
n∑

n=1
‖xn‖ ‖yn‖ : n ∈ N, u =

n∑
n=1

xn ⊗ yn} for x ∈ X ⊗π Y (see [30]). ⊗̂n,s
πs

X will denote the 

completed n-fold symmetric tensor product of X endowed with the projective s-tensor norm πs, which is 
defined as (see [16, p. 164]) πs(z) = inf{

∞∑
j=1

|λj | ‖ xj ‖n: z =
∞∑
j=1

λj ⊗n xj} for z ∈ ⊗̂n,s
πs

X, where ⊗nx :=

x⊗ . . .⊗ x︸ ︷︷ ︸
n-times

. We refer to [10,16,30] for tensor products of Banach spaces.

Finally, throughout the paper �p∗ = c0 if p = 1 and the �p-sum (of Banach spaces), as usual, will stand 
for the c0-sum if p = ∞.

D. Galicier, S. Lassalle and P. Turco in [17, Proposition 2.9] showed that a linear operator is p-compact 
if and only if it is quotiented in �p∗ . To be more precise, their proof can be sketched as follows: Given 
T ∈ Kp(X, Y ) there is a z = (zn)∞n=1 ∈ �p(Y ) such that T (BX) ⊂ {

∑∞
n=1 αnzn : (αn)∞n=1 ∈ L}, where L

is a compact set in B�p∗ . Then, define two linear mappings θz : �p∗ → Y by θz(α) =
∑∞

n=1 αnzn, α =
(αn)∞n=1 ∈ �p∗ , and θ̂z : �p∗/kerθz → Y by θ̂z([α]) = θz(α). And define a linear operator R : X → �p∗/kerθz
by R(x) = [(αn)∞n=1], where (αn)∞n=1 ∈ L is a sequence satisfying that T (x) =

∑∞
n=1 αnzn. Then one can 

easily see that T = θ̂zoR. Here, we notice that θ̂z is p-compact and R is compact. Now, with these notations 
and facts in mind we get the following factorization of p-compact operators through a universal Banach 
space.

Theorem 2.1. Let 1 ≤ p < ∞, let X and Y be Banach spaces. Then there is a universal Banach space Z(p)

such that every operator T ∈ Kp(X, Y ) can be factored as T = B ◦ A, where A ∈ K(X, Z(p)) and B ∈
Kp(Z(p), Y ). In particular, for 1 ≤ q ≤ ∞ Z(p) can be chosen as Z(p) = (

∑
W (p) W (p))q, for a fixed q, where 

W (p) runs through the quotient spaces of �p∗ which are Banach spaces.



E. Çalışkan, A. Keten / J. Math. Anal. Appl. 437 (2016) 1058–1069 1061
Proof. Given T ∈ Kp(X, Y ), by [17, Proposition 2.9] there exist z = (zn)∞n=1 ∈ �p(Y ), R ∈ K(X, �p∗/kerθz)
and θ̃z ∈ Kp(�p∗/kerθz, Y ) such that T = θ̃z ◦R. Let I�p∗/kerθz : �p∗/kerθz → Z(p) denote the natural norm 
one embedding and let P�p∗/kerθz : Z(p) → �p∗/kerθz denote the natural norm one projection. If we define 
the mappings A := I�p∗/kerθz ◦ R and B := θ̃z ◦ P�p∗/kerθz , then A ∈ K(X, Z(p)), B ∈ Kp(Z(p), Y ) and 
T = B ◦A. �

On the other hand, we know by results of T. Figiel [15] and W.B. Johnson [20], combined with a result 
of S. Banach and S. Mazur [7] (see also [21, p. 280]), that compact operators between Banach spaces can be 
factored compactly through a quotient space of �1. We note that by a slight modification of the proof of [17, 
Proposition 2.9] we recover this result easily as follows, which we include here for the sake of completeness.

Proposition 2.2. (See [15,20,17].) Let X and Y be Banach spaces and let T ∈ K(X, Y ). Then there exist 
(zn)∞n=1 ∈ c0(Y ), R ∈ K(X, �1/kerθz) and θ̃z ∈ K(�1/kerθz, Y ) such that T = θ̃z ◦R.

Proof. Let (zn)∞n=1 ∈ c0(Y ) be such that T (BX) ⊂ {
∑∞

n=1 αnzn : (αn)∞n=1 ∈ B�1}. Choosing a sequence 
(λn)∞n=1 with, λn ≥ 1 and λn → ∞ such that (λnzn)∞n=1 ∈ c0(Y ), and defining (yn)∞n=1 := (λnzn)∞n=1, we 
get T (BX) ⊂ {

∑∞
n=1 βnyn : (βn)∞n=1 ∈ L}, where L is a relatively compact set in B�1 . Now following the 

lines of the proof of [17, Proposition 2.9] one can get the required factorization. �
As a consequence of Proposition 2.2, we obtain the following p = ∞ case of Theorem 2.1, which is nothing 

more than a factorization of compact operators through a universal Banach space, and is well known as we 
already mentioned above.

Theorem 2.3. (See [15,20].) Let X and Y be Banach spaces. Then there is a universal Banach space Z(∞)

such that a compact operator T ∈ K(X, Y ) can be factored as T = B ◦ A, where A ∈ K(X, Z(∞)) and 
B ∈ K(Z(∞), Y ). In particular, for 1 ≤ q ≤ ∞ Z(∞) can be chosen as Z(∞) = (

∑
W W )q for a fixed q, 

where W runs through the quotient spaces of �1 which are Banach spaces.

