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Abstract

In this paper, we are concerned with the singular parabolic system ut = Δu+f(x)v−p, vt = Δv+g(x)u−q in a

smooth bounded domain Ω ⊂ RN subject to zero Dirichlet conditions, with initial conditions u0(x), v0(x) >

0. This problem is of interest as it is related to some problems in biology and physics. Under suitable

assumptions on p, q and f(x), g(x), some existence results of weak and classical solutions are obtained using

a functional method. This method is motivated by such results found in [4] and [5] when dealing with

singular parabolic systems and the related references within.
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1. Introduction

In this paper, we consider the following parabolic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu+
f(x)
vp

,

vt = Δv +
g(x)
uq

, t > 0, x ∈ Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω,

(1.1)

in a smooth and bounded domain Ω ⊂ RN with N ≥ 1. This system is a natural extension of various related
problems concerned with a single equation. Such problems arise in relation to the study of enzyme kinetics, as

well as in relations to some problems in physics when considering the steady state solutions. Enzyme kinetics

is a form of reaction-diffusion processes, specifically chemical reactions catalyzed by enzymes. Enzymes are

biological molecules which help complex reactions to occur virtually everywhere in life. Understanding how

these chemical reactions occur is crucial to our understanding of metabolic processes and how they occur
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within cells, [15]. Readers are directed to [1] and [2] for an in-depth exploration of enzyme kinetics, as well

as the references found within [7]. In addition, steady state solutions of equations taking the form of (1.1)

and other variations relate to Lane-Emden type equations with negative exponents. Such equations are used

in describing the gravitational potential Newtonian self-gravitating, spherically symmetric, polytropic fluid.

Readers are directed to [10, 11, 12, 19] and the references within.

In 2004, Davila and Montenegro [7] investigated existence of solutions to the problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = Δu −
[
1
uβ

− f(u)
]

χ{u>0}, in Ω× (0, T ),

u(x, t) = 0 x ∈ ∂Ω,

u(x, 0) = u0(x) , x ∈ Ω,

(1.2)

where χ{u>0} is the characteristic function for u > 0, β ∈ (0, 1), f(u) ≥ 0 is C2 in [0,∞) and f(u) ≤ C(1+u).

These results were obtained using the method of sub- and super-solutions. In 2007, Winkler [17] considered

the similar problem with f(u) ≡ 0 and Dirichlet boundary condition B = B(x) for x ∈ ∂Ω. He proved the

existence of nonnegative weak solutions with quenching property as well as some nonuniqueness results of

(1.2). In 2009, Xia and Yao [18] derived some existence and uniqueness results for the following problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt = Δv − μ
|∇v|2

v
+ f(x, t), in Ω× (0, T ],

v(x, t) = 0, on ∂Ω× (0, T ],
v(x, 0) = v0(x), in Ω̄,

(1.3)

which can be transformed into⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = Δu+
f(x, t)

uγ
, in Ω× (0, T ],

u(x, t) = 0, on ∂Ω× (0, T ],
u(x, 0) = [(1 + γ) v0]

1/(1+γ)
, in Ω̄,

(1.4)

if we set μ = γ/(γ + 1), γ > 0 and u = [(1 + γ) v]1/(1+γ). Recently, Boccardo, Escobedo and Porzio [3]

discussed the existence of some problems whose prototype takes the form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = Δu+
λ

uγ
+ μup in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(1.5)

where λ, γ > 0, and μ ≥ 0. They first constructed approximate solutions and then used the method of sub-
and super-solutions to estimated lower and upper bounds.
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The results in this paper are further motivated by similar elliptic (or steady-state) systems, taking the

form: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = Δu+
1
up
+
1
vq

, u > 0 in Ω,

0 = Δv +
1
ur
+
1
vs

, v > 0 in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.6)

or ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = Δu+
1

upvq
, u > 0 in Ω,

0 = Δv +
1

urvs
, v > 0 in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.7)

where conditions are put upon p, q, r, s > 0, see [10, 19] and the references within. If p, r < 0, then the

solutions of (1.7) are steady states of a generalized Gierer-Meinhardt or activator-inhibitor system, see

[5, 13]. As far as we know, no results have yet been published investigating the existence or boundedness of

solutions to the singular parabolic system taking the form of (1.1).

