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On external fields created by fixed charges

R. Orive1,∗, J. F. Sánchez Lara2

Abstract

In this paper equilibrium measures in the presence of external fields created by fixed charges are
analyzed. These external fields are a particular case of the so-called rational external fields (in the
sense that their derivatives are rational functions). Along with some general results, a thorough
analysis of the particular case of two fixed negative charges (“attractors”) is presented; indeed, the
main result of the paper deals with this particular case. As for the main tools used, this paper is
a natural continuation of [33], where polynomial external fields were thoroughly studied, and [39],
where rational external fields with a polynomial part were considered. However, the absence of the
polynomial part in the external fields analyzed in the current paper adds a considerable difficulty to
solve the problem and justifies its separated treatment; moreover, it is noteworthy to point out the
simplicity and beauty of the results obtained.

Keywords and phrases: Equilibrium measures, External fields, Phase transitions.

1. Introduction

This paper is devoted to the study of equilibrium measures in the real axis in the presence of
rational external fields created by fixed charges. These are external fields of the form:

ϕ(x) =

q∑
j=1

γj log |x− zj | , γj ∈ R , zj ∈ C , (1)

where for γk > 0 , zk must lie on C \ R , and it is assumed that

q∑
j=1

γj = T > 0 . These conditions

ensure that given any t ∈ (0, T ), there exists a measure λt = λt,ϕ, such that λt(R) = t, with compact
support St ⊂ R , uniquely determined by the equilibrium condition (see e.g. [41])

V λt(x) + ϕ(x)

{
= ct , x ∈ St ,

≥ ct , x ∈ R ,
(2)
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where ct is called the equilibrium constant and for a measure σ , V σ(x) = −
∫

log |x− s| dσ(s) . The
measure λt is called the equilibrium measure in the presence of ϕ and minimizes the weighted energy

Iϕ(σ) = −
∫∫

log |x− z| dσ(x) dσ(z) + 2

∫
ϕ(x)dσ(x)

among all measures σ supported in the real axis and such that σ(R) = t .
It is easy to see that

λt = t λ1,ϕ/t , (3)

where λ1,ϕ/t denotes the unit equilibrium measure in the external field
1

t
ϕ . External fields (1) are

called rational since their derivatives are rational functions:

ϕ′(x) =
q∑

j=1

γj
x− Re zj

(x− zj)(x− zj)
, x ∈ R.

In this sense, this paper completes the analysis started in [39], where rational external fields of the
form

ϕ(x) = P (x) +

q∑
j=1

γj log |x− zj | , γj ∈ R , zj ∈ C , (4)

P being a polynomial of even degree 2p, with p ≥ 1, were considered. There, a particular case was
treated in detail: a generalized Gauss-Penner model for which p = q = 2. When p ≥ 1, the polynomial
part makes the external field strong enough to be admissible for any t ∈ (0,+∞). On the contrary,
when the polynomial part is absent, the external field is weaker and it is admissible just for t ∈ (0, T ).
This important difference is one of the reasons for studying these weaker rational external field in a
separated paper.

Of course, it is also possible to deal with rational external fields (1) with some zj ∈ R and the
corresponding γj > 0; but in that case, the conductor where the equilibrium problem is posed cannot
be the real axis. This is the situation, for instance, when the asymptotics of Jacobi polynomials
with varying non–classical parameters are handled (see e.g. [23], [29] and [32]). In this situation,
the support of the equilibrium measure consists of a finite union of arcs and curves in the complex
plane; these arcs/curves satisfy a kind of symmetry with respect to the external field (the so-called “S-
symmetry” introduced by H. Stahl during the eighties, see [43]). In a similar fashion, when asymptotics
of Laguerre polynomials with varying non–classical parameters are studied, a rational external field
with a polynomial part (4) takes place (see [3], [12], [25], [26], [30] and, from the viewpoint of the
Gauss-Penner Random Matrix models, [2]). Other setting where it is feasible having zj ∈ R and
γj > 0 is when the conductor is a proper subset of the real axis not containing points zj ; in that
case, hard edges at the endpoints of the conductor arise (see e.g. [39], where the conductor [0,∞) is
considered).