The above factorization results will be used in the next section. It should be pointed out that factoriza-
tion results for operators are quite useful when working with approximation properties of Banach spaces, 
since in many cases they have a crucial role for determining whether or not certain (classes of) Banach 
spaces have certain type of approximation properties. For instance, we consider the approximation and the 
kp-approximation properties. We recall that a Banach space X is said to have the approximation property 
(AP for short) if for every compact set K in X and every ε > 0, there exists a T ∈ F (X; X) such that 
supx∈K ‖Tx −x‖ ≤ ε (see [19]), and a Banach space X is said to have the kp-approximation property (kp-AP 

for short) if for every Banach space Y , F (Y,X)
kp = Kp(Y, X) (see [13]). It is known that there are quotient 

spaces of �q for 1 < q < 2, which does not have the AP (see [33]). But using the factorization for p-compact 
operators given in [17, Proposition 2.9] one gets the same result at once without any effort. Moreover, by 
using standard methods along with [8, Theorem 3.1], we get easily another known result asserting that 
if 1 ≤ p < ∞, p �= 2, then there are quotient spaces of �1 which does not have the kp-AP (see, e.g., [8]
and [26]).

3. The results

R. Aron, M. Lindström, W. Ruess and R. Ryan in [3] obtained (uniform) factorizations of compact subsets 
of compact operators between Banach spaces. Here by a suitable and careful modification of their method 
we obtain, speaking roughly, (uniform) factorizations of r-compact subsets of p-compact operators between 
Banach spaces. In order to obtain this result (Theorem 3.5) we need some preparation. For this aim we will 
start with a sequence of lemmas which will be needed to achieve our goal.
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Lemma 3.1. (The lifting property of quotient maps for p-compact sets.) Let X be Banach space and let 
1 ≤ p < ∞. Let N be a closed subspace of X and let QX

N : X → X/N be the quotient mapping. If K is a 
relatively p-compact subset of X/N , then there is a relatively p-compact subset C of X such that K ⊂ QX

N (C).

Proof. If K is a relatively p-compact subset of X/N , there exists (Xn)∞n ∈ �p(X/N) such that K ⊂
{
∑∞

n=1 αnXn : (αn)∞n=1 ∈ B�p∗ }. For each n ∈ N, choose xn ∈ Xn such that ‖xn‖ < ‖Xn‖ + 1
n2 , so that 

(xn)∞n=1 ∈ �p(X). Taking C := p-co{(xn)∞n=1)} ends up the proof. �
The following lemma says that any p-compact subset in the range of a surjective continuous linear 

operator is always contained in the image of a p-compact set by the operator. More precisely, we have

Lemma 3.2. Let X and Y be Banach spaces, let 1 ≤ p < ∞ and let T ∈ L(X, Y ) be onto. If H is a relatively 
p-compact subset of Y , then there exists a relatively p-compact subset A of X such that H ⊂ T (A).

Proof. If T ∈ L(X, Y ) is onto, then it admits a factorization T = T0 ◦ Q, where T0 : X/N(T ) → Y is 
an isomorphism and Q : X → X/N(T ) is the quotient map (see, e.g., [27, B.3.7 Proposition]). Letting 
C := T−1

0 (H) and applying Lemma 3.1 we get the conclusion. �
A result similar to the above lemma, replacing quotient maps by continuous surjective linear maps, can 

be stated for fundamental p-compact sets as follows.

Lemma 3.3. Let X and Y be Banach spaces and let T ∈ L(X, Y ) be onto.

a) If p = 1, α > 1 and H ⊂ p-co{(ak)∞k=1} with (kαak)∞k=1 ∈ �p(Y ), then there exists a sequence (τk)∞k=1 ⊂
X with (kατk)∞k=1 ∈ �p(X) such that for L := p-co{(τk)∞k=1} we have H ⊂ T (L).

b) If 1 < p < ∞ and H ⊂ p-co{(ak)∞k=1} with (kak)∞k=1 ∈ �p(Y ), then there exists a sequence (τk)∞k=1 ⊂ X

with (kτk)∞k=1 ∈ �p(X) such that for L := p-co{(τk)∞k=1} we have H ⊂ T (L).

Proof. We give a proof for the case p = 1 since the proof for the case 1 < p < ∞ is similar. Since 
T ∈ L(X, Y ) is onto, as in the proof of Lemma 3.2, we can write T = T0 ◦Q, where T0 : X/N(T ) → Y is an 
isomorphism and Q : X → X/N(T ) is the quotient map. If y ∈ H, then there exists (αk)∞k=1 ∈ B�p∗ such that 
y =

∑∞
k=1 αkak. For each k ∈ N, there is a τk ∈ T−1

0 (ak) := [τk] ∈ X/N(T ) such that ‖τk‖ < ‖[τk]‖ + 1
k2α . 

Therefore, since 
∑∞

k=1 ‖kατk‖ < ‖T−1
0 ‖ 

∑∞
k=1 ‖kαak‖ +

∑∞
k=1

1
kα < ∞, letting L := p-co{(τk)∞k=1}, we get 

that H ⊂ T (L). �
By strengthening a result in [2] we obtain the following lemma, which relies on a result of A. Grothendieck 

characterizing tensor products [19]. This lemma will be the key result since the main result (Theorem 3.5) 
will be based on the tensor representation provided therein.

