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Abstract

In this paper, we are concerned with the singular parabolic system u; = Au+ f(2)v =P, v; = Av+g(x)u~9in a
smooth bounded domain € R subject to zero Dirichlet conditions, with initial conditions ug(x),vo(x) >
0. This problem is of interest as it is related to some problems in biology and physics. Under suitable
assumptions on p, ¢ and f(x), g(z), some existence results of weak and classical solutions are obtained using
a functional method. This method is motivated by such results found in [4] and [5] when dealing with
singular parabolic systems and the related references within.
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1. Introduction

In this paper, we consider the following parabolic system:

o= s 1)
VP
vt:Av+M, t>0,z €,
u? (1.1)

u(z,0) = uo(x), v(z,0) =vo(x), x€Q,

u(z,t) = v(z,t) =0, x € 01,

in a smooth and bounded domain Q@ ¢ RY with N > 1. This system is a natural extension of various related
problems concerned with a single equation. Such problems arise in relation to the study of enzyme kinetics, as
well as in relations to some problems in physics when considering the steady state solutions. Enzyme kinetics
is a form of reaction-diffusion processes, specifically chemical reactions catalyzed by enzymes. Enzymes are
biological molecules which help complex reactions to occur virtually everywhere in life. Understanding how

these chemical reactions occur is crucial to our understanding of metabolic processes and how they occur
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within cells, [15]. Readers are directed to [1] and [2] for an in-depth exploration of enzyme kinetics, as well
as the references found within [7]. In addition, steady state solutions of equations taking the form of (1.1)
and other variations relate to Lane-Emden type equations with negative exponents. Such equations are used
in describing the gravitational potential Newtonian self-gravitating, spherically symmetric, polytropic fluid.
Readers are directed to [10, 11, 12, 19] and the references within.

In 2004, Davila and Montenegro [7] investigated existence of solutions to the problem:

1 .
Uy = Au — |:u75 - f(u):| X{u>0}, 11 Q x (OvT):
u(z,t) =0 x €09, (1.2)
u(z,0) = uo(x) , x €,
where X >0} is the characteristic function for u > 0, 8 € (0,1), f(u) > 0is C? in [0, 00) and f(u) < C(1+u).
These results were obtained using the method of sub- and super-solutions. In 2007, Winkler [17] considered
the similar problem with f(u) = 0 and Dirichlet boundary condition B = B(z) for = € 2. He proved the

existence of nonnegative weak solutions with quenching property as well as some nonuniqueness results of

(1.2). In 2009, Xia and Yao [18] derived some existence and uniqueness results for the following problem:

vt:Afu—,u@—&-f(x,t), in Q x (0,77,
v(z,t) =0, on 9 x (0,77, (1.3)
v(z,0) = vo(x), in Q,
which can be transformed into
ut:Au—i—%, in Q x (0,77,
u(z,t) =0, on 99 x (0,7, (1.4)
u(@,0) = [(1+7) 0" in,

1/(14).

if we set o =/(y+ 1),y > 0and u = [(1+ )] Recently, Boccardo, Escobedo and Porzio [3]

discussed the existence of some problems whose prototype takes the form:
ut:Au+%+uup in Qx(0,7),
u(z,t) =0 on 09 x (0,7, (1.5)
u(z,0) = ug(x) in

where A,y > 0, and g > 0. They first constructed approximate solutions and then used the method of sub-

and super-solutions to estimated lower and upper bounds.



The results in this paper are further motivated by similar elliptic (or steady-state) systems, taking the

form:
1 1
0=Au+—+ —, u>0in £,
ub v
1 1
0=Av+—+—, v>0in Q, (1.6)
u” o v®
u(z) =v(x) =0 on 012,
or

1
0=Au+——, u>01in O,
uPv4

0=A1}—i—#7v>0'1n(27 (L.7)
u(z) =v(x) =0 on 09,
where conditions are put upon p,q,r,s > 0, see [10, 19] and the references within. If p,r < 0, then the
solutions of (1.7) are steady states of a generalized Gierer-Meinhardt or activator-inhibitor system, see
[5, 13]. As far as we know, no results have yet been published investigating the existence or boundedness of
solutions to the singular parabolic system taking the form of (1.1).
We use a functional method to obtain lower bounds of solutions for a perturbed system. That is, we

consider the following integral

¢n+2(1.)
~/Q [us(xvt) +5}a"[’05(x,t) —|—g}ﬁ"d$’ (1.8)

where (ug, ve) is a solution to the perturbed system of (1.1) (see (3.3 in Section 3 for details), n > 1, o, 3 > 0,

a+ [ <1, and ¢(x) is the first eigenfunction of
Ag(x) + Aod(x) =0, ¢(x)|aq = 0. (1.9)