Rational external fields appear in a number of applications in approximation theory, for instance
when dealing with the asymptotic distribution of zeros of orthogonal or Heine-Stieltjes polynomials;
in particular, the application of “purely rational” external fields of the form (1) to the asymptotics
of Heine-Stieltjes polynomials will be recalled below with more detail. But there are also important
applications in random matrix theory, for example in the study of Gauss-Penner type models. The
rest of this section will be devoted to describing briefly these applications.
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In the second section, equilibrium problems in the presence of external fields (1) are handled in
general, studying some properties such as the asymptotic behavior of the equilibrium measure when
t (the size of the equilibrium measure or, equivalently in other contexts, the “time” or the “temper-
ature”, [5]-[7], [24] and [33], among others) tends to T , as well as the evolution of this equilibrium
measure when other parameters (the “heights”, Im zj , or the “masses”, γj) of the external field vary.

The main contribution of this paper is in Section 3, where the particular case of a rational external
field created by two fixed charges is treated in detail. In this case, the support of the equilibrium
measure may consist of one or two intervals (“one-cut” or “two-cut”, respectively), and we are mainly
interested in the evolution of this support when t travels through the interval (0, T ). Our main result
is Theorem 3.1 below, though other results necessary for its proof, presented in Sections 2 (Theorem
2.2) and 3 (Theorems 3.2–3.4), are also of interest themselves; their proofs are collected in Section
4 in order to make the paper more readable. Finally, the geometrical aspects of the solution of our
main problem presented in Theorem 3.1 below are illustrated in the final appendix.

It is convenient to recall again that, regarding the methodology used, this paper, as well as the
previous [39], is a natural continuation of [33], where this “dynamical” approach was thoroughly
carried out for the case of polynomial external fields.

1.1. Generalized Lamé equations and Heine-Stieltjes Polynomials
In a series of seminal papers (see [44]-[47]), T. J. Stieltjes (1856-1894) provided an elegant model

for the electrostatic interpretation of the zeros of classical families of orthogonal polynomials (Jacobi,
Laguerre and Hermite) and polynomial solutions of certain linear differential equations (the so-called
Heine-Stieltjes polynomials, see also [48, §6.8] for a more detailed study). Regarding the latter case,
in [38] the authors considered the following equilibrium problem in the real axis (for a counterpart of
this problem in the Unit Circle, see [17] and [31]).

Let m, n ∈ N and consider m prescribed negative charges at points zk ∈ C \ R , k = 1, . . . ,m.
Then, suppose there are n positive unit charges that can move freely through the real axis, and denote
by xk ∈ R , k = 1, . . . , n, their positions. Observe that in the classical Heine-Stieltjes setting, the fixed
charges are located in the real axis and are positive, that is, they are “repellents”, while now they are
negative (“attractors”). Then, the free charges will be located in such a way that the (logarithmic)
energy of the system

E(x1, . . . , xn) = −
∑

1≤j<k≤n

log |xk − xj |+
n∑

j=1

m∑
k=1

ωk log |zk − xj | (5)

is minimized. Hereafter, let us denote by s =
m∑

k=1

ωk , the total mass of the prescribed charges. Then,

it was shown (see [38, Theorem 1]) that if s > n−1 , the energy functional (5) has a global minimum in
Rn . This minimum is attained at some point (x∗

1, . . . , x
∗
n) ∈ Rn , where −∞ < x∗

1 < . . . < x∗
n < +∞ .