Lemma 3.4. Let X and Y be Banach spaces.

a) Let 2 ≤ p < ∞. If L ⊂ p-co{(τk)∞k=1} with (kτk)∞k=1 ∈ �p(X ⊗̂π Y ), then there exist sequences (rk)∞k=1 ∈
c0(X), (sk)∞k=1 ∈ �p(Y ) and a subset K of B�p∗ with K ⊂ p∗-co{(tk)∞k=1}, (tk)∞k=1 ∈ �p∗(B�p∗ ), such 
that L ⊂ {

∑∞
k=1 λkrk ⊗ sk : (λk)∞k=1 ∈ K}.

b) Let 1 < p < ∞. If L ⊂ p-co{(τk)∞k=1} with (τk)∞k=1 ∈ �p(X ⊗̂π Y ), then there exist sequences (rk)∞k=1 ∈
c0(X), (sk)∞k=1 ∈ �p(Y ) and a compact subset K of B�p∗ , such that L ⊂ {

∑∞
λkrk⊗sk : (λk)∞k=1 ∈ K}.
k=1
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Proof. a) If L ⊂ p-co{(τk)∞k=1} with (kτk)∞k=1 ∈ �p(X ⊗̂π Y ), then for any τ ∈ L, there exists (λτ
k)∞k=1 ∈ B�p∗

such that τ =
∑∞

k=1 λ
τ
kτk. Since τk ∈ X ⊗̂π Y , it follows from [30, Proposition 2.8, and the formula given in 

p. 22] (see also [16, p. 165]) that τk =
∑∞

i=1 λk,irk,i ⊗ sk,i, where for every i ∈ N, rk,i ∈ SX , sk,i ∈ SY and ∑∞
i=1 |λk,i| < ∞ with μk :=

∑∞
i=1 |λk,i| < π(τk) + 1

2kk
. Thus we get that

τ =
∞∑
k=1

λτ
kτk =

∞∑
k=1

λτ
k

∞∑
i=1

λk,irk,i ⊗ sk,i =
∞∑
k=1

∞∑
i=1

1
k
λτ
k(

λk,i

μk
)1/p

∗
rk,i ⊗ k(λk,i

μk
)1/pμksk,i.

Since the series 
∑∞

k=1
∑∞

i=1
1
kλ

τ
k

(
λk,i

μk

)1/p∗

rk,i ⊗ k
(

λk,i

μk

)1/p
μksk,i converges absolutely in X ⊗̂π Y , and 

since 
∑∞

k=1
∑∞

i=1 | 1kλτ
k(

λk,i

μk
)1/p∗ |p∗ =

∑∞
k=1

1
kp∗ |λτ

k|p
∗ ≤ 1 and

∞∑
k=1

∞∑
i=1

‖ k(λk,i

μk
)1/pμksk,i ‖p≤ 2p(

∞∑
k=1

(π(kτk))p + 1
2pk ) < ∞,

by choosing a specific order one can write

(γτ
l )∞l=1 := ( 1

k
λτ
k(

λk,i

μk
)1/p

∗
)(k,i)∈N×N ∈ B�p∗ ,

(xl)∞l=1 := (rk,i)(k,i)∈N×N ∈ �∞(X),

(yl)∞l=1 := (k(λk,i

μk
)1/pμksk,i)(k,i)∈N×N ∈ �p(Y ),

so that we obtain a representation τ =
∑∞

l=1 γ
τ
l xl ⊗ yl. Moreover, since 

∑∞
l=1 ‖yl‖p < ∞, we may choose 

a positive increasing sequence (cl)∞l=1, diverging to infinity, such that 
∑∞

l=1 ‖yl‖pcl < ∞. Thus, writing 
τ =

∑∞
l=1 γ

τ
l xl

1
c
1/p
l

⊗c
1/p
l yl, and letting rl := xl

1
c
1/p
l

and sl := c
1/p
l yl for each l, we get that τ =

∑∞
l=1 γ

τ
l rl⊗sl, 

where (rl)∞l=1 ∈ c0(X) and (sl)∞l=1 ∈ �p(Y ).
Now, we claim that the sequences (γτ

l )∞l=1, (τ ∈ L), range over a relatively p∗-compact subset K of B�p∗ . 
Indeed, according to the order chosen above, we can write

(γτ
l )∞l=1 = (1

k
λτ
k(

λk,i

μk
)1/p

∗
)(k,i)∈N×N =

∞∑
k=1

λτ
k

∞∑
i=1

1
k

(λk,i

μk
)1/p

∗
eki

where the vectors eki appeared in the double indexed set (eki )(k,i)∈N×N are the standard basis vectors el of 

�p∗ ordered as above. Next, for each k ∈ N, we define tk := 1
k

∑∞
i=1

(
λk,i

μk

)1/p∗

eki . Hence, for every k ∈ N

we have that tk ∈ B�p∗ , and, since 1 < p∗ ≤ 2, we have 
∑∞

k=1 ‖tk‖
p∗

p∗ =
∑∞

k=1
1

kp∗
∑∞

i=1

∣∣∣λk,i

μk

∣∣∣ ‖eki ‖p∗
< ∞. 

