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Abstract: In this paper, we investigate the existence and asymptotic behavior of ground

state sign-changing solutions to a class of Schrödinger-Poisson systems{
−�u+ V (x)u+ μφu = λf(x)u+ |u|2u, x ∈ R

3,

−�φ = u2, x ∈ R
3,

where V is a smooth function, f is nonnegative, μ > 0, λ < λ1 and λ1 is the first eigenvalue of

the problem −�u+V (x)u = λf(x)u in H. With the help of the sign-changing Nehari manifold,

we obtain that the Schrödinger-Poisson system possesses at least one ground state sign-changing

solution uμ for all μ > 0 and each λ < λ1. Moreover, we prove that its energy is strictly larger

than twice that of ground state solutions. Besides, we give a convergence property of uμ as

μ ↘ 0. This paper can be regarded as the complementary work of Shuai and Wang [23], Wang

and Zhou [24].

Key words: Schrödinger-Poisson system; nonlocal term; sign-changing solution; ground

state

1 Introduction and main results

In this paper, we are concerned the existence and asymptotic behavior of ground

state sign-changing solutions of the following Schrödinger-Poisson system:{ −�u+ V (x)u+ μφu = λf(x)u+ |u|2u, x ∈ R
3,

−�φ = u2, x ∈ R
3,

(1)

where V is a smooth function, μ > 0 and f is nonnegative.

∗Corresponding author. Tel.: +86 23 68253135; fax: +86 23 68253135. E-mail address: tangcl@swu.edu.cn

(C.-L. Tang).
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System (1) stems from quantum mechanics models and semiconductor theory, and it

has been studied extensively. From a physical standpoint, Schrödinger-Poisson systems

describe systems of identical charged particles interacting each other if magnetic effects

could be ignored and their solutions are standing waves. The nonlinearity models the

interaction between the particles. System (1) is coupled with a Poisson equation, which

implies that the potential is determined by the charge of the wave function. The term μφu

considers the interaction with the electric field. For more details about the mathematical

and physical background of system (1), please refer to the papers [2, 3, 4, 5] and the

references therein.

When μ = 0 in system (1), it reduces to the classic semilinear elliptic problem.

Bartsch, Weth and Willem [8] have obtained a ground state sign-changing solution. After

that many authors are devoted to the investigations for a variety of elliptic equations

on a bounded domain or the whole space. Remarkably, system (1) is nonlocal because

of the presence of the term μφu, which causes that the energy functional has totally

different properties from the case μ = 0. This phenomenon provokes some mathematical

difficulties, which make the study of system (1) particularly interesting.

Schrödinger-Poisson systems have been paid much attention to various authors, es-

pecially on the existence of positive solutions, multiple solutions, ground state solutions,

semiclassical states and the concentration behavior of positive solutions, see for example,

[10, 12, 17, 21, 22, 27] and the references therein. However, regarding the existence of

sign-changing solutions for the following Schrödinger-Poisson system{ −�u+ V (x)u+ μφu = h(u), x ∈ R
3,

−�φ = u2, x ∈ R
3,

(2)

to the best of our knowledge, there are a few results, such as [1, 11, 13, 14, 15, 16, 18,

19, 20, 23, 24, 26]. Especially, when the nonlinearity h satisfies 3-superlinear growth con-

dition, for example, if h(u) = |u|p−1u and p ∈ (3, 5), μ = 1, Liu, Wang and Zhang [19]

proved that system (2) has infinitely many sign-changing solutions by using the method of

invariant sets of descending flow. Wang and Zhou [24] obtained a sign-changing solution

by means of a constraint variational method combining the Brouwer degree theory if the

potential function V satisfies the following condition:

(V ) V ∈ C(R3,R+) such that H ⊂ H1(R3) and for all s ∈ (2, 6), the continuous

embedding H ↪→ Ls(R3) is compact, where

H :=

{
u ∈ D1,2(R3) :

∫
R3

V (x)u2dx < +∞
}
. (3)

Noting that the method in [24] strongly depends on the fact that the nonlinearity h is

homogeneous, Shuai and Wang [23] used constraint variational methods and quantitative

deformation lemma, and studied the existence and asymptotic behavior of ground state

sign-changing solutions for system (2), if μ is a positive parameter, V satisfies condition

(V ) and h ∈ C1(R,R) satisfies the following conditions:
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(h1) h(s) = o(|s|) as s → 0;

(h2) lims→+∞
h(s)
s5

= 0;

(h3) lims→+∞
H(s)
s4

= +∞, where H(s) =
∫ s

0
h(t)dt;

(h4)
h(s)
|s|3 is an increasing function of s ∈ R\{0}.

Recently, Chen and Tang [11] obtained the similar results with Shuai and Wang [23] if

Schrödinger-Poisson system (2) involves the non-autonomous nonlinearity K(x)h(u) and

the vanishing potential function by replacing condition (h4) with the weaker condition

(h5) there exists a θ0 ∈ (0, 1) such that for all t > 0, x ∈ R
3 and τ ∈ R\{0},

K(x)

[
f(τ)

τ 3
− f(tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

|1− t2|
(tτ)2

≥ 0.

Here, we must also point out that Chen and Tang [11] and Shuai and Wang [23]

investigated the existence and asymptotic behavior of ground state sign-changing solutions

for system (2) when the nonlinearity satisfies 3-superlinear growth condition at infinity

and superlinear growth at zero. So, a natural question is whether these conditions can

be relaxed to obtain the same results. Motivated by the previously mentioned works,

in the present paper, we shall consider the case the nonlinearity satisfies 3-linear growth

condition at infinity and linear growth at zero, in other words, we will investigate the

existence and asymptotic behavior of ground state sign-changing solutions to system (1).

In order to avoid involving too much details for checking the compactness, we also

assume that the potential function V also satisfies condition (V ) and the weight function

f satisfies

(f) f ∈ L
3
2 (R3)\{0} is nonnegative.

When dealing with system (1), we delicately analyze the behaviors of the term μφu

and the term |u|2u, and find that both μ
∫
R3 φu

2dx and
∫
R3 u

4dx are 4-order, and neither

of them can control each other. This observation indicates that system (1) may have

sign-changing solutions for all μ > 0. On the other hand, this observation also indicates

that the methods used in above papers cannot be used here directly.

