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In this paper we consider continued fraction (CF) expansions on intervals different 
from [0, 1]. For every x in such interval we find a CF expansion with a finite number 
of possible digits. Using the natural extension, the density of the invariant measure 
is obtained in a number of examples. In case this method does not work, a Gauss–
Kuzmin–Lévy based approximation method is used. Convergence of this method 
follows from [32] but the speed of convergence remains unknown. For a lot of known 
densities the method gives a very good approximation in a low number of iterations. 
Finally, a subfamily of the N -expansions is studied. In particular, the entropy as a 
function of a parameter α is estimated for N = 2 and N = 36. Interesting behavior 
can be observed from numerical results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In general, studies on continued fraction expansions focus on expansions for which almost all x1 have an 
expansion with digits from an infinite alphabet. A classical example is the regular continued fraction [14,17,
31]. An example of continued fraction expansions with only finitely many digits has been introduced in [28]
by Joe Lehner, where the only possible digits are 1 and 2; see also [13]. More recently, continued fractions 
have been investigated for which all x in a certain interval have finitely many possible digits. In [16] the 
following 4-expansion has been (briefly) studied. Let T : [1, 2] → [1, 2] be defined as (see Fig. 1)

T (x) =

⎧⎪⎨
⎪⎩

4
x
− 1 for x ∈ (4

3 , 2]

4
x
− 2 for x ∈ [1, 4

3 ] .
(1)
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Fig. 1. The CF-map T from (1).

By repeatedly using this map we find that every x ∈ [1, 2] has an infinite continued fraction expansion of 
the form

x = 4

d1 + 4

d2 +
.. .

(2)

with dn ∈ {1, 2} for all n ≥ 1. The class of continued fractions algorithms that give rise to digits from a finite 
alphabet is very large. In this introductory paper we will give examples of such expansions. Most of the 
examples will be a particular case of N -expansions (see [1,3,16]). Other examples are closely related and can 
be found by combining the N -expansions with flipped expansions (cf. [26] for 2-expansions; see also [11] for 
flipped expansions). For all these examples we refer to [11] for ergodicity (which can be obtained in all these 
cases in a similar way) and existence of an invariant measure. In a number of cases however, it is difficult 
to find the invariant measure explicitly, while in seemingly closely related cases it is very easy. In case we 
cannot give an analytic expression for the invariant measure we will give an approximation using a method 
that is very suitable (from a computational point of view) for expansions with finitely many different digits. 
This method is based on a Gauss–Kuzmin–Lévy Theorem. For our method, convergence follows from [32]. 
For greedy N -expansions this theorem is proved by Dan Lascu in [27]. The method yields smoother results 
than by simulating in the classical way (looking at the histogram of the orbit of a typical point as described 
in Geon Choe’s book [9], and used in his papers [8,10]). We also give an example in which we do know the 
density and where we use this method to show its strength.

In Section 2 we will give the general form of the continued fraction maps we study in this paper. After 
that we give several examples of such maps and a way of finding the density of the invariant measure by 
using the natural extension. In Section 2.2 we will see how we simulated the densities in case we were not 
able to find them explicitly. In the last section we will consider a subfamily of the N -expansions which can 
be parameterized by α ∈ (0, 

√
N − 1]. We study the entropy as function of α. We will do so mainly on a 

numerical basis. In the past decades, it turned out to be very interesting to look at entropy of a family of 
continued fractions as a function of a parameter. In [2,5–7,25,29,30] the entropy of Nakada’s α-expansions 
is studied. For example in [30] it is shown that in any neighborhood of 0 you can always find an interval 
on which the entropy function is increasing, an interval on which the entropy function is decreasing and an 
interval on which this function is constant. In [6] it is shown that there is a countable set of open intervals on 



108 C. Kraaikamp, N. Langeveld / J. Math. Anal. Appl. 454 (2017) 106–126
which the entropy function is monotonic. The union of these intervals has Lebesgue measure 1. As matching 
plays an important role in these papers we will take a glimpse at how matching works for our subfamily 
(see Section 3 for the definition and use of matching). This subfamily shows resemblances to Nakada’s 
α-expansions and, to some extend, also to β-expansions with negative slope. These latter expansions have 
been studied extensively in the last decade ([12,18,23]) for various reasons; interesting and deep dynamical, 
diophantine and ergodic properties. From our investigations, the expansions we study in Section 3 posses a 
similar richness in dynamical and ergodic properties.