Thus, (tk)∞k=1 ∈ �p∗(B�p∗ ) ⊂ �p∗(�p∗). On the other hand since p∗ ≤ p, we have (λτ
k)∞k=1 ∈ B�p . Therefore, 

since (γτ
l )∞l=1 =

∑∞
k=1 λ

τ
ktk with (λτ

k)∞k=1 ∈ B�p , if we take K as the set {(γτ
l )∞l=1 : τ ∈ L}, then K ⊂

p∗-co{(tk)∞k=1}, and the proof of part a) is complete.
b) If L ⊂ p-co{(τk)∞k=1} with (τk)∞k=1 ∈ �p(X ⊗̂π Y ), then by a similar argument as in (a) any τ ∈ L

can be written as τ =
∑∞

i=1 λ
τ
i ri ⊗ ti with (λτ

i )∞i=1 ∈ B�p∗ where (ri)∞i=1 ∈ c0(X) and (ti)∞i=1 ∈ �p(Y ). 
Since (ti)∞i=1 ∈ �p(Y ), we may choose β = (βi)∞i=1 ∈ Bc0 such that 

(
ti
βi

)∞

i=1
∈ �p(Y ). Accordingly we write 

τ =
∑∞

i=1 λ
τ
i ri ⊗ ti =

∑∞
i=1 βiλ

τ
i ri ⊗ ti

βi
, where (λτ

i )∞i=1 ∈ B�p∗ . If for every i ∈ N we let θτi := βiλ
τ
i and 

si := ti
βi

, then,

τ =
∞∑

θτi ri ⊗ si, (θτi )∞i=1 ∈ B�p∗
i=1
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with (ri)∞i=1 ∈ c0(X), (si)∞i=1 ∈ �p(Y ). To see that the sequences (θτi )∞i=1 range over a compact subset 
of B�p∗ , note that the set K := {(βiγi)∞i=1 : (γi)∞i=1 ∈ B�p∗ } is a compact subset of B�p∗ , so the proof of the 
claim is complete. �

As a final step towards our main result, let 1 ≤ p < ∞, and let Z(p) be the universal Banach space given 
in Theorem 2.1. Given Banach spaces X and Y , according to Theorem 2.1, the continuous bilinear map

τ : K(X,Z(p)) × (Kp(Z(p), Y ), kp) → (Kp(X,Y ), kp), τ(u, v) = v ◦ u,

is onto. The linearization of τ , τ̂ : K(X, Z(p)) ⊗̂π (Kp(Z(p), Y ), kp) → (Kp(X, Y ), kp), defined by τ̂(u ⊗ v) =
τ(u, v) = v ◦ u, is a continuous linear map which is onto.

Now we are ready to give the main result of the paper. For the proof we will carefully modify a method 
given in [3], namely, the first method in the proof of [3, Theorem 1]. It should be emphasized that in 
our proof we do not use any selection principal as it is done in the first method given in the proof of [3, 
Theorem 1], instead we use the lifting of p-compact sets (given by Lemma 3.1) which is already pointed out 
at the end of the same paper for the compact case. Therefore the proof for the p-compact case given below 
seems to be more direct proof than the ones given in [3] for the compact case.

Theorem 3.5. Let X and Y be Banach spaces, let r ≥ 2 and let 1 ≤ p ≤ r < ∞. For every (balanced 
and convex) relatively r-compact subset H of (Kp(X, Y ), kp) such that H ⊂ r-co{(ak)∞k=1} with (kak)∞k=1 ∈
�r(Kp(X, Y ), kp), there exist an operator u ∈ K(X, ZFJ), a (resp. balanced and convex) relatively r∗-compact 
subset {BT : T ∈ H} of K(ZFJ , Z(r)) and an operator v ∈ Kr(Z(r), Y ) such that T = v ◦ BT ◦ u for all 
T ∈ H, where ZFJ denotes a universal factorization space of Figiel [15] and Johnson [20], and Z(r) is the 
universal Banach space given in Theorem 2.1.

Proof. Since τ̂ is a continuous linear onto map and H ⊂ r-co{(ak)∞k=1} with (kak)∞k=1 ∈ �r(Kp(X, Y ), kp), 
by Lemma 3.3 b), there exists (τk)∞k=1 in K(X, Z(p)) ⊗̂π (Kp(Z(p), Y ), kp) with (kτk)∞k=1 ∈ �r(K(X, Z(p)) ⊗̂π

(Kp(Z(p), Y ), kp)) such that for L := r-co{(τk)∞k=1} we have H ⊂ τ̂(L). Thus, for every T ∈ H there 

exists τT ∈ L such that T = τ̂(τT ). By Lemma 3.4 a) we have a representation τT =
∞∑
i=1

λτT
i ri ⊗ si

with (λτT
i )∞i=1 ∈ K, where (ri)∞i=1 ∈ c0(K(X, Z(p))), (si)∞i=1 ∈ �r(Kp(Z(p)), Y ), kp) and K ⊂ �r∗ is a 

relatively r∗-compact subset. Now, define r : X → c0(Z(p)) by r(x) := (ri(x))∞i=1. Then r ∈ K(X, c0(Z(p)))
(see [3, Theorem 1]). Next, for each T ∈ H define AT : c0(Z(p)) → �r∗(Z(p)) by AT (z) = (λτT

i zi)∞i=1, 
z = (zi)∞i=1 ∈ c0(Z(p)). Since

∞∑
i=1

‖λτT
i zi‖r

∗ ≤
∞∑
i=1

|λτT
i |r∗‖zi‖r

∗ ≤
(

sup
i∈N

‖zi‖
)r∗ ∞∑

i=1
|λτT

i |r∗ < ∞,

AT is well defined and that AT ∈ L(c0(Z(p)), �r∗(Z(p))). Now we consider the continuous linear map 
A : �r∗ → L(c0(Z(p)), �r∗(Z(p)) defined by A(λ)z := (λizi)∞i=1, λ = (λi)∞i=1, z = (zi)∞i=1. Since 
{AT : T ∈ H} ⊂ A(K) and K is a relatively r∗-compact subset in �r∗ , it follows that the subset {AT : T ∈ H}