We use a functional method to obtain lower bounds of solutions for a perturbed system. That is, we

consider the following integral ∫
Ω

φn+2(x)
[uε(x, t) + ε]αn[vε(x, t) + ε]βn

dx, (1.8)

where (uε, vε) is a solution to the perturbed system of (1.1) (see (3.3 in Section 3 for details), n > 1, α, β > 0,

α+ β ≤ 1, and φ(x) is the first eigenfunction of

Δφ(x) + λφ(x) = 0, φ(x)|∂Ω = 0. (1.9)

Then, taking derivatives, substituting the perturbed system and integrating by parts, we can show that (1.8)

is bounded and independent of ε. We can use the similar method to obtain the upper bound for (uε, vε). The

functional method is a very powerful method to obtain a priori estimates for elliptic and parabolic equations

(see [5, 6]) and is completely different than the traditional methods of sub and super solutions.

This paper will be organized as follows. In Section 2, we establish some important inequalities relating a

linear system and the eigenfunctions by using the functional method. In Section 3, we use these inequalities

to obtain a uniform bound to a related perturbation problem, and then, use Sobolev embedding theorem to

get the existence of positive solutions to (1.1). Finally, for the convenience of readers, we put the proof of

an inequality in Appendix because the proof is already given in [6].
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2. Some Useful Inequalities

In this section, we collect some useful estimates for solutions to some linear systems. We first start with

a generalized Young’s inequality which will be used many times.

Lemma 2.1. For any functions u(x), v(x), f(x), g(x) > 0, any indices p1, p2, q1, q2, α1, α2, β1, β2, θ1, where

θ1 < p1 < α1 (not necessarily positive) and any constant c > 0, we have that

up1fp2

vq1gq2
≤ c

uα1fα2

vβ1gβ2
+ c−(p1−θ1)/(α1−p1)

uθ1fθ2

vη1gη2
,

where

θ2 = [p2(α1 − θ1)− α2(p1 − θ1)](α1 − p1)−1,

η1 = [q1(α1 − θ1)− β1(p1 − θ1)](α1 − p1)−1,

η2 = [q2(α1 − θ1)− β2(p1 − θ1)](α1 − p1)−1.

proof. See the proof of Lemma 1 in [5].

Let ψ(x) to be the solution of: ⎧⎪⎨
⎪⎩
Δψ(x) + ψ−σ(x) = 0,

ψ(x) = 0, x ∈ ∂Ω,

(2.1)

where σ ∈ (−1, 1). By [14], we have that:

δ0φ(x) ≤ ψ(x) ≤ δ1φ(x), δ1, δ0 > 0,

∂φ/∂n < 0, x ∈ ∂Ω. (2.2)

That is, φ(x) and ψ(x) are separated by some constant, which will be used in Section 3.

Suppose that (u, v) is a solution of the following linear system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = Δu+A(x, t),

vt = Δv +B(x, t), t > 0, x ∈ Ω,

u, v > 0, x ∈ Ω,

(2.3)

where A(x, t), B(x, t) are continuous functions.

Lemma 2.2. For any n > 2, we have that

d

dt

∫
Ω

ψn+2

un
dx ≤ n

∫
Ω

ψn+1−σ

un
dx − n

∫
Ω

ψn+2

un+1
A(x, t)dx, (2.4)

where u and ψ are solutions of (2.1) and (2.3).
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proof. Differentiating with respect to t and integrating by parts, we have that:

d

dt

∫
Ω

ψn+2

un
dx = −n

∫
Ω

ψn+2

un+1
Δudx − n

∫
Ω

ψn+2

un+1
A(x, t)dx

= n

∫
Ω

∇
(

ψn+2

un+1

)
∇udx − n

∫
Ω

ψn+2

un+1
A(x, t)dx

= −n(n+ 1)
∫

Ω

ψn+2

un+2
|∇u|2 dx+ n(n+ 2)

∫
Ω

ψn+1

un+1
∇u∇ψdx

− n

∫
Ω

ψn+2

un+1
A(x, t)dx. (2.5)

Using the following identity:

ψ2 |∇u|2 = |ψ∇u − u∇ψ|2 + 2uψ∇u∇ψ − u2 |∇ψ|2 ,

we then see that

d

dt

∫
Ω

ψn+2

un
dx =− n(n+ 1)