Then, taking derivatives, substituting the perturbed system and integrating by parts, we can show that ( 1.8)
is bounded and independent of e. We can use the similar method to obtain the upper bound for (uc,v.). The
functional method is a very powerful method to obtain a priori estimates for elliptic and parabolic equations
(see [5, 6]) and is completely different than the traditional methods of sub and super solutions.

This paper will be organized as follows. In Section 2, we establish some important inequalities relating a
linear system and the eigenfunctions by using the functional method. In Section 3, we use these inequalities
to obtain a uniform bound to a related perturbation problem, and then, use Sobolev embedding theorem to
get the existence of positive solutions to (1.1). Finally, for the convenience of readers, we put the proof of

an inequality in Appendix because the proof is already given in [6].



2. Some Useful Inequalities

In this section, we collect some useful estimates for solutions to some linear systems. We first start with

a generalized Young’s inequality which will be used many times.

Lemma 2.1. For any functions u(x),v(z), f(x),g(x) > 0, any indices p1,p2, q1,q2, 01, @2, 1, B2, 01, where
01 < p1 < a1 (not necessarily positive) and any constant ¢ > 0, we have that
, 01 £0
ub? fre cualfm + C_(Pl—é'l)/(al—Pl)u;f ’
p91 g[IZ - 'Uﬁl 952 v gTIZ ’

where

02 = [p2(a1 — 01) — az(p1 — 01)] (a1 —p1) 7,
m = lqi(a1 —61) — Bi(p1 — 01)](ax — p1) 7",

n2 = [g2(a1 — 61) — Ba(p1 — 61)] (a1 — p1) 1.

proof. See the proof of Lemma 1 in [5].
Let 1 (x) to be the solution of:

(2.1)
P(x) =0, x€of,
where o € (—1,1). By [14], we have that:
dog(z) < ¥(x) < d14(2), 61,00 > 0,
0¢/0n < 0, x € 99. (2.2)
That is, ¢(z) and ¢(z) are separated by some constant, which will be used in Section 3.
Suppose that (u,v) is a solution of the following linear system:
up = Au+ A(z, t),
vy = Av + B(z,t), t>0,x €, (2.3)
u,v > 0, z € Q,
where A(z,t), B(xz,t) are continuous functions.
Lemma 2.2. For any n > 2, we have that
d n+2 n+l—o n+2
d[e dx < n/ v dx — n/ LA(x,t)dx, (2.4)
dt O um o) um Q Un+1

where u and ¢ are solutions of (2.1) and (2.8).



proof. Differentiating with respect to ¢ and integrating by parts, we have that:

d n+2 n-+2 n+2
d [y dx = —n/ 2 Audx — n/ v Az, t)dx
dt Q un Q un+1 Q un+1

wn+2 ¢n+2
= n/QV (un-H) Vudx — n/Q gy Az, t)dx

¢n+2 9 wn-&—l
=-n(n+1) / e [Vul® dz + n(n + 2) / VuVipdx
Q Q

un+1

n+2
_ n/Q o) Az, t)dx.
Using the following identity:
P2 [Vul® = [vVu — uVY| 4 2upVuVy — u? [V,

we then see that

i wn+2

dt 0 u"™

unt? untl

) n 2d wn—i—QA d
+n(n+ )/ﬂu—n|v¢| x~n/ﬂw (z,t)dz.

Integrating by parts for the second term of (2.6), we find

,¢,n+1 1
—n? / s VuVidr =n / LV ( ) dx
Q Q

un

1
_ n+1
— n/Q \Y% (w Vw) —undx

n n+1
=-—n(n+ 1)/ 1/)7 |V1/J\2dm—n/ 2 — Aypdz.
Qu Q u

Combining this with the rest of (2.6) gives us that:

n+2 n+1 n+2
4 Ldm < —n/ v Adx — n/ 2 Az, t)dx.
Q Q

dt Jo um u™ untl

Lastly, we use (2.1) to arrive at

d n+2 n+l—o n+2
v dx < n/ v , da:fn/ v Az, t)dx.
Q

dt Q un un Qu"+1

This completes the proof.