2. The general form of our maps

Throughout this paper we will look at continued fraction algorithms of the following form. Fix an integer 
N ≥ 2 and let [a, b] be a subinterval of [0, 

√
N ] with b − a ≥ 1. Let T : [a, b] → [a, b] be defined as

T (x) = ε(x)N
x

− ε(x)d(x)

where ε(x) is either −1 or 1 depending on x and d(x) is a positive integer such that T (x) ∈ [a, b]. Note that 
if b − a = 1 then there is exactly one positive integer such that T (x) ∈ [a, b) if ε(x) is fixed. For N = 2
we find the family that is studied in [26] and for ε(x) = 1 for all x we find the N -expansions from [16]. 
Whenever a > 0 this map can only have finitely many different digits. This family is closely related to the 
(a, b)-continued fractions introduced and studied by Svetlana Katok and Ilie Ugarcovici in [20,19,21]. For 
(a, b)-continued fraction ε(x) = −1 for all x ∈ [a, b] and N = 1. Also there are restrictions on a, b. These are 
chosen such that a ≤ 0 ≤ b, b −a ≥ 1, −ab ≤ 1. The case b −a = 1 was further studied by Carlo Carminati, 
Stefano Isola and Giulio Tiozzo in [4], where they study the entropy as a function of α.

Note that this family is rather ‘large’. For the examples in the next section ε(x) will be plus or minus one 
on fixed interval(s). In Section 3 other restrictions are imposed.

2.1. Two seemingly closely related examples and their natural extension

In [16], using the natural extension the invariant measure of the 4-expansion map T given in (1) was 
easily obtained. To (briefly) illustrate the method and the kind of continued fraction algorithms we are 
interested in we consider a slight variation of this continued fraction. Let T̃ : [1, 2] → [1, 2] be defined as

T̃ (x) =

⎧⎪⎨
⎪⎩

4
x
− 1 for x ∈ (4

3 , 2]

5 − 4
x

for x ∈ [1, 4
3 ] ,

(3)

i.e. we ‘flipped’ the map T on the interval [1, 43 ]; see also Fig. 2.
Setting

ε1(x) =
{

1 for x ∈ (4
3 , 2]

−1 for x ∈ [1, 4
3 ]

and d1(x) =
{

1 for x ∈ (4
3 , 2]

5 for x ∈ [1, 4
3 ] ,

we define εn(x) = ε1
(
Tn−1(x)

)
and dn(x) = d1

(
Tn−1(x)

)
. From T (x) = ε1 ·

( 4
x − d1

)
, it follows that

x = 4
d1 + ε1T (x) = . . . = 4

d1 + 4 ε1

d2 +
.. . + 4 εn−1

n

. (4)
dn + εnT (x)
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Fig. 2. The CF map T̃ from (3).

Taking finite truncations, we find the so called convergents

cn = pn
qn

= 4

d1 + 4 ε1

d2 +
.. . + 4 εn−1

dn

of x. One can show that limn→∞ cn = x; see [26] for further details. Therefore we write

x = 4

d1 + 4 ε1

d2 +
.. .

, (5)

or in short hand notation x = [4/d1, 4ε1/d2, . . .] or x = [d1, ε1/d2, . . .]4.

2.1.1. Using the natural extension to find the invariant measure
To demonstrate the method we will use T̃ from (3). The idea now is to build a two-dimensional system 

(the natural extension) (Ω = [1, 2] × [A,B], T ) which is almost surely invertible and contains ([1, 2], T̃ ) as a 
factor. In [16] it was shown that a suitable candidate for the natural extension map T is given by

T (x, y) =
(
T̃ (x), 4ε1(x)

d1(x) + y

)
.

Now we choose A and B in such a way the system is indeed (almost surely) invertible. We define fundamental 
intervals Δn = {(x, y) ∈ Ω : d1(x) = n} if ε = 1 and Δ−n = {(x, y) ∈ Ω : d1(x) = n} if ε = −1. When the 
fundamental intervals fit exactly under the action of T , the system is almost surely invertible; see Fig. 3. 
An easy calculation shows that A = −1 and B = ∞ is the right choice here. It is shown in [16], that the 
density of the invariant measure (for the 2-dimensional system) is given by

f(x, y) = C
4

(4 + xy)2 , for (x, y) ∈ Ω ,

where C is a normalizing constant (which is 1
log(3) in this example). Projecting on the first coordinate yields 

the invariant measure for the 1-dimensional system ([1, 2], T̃ ), with density
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Fig. 3. The suitable domain for T .

Fig. 4. The CF map T̂ from (6).

1
log(3)

(
1
x

+ 1
4 − x

)
, for x ∈ [1, 2] .

Note that if we would consider the map

T̂ (x) =

⎧⎪⎨
⎪⎩

4 − 4
x

for x ∈ (4
3 , 2]

4
x
− 2 for x ∈ [1, 4

3 ] ,
(6)

which is a ‘flipped version’ of the map T from (1) where we flipped the branch on the interval (4
3 , 2], we get 

another continued fraction of the form (5) but now with digits dn ∈ {2, 4}; see Fig. 4. Our approach would 
give A = −2 and B = ∞ which shows that the underlying dynamical system has a σ-finite infinite measure 
with ‘density’ f(x), given by

f(x) = 1
x

+ 1
2 − x

, for x ∈ [1, 2].