Next, we give some notations. Throughout this paper, let H be the Sobolev spaces

defined by (3) and equipped with the norms

‖u‖ =

(∫
R3

|∇u|2 + V (x)u2dx

) 1
2

,

(∫
R3 |∇u|2dx) 1

2 be the norms of D1,2(R3), | · |s be the usual Lebesgue space Ls(R3) norm,

S be the best Sobolev constant for the embedding of H in L4(R3). In particular,

S = inf
u∈H\{0}

‖u‖2
|u|24

, |u|4 ≤ S− 1
2‖u‖. (4)
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For u ∈ H1(R3), Lax-Milgram theorem implies that there exists a unique φu ∈
D1,2(R3) such that for all v ∈ D1,2(R3),∫

R3

∇φu · ∇v =

∫
R3

u2vdx,

that is, φu is the weak solution of −�φ = u2. Furthermore,

φu(x) =
1

4π

∫
R3

u2(y)

|x− y|dy,

Lφu(u) =

∫
R3

φuu
2dx =

1

4π

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy. (5)

Define an energy functional Jμ on the space H by

Jμ(u) =
1

2
‖u‖2 + μ

4

∫
R3

φuu
2dx− λ

2

∫
R3

f(x)u2dx− 1

4

∫
R3

u4dx, ∀u ∈ H.

Then Jμ is well defined on H and is of C1, and for each u, v ∈ H, we have

〈J ′
μ(u), v〉 =

∫
R3

(∇u · ∇v + V (x)uv + μφuuv) dx−
∫
R3

(λf(x)uvdx+ |u|2uv)dx,

where 〈·, ·〉 denotes the usual duality. It is standard to verify that the weak solutions of

system (1) correspond to the critical points of the functional Jμ. Furthermore, if u ∈ H is

a critical point of Jμ, (u, φu) is a solution of system (1). Since φu is nonnegative, (u, φu) is

a sign-changing solution of system (1) if and only if u is a critical point of Jμ and u± �= 0,

where

u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}.

Here a solution is called a ground state (or least energy) sign-changing one if it possesses

the least energy among all sign-changing solutions. It follows from (5) and Fubini theorem

that

Lφu+
(u−) =

∫
R3

φu+ |u−|2dx =

∫
R3

φu− |u+|2dx = Lφu− (u
+).

By a simple calculation, we can obtain that

Jμ(u) = Jμ(u
+) + Jμ(u

−) +
μ

2
Lφu+

(u−), (6)

〈J ′
μ(u), u

+〉 = 〈J ′
μ(u

+), u+〉+ μLφu+
(u−), (7)

〈J ′
μ(u), u

−〉 = 〈J ′
μ(u

−), u−〉+ μLφu+
(u−). (8)
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When μ = 0, system (1) does not depend on the nonlocal term μφuu any more, i.e., it

becomes

−�u+ V (x)u = λf(x)u+ |u|2u, x ∈ R
3, (9)

which corresponds to the energy functional J0 : H → R by

J0(u) =
1

2
‖u‖2 − λ

2

∫
R3

f(x)u2dx− 1

4

∫
R3

u4dx, ∀u ∈ H.

Similarly, J0 is well defined on H and is of C1, and for any u, v ∈ H,

〈J ′
0(u), v〉 =

∫
R3

(∇u · ∇v + V (x)uv)dx− λ

∫
R3

f(x)uvdx−
∫
R3

|u|2uvdx.

From (6), (7), (8), it is easy to see that there are some essential differences in studying the

sign-changing solutions for system (1) between μ > 0 and μ = 0. Therefore, the methods

of seeking sign-changing solutions for problems as (9) seem to be not applicable to system

(1).

In order to obtain the existence results of sign-changing solutions, we will consider

the following minimization problems:

m0 := inf{J0(u) : u ∈ M0}, mμ := inf{Jμ(u) : u ∈ Mμ},

Mμ = {u ∈ H : u± �= 0, 〈J ′
μ(u), u

+〉 = 〈J ′
μ(u), u

−〉 = 0},

M0 = {u ∈ H : u± �= 0, 〈J ′
0(u), u

+〉 = 〈J ′
0(u), u

−〉 = 0}.
It is easy to see that if (u, φu) is a sign-changing solution of system (1), one can get

u ∈ Mμ. Clearly, Mμ is a much smaller set than H and so it is easier to study Jμ on

Mμ. The minimizers of Mμ and M0 are corresponding to the sign-changing solutions for

system (1) and problem (9), respectively.

Another aim of the paper is to show the energy of any sign-changing solutions of

system (1) is strictly larger than twice that of the ground state solutions of system (1),

and establish the convergence of the ground state sign-changing solution as μ ↘ 0. As

usual, we seek the ground state solutions of system (1) and problem (9) as minimizers of

corresponding energy functionals Jμ and J0 on the following Nehari manifolds:

Nμ = {u ∈ H\{0} : 〈J ′
μ(u), u〉 = 0},

N0 = {u ∈ H\{0} : 〈J ′
0(u), u〉 = 0},

respectively. Similarly, let

c0 := inf{J0(u) : u ∈ N0}, cμ := inf{Jμ(u) : u ∈ Nμ}.
Defined by λ1 the first eigenvalue of the problem −�u+V (x)u = λf(x)u in H under

hypothesis (f), our main results can be stated as follows.
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Theorem 1. If hypotheses (f) and (V ) hold, μ > 0 and λ < λ1, system (1) has at least

one ground state sign-changing solution which changes sign only once, and mb > 2cb.

Theorem 2. If hypotheses (f) and (V ) hold, μ > 0 and λ < λ1, for each sequence {μn}
with μn ↘ 0 as n → ∞, there exists a subsequence, still denoted by {μn}, such that

uμn convergent to u0 strongly in H, where u0 is a ground state sign-changing solution of

problem (9) which changes sign only once.

Remark 3. Our results make good explanation for the existence and asymptotic behavior

of ground state sign-changing solutions to system (1). However, if N = 4, system (1)

involves the critical nonlinearity |u|2u because 2∗ = 4. Whether system (1) admits any

sign-changing solution for λ < λ1 and μ > 0 or not remains incognito. So, we propose an

open question whether system (1) has sign-changing solutions if N = 4.