∫
Ω

ψn+2

un+2
|ψ∇u − u∇ψ|2 dx − dn2

∫
Ω

ψn+1

un+1
∇u∇ψdx

+ n(n+ 1)
∫

Ω

ψn

un
|∇ψ|2 dx − n

∫
Ω

ψn+2

un+1
A(x, t)dx. (2.6)

Integrating by parts for the second term of (2.6), we find

−n2

∫
Ω

ψn+1

un+1
∇u∇ψdx = n

∫
Ω

ψn+1∇ψ∇
(
1
un

)
dx

= −n

∫
Ω

∇ (
ψn+1∇ψ

) 1
un

dx

= −n(n+ 1)
∫

Ω

ψn

un
|∇ψ|2 dx − n

∫
Ω

ψn+1

un
Δψdx.

Combining this with the rest of (2.6) gives us that:

d

dt

∫
Ω

ψn+2

un
dx ≤ −n

∫
Ω

ψn+1

un
Δψdx − n

∫
Ω

ψn+2

un+1
A(x, t)dx. (2.7)

Lastly, we use (2.1) to arrive at

d

dt

∫
Ω

ψn+2

un
dx ≤ n

∫
Ω

ψn+1−σ

un
dx − n

∫
Ω

ψn+2

un+1
A(x, t)dx. (2.8)

This completes the proof.

Lemma 2.3. For α, β > 0 and α+ β ≤ 1, we have that

d

dt

∫
Ω

φn+2

uαnvβn
≤ −αn

∫
Ω

φn+2

uαn+1vβn
A(x, t)dx − βn

∫
Ω

φn+2

uαnvβn+1
B(x, t)dx

+ λ1(n+ 2)
∫

Ω

φn+2

uαnvβn
dx, (2.9)
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where φ is the first normalized eigenfunction of (1.9), (u, v) is a solution of (2.3). proof. We first set

zn(t) =
∫

Ω

φn+2

uαnvβn
dx.

Consider the following after taking the derivative with respect to time:

z′n(t) =− αn

∫
Ω

φn+2

uαn+1vβn
utdx − βn

∫
Ω

φn+2

uαnvβn+1
vtdx

=− αn

∫
Ω

φn+2

uαn+1vβn
Δudx − βn

∫
Ω

φn+2

uαnvβn+1
Δvdx

− αn

∫
Ω

φn+2

uαn+1vβn
A(x, t)dx − βn

∫
Ω

φn+2

uαnvβn+1
B(x, t)dx. (2.10)

Looking at only the Laplace terms and integrating by parts gives us that:

αn

∫
Ω

∇
(

φn+2

uαn+1vβn

)
∇udx+ βn

∫
Ω

∇
(

φn+2

uαnvβn+1

)
∇vdx

= αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn
∇φ∇udx+ βn(n+ 2)

∫
Ω

φn+1

uαnvβn+1
∇φ∇vdx

− αn(αn+ 1)
∫

Ω

φn+2

uαn+2vβn
|∇u|2 dx − βn(βn+ 1)

∫
Ω

φn+2

uαnvβn+2
|∇v|2 dx

− 2αβn2

∫
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

�
5∑

k=1

Ik. (2.11)

Consider the following term and integrate by parts:

J � −αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn
∇φ∇udx

= (n+ 2)
∫

Ω

φn+1∇φ

vβn
∇

(
1

uαn

)
dx

= −(n+ 2)
∫

Ω

∇
(

φn+1∇φ

vβn

)
1

uαn
dx

= −(n+ 2)(n+ 1)
∫

Ω

φn

uαnvβn
|∇φ|2 dx − (n+ 2)

∫
Ω

φn+1

uαnvβn
Δφdx

+ βn(n+ 2)
∫

Ω

φn+1

uαnφβn+1
∇φ∇vdx. (2.12)

We notice some similar terms, giving us the following:

(I1−J) + (J + I2) = 2αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn+1
∇φ

(
v∇u+

β

α
u∇v

)
dx

− (n+ 2)(n+ 1)
∫

Ω

φn

uαnvβn
|∇φ|2 dx − (n+ 2)

∫
Ω

φn+1

uαnvαn
Δφdx . (2.13)
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This gives us that:

5∑
k=1

Ik = 2αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn+1
∇φ

(
v∇u+

β

α
u∇v

)
dx

− αn(αn+ 1)
∫

Ω

φn+2

uαn+2vβn
|∇u|2 dx − βn(βn+ 1)

∫
Ω

φn+2

uαnvβn+2
|∇v|2 dx

− 2αβn2

∫
Ω

φn+2

uαn+1vβn+1
∇u∇vdx − (n+ 2)(n+ 1)

∫
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)
∫

Ω

φn+1

uαnvαn
Δφdx. (2.14)

Then, we complete the square in a specific way:

5∑
k=1

Ik = 2αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn+1
∇φ

(
v∇u+

β

α
u∇v

)
dx

− α2n(n+ 1)
∫

Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣
2

dx

− α(1− α)n
∫

Ω

φn+2

uαn+2vαn
|∇u|2 dx − β(1− β)n

∫
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

∫
Ω

φn+2

uαn+1vβn+1
∇u∇vdx − (n+ 2)(n+ 1)

∫
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)
∫

Ω

φn+1

uαnvαn
Δφdx. (2.15)

If we recall that α+ β ≤ 1, we combine terms 3, 4 and 5 of (2.15) as follows:

− α(1− α)n
∫

Ω

φn+2

uαn+2vαn
|∇u|2 dx − β(1− β)n

∫
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

∫
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

≤− αβn

∫
Ω

φn+2

uαn+2vαn
|∇u|2 dx − αβn

∫
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

∫
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

=− αβn

∫
Ω

φn+2

uαn+2vβn+2
|v∇u − u∇v|2 dx

≤ 0. (2.16)
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Thus, we have that

5∑
k=1

Ik ≤ 2αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn+1
∇φ

(
v∇u+

β

α
u∇v

)
dx

− α2n(n+ 1)
∫

Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣
2

dx

− (n+ 2)(n+ 1)
∫

Ω

φn

uαnvβn
|∇φ|2 dx − (n+ 2)

∫
Ω

φn+1

uαnvαn
Δφdx. (2.17)

Applying Young’s Inequality to the second term of (2.17), we have that:∣∣∣∣2αn(n+ 2)
∫

Ω

φn+1

uαn+1vβn+1
∇φ

(
v∇u+

β

α
u∇v

)
dx

∣∣∣∣
≤ 1
2

(
2α2n(n+ 1)

) ∫
Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣
2

dx

+
1
2

(
2α2n2(n+ 2)2

α2n(n+ 1)

) ∫
Ω

φn

uαnvβn
|∇φ|2 dx

= α2n(n+ 1)
∫

Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣
2

dx

+
n(n+ 2)2

n+ 1

∫
Ω

φn

uαnvβn
|∇φ|2 dx. (2.18)

Combining this with our remaining terms leaves us with the following:

5∑
k=1

Ik ≤−
[
(n+ 2)(n+ 1)− n(n+ 2)2

n+ 1

] ∫
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)
∫

Ω

φn+1

uαnvβn
Δφdx

=− (n+ 2)
(n+ 1)

[
(n+ 1)2 − n(n+ 2)

] ∫
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)
∫

Ω

φn+1

uαnvβn
Δφdx

=− (n+ 2)
(n+ 1)

∫
Ω

φn

uαnvβn
|∇φ|2 dx − (n+ 2)

∫
Ω

φn+1

uαnvβn
Δφdx. (2.19)

We are thus left with:

z′n(t) ≤− αn

∫
Ω

φn+2

uαn+1vβn
A(x, t)dx − βn

∫
Ω

φn+2

uαnvβn+1
B(x, t)dx

+ λ1(n+ 2)
∫

Ω

φn+2

uαnvβn
dx. (2.20)

This completes the proof.
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Lemma 2.4. Suppose that u, v is a solution of (2.3) with u|∂Ω = 0 and ψ is a solution of (2.2). For any

α, β ∈ (0, 1) such that α+ β ≤ 1, we have

d

dt

∫
Ω

un

vαnψβn−2
dx ≤ n

∫
Ω

un−1

vαnψβn−2
A(x, t)dx − αn

∫
Ω

un

vαn+1ψβn−2
B(x, t)dx

− (βn − 2)
∫

Ω

un

vαnψβn−1+σ
dx. (2.21)

proof. See the proof of Lemma 2.5 in [6] (The proof is given in Appendix).