The method from [16] we just used does not always ‘work’. As an example we will use an expansion given 
in [26]. Let T̄ (x) be defined as
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Fig. 5. The CF map T̄ from (7).

Fig. 6. A simulation of the domain of the natural extension for the map T̄ from (7).

T̄ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
x
− 3 for x ∈ (1

2 ,
4
7 ]

4 − 2
x

for x ∈ (4
7 ,

2
3 ]

2
x
− 2 for x ∈ (2

3 ,
4
5 ]

3 − 2
x

for x ∈ [ 45 , 1] ,

(7)

see Fig. 5.
When trying to construct the domain of the natural extension one quickly notices that ‘holes’ appear. 

This is not an entirely new phenomena in continued fractions, it also appears in constructing the natural 
extension of Nakada’s α-expansions when α ∈ (0, 

√
2 − 1); see [29]. One might hope that there are finitely 

many holes, but a simulation of the domain indicates otherwise; see Fig. 6.
Although the method might still work in this case, it does not really seem to help us to find a description 

of the invariant density. In order to get an idea of the density we will use two different approaches. One 
will be based on the Gauss–Kuzmin–Lévy Theorem. The other will be a more classical approach based on 
Choe’s book [9].
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Fig. 7. Approximations of the density of the invariant measure of T̄ (x) using the Gauss–Kuzmin–Lévy method (red) and the classical 
way (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

2.2. Two different ways of approximating the density

The first way is based on the Gauss–Kuzmin–Lévy Theorem. This theorem states that for the regular 
continued fraction the Lebesgue measure of the pre-images of a measurable set A will converge to the Gauss 
measure.

λ
(
T−n(A)

)
→ μ(A) as n → ∞.

This was stated as an hypothesis by Gauss in his mathematical diary in 1800 and proved by Kuzmin in 
1928 who also obtained a bound on the speed of convergence. Independently, Lévy proved the same theorem 
in 1929 but found a sharper bound for the speed of convergence namely |λ (T−n(A)) − μ(A)| = O(qn)
with 0 < q < 1 instead of O(q

√
n) which is the bound Kuzmin found. There are many proofs of this 

theorem and refinements on the speed of convergence; see e.g. Khinchine’s book [17], or [22] for various 
refinements.

The idea for our method is to look at the pre-images of [ 12 , z] for our map T̄ from (7) and take the 
Lebesgue measure of the intervals found. Note that in the first iteration you will find 2 intervals and after 
the first iteration the number of intervals found is multiplied by 4. Also the size of the intervals shrink 
relatively fast. Fortunately it seems that a low number of iterates (around 10) is already enough to give 
a good approximation; see Fig. 8 where the theoretical density and its approximation are displayed and 
Fig. 7, where both methods of approximating are compared for a density we do not know the theoretical 
density.

The other way of finding an approximation is by iterating points and look at the histogram of the orbits. 
The way we iterated is that we used a lot of points and iterated them just a few times. To be more precise 
we iterated 2500 uniformly random points 20 times, repeated this process 400 times and took the average 
density of all points. Then we redid the process but instead of sampling uniformly we sampled from the 
previously found density (see also [15]) In Fig. 7 we see both methods applied to our example.

The two methods give results that are relatively close but the approximation found with the Gauss–
Kuzmin–Lévy method is far more smooth. Since we do not know the density we cannot compare the 
theoretical density with the approximation. Because the Gauss–Kuzmin–Lévy method is the new method 
we will look how well this method performs in an example in which we know the invariant density explicitly. 
For the map T from (1) we know the density which was given in [16]. In Fig. 8 we see a plot of both the 
theoretical density and the approximation found by the Gauss–Kuzmin–Lévy method.



C. Kraaikamp, N. Langeveld / J. Math. Anal. Appl. 454 (2017) 106–126 113
Fig. 8. An approximation of the true density for the CF map T from (1) and the true T -invariant density.

The difference can barely be seen by the naked eye. If we look at the difference in 2-norm we get

⎛
⎝ 2∫

1

(f(x) − f̂(x))2 dx

⎞
⎠

1
2

= 1.1235 ∗ 10−5

where f(x) is the true density and f̂(x) the approximation.