Remark 4. Comparing with [11, 18, 23, 24], we investigate the existence of ground state

sign-changing solutions to system (1) and give a convergence property of ground state sign-

changing solutions as μ ↘ 0 when the nonlinearity satisfies 3-linear growth condition at

infinity and linear growth at zero. However, Chen and Tang [11], Liang, Xu and Zhu [18],

Shuai and Wang [23], Wang and Zhou [24] considered the case the nonlinearity satisfies

3-superlinear growth condition at infinity and superlinear growth at zero. Since both

μ
∫
R3 φu

2dx and
∫
R3 u

4dx are 4-order, we introduce some new and more intuitive ideas to

prove that Mμ �= ∅. Furthermore, our results can be regarded as the supplementary work

of [23] and [24].

We organize this paper as follows. In Section 2 we present some notations and prove

some useful preliminary lemmas which pave the way for getting one ground state sign-

changing solution. Then Section 3 is devoted to proving Theorem 1 and Theorem 2.

2 Some preliminary lemmas

In this section, we give some preliminary lemmas which are crucial and pave the way

for proving our results. We begin this section by introducing some lemma familiar with

us.

Lemma 5. Assume that hypotheses (f) and (V ) hold. Then the functional F : u ∈ H �→∫
R3 f(x)u

2dx is weakly continuous. For each v ∈ H, G : u ∈ H �→ ∫
R3 f(x)uvdx is also

weakly continuous.

Lemma 6. Assume that condition (V ) holds. Then for any u ∈ H, the following state-

ments are valid.

(i) There exists C > 0 such that
∫
R3 |∇φu|2dx ≤ C‖u‖4 and

Lφu(u) ≤ C|u|4α ≤ C‖u‖4, where α =
12

5
.

(ii) If un ⇀ u in H, we have φun ⇀ φu in H and

lim
n→∞

Lφun
(un) = Lφu(u).
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Now we check that the set Mμ �= ∅ if there exists u ∈ H with some conditions.

Lemma 7. If μ > 0, λ < λ1, u ∈ H satisfies u± �= 0 and⎧⎪⎨
⎪⎩

μLφu+
(u+) + μLφu+

(u−) <
∫
R3

|u+|4dx,

μLφu− (u
−) + μLφu+

(u−) <
∫
R3

|u−|4dx,
(10)

there is a unique pair (su, tu) of positive numbers such that suu
+ + tuu

− ∈ Mμ and

Jμ(suu
+ + tuu

−) = max
s,t≥0

Jμ(su
+ + tu−).

Proof. Let λ < λ1, u ∈ H with u± �= 0 and (10), then su+ + tu− is contained in Mμ if

and only if⎧⎪⎨
⎪⎩

s2‖u+‖2 + μs4Lφu+
(u+) + μs2t2Lφu+

(u−) = λs2
∫
R3

f(x)|u+|2dx+ s4
∫
R3

|u+|4dx,

t2‖u−‖2 + μt4Lφu− (u
−) + μs2t2Lφu+

(u−) = λt2
∫
R3

f(x)|u−|2dx+ t4
∫
R3

|u−|4dx.

Hence, we only need to show that there is only one positive solution (S, T ) to the

following system⎧⎪⎪⎨
⎪⎪⎩

S

(∫
R3

|u+|4dx− μLφu+
(u+)

)
− μTLφu+

(u−) = ‖u+‖2 − λ

∫
R3

f(x)|u+|2dx,

T

(∫
R3

|u−|4dx− μLφu− (u
−)
)
− μSLφu+

(u−) = ‖u−‖2 − λ

∫
R3

f(x)|u−|2dx.
(11)

It is easy to see from (10) that⎧⎪⎨
⎪⎩

μLφu+
(u−) <

∫
R3

|u+|4dx− μLφu+
(u+),

μLφu+
(u−) <

∫
R3

|u−|4dx− μLφu− (u
−).

Consequently,

D =

∣∣∣∣∣∣
∫
R3 |u+|4dx− μLφu+

(u+) −μLφu+
(u−)

−μLφu+
(u−)

∫
R3

|u−|4dx− μLφu− (u
−)

∣∣∣∣∣∣ > 0.

Together with λ < λ1, we have ‖u±‖2 > λ
∫
R3 f(x)|u±|2dx and

DS =

∣∣∣∣∣∣∣
‖u+‖2 − λ

∫
R3

f(x)|u+|2dx −μLφu+
(u−)

‖u−‖2 − λ

∫
R3

f(x)|u−|2dx
∫
R3

|u−|4dx− μLφu− (u
−)

∣∣∣∣∣∣∣ > 0,

DT =

∣∣∣∣∣∣∣

∫
R3

|u+|4dx− μLφu+
(u+) ‖u+‖2 − λ

∫
R3

f(x)|u+|2dx

−μLφu+
(u−) ‖u−‖2 − λ

∫
R3

f(x)|u−|2dx

∣∣∣∣∣∣∣ > 0.
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Let S = DS

D
and T = DT

D
, then (S, T ) ∈ (0,+∞) × (0,+∞) is the unique solution to

system (11). Choosing su =
√
S and tu =

√
T , we can obtain that (su, tu) is the unique

pair of positive numbers such that suu
+ + tuu

− ∈ Mμ.

Furthermore, since

Jμ(su
+ + tu−) =

s2

2
‖u+‖2 + μs4

4
Lφu+

(u+) +
μs2t2

2
Lφu+

(u−) +
t2

2
‖u−‖2

+
μt4

4
Lφu− (u

−)− λs2

2

∫
R3

f(x)|u+|2dx− s4

4

∫
R3

|u+|4dx

− λt2

2

∫
R3

f(x)|u−|2dx− t4

4

∫
R3

|u−|4dx,
it is not difficult to verify that

∂2Jμ(su
+ + tu−)

∂s2
=

(
‖u+‖2 − λ

∫
R3

f(x)|u+|2dx
)
+ μt2Lφu+

(u−)

+ 3s2
(
μLφu+

(u+)−
∫
R3

|u+|4dx
)
,

∂2Jμ(su
+ + tu−)

∂t2
=

(
‖u−‖2 − λ

∫
R3

f(x)|u−|2dx
)
+ μs2Lφu+

(u−)

+ 3t2
(
μLφu− (u

−)−
∫
R3

|u−|4dx
)
.