Lemma 2.3. For a,3 >0 and o+ 8 < 1, we have that

d gz)n-i—f.) ¢n+2 ¢n+2
n+2
+ A (n+2) /Q e dz,

P t? 2 P!
dr = —n(n+ 1)/ |YVu — uVap|” dr — dn2/ VuVipdr
Q Q

(2.6)

(2.7)



where ¢ is the first normalized eigenfunction of (1.9), (u, v) is a solution of (2.3). proof. We first set

. (t) _ ¢n+2

Q uom.vﬁn

Consider the following after taking the derivative with respect to time:

n-+2 42
/ _ o _ -
2, (t) =—an /ﬂ CanFiyhn udx — fn /Q 1Lanvﬁn+lvtdac

n+2 n+2
=— cm/ LAudw —5n/ LAvdx
Q

Q uanJrlvﬁn uanvﬁnJrl

n-+2 ¢n+2
— om/ —— Az, t)de — pn | —————B(x,t)dx.
Q

uoerLU,Bn Q uanvﬁnJrl

Looking at only the Laplace terms and integrating by parts gives us that:

¢n+2 ¢n+2

¢n+1 ¢n+1

¢n+2
—an(an+1)

_252 LVVd
afn | uon BTl uVudx

Consider the following term and integrate by parts:

J2 —an(n+2) / G Vude
Q uan—!—lvﬁn

B ¢n+1v¢ 1
B g ¢n+1v¢ 1

" 2 / ot
wanggn VOl do = (n+2) | —Cm Agda

=—(n+2)(n+1)
Q

¢n+1

We notice some similar terms, giving us the following:

_ ¢n+1 ﬂ
¢n 9 ¢n+1
(n+2)(n+1) | wanyPn [Vo|"dz — (n+2) | ey Agdx

Quan+2 an+2,8n |VU| dx—ﬁn ﬁn-l—l /m|v1]‘ dx

(2.10)

(2.11)

(2.12)

(2.13)



This gives us that:

: ot g

k=1
—an(an + 1) Lﬂ |Vul® dz — Bn(Bn + 1) Lﬂ |Vol? dx
Q uun+2UﬁTL Q uunv,ﬁ'rH—Q

— 2a3n? LHVqudm —(n+2)(n+1) il |Vo|* dz

Q uan+lvﬁn+1 Q uom.vﬁn
¢n+1
—(n+2) /Q oo A¢dz.
Then, we complete the square in a specific way:
- g+l 3
k=1
n+2 2
2 ¢ B
¢n+2 9 ¢n+2 9
+ 2a0n LVqudx —(n+2)(n+1) il |Vo|? da
Q ucxn+1vﬂn+1 Q uanvﬁn
¢n+1
—(n+2) e A¢dz.
If we recall that oo+ 3 < 1, we combine terms 3,4 and 5 of (2.15) as follows:
Pnt? 2 P2 2
¢n+2

Q2 2 P2 2

¢n+2

n—+2
== aﬁn/ _ wVu — uVo|? dx

Q uan+2vﬁn+2

<0.

(2.14)

(2.15)

(2.16)



Thus, we have that

5 ¢n+1 /3
n-+2 2
2 ¢ p
—« n(n+1)/ﬂW vVquEqu dx
¢n 9 / ¢n+1
— 2 1 Vol dr — 2
(Tl + )(n + ) Q wuomqBn | le z (TL + ) Q eaness

Applying Young’s Inequality to the second term of (2.17), we have that:

ot p
1 ¢n+2 ﬁ 2
1 [/2a2n2(n +2)? o
9 2 an,,fn |v¢|2 dx
2\ a®n(n+1) qQ uenyP
n+2 2
2 ¢ B
n(n +2)° " 2
+ ] /Q —angAn V| du.
Combining this with our remaining terms leaves us with the following:
5
n(n +2) " 2
I, < — 2 1) — d
St |2y - M| [ vl
¢n+1
(n+2) o 2
=— D) [(n+1)*—n(n+2)] v Vo|” dx
2 o Aopd.
—(n+ )/Q T odx
(+2) [ oo o
=— 1) g IVo|” dx — (n+ 2) | wonypn Apdz.
We are thus left with:
, ¢n+2 ¢n+2
2, (t) < —an oty Az, t)dx — Bn ., WB(.Z’, t)dx
¢n+2
+ )\1 (’I"L + 2) uanyBn

This completes the proof.