3. A sub-family of the N -expansions

In this section we study a subfamily of the N -expansions (so ε(x) = 1 for all x in the domain) with digits 
from a finite alphabet and an interval [α, β] as domain. For our subfamily we want that it has finitely many 
digits. Furthermore we would like that there is a unique digit such that T (x) ∈ [α, β). This results in α > 0
and β−α = 1. In this way the map is uniquely determined by the domain. With these restrictions we define 
for α ∈ (0, 

√
N − 1] the map Tα,N : [α, α + 1] → [α, α + 1] as

Tα,N = N

x
−

⌊
N

x
− α

⌋
.

Note that for all these expansions we have a finite number of digits since α > 0. Also note that this is the 
largest range in which we can choose α because for α >

√
N − 1 the digit would be 0 or less (see Section 3.2

for a calculation). Simulations show that a lot of maps have an attractor smaller than [α, β]. When N ≥ 9
we find that if α =

√
N−1 there is always an interval [c, d] � [α, α+1] for which the Tα,N -invariant measure 

of [c, d] is zero. Whenever N > 4 we have that Tα,N always has 2 branches for α =
√
N − 1. Calculations of 

these observations are given in Section 3.2 in which we take a closer look on which sequences are admissible 
for a given N and α. In Section 3.3 we study the behavior of the entropy as a function of α for a fixed N .

The examples in [16] with ‘fixed range’ are all member of this kind of sub-family of the N -expansions. 
Though, these examples are cases for which all the branches of the mapping are full. In such case the natural 
extension can be easily build using the method described previously. If not all branches are full we can still 
make the natural extension in some cases. We will start this section with such case.

3.1. A 2-expansion with α =
√

2 − 1

Let T (x) : [
√

2 − 1, 
√

2] → [
√

2 − 1, 
√

2] be defined by
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Fig. 9. A 2-expansion on the interval [
√

2 − 1,
√

2].

Fig. 10. Ω and T (Ω).

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
x
− 1 for 2(

√
2 − 1) < x ≤

√
2

2
x
− 2 for 2 −

√
2 < x ≤ 2(

√
2 − 1)

2
x
− 3 for 1

7 (6 − 2
√

2) < x ≤ 2 −
√

2

2
x
− 4 for

√
2 − 1 ≤ x ≤ 1

7(6 − 2
√

2) .

A graph of this map is shown in Fig. 9. We can find the invariant measure for this map by using the method 
as in Section 2.1.1 though we now need to determine 3 ‘heights’ in order to make the mapping of the natural 
extension almost surely bijective on the domain (see Fig. 10). We get the following equations for the heights 
A, B and C:

A = 2
4 + C

, B = 2
3 + C

and C = 2
1 + B

.

This results in A = 1
2 (
√

33 − 5), B = 1
6 (
√

33 − 3) and C = 1
2 (
√

33 − 3). We find the following invariant 
density up to a normalizing constant (which is given in Theorem 3.2)
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Fig. 11. The density of the invariant measure for the 2-expansion on [
√

2 − 1,
√

2].

f(x) =

⎧⎨
⎩

√
33−3

4+(
√

33−3)x −
√

33−5
4+(

√
33−5)x for

√
2 − 1 < x ≤ 2(

√
2 − 1)

√
33−3

4+(
√

33−3)x −
√

33−3
12+(

√
33−3)x for 2(

√
2 − 1) < x ≤

√
2 .

The graph of the density is given in Fig. 11. In this case we were lucky. But in general it seems to be 
very hard to construct the natural extension explicitly. Still we can simulate the densities and calculate the 
entropy for a given α. Also for the 2-expansions we can extend the above result to all α ∈ [

√
33−5
2 , 

√
2 − 1]; 

see Theorem 3.1.

3.2. Admissibility

In this section we look at how the alphabet is determined by α for a fixed N . It turns out that not 
all different sequences of such alphabet will occur in a continued fraction expansion (or only finitely many 
times). This is a consequence of some cylinders having zero mass. The range of the first digits of a continued 
fraction for given α and N are easily described since the smallest digit will be attained by the right end 
point of the domain largest digits will be attained by the left end point of the domain. Let

nmin =
⌊

N

α + 1 − α

⌋
and nmax =

⌊
N

α
− α

⌋
.

Note that nmin ≤ 0 when α >
√
N − 1 and therefore α =

√
N − 1 is the largest value for which we have 

positive digits. Furthermore the alphabet is given by {nmin, . . . , nmax}. To see for which N we have that 
for α =

√
N − 1 there are two branches we must check that nmax = 2. This happens when N√

N−1 − 2 ∈
[
√
N − 1, 

√
N ]. We find 2 inequalities

N√
N − 1

− 2 ≤
√
N (8)

and
√
N − 1 ≤ N√

N − 1
− 2 . (9)

Inequality (8) gives 4 ≤ N and inequality (9) gives N − 1 ≤ N . This yields that for all N ≥ 4 we have 
two branches for α =

√
N − 1. If N ≥ 9 we also have an attractor which is strictly smaller than the entire 

interval for α =
√
N − 1 as the following calculation shows
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Fig. 12. A simulation of the natural extension for N = 9 and α = 2.