However, in this case, unlike what happens in the classical setting, the global minimum does not need
to be unique (see [38, Section 2.2]). In addition, it was shown that each generalized Heine-Stieltjes

polynomial, y(x) =
n∏

j=1

(x − x∗
j ), is solution of a generalized Lamé differential equation of the form

A(x)y′′ +B(x)y′ + C(x)y = 0 , where

A(x) =
m∏

k=1

(x− zk)(x− zk) , h(x) =

m∏
k=1

((x− zk)(x− zk))
ωk , B(x) = −A(x)

h′(x)
h(x)

,
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for some Van Vleck polynomial C ∈ P2m−2 . (For more information about the Lamé equation, and the
Van Vleck and Heine-Stieltjes polynomials in the classical setting, see e.g. [28] and [48]).

In [38] the asymptotics of Heine-Stieltjes polynomials was also considered when both n and s = s(n)

tend to ∞, in such a way that lim
n→∞

s

n
= θ > 1 , extending the asymptotic analysis carried out by A.

Mart́ınez Finkelshtein and E. B. Saff in the classical scenario when the number of free charges increases

to infinity [35]. To describe the situation considered in [38] , for each n denote νn =
1

n

m(n)∑
k=1

ωnkδznk
,

which is an atomic measure such that νn(R) =
s(n)
n > n−1

n , and suppose that

νn
∗−→ ν , n ∈ Λ ⊂ N and n→∞ ,

in the weak-* topology, for some measure ν of size θ = lim
n→∞

s

n
> 1, with compact support in C \ R

and some infinite subsequence Λ ⊂ N. Now, suppose that, for each n ∈ N , {x∗
nj : j = 1, . . . , n} is an

equilibrium configuration (that is, a global minimum) for the discrete equilibrium problem (5). Then,

denoting by μn =
1

n

n∑
j=1

δx∗
nj
, in [38, Theorem 3] it was proved (following the same approach as in [35,

Th. 2] and [31, Th. 3.2]) that μn
∗−→ μ , n ∈ Λ ⊂ N and n→∞, where μ is the equilibirum measure

of R in the external field ϕ = −V (ν, ·). That is, the unit counting measures of zeros of Heine-Stieltjes
polynomials converge, in the weak-* star topology, to the equilibrium measure in the external field
due to the potential of the negative charge ν .

In the general case not much more can be said, but the situation is different if the limit measure ν
is atomic. This situation was considered in [38], where the case ν = γ1δz1 + γ2δz2 , with z1, z2 ∈ C \R
and γ1 + γ2 > 1 was analyzed, studying in detail the so-called “totally symmetric” case, i.e. when
z2 = −z1 and γ2 = γ1 . One of the main goals of this paper is to deal with the general situation where
the “heights”, Im z1, Im z2 , and the “charges”, γ1, γ2 , are arbitrary positive real numbers.

In adition, let us point out that it is also possible to consider sequences of critical configurations
(relative extrema or saddle points), not necessarily global minima, of the discrete energy (5) for n→∞
and s/n → λ > 1. The limit measures of such sequences will be the so-called (continuous) critical
measures, a class of measures to which the equilibrium measure belongs. In Section 2, a little bit more
will be said about these critical measures (see [34] for an extensive study of them).

Finally, it is noteworthy to mention that the zeros of Heine-Stieltjes polynomials are actually a
particular case of the so-called weighted Fekete points (see e.g. [41]).

1.2. Applications of rational external fields to random matrix models

It is well known that another circle of applications of equilibrium problems in the presence of
external fields comes from the Random Matrix models (see e.g. [33] and the exhaustive bibliography
therein). This is an important theory within mathematical physics and, more precisely, statistical
mechanics. For the sake of completeness, let us briefly recall the connection between this theory and
our problem in potential theory.