Agdz.

(2.17)

(2.18)

(2.19)

(2.20)



Lemma 2.4. Suppose that u,v is a solution of (2.3) with ulsq = 0 and ¢ is a solution of (2.2). For any
a, 3 € (0,1) such that a+ 8 < 1, we have

d u™ unfl u
a/QdeS n/QWA(w,t)dfv—a"AWB(m)dx
uTL
—Bn-2) | ———dx. 2.21
(Bn )/Q ponqbn—1+to z ( )

proof. See the proof of Lemma 2.5 in [6] (The proof is given in Appendix).

3. Main Results

In this section, we state the main result and prove it. Consider the following singular parabolic system:

wuy = Au + f(ac)’
VP
vt:Av+M, t>0,x €,
ud (3.1)

u(z,0) = uo(x), v(z,0) =vo(x), z€Q,

u(z,t) = v(z,t) =0, x € 0N
We say that (u,v) is a weak solution to (3.1) if u,v € L2(0,T; Wy *(Q)) N L>®(€ x (0,T)),

fif)’% € L'(2x(0,7)),

and

iR
/Quoﬁdm +/O /Q <u§t — VuVE + %5) dzdt =0

T
/Qvogdm —l—/o /Q (vft — VoV¢E + %5) dzxdt =0,

for all £ € C(Q x (0,T)), with £(x) = 0 on 9Q x (0,T) and £(T) = 0 in Q. We assume that the initial
conditions

uo(x),v0(z) € CH() and  ug(x),vo(x) > eoop(2), (3.2)

for some €p > 0, where ¢(z) is a normalized eigenfunction defined in (1.9).

Theorem 3.1. Suppose that p,q € (0,1), and that o¢?(x) < f(x) < cod”(x), 097 (z) < g(z) < codt(x),
where dp,co >0,0<n<0<1and0<p <7 <1. Then system (3.1) has a pair of positive, weak solution
(u,v). Furthermore, if N(n—p) > —1, then u is a classical solution; if N(u —q) > —1, then v is a classical

solution.



proof. To start, we consider the related perturbation problem:

= Au+
v

= Av+ t>0,z€q,

(u+e)e’
u(z,0) = up(x), v(z,0) =vo(x), z€Q,

u(z,t) = v(z,t) =0, x € 08

Denote the solution of (3.3) by (ue,v.) and set w, = u. +¢, 2. = v. +¢. For any a, 5 > 0 and o + 3 < 1,

Lemma 2.3 gives us the following:

d il de < M\(n+ 2)/ o dxr —an Mdm
Q

dt Jg wo‘”zﬁ" wa"zﬁn o Wt Ontp
" 2g(x
— Bn / om+q ﬂn+1 dx
¢n+2 ¢n+2+9
< Ai(n+2) /Q szg"dI — dpan A de
1>

¢n+2+‘r
— §ofn / L
Q ngH-ngﬂnJrl

For any § > 0, Lemma 2.1 with p; = an, a; = an+ 1 and 0, = an — § gives us that

n+2 —1\an in+2
M(n+2)-2 =N (n+2)%
W ze Ze
(w—l)an+1¢n+2+9 (wfl)anfé(bﬁg
< dpan—= e +c1(n)5T,
€

where

m = fAn(l+0) — (Bn+ p)d = Bn — pd,
Oo=mn+2)(1+0)—(n+2+0)d =n+2—409,

=i (sity) <o (33

(3.4) then becomes

d ¢n+2 ¢n+2796 ¢n+2+‘r
dt/Q o dz < ¢1(n) /Q 710&" 5 Bn 6pde' - 505”/9 711}?"“2’?"“ dx.