Tα,N

(
[α, N

α + 2]
)

=
[
α,

N

α
− 2

]

Tα,N

(
[α, N

α
− 2]

)
=

[
α,

N

α
− 2] ∪ [ Nα

N − 2α − 1, α + 1
]

Tα,N

(
[ Nα

N − 2α − 1, α + 1]
)

=
[
α,

N2 − (1 − 3α)N − 2α
(α− 1)N + 2α

]
.

If we substitute α with 
√
N − 1 and the following two inequalities hold we find an attractor strict smaller 

than the interval [α, α + 1];

N√
N − 1

− 2 <
N(

√
N − 1)

N − 2(
√
N − 1)

− 1 (10)

N2 − (4 − 3
√
N)N − 2(

√
N − 1)

(
√
N − 2)N + 2(

√
N − 1)

<
N√
N − 1

− 2 , (11)

yielding that N ≥ 9. We take a closer look at N = 9 and α =
√

9− 1 = 2. This example is briefly discussed 
in [16] where it is stated that computer experiments suggest that the orbit of 2 never becomes periodic and 
therefore it is hard to find the natural extension explicitly. However, when simulating the natural extension, 
it seems that there are finitely many discontinuities; see Fig. 12.

We can also simulate the density of the invariant measure; see Fig. 13.
Remark that cylinders with zero mass tells us which sequences are not apparent in any continued 

fraction of numbers outside the attractor and for those numbers not in the attractor these sequences 
only appear in the start of the continued fraction. We can describe which cylinders these are. The 
hole is given by [2.5, 2.6]. We have 2.5 = [1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, . . .]9 and 2.6 =
[1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1 . . .]9. The boundary of a cylinder Δ(a1, . . . , an) is given by 
[a1, . . . , an, 1, r]9 and [a1, . . . , an, 2, r]9 where r is the expansion of 2. Now a cylinder is contained in [2.5, 2.6]
if 2.5 < [a1, . . . , an, 1, r]9 < 2.6 and 2.5 < [a1, . . . , an, 2, r]9 < 2.6. Note that here we can have a clear de-
scription of the attractor and therefore for the admissible sequences. Simulation shows us that there are a lot 
of different settings in which you find an attractor strictly smaller than the interval. In Fig. 14 simulations 
for several values of N are shown. On the y-axes α is given and on the x-axes the attractor is plotted. For 
example, for N = 9 we see that for α = 1 there is no attractor strictly smaller than the interval. There is 
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Fig. 13. A Simulation of the density for N = 9 and α = 2 using the Gauss–Kuzmin–Lévy method.

Fig. 14. Attractors plotted for several values of N .
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an attractor for α = 1.8 and also for example for α = 2. The pattern seems to be rather regular. Moreover, 
more ‘holes’ seem to appear for large N and large α.

3.3. Entropy

Entropy for a dynamical system has been introduced by Kolmogorov and Sinai in 1959. For a dynamical 
system related to continued fraction expansions it gives information about the speed of convergence for 
a typical point in that system. Entropy as a function of a parameter α is widely studied for Nakada’s 
α-expansions (see [5–7,29,30]). Also for the (a, b)-continued fractions the entropy is studied [4]. A special 
interest goes to monotonicity which can be proven (for both cases) by using matching. It is shown that 
matching implies monotonicity and that matching holds almost everywhere. In this section we look at 
entropy as a function of α ∈ (0, 

√
N − 1] for a fixed N . For our family we do not know whether matching 

holds almost everywhere. In fact, it is not even clear whether matching occurs for all N neither whether 
matching implies monotonicity. Certain conditions used to prove this in the case of Nakada α-expansions 
do not hold for our family and therefore we cannot mimic the proof of [6]. Let us first give the definition of 
matching.

Definition 1 (Matching). We say matching holds for α if there are K, M ∈ N such that TK
N,α(α+1) = TM

N,α(α). 
The numbers K, M are called the matching exponents, K −M is called the matching index and an interval 
(c, d) such that for all α ∈ (c, d) we have the same matching exponents is called a matching interval.

Note that for Nakada’s α-expansions all rationals have a finite expansion and thus match in 0 or before. 
For any rational in the domain a matching interval is found. For our family all rationals will have an infinite 
expansion. Since for all α ∈ (0, 

√
N − 1) the expansion is infinite there are no values for which we find 

matching ‘trivially’. Even if we find an α for which matching holds it is hard to conclude it must hold in 
a neighborhood of α as well since we cannot find an algebraic relation. The presence of the holes for some 
α might also lead to problems. The only reason to believe matching can help us to prove monotonicity is 
the fact that it works for related families and for specific choices of N and α we can find matching where 
we can see the function is monotonic. We will now discuss the 2α-expansions in detail. Moreover, we prove 
that the entropy is constant for α ∈

(√
33−5
2 ,

√
2 − 1

)
when N = 2.