To do it, consider that the set of N ×N Hermitian matrices{
M = (Mjk)

N
j,k=1 : Mkj = Mjk

}
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is equipped with the joint probability distribution

dνN (M) =
1

Z̃N

exp (−TrV (M)) dM,

with

dM =

N∏
j=1

dMjj

N∏
j �=k

dReMjk d ImMjk,

where V : R→ R is a function such that the integral

Z̃N =

∫
exp (−TrV (M)) dM.

is convergent. Then, it is well-known (see e.g. [36]) that νN induces a joint probability distribution
μN on the eigenvalues λ1 < · · · < λN of these matrices, with the density

μ′
N (λ) =

1

ZN

∏
i<j

(λi − λj)
2 exp

(
−

N∑
i=1

V (λi)

)
, (6)

where λ = (λ1, . . . , λN ), and with the corresponding partition function

ZN =

∫
R

· · ·
∫
R

∏
i<j

(λi − λj)
2 exp

(
−

N∑
i=1

V (λi)

)
dλ1 . . . dλN .

In the framework of Random Matrix models, the free energy of this model is defined as

FN = − 1

N2
logZN

and it is very important to study the limit

F∞ = lim
N→∞

FN .

The existence of this limit has been established under very general conditions on V , see e.g. [21].
Regarding the connection with the equilibrium problems in the presence of external fields, the

subject of the current paper, take into account that the density (6) above may be expressed in the
form

μ′
N (λ) =

1

ZN
e−N2 Iϕ(σN ) ,

where σN = 1
N

∑N
j=1 δλj is the unit counting measure of the eigenvalues, and ϕ =

V

2
. This means

that the value of F∞ is related to the solution of a minimization problem for the weighted logarithmic
energy. Therefore, the corresponding minimizer is the equilibrium measure associated to the external
field ϕ = V

2 .
The case of polynomial potentials V , and, in particular, the situation when V is a quartic poly-

nomial has been extensively studied in the literature (see the monograph by Wang [49] or the pa-
pers [1], [5], [6], [9], [24] and [33], among many others), paying special attention to the so-called
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phase transitions. In [39], general rational external fields of type (4) are handled in connection with
the generalized Gauss-Penner model considered in [22]: a 1-matrix model whose action is given by
V (M) = tr

(
M4 − log(v +M2)

)
, in order to get a computable toy-model for the gluon correlations

in a baryon background. On the other hand, the purely rational external fields considered in the
current paper are connected with the so-called “multi-Penner” matrix model, with action given by

W (M) =

N∑
j=1

μj log(M − qi) , which is of interest in Gauge Theory, as well as in Toda systems (see

e.g. [15] and [13]).

2. Rational external fields

The subject of the present paper is the study of equilibrium measures in the presence of external
fields of the form (1), with γj > 0 and zj ∈ C \ R for j = 1, . . . , q, where

q∑
j=1

γj = T > 0 .

In this sense, and also regarding the methodology used, it is a continuation of [39], where general
external fields containing a polynomial part of the form (4) were considered. However, the absence of
the polynomial part in the present external field represents a significant increase in the difficulty to
solve the problem (as will be seen later).

In [33] and [39] it was shown how a combined use of two main ingredients provide a full description
of the evolution of the support of the equilibrium measure when the size of the measure, t, grows
from 0 to ∞ (recall that in both previous papers, the external fields were strong enough to allow
t ∈ (0,+∞)). These main tools are an algebraic equation for the Cauchy transform of the equilibrium
measure and a dynamical system for the zeros of the density function of this measure, based on the
Buyarov-Rakhmanov seminal result in [10].

Indeed, suppose that the rational external field is of the form (1). Then, with respect to the first
ingredient, as it was seen in [39, Theorem 2.1] within a more general context, denote by Φ the function,
analytic in a neighborhood of R, such that ϕ(x) = Φ(x) = ReΦ(x), x ∈ R (this is feasible, since the
branch points zj and zj lie on C \ R). Namely, we have

Φ(z) =

q∑
j=1

γj
2

(log(z − zj) + log(z − zj)) .