From the fact that (s2u, t2u) is the solution of system (11), we have

∂2Jμ(su
+ + tu−)

∂s2

∣∣∣
(su, tu)

= −2s2u

(∫
R3

|u+|4dx− μLφu+
(u+)

)
< 0, (12)

∂2Jμ(su
+ + tu−)

∂t2

∣∣∣
(su, tu)

= −2t2u

(∫
R3

|u−|4dx− μLφu− (u
−)
)

< 0, (13)

∂2Jμ(su
+ + tu−)

∂s∂t

∣∣∣
(su, tu)

= 2μsutuLφu+
(u−) > 0. (14)

We consider the Hessian matrix of Jμ(su
+ + tu−), i.e.

H(su, tu) =

(
∂2Jμ(su++tu−)

∂s2
∂2Jμ(su++tu−)

∂s∂t
∂2Jμ(su++tu−)

∂s∂t

∂2Jμ(su++tu−)

∂t2

)
(su,tu)

.

Combining with (10), one can obtain that

detH(su, tu) =4s2ut
2
u

(∫
R3

|u+|4dx− μLφu+
(u+)

)(∫
R3

|u−|4dx− μLφu− (u
−)
)

− 4μ2s2ut
2
u(Lφu+

(u−))2

=4s2ut
2
u

[(∫
R3

|u+|4dx− μLφu+
(u+)

)(∫
R3

|u−|4dx− μLφu− (u
−)
)

− (
μLφu+

(u−)
)2]

>0.

(15)
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It is easy to see that the maximum point can not be achieved on the boundary of R2
+.

Therefore, it follows from (12),(13),(14),(15) that

Jμ(suu
+ + tuu

−) = max
s,t≥0

Jμ(su
+ + tu−),

and we complete the proof.

Lemma 8. Assume that λ < λ1 and u ∈ Mμ, then (10) holds.

Proof. Let u ∈ Mμ, we have from the definition of Mμ that u± �= 0 and⎧⎪⎨
⎪⎩

‖u+‖2 + μLφu+
(u+) + μLφu+

(u−) = λ

∫
R3

f(x)|u+|2dx+

∫
R3

|u+|4dx,

‖u−‖2 + μLφu− (u
−) + μLφu+

(u−) = λ

∫
R3

f(x)|u−|2dx+

∫
R3

|u−|4dx.
(16)

Since λ < λ1 and λ1 is the first eigenvalue of the problem −�u+ V (x)u = λf(x)u in H,

we can obtain that

‖u+‖2 > λ

∫
Ω

f(x)|u+|2dx, ‖u−‖2 > λ

∫
Ω

f(x)|u−|2dx,

which implies from (16) that⎧⎪⎨
⎪⎩

μLφu+
(u+) + μLφu+

(u−) <
∫
R3

|u+|4dx,

μLφu− (u
−) + μLφu+

(u−) <
∫
R3

|u−|4dx,

Then we have completed the proof.

Lemma 9. Assume that μ > 0, λ < λ1, u ∈ H with u± �= 0, we have

(i) if 〈J ′
μ(u), u

±〉 ≤ 0, there is a unique pair (su, tu) ∈ (0, 1]× (0, 1] such that

suu
+ + tuu

− ∈ Mμ;

(ii) if (10) holds and 〈J ′
μ(u), u

±〉 ≥ 0, there is a unique pair (su, tu) ∈ [1,+∞)× [1,+∞)

such that

suu
+ + tuu

− ∈ Mμ.

Proof. (i) If u ∈ H with u± �= 0 and 〈J ′
μ(u), u

±〉 ≤ 0, we have⎧⎪⎨
⎪⎩

‖u+‖2 + μLφu+
(u+) + μLφu+

(u−) ≤ λ

∫
R3

f(x)|u+|2dx+

∫
R3

|u+|4dx,

‖u−‖2 + μLφu− (u
−) + μLφu+

(u−) ≤ λ

∫
R3

f(x)|u−|2dx+

∫
R3

|u−|4dx,

then ⎧⎪⎨
⎪⎩

‖u+‖2 − λ

∫
R3

f(x)|u+|2dx ≤
∫
R3

|u+|4dx− μLφu+
(u+)− μLφu+

(u−),

‖u−‖2 − λ

∫
R3

f(x)|u−|2dx ≤
∫
R3

|u−|4dx− μLφu− (u
−)− μLφu+

(u−).
(17)
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Since λ < λ1, it is clear that ‖u±‖2 > λ
∫
R3 f(x)|u±|2dx, then⎧⎪⎨

⎪⎩
μLφu+

(u+) + μLφu+
(u−) <

∫
R3

|u+|4dx,

μLφu− (u
−) + μLφu+

(u−) <
∫
R3

|u−|4dx.

By Lemma 7, there is a unique pair (su, tu) of positive numbers such that

suu
+ + tuu

− ∈ Mμ.

It means that (s2u, t2u) is the solution of system (11). Similar to the argument of Lemma

7, we have from (17) that

Ds2u
=

(
‖u+‖2 − λ

∫
R3

f(x)|u+|2dx
)(∫

R3

|u−|4dx− μLφu− (u
−)
)

+ μLφu+
(u−)

(
‖u−‖2 − λ

∫
R3

f(x)|u−|2dx
)

≤
(∫

R3

|u+|4dx− μLφu+
(u+)− μLφu+

(u−)
)(∫

R3

|u−|4dx− μLφu− (u
−)
)

+ μLφu+
(u−)

(∫
R3

|u−|4dx− μLφu− (u
−)− μLφu+

(u−)
)
.

=

(∫
R3

|u+|4dx− μLφu+
(u+)

)(∫
R3

|u−|4dx− μLφu− (u
−)
)
− μ2(Lφu+

(u−))2

= D.

Therefore, s2u =
D

s2u

D
≤ 1. Similarly, t2u =

D
t2u

D
≤ 1. Then there is a unique pair (su, tu) ∈

(0, 1]× (0, 1] such that suu
+ + tuu

− ∈ Mμ.

(ii) If (10) holds, by Lemma 7, there is a unique pair (su, tu) of positive numbers such

that suu
+ + tuu

− ∈ Mμ. Similar to the proof of (i), we can obtain from 〈J ′
μ(u), u

±〉 ≥ 0

that (ii) holds.