3.3.1. The entropy of 2α-expansions
We start with an example for which there is no α such that we have an attractor strictly smaller than 

the interval. Also, simulation indicates that there seems to be a plateau in the neighborhood of 
√

2− 1. For 
this value we can calculate the entropy since we have the density for this specific case of α; see Section 3.1
also see Fig. 15 for a plot of the entropy function. When taking a closer look at this plateau we found that 
on the interval [

√
33−5
2 , 

√
2 − 1] the entropy is constant on this interval. The point 

√
33−5
2 is the point for 

which all smaller α have that there are always 5 or more branches and for all larger α there are always 
4 branches. If we look at a simulation of the natural extension it seems that for these values of α we can 
construct a natural extension. Indeed this turned out to be the case (see Theorem 3.2). For 

√
33−5
2 we find 

matching exponents (0, 2) and for 
√

2 − 1 we find matching exponents (0, 1). Inside the interval itself we 
find (3, 3). These values were first found by simulation, in Theorem 3.1 we give a proof of this.

Theorem 3.1. Let N = 2, and let α ∈
(√

33−5
2 ,

√
2 − 1

)
. Then T 3(α) = T 3(α + 1).

Proof. Note that the interval (α, α + 1) has as natural partition {I1, I2, I3, I4}, where

I1 =
( 2

, α + 1
)
, I2 =

( 2
,

2 ]
, I3 =

( 2
,

2 ]
,

α + 2 α + 3 α + 2 α + 4 α + 3
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Fig. 15. Entropy as function of α for N = 2.

and

I4 =
[
α,

2
α + 4

]
,

where

T (x) = 2
x
− d, if x ∈ Id for d = 1, 2, 3, 4.

An easy calculation shows that

T (α) = 2 − 4α
α

∈ I1

(and T (α) = 2
α+2 when α =

√
2 − 1, and T (α) = α + 1 when α =

√
33−5
2 ), so that

T 2(α) = 3α− 1
1 − 2α.

Furthermore, we have that

T (α + 1) = 1 − α

α + 1 ∈ I4,

(and T (α + 1) =
√

2 − 1 when α =
√

2 − 1; T (α + 1) = 2
α+4 when α =

√
33−5
2 ), so that

T 2(α + 1) = 6α− 2
1 − α

.

Now let

K1 =
(√

33 − 5
2 ,

√
51 − 6

3

]
, K2 =

(√
51 − 6

3 ,

√
129 − 9

6

]

and
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K3 =
(√

129 − 9
6 ,

√
2 − 1

)
.

For α ∈ K1 we have that T 2(α) ∈ I3 and so

T 3(α) = 5 − 13α
3α− 1

and T 2(α + 1) ∈ I4 which results in

T 3(α + 1) = 5 − 13α
3α− 1 = T 3(α) .

For α ∈ K2 we have that T 2(α) ∈ I2 and so

T 3(α) = 4 − 10α
3α− 1

and T 2(α + 1) ∈ I3 which results in

T 3(α + 1) = 4 − 10α
3α− 1 = T 3(α) .

For α ∈ K3 we have that T 2(α) ∈ I1 and so

T 3(α) = 3 − 7α
3α− 1

and T 2(α + 1) ∈ I2 which results in

T 3(α + 1) = 3 − 7α
3α− 1 = T 3(α) . �

Earlier we thought we were just lucky finding the natural extension in case N = 2 and α =
√

2 − 1. 
Note that from this natural extension we immediately also have the case N = 2, α =

√
33−5
2 ; just “invert” 

the time and exchange the two coordinates in the natural extension we found for N = 2 and α =
√

2 − 1. 
However, from Theorem 3.1 it immediately follows that we can also ‘build’ the natural extension for every 
α ∈

(√
33−5
2 ,

√
2 − 1

)
. Clearly, from Theorem 3.1 we see that we have three different cases.

Theorem 3.2. For α ∈
(√

33−5
2 ,

√
2 − 1

)
the natural extension can be build as in Fig. 16. Moreover the 

invariant density is given by

f(x) = H

(
D

2 + Dx
1(α,T (α+1)) + E

2 + Ex
1(T (α+1),T 2(α)) + F

2 + Fx
1(T 2(α),α+1)

− A

2 + Ax
1(α,T 2(α+1)) −

B

2 + Bx
1(T 2(α+1),T (α)) −

C

2 + Cx
1(T (α),α+1)

)

with A =
√

33−5
2 , B =

√
2 − 1, C =

√
33−3
6 , D = 2

√
2 − 2, E =

√
33−3
2 , F =

√
2 and H−1 =

log
( 1

32 (3 + 2
√

2)(7 +
√

33)(
√

33 − 5)2
)
≈ 0.25 the normalizing constant.