Then, we have that the Cauchy transform of the equilibrium measure, λ̂t(x) =

∫
dλt(s)

x− s
, satisfies

the relation:

(−λ̂t +Φ′) (z) = (T − t)
√

R(z) = (T − t)
B(z)

√
A(z)

D(z)
, z ∈ C \ St , (7)

for some monic polynomials A(z) =

2k∏
j=1

(z−aj) and B(z) =
∏2q−k−1

j=1 (z−bj), with a1 < . . . < a2k ∈ R ,

(and thus, R is a rational function). We take the branch of
√
R(z) which is positive for z ∈ (a2k,+∞) .
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Here and on the sequel, we denote D(z) =

q∏
j=1

(z − zj)(z − zj) , which is a polynomial of degree 2q.

In fact, (7), as well as the previous results in [33, Theorem 2.2] and [39, Theorem 1.1], holds in the
more general context of critical measures.

In addition, since the support of λt consists of the union of the cuts [a2j−1, a2j ], , j = 1, . . . , k , (7)
and the Sokhotski—Plemelj inversion formula provides an expression for the density of the equilibrium
measure:

λ′
t(x) =

T − t

πi

√
R(x)+ =

T − t

π

√
|R(x)| , x ∈ ∪k

j=1 [a2j−1, a2j ] , (8)

where
√
R(x)+ stands for the limit of

√
R(x) as z approaches x from the upper half-plane.

Therefore, the zeros of R are the main parameters of the equilibrium problem; the ones with odd
multiplicity are the endpoints of the intervals comprising the support St. Equating the residues of
both members in (7) at zj , j = 1, . . . , q, we obtain (taking real and imaginary parts) 2q nonlinear
equations for the 2q+k−1 zeros of R. However, only when the one-cut case occurs, that is, k = 1, this
system completely determines the unknowns. Indeed, when k > 1, this system has solutions where the
so-called chemical potential takes a constant value on each connected component of the support (see
the first equation in (2)), but in general, these constants are different, providing what is often referred
to as critical measures. Thus, when k > 1, in order to fulfill condition (2), the extra conditions∫ a2j+1

a2j

√
R(x) dx = 0 , j = 1, . . . , k − 1 (9)

must hold, which means that B must have an odd number of zeros (counting their multiplicities) on
each gap (a2j , a2j+1) , j = 1, . . . , k−1 , of the support. Observe that, in addition, it provides a bound
for k, the number of intervals comprising the support St: namely, we have that k ≤ q.

Recall that for rational external fields of the form (4) with p ≥ 1, the computation of the coefficients
in zm , with m ≥ −1 , of the expansions at infinity in both members of equality (7) always provides
some simple equations helping us to find the value of the endpoints and the other zeros of the density
function in a rather easy way, or other useful properties of them (such as the value of their arithmetic
mean or others, see [39]); unfortunately, this does not work in our purely rational situation (P ≡ 0)
since a trivial identity is obtained. Thus, in the current setting even the one-cut case is difficult to be
explicitly solved, as well as finding the values of parameters where phase transitions occur. However,
despite the complicated calculations needed for solving explicitly the problem of determining the
support, it is worth to point out the simplicity and beauty of the results (see Theorem 3.1 below).

The second ingredient is based on a “dynamical” description of the support of the equilibrium
measure λt in the real axis in the presence of an external field, which was proposed by Buyarov and
Rakhmanov in [10]. This seminal result basically asserts that at a certain “instant” t0, the derivative
of the equilibrium measure λt with respect to t is given by the Robin measure (that is, the equilibrium
measure in the absence of an external field) for the support St0 . Hereafter, by the derivative of a
compactly supported measure σ with respect to a certain parameter τ at τ = τ0, we mean the limit
measure (provided it is unique; the existence is guaranteed by a weak compactness argument)

lim
h→0

1

h
(σ(τ0 + h)− σ(τ0)) . (10)

In the current rational case, taking into account these results and the well-known expression for the
Robin measure of a finite union of compact intervals, we have that except for an at most denumerable
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set of values of t,

∂

∂t

(
(T − t)

B(z)
√
A(z)

D(z)