of L(c0(Z(p)), �r∗(Z(p))) is relatively r∗-compact. Finally we define s : �r∗(Z(p)) → Y by s(w) :=
∞∑
i=1

si(wi), 

w = (wi)∞i=1 ∈ �r∗(Z(p)). Since

∞∑
‖si(wi)‖ ≤

∞∑
kp(si)‖wi‖ ≤

( ∞∑
(kp(si))r

)1/r ( ∞∑
‖wi‖r

∗

)1/r∗

< ∞,

i=1 i=1 i=1 i=1
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s is well defined, and since ‖s‖ ≤ ‖(kp(si))∞i=1‖r, s is a continuous operator. Now we show that s is, 
in fact, r-compact. For every i ∈ N, since si ∈ Kp(Z(p), Y ) and p ≤ r, then si ∈ Kr(Z(p), Y ) and 
kr(si) ≤ kp(si) (see [31]). Hence, since (si)∞i=1 ∈ �r(Kp(Z(p), Y ), kp)), then 

∑∞
i=1(kr(si))r < ∞. Now, 

for every i ∈ N, choose a sequence (cin)∞n=1 ∈ �r(Y ) such that ‖(cin)∞n=1‖r < kr(si) + 1
2i with si(BZ(p)) ⊂

r-co{(cin)∞n=1}. Since 
∑∞

i=1 ‖(cin)∞n=1‖rr < 2r
(∑∞

i=1(kr(si))r +
∑∞

i=1
1

2ir

)
< ∞, we have 

∑∞
i=1

∑∞
n=1 ‖cin‖r =∑∞

i=1 ‖(cin)∞n=1‖rr < ∞. Next, let w = (wi)∞i=1 ∈ B�r∗ (Z(p)) (without loss of generality we can assume that 
wi �= 0 for each i ∈ N). Now, one can write s(w) =

∑∞
i=1 ‖wi‖ 

∑∞
n=1 α

wi
n cin with (αwi

n )∞n=1 ∈ B�r∗ . Note that

∞∑
i=1

∞∑
n=1

‖wi‖αwi
n cin ≤

∞∑
i=1

[(
∞∑

n=1
(‖wi‖|αwi

n |)r∗)1/r∗(
∞∑

n=1
‖cin‖r)1/r]

≤ (
∞∑
i=1

∞∑
n=1

‖wi‖r
∗ |αwi

n |r∗)1/r∗(
∞∑
i=1

∞∑
n=1

‖cin‖r)1/r < ∞,

and since 
∑∞

i=1
∑∞

n=1 ‖cin‖r < ∞ and 
∑∞

i=1
∑∞

n=1(‖wi‖|αwi
n |)r∗ ≤ 1, choosing a specific order for these 

double series and writing (λl)l∈N := (‖wi‖αwi
n )(i,n)∈N×N

∈ B�r∗ and (zl)l∈N :=
(
cin
)
(i,n)∈N×N

∈ �r(Y ), 
we obtain a representation s(w) =

∑∞
l=1 λlzl, which shows that s ∈ Kr(�r∗(Z(p)), Y ).

Now for T ∈ H, where T = τ̂(τT ) =
∑∞

i=1 λ
τT
i si ◦ ri, we have T = s ◦ AT ◦ r. Finally we factor r and s

through ZFJ and Z(r), respectively, (see [3] and Theorem 2.1). That is, there exist operators u ∈ K(X, ZFJ), 
α ∈ K(ZFJ , c0(Z(p))), β ∈ K(�r∗(Z(p)), Z(r)) and v ∈ Kr(Z(r), Y ) such that r = α ◦ u and s = v ◦ β. For 
each T ∈ H, let BT := β ◦AT ◦ α. Then it can be easily seen that {BT : T ∈ H} is a relatively r∗-compact 
subset of K(ZFJ , Z(r)) and T = v ◦BT ◦ u for every T ∈ H.

In addition if we assume that H is convex and balanced, then one can readily see that {BT : T ∈ H} is 
also convex and balanced, with which the proof is complete. �
Remark 3.6. a) In the hypothesis of Lemma 3.4 a) and Theorem 3.5, instead of each factor “k” if we take 
more generally any number ξk ≥ 1 such that, for every γ > 1, 

∑∞
k=1

1
ξγk

< ∞, then these results continue to 
be true.

b) Let X and Y be Banach spaces, let r ≥ 2 and let 1 ≤ p ≤ r < ∞. If H is a relatively r-compact subset 
of (Kp(X, Y ), kp) such that H ⊂ r-co{(ak)∞k=1} with (kak)∞k=1 ∈ �r(Kp(X, Y ), kp), then as a consequence of 
Theorem 3.5 observe that H is, in fact, a relatively r∗-compact subset of (Kr(X, Y ), kr).

If we relax the hypothesis of the previous theorem by removing the factor “k” in the sequence (kak)∞k=1, 
as compared to Theorem 3.5, we obtain the following weaker result.

Proposition 3.7. Let X and Y be Banach spaces, let 1 ≤ p ≤ r < ∞ with r > 1. For every (balanced 
and convex) relatively r-compact subset H of (Kp(X, Y ), kp), there exist an operator u ∈ K(X, ZFJ), a 
(resp. balanced and convex) relatively compact subset {BT : T ∈ H} of K(ZFJ , Z(r)) and an operator 
v ∈ Kr(Z(r), Y ) such that T = v ◦BT ◦ u for all T ∈ H.