Lemma 10. If λ < λ1, for any u ∈ H with μLφu(u) <
∫
R3 u

4dx, there exists a unique

s̄u > 0 such that s̄uu ∈ Nμ. Moreover, Jμ(s̄uu) > Jμ(su) for all s ≥ 0 and s �=s̄u.

Proof. If λ < λ1 and u ∈ H satisfies μLφu(u) <
∫
R3 u

4dx. Clearly, su ∈ Nμ if and only if

s2‖u‖2 + s4μLφu(u) = λs2
∫
R3

f(x)u2dx+ s4
∫
R3

u4dx,

it is easy to see that there exists a unique s̄u =
(‖u‖2−λ

∫
R3 f(x)u2dx∫

R3 u4dx−μLφu (u)

) 1
2
such that s̄uu ∈ Nμ.

Furthermore, since

∂Jμ(su)

∂s
= s

[(
‖u‖2 − λ

∫
R3

f(x)u2dx

)
− s2

(∫
R3

u4dx− μLφu(u)

)]
,

we have Jμ(s̄uu) > Jμ(su) for all s ≥ 0 and s �= s̄u.

10



Lemma 11. Assume that hypotheses (f), (V ) hold, μ > 0 and λ < λ1, we have

(i) cμ > 0 is attained by some vμ ∈ Nμ and vμ is a constant sign critical point of Jμ;

(ii) mμ > 0 is attained by some uμ ∈ Mμ and uμ is a sign-changing critical point of Jμ.

Proof. (i) Firstly, we will show that for all μ > 0, there exists u ∈ H such that μLφu(u) <∫
R3 u

4dx, which implies from Lemma 10 that Nμ �= ∅. Otherwise, there exists μ0 > 0 such

that for all u ∈ H,
∫
R3 u

4dx ≤ μ0Lφu(u) ≤ Cμ0|u|4α by Lemma 6. Choosing u0 �= 0, u0 ∈ H

and uρ
0(x) = u0(

x
ρ
) for all ρ > 0 and x ∈ R

3, we have that uρ
0 ∈ H and

|uρ
0|4α∫

R3 |uρ
0|4dx

=

(∫
R3 |u0(

x
ρ
)|αdx

) 4
α

∫
R3 |u0(

x
ρ
)|4dx =

(∫
R3 |u0(x)|αρ3dx

) 4
α∫

R3 |u0(x)|4ρ3dx =
ρ2|u0|4α∫
R3 |u0|4dx.

Therefore,
|uρ

0|4α∫
R3 |uρ

0|4dx < 1
Cμ0

for small enough ρ > 0, which contradicts our assumption.

Secondly, for each u ∈ Nμ, it follows from λ < λ1 and Sobolev inequality (4) that

‖u‖2 + μLφu(u) = λ

∫
R3

f(x)u2dx+

∫
R3

u4dx ≤ λ

λ1

‖u‖2 + 1

S2
‖u‖4.

Then

‖u‖ ≥ S

(
1− λ

λ1

) 1
2

> 0,

and

Jμ(u) =
1

4

(
‖u‖2 − λ

∫
R3

f(x)u2dx

)
≥ 1

4

(
1− λ

λ1

)
‖u‖2.

Therefore,

cμ = inf
u∈Nμ

Jμ(u) ≥ 1

4
S2

(
1− λ

λ1

)2

> 0,

and Jμ is coercive and bounded below on Nμ for all μ > 0 and λ < λ1.

Let {vn} ⊂ Nμ is a minimizing sequence for Jμ. Obviously, Jμ(vn) = Jμ(|vn|) and

|vn| ∈ Nμ and therefore we can assume from the beginning that vn(x) ≥ 0 a.e. in R
3 and

for all n. It follows from the fact Jμ is coercive on Nμ that the sequence {vn} is bounded

in H, so that, up to subsequences, vn ⇀ vμ in H and vμ(x) ≥ 0. We now prove that

vn → vμ strongly in H. Supposing the contrary, then ‖vμ‖ < lim inf
n→∞

‖vn‖, we get from

Lemmas 5, 6 that

‖vμ‖2 + μLφvμ
(vμ) < λ

∫
R3

f(x)v2μdx+

∫
R3

v4μdx,

which means that vμ(x) �≡ 0 in R
3 and μLφvμ

(vμ) <
∫
R3 v

4
μdx by λ < λ1. By Lemma 10,

there exists a unique s̄v > 0 such that s̄vvμ ∈ Nμ. Moreover, Jμ(s̄vvn) ≤ Jμ(vn) for all

11



vn ∈ Nμ. Therefore, we obtain

cμ ≤Jμ(s̄vvμ)

=
1

2
‖s̄vvμ‖2 + μ

4
Lφs̄vvμ

(s̄vvμ)− λ

2

∫
R3

f(x)|s̄vvμ|2dx− 1

4

∫
R3

|s̄vvμ|4dx

< lim inf
n→∞

[
1

2
‖s̄vvn‖2 + μ

4
Lφs̄vvn

(s̄vvn)− λ

2

∫
R3

f(x)|s̄vvn|2dx− 1

4

∫
R3

|s̄vvn|4dx
]

= lim inf
n→∞

Jμ(s̄vvn)

≤ lim inf
n→∞

Jμ(vn) = cμ,

which leads to a contradiction. Thus vn → vμ strongly in H, vμ ∈ Nμ and Jμ(vμ) = cμ.

Similar to the argument in Brown and Zhang [9], we can conclude vμ is a constant sign

critical point of Jμ.