3. Main Results

In this section, we state the main result and prove it. Consider the following singular parabolic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu+
f(x)
vp

,

vt = Δv +
g(x)
uq

, t > 0, x ∈ Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω.

(3.1)

We say that (u, v) is a weak solution to (3.1) if u, v ∈ L2(0, T ;W 1,2
0 (Ω))

⋂
L∞(Ω× (0, T )),

f(x)
vp

,
g(x)
uq

∈ L1(Ω× (0, T )),

and ∫
Ω

u0ξdx+
∫ T

0

∫
Ω

(
uξt −∇u∇ξ +

f(x)
vp

ξ

)
dxdt = 0

∫
Ω

v0ξdx+
∫ T

0

∫
Ω

(
vξt −∇v∇ξ +

g(x)
uq

ξ

)
dxdt = 0,

for all ξ ∈ C∞(Ω × (0, T )), with ξ(x) = 0 on ∂Ω × (0, T ) and ξ(T ) = 0 in Ω. We assume that the initial

conditions

u0(x), v0(x) ∈ C1
0 (Ω) and u0(x), v0(x) ≥ ε0φ(x), (3.2)

for some ε0 > 0, where φ(x) is a normalized eigenfunction defined in (1.9).

Theorem 3.1. Suppose that p, q ∈ (0, 1), and that δ0φ
θ(x) ≤ f(x) ≤ c0φ

η(x), δ0φ
τ (x) ≤ g(x) ≤ c0φ

μ(x),

where δ0, c0 > 0, 0 ≤ η ≤ θ ≤ 1 and 0 ≤ μ ≤ τ ≤ 1. Then system (3.1) has a pair of positive, weak solution

(u, v). Furthermore, if N(η − p) > −1, then u is a classical solution; if N(μ− q) > −1, then v is a classical

solution.
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proof. To start, we consider the related perturbation problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu+
f(x)
(v + ε)p

,

vt = Δv +
g(x)
(u+ ε)q

, t > 0, x ∈ Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω.

(3.3)

Denote the solution of (3.3) by (uε, vε) and set wε = uε + ε, zε = vε + ε. For any α, β > 0 and α + β ≤ 1,
Lemma 2.3 gives us the following:

d

dt

∫
Ω

φn+2

wαn
ε zβn

ε

dx ≤ λ1(n+ 2)
∫

Ω

φn+2

wαn
ε zβn

ε

dx − αn

∫
Ω

φn+2f(x)

wαn+1
ε zβn+p

ε

dx

− βn

∫
Ω

φn+2g(x)

wαn+q
ε zβn+1

ε

dx

≤ λ1(n+ 2)
∫

Ω

φn+2

wαn
ε zβn

ε

dx − δ0αn

∫
Ω

φn+2+θ

wαn+1
ε zβn+p

ε

dx

− δ0βn

∫
Ω

φn+2+τ

wαn+q
ε zβn+1

ε

dx. (3.4)

For any δ > 0, Lemma 2.1 with p1 = αn, α1 = αn+ 1 and θ1 = αn − δ gives us that

λ1(n+ 2)
φn+2

wαn
ε zβn

ε

= λ1(n+ 2)
(w−1

ε )αnφn+2

zβn
ε

≤ δ0αn
(w−1

ε )αn+1φn+2+θ

zβn+p
ε

+ c1(n)
(w−1

ε )αn−δφθ2

zη1
ε

, (3.5)

where

η1 = βn(1 + δ)− (βn+ p)δ = βn − pδ,

θ2 = (n+ 2)(1 + δ)− (n+ 2 + θ)δ = n+ 2− θδ,

c1(n) = λ1(n+ 2)
(

δ0αn

λ1(n+ 2)

)−δ

≤ λ1(n+ 2)
(
2λ1

αδ0

)δ

. (3.6)

(3.4) then becomes

d

dt

∫
Ω

φn+2

wαn
ε zβn

ε

dx ≤ c1(n)
∫

Ω

φn+2−θδ

wαn−δ
ε zβn−δp

ε

dx − δ0βn

∫
Ω

φn+2+τ

wαn+q
ε zβn+1

ε

dx. (3.7)