Proof. Let H be a relatively r-compact subset of (Kp(X, Y ), kp). By Lemma 3.2 there exists a relatively 
r-compact subset L of K(X, Z(p)) ⊗̂π (Kp(Z(p), Y ), kp) such that H ⊂ τ̂(L). Now by Lemma 3.4 b) any 
τT ∈ L has a representation τT =

∑∞
i=1 θ

τT
i ri ⊗ si with (θτTi )∞i=1 ∈ K, where (ri)∞i=1 ∈ c0(K(X, Z(p))), 

(si)∞i=1 ∈ �r(Kp(Z(p), Y ), kp), and K is a compact subset of B�r∗ . Now the set {AT : T ∈ H} obtained 
in Theorem 3.5 is a relatively compact subset of L(c0(Z(p)), �r∗(Z(p)) and so is the corresponding set 
{BT : T ∈ H}. Finally if H is balanced and convex then, one can see that the set {BT : T ∈ H} has the 
same properties. Thus, we have the proof. �
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We can improve Theorem 3.5 and Proposition 3.7 a little bit more, since in the factorizations given in 
these results one of the spaces through which the p-compact operators factorize depends on the number 
r ≥ 2.

Let 1 ≤ p, q ≤ ∞ and let Z = (
∑

1≤p≤∞ Z(p))q for a fixed q, where Z(p) is the universal Banach 
space given in Theorems 2.1 and 2.3. Thus by Theorem 2.1 and Theorem 2.3, it can be easily seen that 
Z is a universal Banach space for the factorization of all p-compact operators between arbitrary Banach 
spaces, which is independent of p. That is, given Banach spaces X and Y , and any 1 ≤ p ≤ ∞ and any 
T ∈ Kp(X, Y ), we can write T = vou, u ∈ K(X, Z), v ∈ Kp(Z, Y ). As a consequence we obtain the following 
strengthening of Theorem 3.5 and Proposition 3.7, respectively, in which the corresponding factorizations 
are obtained through a universal Banach space which does not depend on the number r ≥ 2.

Corollary 3.8. Let X and Y be Banach spaces, let r ≥ 2 and let 1 ≤ p ≤ r < ∞. For every (balanced 
and convex) relatively r-compact subset H of (Kp(X, Y ), kp) such that H ⊂ r-co{(ak)∞k=1} with (kak)∞k=1 ∈
�r(Kp(X, Y ), kp), there exist an operator u ∈ K(X, Z), a (resp. balanced and convex) relatively r∗-compact 
subset {BT : T ∈ H} of K(Z, Z) and an operator v ∈ Kr(Z, Y ) such that T = v ◦BT ◦ u for all T ∈ H.

Corollary 3.9. Let X and Y be Banach spaces, let r > 1 and 1 ≤ p ≤ r < ∞. For every (balanced and 
convex) relatively r-compact subset H of (Kp(X, Y ), kp) there exist an operator u ∈ K(X, Z), a (resp. 
balanced and convex) relatively compact subset {BT : T ∈ H} of K(Z, Z) and an operator v ∈ Kr(Z, Y )
such that T = v ◦BT ◦ u for all T ∈ H.

We now look at the use of uniform factorization result given in Corollary 3.8. The motivation is that 
whether or not compact sets can be replaced by p-compact sets in a result of E. Toma [35] given in 
[3, Corollary 6] which gives a characterization of scalar-valued homogeneous polynomials that are weakly 
uniformly continuous on the unit ball. It is worth saying that in the p-compact case the situation is quite 
complicated due to the nature of p-compact sets.

We will begin by defining collectively p-compact set, which is the natural extension of notion of collectively 
compactness.

Definition 3.10. Let X and Y be Banach spaces, let p ≥ 1. A subset A of L(X, Y ) is said to be collectively 
p-compact if A(BX) = {Tx : T ∈ A, x ∈ BX} is a relatively p-compact set in Y .

Now, similarly to the collectively compactness case (see [1, Theorem 2.4]), as a p-compact counterpart, 
we obtain the following result, which is of independent interest, and will be needed in the proof of the next 
theorem.

Proposition 3.11. Let 1 ≤ p < ∞. Every relatively p-compact subset K of (Kp(X, Y ), kp) is collectively 
p-compact.

Proof. We give a proof for the case 1 < p < ∞ since the proof for the case p = 1 is similar. Let K
be a relatively p-compact subset of (Kp(X, Y ), kp). Thus, for a given T ∈ K there exist (αT

n )∞n=1 ∈ B�p∗

and (Tn)∞n=1 ∈ �p(Kp(X, Y ), kp)) such that T =
∑∞

n=1 α
T
nTn. For every n ∈ N we choose a sequence 

(znk )∞k=1 ∈ �p(Y ) such that ‖(znk )∞k=1‖p < kp(Tn) + 1
2n and Tn(BX) ⊂ p-co{(znk )∞k=1}. Hence, for T ∈ K and 

x ∈ BX we have that T (x) =
∑∞

n=1 α
T
nTn(x) =

∑∞
n=1

∑∞
k=1 α

T
nλ

n,x
k znk , where (αT

n )∞n=1, (λ
n,x
k )∞k=1 ∈ B�p∗ . 