Proof. We guessed the shape of the domain of natural extension by studying a simulation. For the map on 
this domain we used T (x, y) =

(
T (x), 2

)
.
d1(x)+y
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Fig. 16. Ω and T (Ω) with α ∈ K1.

For α ∈ K1, we find the following equations:

A = 2
4+E A =

√
33−5
2

B = 2
4+D B =

√
2 − 1

C = 2
3+E C =

√
33−3
6

D = 2
2+A implying that D = 2

√
2 − 2

E = 2
1+C E =

√
33−3
2

F = 2
1+B F =

√
2 .

A similar picture emerges for α ∈ K2 and α ∈ K3. Moreover, you will find the same set of equations and 
thus the same heights! Note that for α < 2

5 we have T 2(α) < T (α) for α = 2
5 we have T 2(α) = T (α) and for 

α > 2
5 we have T 2(α) > T (α). When you integrate over the second coordinate you find the density given in 

the statement of the theorem. For the normalizing constant we have the following integral

H =
α+1∫
α

D

2 + Dx
1(α,T (α+1)) . . .−

C

2 + Cx
1(T (α),α+1) dx

= log
(

2 + DT (α + 1)
2 + Dα

)
+ . . . + log

(
2 + CT (α)

2 + C(α + 1)

)

= log
(

2 + DT (α + 1)
2 + Dα

· · · 2 + CT (α)
2 + C(α + 1)

)

It seems that H depends on α but this is not the case. We will calculate one term since all others have a 
similar calculation.

log
(

2 + DT (α + 1)
2 + Dα

)
= log

(
2 + (2

√
2 − 2)T (α + 1)

2 + (2
√

2 − 2)α

)

= log
(

2 + (2
√

2 − 2)1−α
1+α

2 + (2
√

2 − 2)α

)

= log
(

2(1 + α) + (2
√

2 − 2)(1 − α)
2 + (2

√
2 − 2)α

)
+ log(1 + α)

= log
(√

2
√

2(1 + α) +
√

2(
√

2 − 1)(1 − α)√
)

+ log(1 + α)

2 + (2 2 − 2)α



122 C. Kraaikamp, N. Langeveld / J. Math. Anal. Appl. 454 (2017) 106–126
= log
(√

22 + (2
√

2 − 2)α
2 + (2

√
2 − 2)α

)
+ log(1 + α)

= log(
√

2) + log(1 + α)

When calculating the second term one finds 1
4 (
√

33 − 5) − log(1 + α) and so this cancels the log(1 + α)
term. �

One might hope that when calculating the entropy using Rohlin’s formula, terms will cancel as well. 
These integrals result in Li2 functions depending on α and things are not so easy anymore. We provide a 
more elegant proof to show that the entropy is constant on 

(√
33−5
2 ,

√
2 − 1

)
and then calculate the entropy 

for α =
√

2 − 1. We will use quilting introduced in [24]. Proposition 1 in this article can be formulated 
(specific to our case) in the following way:

Proposition 3.3. Let (Tα, Ωα, Bα, μ) and (Tβ , Ωβ , Bβ , μ) be two dynamical systems as in our setting. Further-
more let D1 = Ωα\Ωβ and A1 = Ωα\Ωβ. If there is a k ∈ N such that T k

α (D1) = T k
β (A1) then the dynamical 

systems are isomorphic.

Since isomorphic systems have the same entropy it will give us the following corollary.

Corollary 3.4. For N = 2 the entropy function is constant on 
(√

33−5
2 ,

√
2 − 1

)
and the value is approxi-

mately 1.14.

Proof. We show that for k = 3 we satisfy the condition in Proposition 3.3. Define Di = T i−1
α (D1) and 

Ai = T i−1
β (A1) for k = 1, 2, 3, 4. We find the following regions (see Fig. 17):

D1 = [α, β] × [A,D],

D2 = [T (β), T (α)] × [B,C],

D3 = [T 2(β), T 2(α)] × [E,F ],

D4 = [T 3(β), T 3(α)] ×
[

2
3 + F

,
2

3 + E

]
,

A1 = [α + 1, β + 1] × [C,F ],

A2 = [T (β + 1), T (α + 1)] × [D,E],

A3 = [T 2(β + 1), T 2(α + 1)] × [A,B],

A4 = [T 3(β + 1), T 3(α + 1)] ×
[

2
4 + B

,
2

4 + A

]
.