Using Lemma 2.1 again with p1 = αn − δ, α1 = αn+ q and θ1 = 0 yields

c1(n)
(w−1

ε )αn−δφn+2−θδ

zβn−pδ
ε

≤ δ0βn
(w−1

ε )αn+qφn+2+τ

zβn+1
ε

+ c2(n)
φθ3

zη2
ε

, (3.8)
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where

η2 = [(βn − δp)(αn+ q)− (βn+ 1)(αn − δ)] /(δ + q)

= [βqn − δpαn − qδp − αn+ δβn+ δ] /(δ + q) ,

θ3 = [(n+ 2− θδ)(αn+ q)− (n+ 2 + τ)(αn − δ)] /(q + δ)

= [(q − ατ + δ − θαδ)n+ 2q − θδq + 2δ + τδ] /(q + δ) ,

c2(n) = c1(n)
(

βδ0n

c1(n)

)−(αn−δ)/(q+δ)

≤ c1(n)

[(
2λ1

αβδ0

)1+δ
](αn−δ)/(q+δ)

. (3.9)

If we then set η2 = 0 and solve for δ, we find that

δ =
(α − βq)n

(β − αp)n+ 1− pq
=

α − βq

β − αp

(
1− 1− pq

(β − αp)n+ 1− pq

)
. (3.10)

Choose

α = 1/(1 + p)− γ (3.11)

and β = 1− α for some small γ > 0. Then,

δ =
(
1− pq − γ(1 + q)(1 + p)

γ(1 + p)2

)(
1− 1− pq

γ(1 + p)n+ 1− pq

)
> 0. (3.12)

Since 1 − αθ > 0, 1 − pq > 0 and q − ατ + δ(1 − αθ) > 0 for γ sufficiently small, we have that θ3 > 0 for

sufficiently large n. Thus, (3.7) becomes

d

dt

∫
Ω

φn+2

wαn
ε zβn

ε

dx ≤ c2(n)
∫

Ω

φθ3dx, (3.13)

or ∫
Ω

φn+2

wαn
ε zβn

ε

dx ≤
∫

Ω

φn+2

(u0 + ε)αn(v0 + ε)βn
dx+ c2(n)t

∫
Ω

φθ3dx. (3.14)

Extracting nth roots and letting n → ∞, we obtain

max
Ω̄

φ(x)
wα

ε z1−α
ε

≤ max
[
max

Ω̄

φ(x)
(u0 + ε)α(v0 + ε)1−α

, c3max
Ω̄

φσ1(x)
]

≤ max
[
max

Ω̄

φ(x)
uα

0 v1−α
0

, c3max
Ω̄

φσ1(x)
]

�M1, (3.15)

where M1 is a constant independent of ε, and

c3 =
(
2λ1

αβδ0

)α(δ+1)
q+δ

,

σ1 = [q − ατ + δ − δαθ] /(q + δ). (3.16)
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Next, define wε and φ as before with σ ∈ (0, 1). For any β ∈ (0, 1), Lemma 2.4 with α replaced by β and

β replaced by 1 − β gives us the following:

d

dt

∫
Ω

un
ε

wβn
ε φ(1−β)n−2

dx ≤ n

∫
Ω

un−1
ε f(x)

wβn
ε zp

εφ(1−β)n−2
dx − βn

∫
Ω

un
ε f(x)

wβn+1
ε zp

εφ(1−β)n−2
dx

− [(1− β)n − 2]
∫

Ω

un
ε

wβn
ε φ(1−β)n−1+σ

dx. (3.17)

For any δ1 > 1, Lemma 2.1 gives us

un−1
ε

wβn
ε

≤ β
un

ε

wβn+1
ε

+ β1−δ1
un−δ1

ε

wη1
ε

, (3.18)

where

η1 = βδ1n − (βn+ 1)(δ1 − 1) = βn − δ1 + 1. (3.19)

(3.17) then becomes

d

dt

∫
Ω

un
ε

wβn
ε φ(1−β)n−2

dx ≤ nβ1−δ1

∫
Ω

un−δ1
ε f(x)

wη1
ε zp

εφ(1−β)n−2
dx

− [(1− β)n − 2]
∫

Ω

un
ε

wβn
ε φ(1−β)n−1+σ

dx. (3.20)