Since 
∑∞

n=1
∑∞

k=1
∣∣αT

nλ
n,x
k

∣∣p∗
≤

∑∞
n=1

∣∣αT
n

∣∣p∗
≤ 1 and

∞∑ ∞∑
‖ znk ‖p=

∞∑
‖ (znk )∞k=1 ‖pp< 2p(

∞∑
kpp(Tn) + 1

2np ) < ∞,

n=1 k=1 n=1 n=1



E. Çalışkan, A. Keten / J. Math. Anal. Appl. 437 (2016) 1058–1069 1067
by choosing a specific order one can write (γT,x
l )∞l=1 := (αT

nλ
n,x
k )(n,k)∈N×N ∈ B�p∗ and (sl)∞l=1 :=

(znk )(n,k)∈N×N ∈ �p(Y ), so that we obtain T (x) =
∑∞

l=1 γ
T,x
l sl. Thus, K(BX) = {Tx : T ∈ K, x ∈ BX} ⊂

p-co{(sl)∞l=1}. �
The following result is a partial p-compact version of [3, Proposition 5], which we obtain for the case 

n = 2.

Theorem 3.12. Let X be a Banach space with X ′ having the AP, and let r ≥ 2, 1 ≤ p ≤ r < ∞. Let H be a rel-
atively r-compact subset of (Kp(X, X ′), kp) such that H ⊂ r-co{(ak)∞k=1} with (kak)∞k=1 ∈ �r(Kp(X, X ′), kp). 
Then for every ε > 0 there exists an r-compact subset K ′

ε of X ′ such that for every T ∈ H and x ∈ X

|T (x)(x)| ≤ ε ‖ x ‖ sup
k′∈K′

ε

|k′(x)| + sup
k′∈K′

ε

|k′(x)|2.

Proof. By Corollary 3.8, there are a Banach space Z, a relatively r∗-compact subset {LT : T ∈ H} of 
K(X, Z), and an operator v ∈ Kr(Z, X ′) such that T = voLT for all T ∈ H. Thus, for each x ∈ X ⊂ X ′′

and for each T ∈ H, we have |T (x)(x)| = |v ◦ LT (x)(x)| ≤ ‖v′(x)‖‖LT (x)‖, where v′ is the adjoint of v. 
Note that ‖v′(x)‖ = supz∈BZ

|v(z)(x)| ≤ supk′∈K′
1
|k′(x)|, where K ′

1 := v(BZ) ⊂ X ′, which is an r-compact 
set. Furthermore,

‖LT (x)‖ = sup
z′∈BZ′

|z′(LT (x))| = sup
z′∈BZ′

|(L′
T z

′)(x)|. (1)

Let K := {LT : T ∈ H} and let K∗ := {L′
T : T ∈ H}. Since K∗ is relatively r∗-compact subset of 

K(Z ′, X ′), there exists (S′
n)∞n=1 ∈ �r∗(K(Z ′, X ′)) such that K∗ ⊂ r∗-co{(S′

n)∞n=1}. Hence, for any ε > 0
there is N = N(ε) ∈ N such that 

∑∞
n=N+1 ‖S′

n‖r
∗ ≤

(
ε
2
)r∗ . Since X ′ has the AP, by [23, Theorem 1.e.4], 

for every n ∈ N there is an SF
n ∈ F (Z ′, X ′) such that 

∥∥S′
n − SF

n

∥∥ < ε
2n2 (

∑∞
n=1

1
n2 )−1. So, if we define a 

sequence (S∗
n)∞n=1 in F (Z ′, X ′) by S∗

n := SF
n for n = 1, 2, . . . , N , and S∗

n := 0 for n > N , and consequently a 
set by K∗

F,ε := {
∑∞

n=1 αnS
∗
n : (αn)∞n=1 ∈ B�r with

∑∞
n=1 αnS

′
n ∈ K∗} then, K∗

F,ε is a relatively r∗-compact 
subset of (F (Z ′, X ′), kr∗). Now, given any L′

T =
∑∞

n=1 α
T
nS

′
n ∈ K∗, let L∗

T :=
∑∞

n=1 α
T
nS

∗
n. Thus, we have 

that

‖ L′
T − L∗

T ‖≤
N∑

n=1
‖ S′

n − SF
n ‖ +(

∞∑
n=N+1

| αT
n |r)1/r

∞∑
n=N+1

‖ S′
n ‖r∗)1/r∗ < ε.

Hence, we have shown that for any LT ∈ K there is L∗
T ∈ K∗

F,ε such that ‖L′
T − L∗

T ‖ < ε. Therefore, by (1), 
for every x ∈ X we get that

‖LT (x)‖ ≤ ‖L′
T − L∗

T ‖ sup
z′∈BZ′

‖z′‖ ‖x‖ + sup
z′∈BZ′

|L∗
T z

′(x)| < ε ‖x‖ + sup
z′∈BZ′

|L∗
T z

′(x)|.