(ii) Let us define Br(y) = {x ∈ R
3 : |x− y| < r}. For each fixed μ > 0, we can pick

up w ∈ H with suppw ⊂ B1(x0 +
x0

ρ
) and∫

R3

|w|4dx =

∫
B1(x0+

x0
ρ
)

|w|4dx �= 0,

where x0 = (1, 0, 0) and ρ = min

{
1

2(Cμ)
1
2 ( 4π

3 )
1
3
, 1

}
. Let u1(x) = w(x0+

x
ρ
), then suppu1 ⊂

Bρ(x0), and we can obtain from Hölder’s inequality that

∫
R3 u

4
1dx

2|u1|4α
=

∫
Bρ(x0)

|w(x0 +
x
ρ
)|4dx

2
(∫

Bρ(x0)
|w(x0 +

x
ρ
)|αdx

) 4
α

=

∫
B1(x0+

x0
ρ
)
|w(x)|4dx

2ρ2
(∫

B1(x0+
x0
ρ
)
|w(x)|αdx

) 4
α

≥
∫
B1(x0+

x0
ρ
)
|w(x)|4dx

2ρ2
(∫

B1(x0+
x0
ρ
)
|w(x)|4dx

)(∫
B1(x0+

x0
ρ
)
1dx

) 2
3

=
1

2ρ2(4π
3
)
2
3

≥ 2Cμ > Cμ.

(18)

Obviously |u1| ∈ H also satisfies (18) and therefore we can assume from the beginning that

u1(x) ≥ 0 a.e. in Bρ(x0). Similarly, we can pick up u2(x) = −u1(−x) for all x ∈ Bρ(−x0).

Then u2 ∈ H such that u2(x) ≤ 0 for x ∈ Bρ(−x0), suppu1 ∩ suppu2 = ∅ and∫
R3 u

4
2dx

2|u2|4α
=

∫
R3 u

4
1dx

2|u1|4α
> Cμ. (19)

Let u = u1+u2, we can obtain that u ∈ H, u+ = u1, u
− = u2. It follows from Lemma

6 that {
μLφu+

(u+) + μLφu+
(u−) ≤ Cμ|u1|4α + Cμ|u1|2α|u2|2α,

μLφu− (u
−) + μLφu+

(u−) ≤ Cμ|u1|4α + Cμ|u1|2α|u2|2α.
(20)
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Furthermore, we can get from the definition of u, (18) and (19) that⎧⎪⎨
⎪⎩

Cμ|u1|4α + Cμ|u1|2α|u2|2α = 2Cμ|u1|4α <

∫
R3

u4
1dx,

Cμ|u2|4α + Cμ|u1|2α|u2|2α = 2Cμ|u2|4α <

∫
R3

u4
2dx.

(21)

Combining (20) and (21) gives⎧⎪⎨
⎪⎩

μLφu+
(u+) + μLφu+

(u−) <
∫
R3

u4
1dx =

∫
R3

|u+|4dx,

μLφu− (u
−) + μLφu+

(u−) <
∫
R3

u4
2dx =

∫
R3

|u−|4dx.

It implies from Lemma 7 that Mμ �= ∅ for all μ > 0. Clearly, it follows from u ∈ Mμ ⊂ Nμ

that mμ ≥ cμ > 0.

Assume that {un} ⊂ Mμ is a minimizing sequence for Jμ, namely such that Jμ(un) →
mμ. We have already observed that Jμ is coercive on Nμ, this implies that the sequence

{un} is bounded in H, going if necessary to a subsequence, still denoted by {un}, we can

assume from condition (V) that there exists a uμ ∈ H such that, for n sufficiently large,

u±
n ⇀ u±

μ weakly in H,

un(x) → uμ(x) almost everywhere on R
3,

u±
n → u±

μ strongly in Ls(R3) for 2 < s < 6.

Next since {un} ⊂ Mμ ⊂ Nμ, we have 〈J ′
μ(un), u

±
n 〉 = 0, that is

⎧⎪⎨
⎪⎩

‖u+
n ‖2 + μLφ

u+n
(u+

n ) + μLφ
u+n
(u−

n ) = λ

∫
R3

f(x)|u+
n |2dx+

∫
R3

|u+
n |4dx,

‖u−
n ‖2 + μLφ

u−n
(u−

n ) + μLφ
u+n
(u−

n ) = λ

∫
R3

f(x)|u−
n |2dx+

∫
R3

|u−
n |4dx.

Then

‖u±
n ‖2 ≤ λ

∫
R3

f(x)|u±
n |2dx+

∫
R3

|u±
n |4dx,

similarly, we can obtain that

‖u±
n ‖2 ≥ S2

(
1− λ

λ1

)
> 0. (22)

Combining with λ < λ1, we also have(
1− λ

λ1

)
‖u±

n ‖2 ≤
∫
R3

|u±
n |4dx.

13



Passing to the limit, we obtain from (22) and Lemmas 5, 6 that

0 < S2

(
1− λ

λ1

)2

≤ lim inf
n→∞

(
1− λ

λ1

)
‖u±

n ‖2 ≤
∫
R3

|u±
μ |4dx,

which implies that u±
μ �= 0 and

⎧⎪⎨
⎪⎩

‖u+
μ ‖2 + μLφ

u+μ
(u+

μ ) + μLφ
u+μ
(u−

μ ) ≤ λ

∫
R3

f(x)|u+
μ |2dx+

∫
R3

|u+
μ |4dx,

‖u−
μ ‖2 + μLφ

u−μ
(u−

μ ) + μLφ
u+μ
(u−

μ ) ≤ λ

∫
R3

f(x)|u−
μ |2dx+

∫
R3

|u−
μ |4dx.

Then by Lemma 9, there is a unique pair (su, tu) ∈ (0, 1]× (0, 1] such that

suu
+
μ + tuu

−
μ ∈ Mμ.

And thus

Jμ(suu
+
μ + tuu

−
μ ) ≥ mμ.

Furthermore, it follows from λ < λ1 that

Jμ(suu
+
μ + tuu

−
μ )

=Jμ(suu
+
μ + tuu

−
μ )−

1

4
〈J ′

μ(suu
+
μ + tuu

−
μ ), suu

+
μ + tuu

−
μ 〉

=
1

4

(
‖suu+

μ + tuu
−
μ ‖2 − λ

∫
R3

f(x)|suu+
μ + tuu

−
μ |2dx

)

=
1

4

[
s2u

(
‖u+

μ ‖2 − λ

∫
R3

f(x)|u+
μ |2dx

)
+ t2u

(
‖u−

μ ‖2 − λ

∫
R3

f(x)|u−
μ |2dx

)]

≤1

4

[(
‖u+

μ ‖2 − λ

∫
R3

f(x)|u+
μ |2dx

)
+

(
‖u−

μ ‖2 − λ

∫
R3

f(x)|u−
μ |2dx

)]

=
1

4

(
‖uμ‖2 − λ

∫
R3

f(x)|uμ|2dx
)

≤ lim inf
n→∞

[
Jμ(un)− 1

4
〈J ′

μ(un), un〉
]

=mμ,

which implies that su = tu = 1, uμ ∈ Mμ and Jμ(uμ) = mμ, then uμ is the required

minimizer.