Note that since we have matching [T 3(β), T 3(α)] = [T 3(β + 1), T 3(α + 1)]. Now

2
3 + F

= 2
3 +

√
2

= 2
4 + B

= 2
4 +

√
2 − 1

,

2
3 + E

= 2
3 +

√
33−3
2

= 2
4 + A

= 2
4 +

√
33−5
2

and so we find D4 = A4.
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Fig. 17. Illustration of the quilting.

For the value of the entropy we use Rohlin’s formula for α =
√

2 − 1 (see [14,31]);

h(T√
2−1) =

√
2∫

√
2−1

log |T ′(x)|f(x) dx

= H

√
2∫

√
2−1

(log(2) − 2 log(x)) f(x) dx

= log(2) − 2H

√
2∫

√
2−1

log(x)f(x) dx

= log(2) − 2H

√
2∫

√
2−1

log(x)
(

(
√

33 − 3
4 + (

√
33 − 3)x

−
√

33 − 5
4 + (

√
33 − 5)x

)1√2−1,2(
√

2−1)

+(
√

33 − 3
4 + (

√
33 − 3)x

−
√

33 − 3
12 + (

√
33 − 3)x

)12(
√

2−1),
√

2

)
dx

= log(2) − 2H
(

(Li2(−
x(
√

33 − 3)
4 ) + log(x(

√
33 − 3)
4 + 1)

−Li2(−
x(
√

33 − 5)
4 ) + log(x(

√
33 − 5)
4 + 1))

∣∣2(√2−1)√
2−1

+(Li2(−
x(
√

33 − 3)
4 ) + log(x(

√
33 − 3)
4 + 1)

−Li2(−
x(
√

33 − 5)
12 ) + log(x(

√
33 − 5)
12 + 1))

∣∣√2
2(

√
2−1)

)
≈ 1.14 . �
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Table 1
Observed matching exponents for N = 2: 1 if seen, 0 if not.

M\K 1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 0 0 0 0 0
2 0 0 0 1 0 1 0 0 0 0
3 0 0 1 0 1 0 1 0 1 0
4 0 0 0 1 0 1 0 1 0 1
5 0 0 0 0 1 0 1 0 1 0
6 0 0 0 0 0 1 0 1 0 1
7 0 0 0 0 0 0 1 0 1 0
8 0 0 0 0 0 0 0 1 0 1
9 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1 0 1

Fig. 18. Entropy as function of a for N = 36.

By looking at the graph displayed in Fig. 15 we can’t really find other matching exponents easily. To 
check for other matching exponents we can do the following. Suppose we are interested in finding a matching 
interval with exponents (n1, n2). We select a large number random points (say 10 000) from (0, 

√
N − 1). 

Then we looked at Tn1
α (α) − Tn2

α (α + 1) for these random points and we checked to see whether it is very 
close to 0. Note that if an interval was found this way with matching exponents (n1, n2) then we also find 
that interval for (n1 + 1, n2 + 1). Table 1 shows which matching exponents we found.

This is very different from Nakada’s α-continued fractions where you can find all possible matching 
exponents. The fact that we did not observe them does not mean they are not there. Maybe they are too 
small to observe using this method.

3.3.2. The entropy of 36α-expansions
For N ≥ 9 we expect different behavior due to the fact that for some α there is at least one subinterval 

on which the invariant measure is zero. If we pick N = 36 we have a map with only full branches for 
α = 1, 2, 3. Fig. 18 shows the entropy as function of α. The stars indicate those values which we could 
calculate theoretically.

Clearly, we can observe plateaus. If we look at the matching exponents we can observe that for all 
M, K ≤ 10 the only matching exponents we find are (3, 3), (4, 4), . . . (10, 10).

4. Conclusion

We have seen that the general form of the examples given yields a rather large family. In some examples 
we were able to construct the natural extension and therefore to find the invariant measure. In other 
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examples this was not the case. There does not seem to be an easy rule which tells you when the method 
will work and when it does not. The subfamily of the N -expansions we studied is not new, but it has not 
been studied in this detail with finitely many digits. Note that having the Gauss–Kuzmin–Lévy method 
for approximating the densities allowed us to study the entropy much easier due to computation time. 
We have seen that matching is helpful to prove monotonicity even though we did not mimic the proof for 
α-expansions. Motivated by similar results in the case of Nakada’s α-expansions the following questions 
about entropy arise:

• For every N ∈ N≥2 is there an interval in (0, 
√
N − 1) for which the entropy function is constant?

• For a fixed N ∈ N≥2 for which α ∈ (0, 
√
N − 1) do we have matching?

• Does matching holds on an open dense set? Does matching hold almost everywhere?
• What is the influence of an attractor strictly smaller than the interval [α, α + 1] on the entropy?

We thank the referee for the valuable remarks concerning the presentation.
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