)
= − F (z)√

A(z)
, (11)

where F is a monic polynomial of degree k − 1 such that

∫ a2j+1

a2j

F (x)√
A(x)

dx = 0 , j = 1, . . . , k − 1 ,

which means that F has a simple zero on each gap (a2j , a2j+1) of the support (see [39]). Making

use of the abbreviate physical notation for the derivative with respect to the “time” t: ḟ =
∂f

∂t
, and

evaluating (11) at points ai and bi, it immediately yields (see [39, Theorem 1.2]):

Theorem 2.1. Except for a denumerable set of values of t, it holds

ȧi =
1

T − t

2D(ai)F (ai)

B(ai)
∏

j �=i(ai − aj)
, i = 1, . . . , 2k ,

ḃi =
1

T − t

D(bi)F (bi)

A(bi)
∏

j �=i(bi − bj)
, i = 1, . . . , 2q − k − 1 ,

(12)

with 1 ≤ k ≤ q .

From (12), it is clear that always ȧ1 < 0 and ˙a2k > 0 . Moreover, taking into account that on each
gap there is an even number of zeros of the product B(x)F (x), it is also possible to assert that the
ai when i is odd are decreasing, while for even values of i are increasing; this is coherent with the
well-known fact that the support St is increasing with t (see [10]).

Indeed, (12) is a dynamical system for the positions of all the important points determining the
equilibrium measure and its support. Previously, in [33] a similar result was extensively used to study
the dynamics of the equilibrium measure and its support for the case of polynomial external fields; in
particular, the so-called “quartic” case was analyzed in detail. Similarly, in [39] the case of a rational
external field consisting of a polynomial part plus a logarithmic term (a generalized Gauss-Penner
model) was studied.

Remark 2.1. Bearing in mind the results in [33], for polynomial external fields, and those in [39] and
(12), for the rational case, it is easy to find a general structure of these dynamical systems. Indeed,
for the zeros of the density (8) of the equilibrium measure of the interval [c, d] ⊂ R (bounded or not)
in the presence of the external field (4), the following system of differential equations holds (except
for a finite number of bifurcations/collisions),

ξ̇j = hj(t)
D(ξj)F (ξj)

(AB)′(ξj)
, (13)

where hj(t) is a positive function of t which reduces to a constant if the external field (4) has a
polynomial part, D is a real polynomial of even degree whose zeros are located at the point masses
and their conjugates, and A,B play the same role as in (7)-(8). At first sight, there seems to be an
important difference between the purely rational case handled in the current paper and the rational
cases with a polynomial part: now, the system is not an autonomous one, since function hj depends
on the variable t; in the other rational cases, the presence of the polynomial part in the external field
makes hj ≡ κj , i.e., a constant independent of t. However, this is only an apparent difference: after
a simple change of variable, the system easily becomes autonomous. Indeed, it is easy to check that
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the change u = − log(T − t) + log T , with the new “time” u lying on (0,+∞) , transforms (12) in an
autonomous system.

The shape of these dynamical systems (13) resembles in a certain sense to a system of ODEs studied
by Dubrovin in [14] for the dynamics of the Korteweg-de Vries equation in the class of finite-zone or
finite-band potentials, as it was pointed out in [33].

As it was said above, under mild conditions on ϕ, the equilibrium measure depends analytically
on t except for a (possible) small set of values, which are called the critical points or the singularities
of the problem. At these critical values of t, the so-called phase transitions occur; in most of them,
it implies a change in the number of cuts (connected components of the support St), but not always.
The study of these phase transitions is one of the main issues of this problem. Let us recall, briefly,
the basic type of singularities we can find (using the classification in [11], also used then in [24] and
[33]). In this case, we prefer recalling the version of these definitions used in [33], namely:

• Singularity of type I: at a time t = τ a real zero b of B is such that (V λτ +ϕ)(b) = cτ , b /∈ Sτ

(see (2)), in such a way that for t = τ , b is a simple zero of B. Therefore, at this time t = τ
a real zero b of B (a double zero of Rτ ) splits into two simple zeros a− < a+ (of A), and the
interval [a−, a+] becomes part of St for t > τ (birth of a cut).