Thirdly, if J ′
μ(uμ) �= 0, there exist δ > 0 and α > 0 such that

u ∈ H, ‖J ′
μ(uμ)‖ ≥ α, ‖u− uμ‖ ≤ 3δ.

Let D = (1− σ, 1 + σ)× (1− σ, 1 + σ), 0 < σ < 1 and ψ(s, t) = su+ + tu−, (s, t) ∈ D. It

follows from Lemma 7 that

m := max
∂D

Jμ ◦ ψ < mμ.
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Let ε = min{mμ−m

2
, αδ

8
} and Sδ = {u ∈ H : ‖u − uμ‖ ≤ δ}, there exists a deformation

η ∈ C([0, 1]×H,H) such that

(a) η(1, u) = u if u �∈ J−1
μ ([mμ − 2ε,mμ + 2ε]) ∩ S2δ;

(b) η(1, J
mμ+ε
μ ∩ Sδ) ⊂ J

mμ−ε
μ ;

(c) Jμ(η(1, u)) ≤ Jμ(u), ∀u ∈ H.

Similar to the proof of Theorem 1 in [23], we can obtain that ub is a sign-changing

critical point of Jμ by the degree theory, and we complete the proof.

3 Proof of the main results

In this section, we will prove the main results. To begin with, we can show that

the ground state sign-changing solution uμ of system (1) changes sign only once, and its

energy is strictly larger than twice that of the ground state energy, which means that the

energy of any sign-changing solutions of system (1) is strictly larger than twice that of

the ground state solutions.

Proof of Theorem 1. In view of Lemma 11, there exists a uμ ∈ Mμ such that mμ =

Jμ(uμ) and J ′
μ(uμ) = 0. In other words, uμ is a ground state sign-changing solution to

system (1). Then by Lemma 8, we have that⎧⎪⎨
⎪⎩

μLφ
u+μ
(u+

μ ) + μLφ
u+μ
(u−

μ ) <

∫
R3

|u+
μ |4dx,

μLφ
u−μ
(u−

μ ) + μLφ
u+μ
(u−

μ ) <

∫
R3

|u−
μ |4dx,

it follows from Lemma 10 that there exist s1, t1 > 0 such that s1u
+
μ , t1u

−
μ ∈ Nμ. Then

mμ = Jμ(uμ) ≥ Jμ(s1u
+
μ + t1u

−
μ )

= Jμ(s1u
+
μ ) + Jμ(t1u

−
μ ) +

μs21t
2
1

2
Lφ

u+μ
(u−

μ )

> Jμ(s1u
+
μ ) + Jμ(t1u

−
μ ) ≥ 2cμ.

Now, we show that uμ changes sign only once. We assume by contradiction that

uμ = u1 + u2 + u3 with

ui �= 0, u1 ≥ 0, u2 ≤ 0, u3 ≥ 0,

supp(ui) ∩ supp(uj) = ∅, i �= j (i, j = 1, 2, 3).

Moreover, using the fact that J ′
μ(uμ) = 0, we get{ 〈J ′

μ(u1 + u2), u1〉 = 〈J ′
μ(uμ), u1〉 − μLφu3

(u1) < 0,

〈J ′
μ(u1 + u2), u2〉 = 〈J ′

μ(uμ), u2〉 − μLφu3
(u2) < 0.
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Consequently, by Lemma 9, there exist (s̄, t̄) ∈ (0, 1]× (0, 1] such that

s̄u1 + t̄u2 ∈ Mμ, Jμ(s̄u1 + t̄u2) ≥ mμ.

Noting that λ < λ1, 〈J ′
μ(uμ), uμ〉 = 0 and 〈J ′

μ(s̄u1 + t̄u2), s̄u1 + t̄u2〉 = 0, we have

mμ =Jμ(uμ)− 1

4
〈J ′

μ(uμ), uμ〉 = 1

4

(
‖uμ‖2 − λ

∫
R3

f(x)u2
μdx

)

=
1

4

[(
‖u1‖2 − λ

∫
R3

f(x)u2
1dx

)
+

(
‖u2‖2 − λ

∫
R3

f(x)u2
2dx

)

+

(
‖u3‖2 − λ

∫
R3

f(x)u2
3dx

)]

>
1

4

[(
‖u1‖2 − λ

∫
R3

f(x)u2
1dx

)
+

(
‖u2‖2 − λ

∫
R3

f(x)u2
2dx

)]

≥1

4

[
s̄2

(
‖u1‖2 − λ

∫
R3

f(x)u2
1dx

)
+ t̄2

(
‖u2‖2 − λ

∫
R3

f(x)u2
2dx

)]

=Jμ(s̄u1 + t̄u2)− 1

4
〈J ′

μ(s̄u1 + t̄u2), s̄u1 + t̄u2〉
=Jμ(s̄u1 + t̄u2)

≥ mμ,

which leads to a contradiction, and thus the minimizer uμ changes sign only once. �

Now, we are in a situation to prove Theorem 2. In the following, we regard μ > 0 as

a parameter in system (1). We shall analyze the convergence property of uμ as μ ↘ 0.

For any μ ↘ 0, let uμ ∈ Mμ be the ground state sign-changing solution to system

(1), which changes sign only once.

Proof of Theorem 2. Firstly, choose a nonzero function w0 ∈ C∞
0 (R3) and β > 0 such

that w±
0 �= 0 and⎧⎪⎨

⎪⎩
‖w+

0 ‖2 + βLφ
w+
0

(w+
0 ) + βLφ

w+
0

(w−
0 ) ≤ λ

∫
R3

f(x)|w+
0 |2dx+

∫
R3

|w+
0 |4dx,

‖w−
0 ‖2 + βLφ

w−
0

(w−
0 ) + βLφ

w+
0

(w−
0 ) ≤ λ

∫
R3

f(x)|w−
0 |2dx+

∫
R3

|w−
0 |4dx.