W ze
Using Lemma 2.1 again with p; = an — §, @1 = an + ¢ and 6, = 0 yields

(w—l)an—5¢n+2—0§ (w—l)an+q¢)n+2+'r ¢>93
ci(n)—= Bnps < dofBn A + 02(”)zW,
Ze Ze £

10

(3.4)

(3.7)



where

n2 = [(Bn —ép)(an +q) — (Bn+ 1)(an = 6)] /(0 + q)
= [Bgn — dpan — qép — an + 5pn + 0] /(0 + q) ,
O3 =[n+2-05)(an+q) — (n+2+7)(an —9)] /(¢ +9)

= [(q — ar + 6 — 0ad)n + 2q — 05q + 26 + 78] /(¢ + 0) ,

(an—6)/(g+8)
2)\ 146
( ! ) : (3.9)

Bdon ) —(an—0)/(q+90)

c1(n)

ex(m) = )

<ci(n

aﬂ&]

If we then set 7, = 0 and solve for 4, we find that

_ (o = Bg)n _a—ﬁq( 1—pq )
5= — - . .
(B—apn+1—-pg pB—ap ! (B —ap)n+1—pq (3.10)

Choose

a=1/(1+p) —~ (3.11)

and f =1 — « for some small v > 0. Then,

(1 =pg—~(1+q)(1+p) B 1—pq
0= < v(1+p)? ) (1 Y1 +pn+1 —pq) > 0. (3.12)

Since 1 —af > 0,1 —pg > 0 and g — ar + 6(1 — af) > 0 for v sufficiently small, we have that 65 > 0 for

sufficiently large n. Thus, (3.7) becomes

4 ﬂdw < CQ(n)/ % da (3.13)
dt 9] w(Eang” Q ’
or
il dx < / o dx + CQ(n)t/ % da. (3.14)
awenzf" 7 Jo (uo + €)™ (vo + )P Q

th

Extracting n*"* roots and letting n — oo, we obtain

o(x) o(x) o
Titax W < max {mgx (a0 79 (00 T 1= 3 mgxcﬁ (:):)]

T
< max {m_ax %7 c3 max ¢! (m)}
ugvg Q

2 M, (3.15)

where M is a constant independent of e, and

(54+1)
_ 2)\1 q+8

C3 = 04560 )

or=[qg—ar+4d—20ab] /(q+9). (3.16)

11



Next, define w. and ¢ as before with o € (0,1). For any € (0,1), Lemma 2.4 with « replaced by S and
[ replaced by 1 — 3 gives us the following:

n n—1 n
dt Q w?n¢(1*ﬁ)n*2 Q wgnzg¢(1*ﬂ)n*2 Q w?TH_ Zg¢(1*ﬂ)”*2
ul
[(1-P)n 2]/9 T dz. (3.17)
For any §; > 1, Lemma 2.1 gives us
n—1 n n—aoy
Ug Ug 1-5, Ue
< B pate 3.18
wsﬂn w?n+1 w;] ( )
where
m :ﬁ51n—(ﬂn+1)(61 —1) :Bn—(51+1 (319)

(3.17) then becomes

d ug 15, u?_‘sl f(x)
dt /n e e Y R T TR

(1= B —2] / 4 da. (3.20)

Q w?nqb(lfﬂ)nfpra

U

Note that

P P
) I A B L A 1
wglzg¢(1—ﬁ)n—2 — Ow,gl—ap/(l—a) wgzsl—oz w ¢(1—ﬂ)n—2+p/(l—o¢)
n—ap
u

< M. d : 3.21
= 2 m=er/(1=0) (- pyn—2tp/(1-a)—n (3:21)

where « is defined as (3.11). Using Lemma 2.1 again paired with (3.21), we see that

n—ao1 n
W s < 0= =2 e e g 522
where
m2 = [(Bn—d1+1—ap/(l —a))n—pBn(n—0d1)] /01
=[661+1 -6 —ap/(1 —a)]n/d,
ns=[((1=Bn-2+p/(l—a)—nn—((1-B)n—1+0)(n—0d1) /0
=—[(14+0+n—-p/(1—-a)—61-p)n/é —1+o0. (3.23)
If we set 72 = 0 and solve for d;, we find:
_1-ap/(l-a)
0 = W > 1, (3.24)

12



since

ap _p-p(+py (3.25)
l—a  p+y(1+p)

Additionally, since

l+o+n—p/(l—a)—6(1-p)=14c+n—p/1—a)—1+ap/(1—-a)
=0+n—p

> 0, (3.26)

we thus have that ns < 0. (3.20) then becomes

d/ U g < e )/w—%d (3.27)
— | ————————dx < c5(n T, .
dt Jo wPrgt-—om—2"" = o

which implies that u. < Mzw?¢'=#, and so w. is uniformly bounded. Similarly, we also find that v, is
uniformly bounded.