• Singularity of type II: at a time t = τ , a real zero b of B (of even multiplicity) belongs to
the interior of the support Sτ ; according to (7)-(8), the density of λτ vanishes in the interior
of its support, in such a way that for t = τ , b is a double zero of B. Thus, at this time t = τ
two simple zeros a2s and a2s+1 of A (simple zeros of Rt, i.e., endpoints of the support) and a
simple zero of B have collided (fusion of two cuts). After that collision, they become a pair of
imaginary zeros of B.

• Singularity of type III: at a time t = τ , polynomials A and B have a common real zero a;
the only additional assumption is that a is a double zero of B, so that λ′

τ (x) = O(|x− a|5/2) as
x→ a. Then, at this time t = τ a pair of complex conjugate zeros b and b of B (double zeros of
Rt) have collided with a simple zero a of A (endpoint), so that λ′

τ (x) = O(|x− a|5/2) as x→ a.
Observe that in this case no topological change takes place: the number of cuts does not vary.

There is another special situation which plays a similar role as the previous ones, but is not
properly a singularity, and was also considered in [33] and [39]. It takes place when polynomial B has
two conjugate imaginary roots, b and b, which collide at a certain time, producing a double real root
of B (quadruple real root of R) in the real axis, which immediately splits into a pair of simple real
roots, b1 and b2, which tend to move away each other. In fact, what we have in this case is the birth
of two new local extrema of the total (or “chemical”) potential (2). From this point of view, a type
III singularity may be seen as a limit case of these situations, when the pair of imaginary zeros of B
collide simultaneously with a zero of A (endpoint).

In the case where the number of cuts is bounded by 2 (precisely, the case we will deal in Section 3
of this paper), these are just all the possible types of singularities, while if it can be bigger than 2 more
intriguing phenomena may occur when two or more of these singularities take place simultaneously.

Now, we are dealing with what may be called, in a colloquial style, “the beginning and the end of
the movie”, that is, the situation when t ↘ 0 and t ↗ T . The answer to the first question is clear:
the critical points of Φ are the initial conditions of the dynamical system (12), as we can see taking
t = 0 in (7). Then, since the family of supports {St}t∈(0,T ) is increasing with t, as t↘ 0 the support
tends to reduce to some subset of these critical points. But (2) implies that this limit support must
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be included in the set of points where the global minimum of Φ is attained. On the other hand, for
x /∈ St, the function V μt(x) + Φ(x) − c is strictly increasing with respect to t (see for details the
previous proof of Theorem 2.2) and, so, applying (2) again, there can not be a global minimum of Φ
not belonging to St. Hence, we have⋂

t∈(0,T )

St = {y ∈ R : Φ(y) = min
x∈R

Φ(x)} , (14)

and since Φ′ is a rational function whose numerator has degree 2q − 1, we easily conclude that the
cardinality of the set (14) belongs to the set {1, . . . , q} ⊂ N . Regarding the second question, we have

Theorem 2.2. Denote by λt the equilibrium measure in the external field (1). Then,

i) There exists the limit of the equilibrium measure when t→ T :

lim
t→T

λt = λT ,

in the sense that
lim
t→T

λt(I) = λT (I) ,

for any Borel set I ⊂ R.

ii) For t sufficiently close to T , the support St consists of a single interval. In particular, using the
AB-representation (7), the zeros of polynomial A (endpoints) diverge:

lim
t→T

a1 = −∞ , lim
t→T

a2 = +∞ ,

and the 2q− 2 zeros of polynomial B converge to points in C \R; in particular, they converge to
the zeros of the rational function:

q∑
j=1

(
γj

2(z − zj)
− γj

2(z − zj)

)
.

iii) The density of the limit measure λT is given by

dλT

dx
=

1

T π

q∑
j=1

γj Im zj
((x− Re zj)2 + Im z2j )

The proof of Theorem 2.2 will be displayed in Section 4, along with the proofs of the other
important results in this paper.