Thus, for any μ ∈ [0, β], 〈J ′
μ(w0), w

±
0 〉 ≤ 0. It follows from Lemma 9 that for any μ ∈ [0, β],

there is a unique pair (sμ, tμ) ∈ (0, 1]× (0, 1] such that

sμw
+
0 + tμw

−
0 ∈ Mμ.

Thus, for any μ ∈ [0, β], we have

Jμ(sμw
+
0 + tμw

−
0 ) =Jμ(sμw

+
0 + tμw

−
0 )−

1

4
〈J ′

μ(sμw
+
0 + tμw

−
0 ), sμw

+
0 + tμw

−
0 〉

16



=
1

4

(
‖sμw+

0 + tμw
−
0 ‖2 − λ

∫
R3

f(x)|sμw+
0 + tμw

−
0 |2dx

)

<
1

4
‖sμw+

0 + tμw
−
0 ‖2

≤1

4
‖w0‖2 = θ.

For any sequence {μn} with μn ↘ 0 as n → ∞, one can obtain from Theorem 1 that for

large n, there exists uμn ∈ Mμn is a ground state sign-changing critical point of Jμn , then

θ + 1 ≥ Jμn(uμn)−
1

4
〈J ′

μn
(uμn), uμn〉 ≥

1

4

(
1− λ

λ1

)
‖uμn‖2.

This shows that {uμn} is bounded in H, then there exists a subsequence of {μn}, still
denoted by {μn}, such that uμn ⇀ u0 weakly in H. By the compactness of the embedding

H ↪→ Ls(R3) for 2 < s < 6, using a standard argument, we can prove that u±
μn

→ u±
0

strongly in H, and u±
0 �= 0. Furthermore, we deduce that for all u ∈ H,

0 = lim
n→∞

〈J ′
μn
(uμn), u〉

= lim
n→∞

[∫
R3

(∇uμn · ∇u+ V (x)uμnu) dx+ μn

∫
R3

φuμn
uμnudx

−λ

∫
R3

f(x)uμnudx−
∫
R3

|uμn |2uμnudx

]

=

∫
R3

(∇u0 · ∇u+ V (x)u0u) dx− λ

∫
R3

f(x)u0udx−
∫
R3

|u0|2u0udx

=〈J ′
0(u0), u〉,

which implies that

J ′
0(u0) = 0, u0 ∈ M0, J0(u0) ≥ m0. (23)

Secondly, in the proof of Theorem 1, μ = 0 is allowed. Then there exists a v0 ∈ M0

such that

J0(u0) = m0 = inf
u∈M0

J0(u),

and v0 is a sign-changing solution to system (1) which changes sign only once. Similarly,

we can pick up ε > 0 which is independent on μn such that⎧⎪⎨
⎪⎩

εLφ
v+0

(v+0 ) + εLφ
v+0

(v−0 ) <
∫
R3

|v+0 |4dx,

εLφ
v−0
(v−0 ) + εLφ

v+0

(v−0 ) <
∫
R3

|v−0 |4dx.

According to Lemma 7, there is a unique pair (s0, t0) of positive numbers such that

s0v
+
0 + t0v

−
0 ∈ Mε.
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Let μn ∈ [0, ε], we can know that

〈J ′
μn
(s0v

+
0 + t0v

−
0 ), s0v

+
0 〉 =‖s0v+0 ‖2 + μnLφ

s0v
+
0

(s0v
+
0 ) + μnLφ

s0v
+
0

(t0v
−
0 )

− λ

∫
R3

f(x)|s0v+0 |2dx−
∫
R3

|s0v+0 |4dx
≤‖s0v+0 ‖2 + εLφ

s0v
+
0

(s0v
+
0 ) + εLφ

s0v
+
0

(t0v
−
0 )

− λ

∫
R3

f(x)|s0v+0 |2dx−
∫
R3

|s0v+0 |4dx
=〈J ′

ε(s0v
+
0 + t0v

−
0 ), s0v

+
0 〉 = 0.

In the same way, we can obtain that

〈J ′
μn
(s0v

+
0 + t0v

−
0 ), t0v

−
0 〉 ≤ 〈J ′

ε(s0v
+
0 + t0v

−
0 ), t0v

−
0 〉 = 0.

It follows from Lemma 9 that for all μn ∈ [0, ε], there is a unique pair (sn, tn) ∈ (0, s0]×
(0, t0] such that

snv
+
0 + tnv

−
0 ∈ Mμn . (24)

Then for any sequence {μn} with μn ↘ 0 as n → ∞, we have as n → ∞,

μns
4
nLφ

v+0

(v+0 ) → 0, μns
2
nt

2
nLφ

v+0

(v−0 ) → 0, μnt
4
nLφ

v−0
(v−0 ) → 0,

together with 〈J ′
μn
(snv

+
0 + tnv

−
0 ), snv

+
0 〉 = 〈J ′

μn
(snv

+
0 + tnv

−
0 ), tnv

−
0 〉 = 0, we can get⎧⎪⎨

⎪⎩
‖v+0 ‖2 + o(1) = λ

∫
R3

f(x)|v+0 |2dx+ s2n

∫
R3

|v+0 |4dx,

‖v−0 ‖2 + o(1) = λ

∫
R3

f(x)|v−0 |2dx+ t2n

∫
R3

|v−0 |4dx,
(25)

and by 〈J ′
0(v0), v

±
0 〉 = 0, we have⎧⎪⎨

⎪⎩
‖v+0 ‖2 = λ

∫
R3

f(x)|v+0 |2dx+

∫
R3

|v+0 |4dx,

‖v−0 ‖2 = λ

∫
R3

f(x)|v−0 |2dx+

∫
R3

|v−0 |4dx,
(26)

Combining with (25) and (26), one has that as n → ∞,

sn → 1, tn → 1.

Lastly, we only need to show J0(u0) = J0(v0), then by (23), u0 is a ground state

sign-changing solution of problem (9) which changes sign only once. In fact, it follows

from (24) that

J0(v0) ≤ J0(u0) = lim
n→∞

Jμn(uμn)

≤ lim
n→∞

Jμn(snv
+
0 + tnv

−
0 ) = J0(v

+
0 + v−0 ) = J0(v0).

This completes the proof of Theorem 2. �
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