Let ¢1(x) be a solution of (2.1) with 0 = —0. By Lemma 2.2,

d ¢n+2 ¢n+1+9 ¢n+2+9
dt Jo wg Q wg Q We Ze
By Lemma 2.1,
111+1+9 '17,+2+9 1
(n + 2) ’U_);L S 50nw2+1zg + Cg (n)m, (329)
where

m=nn+2+0)—(n+1)(n+1+6)]=—(14+0) <0,

n2=—-pn+1+80) <0,

607’L —(n+1+40)
. = 2 . 3.30
cotn) = n-+2) (25 (3.30)
Thus, the last term in (3.29) is bounded and ¢y < Myw,. Similarly, we find that ¢ < Mjsz..
Finally, for any r € (1, %)7
T rn rn
‘ T@N o [0 g < rpge [ 2@ g < g, (3.31)
Ze lpr Q % o ¢ (z)

A similar ineqaulity can be found for v.. Hence, by L? Theory (see Theorem 6 in [16]), (ue,v) are uniformly
bounded in [W2!(Q x (0, T))]27 and so a subsequence (u.,,v:,) can be found which converges to a weak

solution of (3.1). If N(n —p) > —1, we can choose » > N and r(n — p) > —1 so that (3.31) is true. Then,

13



by the Sobolev embedding theorem, u. — u in C** () for some x € (0,1), and so u is a classical solution
of (3.1). Similar results can be found for v. This completes the proof.

As we can see, this functional method proves to be very powerful when dealing with singular parabolic
systems. Future works may include relaxing the conditions put on f(z) and g(z), as well as consideration

of the different diffusion coefficients.
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4. Appendix

Here we give the proof of Lemma 2.4 (for details, please see [6]). Similar to the proof of Lemma 2.3, we

have

d u™ w1
i A .
dt /S.)Uan¢ﬂn72 - n/Q ,Uanqsﬂan [ u+ A(':La t)]d.fﬂ

un—? un—l
unfl unfl

u"L 2
—an(an+1 /7 Vol dz
) Q Uun+2¢[ﬁn—2 | |

n

u

un
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Letting £ = 1/(1 — «) and completing the square, we have
n—2

11+12+15:—n(n—k)/ Y

2
o W |’UVU — aqu| dx

_ (kfl)/LﬁN 2 d
n Q Uangbﬁnf? u r

u"

un—l
un,72 5
n—2
an u 2
- /Q s [0V~ uVof do. (4.2)

Consider the following term and integrate by parts,

n—1

J2 n(fn—2) /Q va:(meuV¢dx = —(Bn—2) /ﬂ WV(W”V(MM

u™ u"

un

+(Bn — 2)/QWAW$.

Then,

Is4 I = (I3 = J)+ (Is + J)

unfl u™

— (ﬁn — 2)(ﬂn — 1)/Q U@:Qﬁ/@" |v¢)|2 dx — (ﬂ’ﬂ — 2) A ,Uan(;;ﬁdm
= 2n(fn — 2) /Q Wz?A(;;n_l(UVu — auVv)Vedr
— (Bn=2)(Bn — 1) /Q W:d;ﬂn V|2 da — (Bn — 2) /Q Wgﬁdcg. (4.3)

Using Cauchy’s inequality, we obtain

unfl

2n(fn — 2)/ W(UVU — auVv)Vedx
Q

n—2
u 2
S n(n — k) /Q W "Uvu - CVUVU| dx

n(Bn — 2)? u” 2
Ta e /Qva%ﬁn Vol da. (4.4)

Substituting (4.2)-(4.4) into (4.1), we find

n

d u” U
pn A 71)@"(1)5”72 de < I, +I; — (fn — 2) ., 7vom¢ﬁn—1+a dx

n(Bn — 2)2 u”
_ {(ﬂn—2)(ﬁn71) - (i_;) }/Qvanqsﬂn V| da. (4.5)
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Since

(1—a-p)

(Bn—1)(n—k) —n(fn—2) =n(l —kB) + k = = - k>0,

the last term of (4.5) is negative. Hence, (2.18) is true. This completes the proof.
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