Note that

un−δ1
ε f(x)

wη1
ε zp

εφ(1−β)n−2
≤ c0

un−δ1
ε ψη

w
η1−αp/(1−α)
ε

(
ψ

wα
ε z1−α

ε

) p
1−α

(
φ

ψ

) p
1−α 1

φ(1−β)n−2+p/(1−α)

≤ M2
un−δ1

ε

w
η1−αp/(1−α)
ε φ(1−β)n−2+p/(1−α)−η

, (3.21)

where α is defined as (3.11). Using Lemma 2.1 again paired with (3.21), we see that

nβ1−δ1
un−δ1

ε f(x)
wη1

ε zp
εφ(1−β)n−2

≤ [(1− β)n − 2] un
ε

wβn
ε φ(1−β)n−1+σ

+ c4(n)
1

wη2
ε φη3

, (3.22)

where

η2 = [(βn − δ1 + 1− αp/(1− α))n − βn(n − δ1)] /δ1

= [βδ1 + 1− δ1 − αp/(1− α)]n/δ1,

η3 = [((1− β)n − 2 + p/(1− α)− η)n − ((1− β)n − 1 + σ)(n − δ1)] /δ1

= − [(1 + σ + η − p/(1− α)− δ1(1− β)]n/δ1 − 1 + σ. (3.23)

If we set η2 = 0 and solve for δ1, we find:

δ1 =
1− αp/(1− α)

1− β
> 1, (3.24)
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since

αp

1− α
=

p − p(1 + p)γ
p+ γ(1 + p)

< 1. (3.25)

Additionally, since

1 + σ + η − p/(1− α)− δ1(1− β) = 1 + σ + η − p/(1− α)− 1 + αp/(1− α)

= σ + η − p

> 0, (3.26)

we thus have that η3 < 0. (3.20) then becomes

d

dt

∫
Ω

un
ε

wβn
ε φ(1−β)n−2

dx ≤ c5(n)
∫

Ω

ψ−η3dx, (3.27)

which implies that uε ≤ M3w
β
ε φ1−β , and so uε is uniformly bounded. Similarly, we also find that vε is

uniformly bounded.

Let φ1(x) be a solution of (2.1) with σ = −θ. By Lemma 2.2,

d

dt

∫
Ω

φn+2
1

wn
ε

dx ≤ (n+ 2)
∫

Ω

φn+1+θ
1

wn
ε

dx − δ0n

∫
Ω

φn+2+θ
1

wn+1
ε zp

ε

dx. (3.28)

By Lemma 2.1,

(n+ 2)
φn+1+θ

1

wn
ε

≤ δ0n
φn+2+θ

1

wn+1
ε zp

ε

+ c6(n)
1

wη1
ε zη2

ε
, (3.29)

where

η1 = [n(n+ 2 + θ)− (n+ 1)(n+ 1 + θ)] = −(1 + θ) < 0,

η2 = −p(n+ 1 + θ) < 0,

c6(n) = (n+ 2)
(

δ0n

n+ 2

)−(n+1+θ)

. (3.30)

Thus, the last term in (3.29) is bounded and φ1 ≤ M4wε. Similarly, we find that φ1 ≤ M5zε.

Finally, for any r ∈ (1, 1
p ),∥∥∥∥f(x)
zp
ε

∥∥∥∥
r

Lr

≤ cr
0

∫
Ω

ψrη(x)
zrp
ε

dx ≤ cr
0M

rp
5

∫
Ω

ψrη(x)
φrp

1 (x)
dx ≤ M6. (3.31)

A similar ineqaulity can be found for vε. Hence, by Lp Theory (see Theorem 6 in [16]), (uε, vε) are uniformly

bounded in
[
W 2,1

r (Ω× (0, T ))]2, and so a subsequence (uεk , vεk) can be found which converges to a weak

solution of (3.1). If N(η − p) > −1, we can choose r > N and r(η − p) > −1 so that (3.31) is true. Then,

13



by the Sobolev embedding theorem, uε → u in C1,κ(Ω̄) for some κ ∈ (0, 1), and so u is a classical solution

of (3.1). Similar results can be found for v. This completes the proof.