Since K∗
F,ε is a relatively r∗-compact subset of (Kr∗(Z ′, X ′), kr∗), thus by Proposition 3.11 the set K∗

F,ε is col-
lectively r∗-compact in L(Z ′, X ′), so that the set K ′

2 := {L∗
T (z′) : L∗

T ∈ K∗
F,ε, z′ ∈ BZ′} is an r∗-compact, 

hence r-compact, subset of X ′. Therefore, ‖ LT (x) ‖< ε ‖ x ‖ + supz′∈BZ′ |L∗
T z

′(x)| ≤ ε ‖ x ‖ +
supk′∈K′

2
|k′(x)|. Finally, letting K ′

ε := K ′
1 ∪ K ′

2, which is also r-compact, for all T ∈ H and x ∈ X we 
obtain |T (x)(x)| ≤ ε ‖ x ‖ supk′∈K′

ε
|k′(x)| + supk′∈K′

ε
|k′(x)|2. �

Now as an application of Theorem 3.12 we get the following partial p-compact version of a result of 
E. Toma [35] for 2-homogeneous polynomials.
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Corollary 3.13. Let X be a Banach space with X ′ having the AP and let 2 ≤ r < ∞. Then for a P ∈
Pwu(2X) with TP being r-compact, given any ε > 0 there exists an r-compact subset K ′

ε of X ′ such that 
|P (x)| ≤ ε ‖ x ‖ supk′∈K′

ε
|k′(x)| + supk′∈K′

ε
|k′(x)|2 for all x ∈ X.

Proof. Let P ∈ Pwu(2X) with TP being r-compact, 2 ≤ r < ∞. Then taking H := {TP } and applying 
Theorem 3.12 we obtain the desired inequality. �

Recall that a polynomial P ∈ P (nX, Y ) is of finite type if it can be written as a linear combination of 
functions φn⊗y (n ∈ N, φ ∈ X ′, y ∈ Y ), where φn⊗y(x) = φn(x)y for each x ∈ X. Note that if a polynomial 
P is of finite type then the corresponding operator is also of finite type, hence, is r-compact for any r ≥ 2.

We do not know if the reverse implication in Corollary 3.13 is true. If that would be the case, Corollary 3.13
would be an improvement of [3, Corollary 6] for the case n = 2, since the compact sets are replaced by 
r-compact sets.

Motivated by [3, Corollary 6] and Corollary 3.13, a result for vector-valued p-compact n-homogeneous 
polynomials can be stated in a similar fashion. Therefore, as a consequence of Theorem 3.12 we prove the 
following interesting result concerning p-compact polynomials with values in (⊗̂n,s

πs
X)′.

Corollary 3.14. Let X be a Banach space such that (⊗̂n,s
πs

X)′ has the AP. Let r ≥ 2, 1 ≤ p ≤ r < ∞, 
and let Hn be a relatively r-compact subset of (Pkp

(nX, (⊗̂n,s
πs

X)′), kp) such that Hn ⊂ r-co{(ank )∞k=1}
with (kank )∞k=1 ∈ �r

(
(Pkp

(nX, (⊗̂n,s
πs

X)′), kp)
)
. Then for every ε > 0 there exists an r-compact subset 

K ′
ε of (⊗̂n,s

πs
X)′ such that for all P ∈ Hn and all x ∈ X, |P (x)(⊗nx)| ≤ supk′∈K′

ε
|k′(⊗nx)|(ε‖x‖n +

supk′∈K′
ε
|k′(⊗nx)|).

Proof. Since by [6, Theorem 3.1] (see [16, Proposition, p. 163]) (Pkp
(nX, (⊗̂n,s

πs
X)′), kp) and (Kp(⊗̂

n,s
πs

X,

(⊗̂n,s
πs

X)′), kp) are isometrically isomorphic, there is a sequence (Tn
k )∞k=1 ⊂ Kp(⊗̂

n,s
πs

X, (⊗̂n,s
πs

X)′) such that 
(kTn

k )∞k=1 ∈ �r(Kp(⊗̂
n,s
πs

X, (⊗̂n,s
πs

X)′), kp) and Cn :=
{
PL : P ∈ Hn

}
⊂ r-co{(Tn

k )∞k=1}, where the mapping 
PL : ⊗̂n,s

πs
X → Y , defined by PL(⊗nx) = P (x) is the linearization of P . Now since (⊗̂n,s

πs
X)′ has the AP 

hence, by Theorem 3.12, given any ε > 0, there exits an r-compact subset K ′
ε of (⊗̂n,s

πs
X)′ such that for all 

PL ∈ Cn and for all x ∈ X, we have

|PL(⊗nx)(⊗nx)| ≤ sup
k′∈K′

ε

|k′(⊗nx)|(ε ‖ ⊗nx ‖ + sup
k′∈K′

ε

|k′(⊗nx)|),

from which we get the conclusion. �
Note that in Corollary 3.14 taking n = 1 one gets exactly Theorem 3.12. In this sense it is a generalization 

of Theorem 3.12.

Remark 3.15. Since P (nX) =
(
⊗̂n,s

πs
X
)′ (see, e.g., [16, p. 165]) the hypothesis of Corollary 3.14 concerning 

the AP is satisfied for the spaces c0, �1 and T (Tsirelson space), and for �q whenever n < q < ∞ (see [14]
and [25]).

We end the paper with some natural questions that arise from our results.

Question 3.16.

a) In Lemma 3.4 a), can the factor “k” be removed to get the same conclusion for general r-compact sets?
b) Is it possible to extend Lemma 3.4 a) to the case 1 ≤ p, and accordingly, Theorem 3.5 to the case 

1 ≤ r < p?
c) In Theorem 3.5, what conditions should be imposed (e.g., on the set H) to get the set {BT : T ∈ H}

being p-compact, for any 1 ≤ p < ∞?
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Question 3.17. Is it true that the result of E. Toma [35], stated in [3, Corollary 6], continue to be true if one 
replaces compact sets by p-compact sets, for any 1 ≤ p < ∞?
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