As we can see, this functional method proves to be very powerful when dealing with singular parabolic

systems. Future works may include relaxing the conditions put on f(x) and g(x), as well as consideration

of the different diffusion coefficients.
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4. Appendix

Here we give the proof of Lemma 2.4 (for details, please see [6]). Similar to the proof of Lemma 2.3, we

have

d

dt

∫
Ω

un

vαnφβn−2
dx = n

∫
Ω

un−1

vαnφβn−2
[Δu+A(x, t)]dx

− αn

∫
Ω

un

vαn+1φβn−2
[Δv +B(x, t)]dx

=− n(n − 1)
∫

Ω

un−2

vαnφβn−2
|∇u|2 dx+ 2αn2

∫
Ω

un−1

vαn+1φβn−2
∇u∇vdx

+ n(βn − 2)
∫

Ω

un−1

vαnφβn−1
∇u∇φdx+ n

∫
Ω

un−1

vαnφβn−2
A(x, t)dx

− αn(αn+ 1)
∫

Ω

un

vαn+2φβn−2
|∇v|2 dx

− αn(βn − 2)
∫

Ω

un

vαn+1φβn−1
∇v∇φdx

− αn

∫
Ω

un

vαn+1φβn−2
B(x, t)dx

�
7∑

k=1

Ik. (4.1)
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Letting k = 1/(1− α) and completing the square, we have

I1 + I2 + I5 =− n(n − k)
∫

Ω

un−2

vαn+2φβn−2
|v∇u − αu∇v|2 dx

− n(k − 1)
∫

Ω

un−2

vαnφβn−2
|∇u|2 dx

+ 2kαn

∫
Ω

un−1

vαn+1φβn−2
∇u∇vdx − αn(1 + kα)

∫
Ω

un

vαn+2φβn−2
|∇v|2 dx

=− n(n − k)
∫

Ω

un−2

vαn+2φβn−2
|v∇u − αu∇v|2 dx

− αn

1− α

∫
Ω

un−2

vαn+2φβn−2
|v∇u − u∇v|2 dx. (4.2)

Consider the following term and integrate by parts,

J �− n(βn − 2)
∫

Ω

un−1

vαnφβn−1
∇u∇φdx = −(βn − 2)

∫
Ω

1
vαnφβn−1

∇(u)n∇φdx

=− (βn − 2)αn

∫
Ω

un

vαn+1φβn−1
∇v∇φ − (βn − 2)(βn − 1)

∫
Ω

un

vαnψβn
|∇φ|2 dx

+ (βn − 2)
∫

Ω

un

vαnφβn−1
Δψdx.

Then,

I3 + I6 = (I3 − J) + (I6 + J)

= 2n(βn − 2)
∫

Ω

un−1

vαnφβn−1
∇u∇φdx − 2αn(βn − 2)

∫
Ω

un

vαn+1φβn−1
∇v∇φ

− (βn − 2)(βn − 1)
∫

Ω

un

vαnφβn
|∇φ|2 dx − (βn − 2)

∫
Ω

un

vαnφβn−1+σ
dx

= 2n(βn − 2)
∫

Ω

un−1

vαn+1φβn−1
(v∇u − αu∇v)∇φdx

− (βn − 2)(βn − 1)
∫

Ω

un

vαnφβn
|∇φ|2 dx − (βn − 2)

∫
Ω

un

vαnφβn−1+σ
dx. (4.3)

Using Cauchy’s inequality, we obtain∣∣∣∣2n(βn − 2)
∫

Ω

un−1

vαn+1φβn−1
(v∇u − αu∇v)∇φdx

∣∣∣∣
≤ n(n − k)

∫
Ω

un−2

vαn+2φβn−2
|v∇u − αu∇v|2 dx

+
n(βn − 2)2

n − k

∫
Ω

un

vαnφβn
|∇φ|2 dx. (4.4)

Substituting (4.2)-(4.4) into (4.1), we find

d

dt

∫
Ω

un

vαnφβn−2
dx ≤ I4 + I7 − (βn − 2)

∫
Ω

un

vαnφβn−1+σ
dx

−
[
(βn − 2)(βn − 1)− n(βn − 2)2

n − k

] ∫
Ω

un

vαnφβn
|∇φ|2 dx. (4.5)
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Since

(βn − 1)(n − k)− n(βn − 2) = n(1− kβ) + k =
n(1− α − β)
1− α

+ k > 0,

the last term of (4.5) is negative. Hence, (2.18) is true. This completes the proof.
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