Remark 2.2. The asymptotic result in Theorem 2.2 above deals with the so-called weakly admissible
external fields (see [8], [19] and[42], among others). In this sense, given some t > 0 (the size of the
equilibrium measure) an external field φ is said to be weakly admissible if

lim inf
|x|→∞

(φ(x)− t log |x|) = M > −∞ , (15)

10



in place of the usual requirement that

lim
|x|→∞

(φ(x)− t log |x|) = +∞ .

For these weakly admissible external fields satisfying condition (15), the equilibrium measure also
exists and it is unique, but the support is possibly unbounded. In this framework, the asymptotic
measure λT , found as a limit measure in Theorem 2.2, is the equilibrium measure λt, for t = T , in
the weakly admissible external field (1).

To end this section, let us consider the variation of the equilibrium measure when some of the
parameters of the external field (1) vary; that is, we mean the evolution of the equilibrium measure
when one of the “masses” γj or “heights” Im zj is varying.

In order to do it, we present now a simplified version of [33, Theorem 5], where the authors
extended the seminal Buyarov-Rakhmanov result for the variation of the equilibrium measure with
respect to other parameters in the external field (recall the definition of the derivative of a measure
with respect to some parameter (10)), which is sufficient for our purposes (see also [39, Theorem 1.3]).

Theorem 2.3. Let t > 0 be fixed and suppose that the function ϕ(x; τ) is a real-analytic function for
x ∈ R and τ ∈ (c, d), where (c, d) is a real interval. Let λ = λt,τ denote the equilibrium measure in
the external field ϕ(x; τ), for τ ∈ (c, d), with support St,τ . Then, for any τ0 ∈ (c, d),

∂λ

∂τ
|τ=τ0 = ω ,

where the measure ω is uniquely determined by the conditions

suppω = St,τ0 , ω(St,τ0) = 0 , V ω +
∂ϕ(x; τ)

∂τ
|τ=τ0 =

∂ct
∂τ
|τ=τ0 = const on St,τ0 , (16)

where ct is the equilibrium constant given in (2).

Observe that the second formula in (16) means that ω is a type of signed measure which is often
called a neutral measure; it is a natural consequence of the fact that t, the total mass of λ, does not
depend on parameter τ .

We are concerned, first, with the situation when one of the “masses” γj , with j ∈ {1, . . . , q} , varies
in (0,+∞). In this case, taking into account that

∂ϕ(z)

∂γj
= log |z − zj | and that the measure ω in

Theorem 2.3 above is supported in ∪k
j=1 [a2j−1, a2j ] , then its Cauchy transform ω̂ is such that

−ω̂(z) + ∂

∂z

(
∂ϕ(z)

∂γj

)
=

H(z)

(z − zj)(z − zj)
√

A(z)
,

where H is a monic polynomial of degree (k+1) which has a zero of odd order on each of the (k− 1)
gaps of the support of the equilibrium measure, and such that at least one of the other two zeros lies
inside the convex hull of the support. The coefficients of H can be obtained from the residues at zj
and zj together with the corresponding equations of the same nature as previous conditions (9) (in
order to have the same equilibrium constant in each connected component of the support). Hence,
Theorem 2.3 asserts

∂

∂γj

(
(T − t)

B(z)
√
A(z)

D(z)

)
=

H(z)

(z − zj)(z − zj)
√
A(z)

, (17)
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In particular, when k = 1, that is, the one-cut case, taking derivatives at the left-hand side of (17)
and evaluating at the endpoints a1 and a2 of the single interval comprising the support, the following
dynamical system holds:

∂a1
∂γj

= − 2

T − t

(a1 − h1)(a1 − h2) D̃j(a1)

(a1 − a2)B(a1)
,

∂a2
∂γj

= − 2

T − t

(a2 − h1)(a2 − h2) D̃j(a2)

(a2 − a1)B(a2)
,

where B, given in (7), is, in this case, a monic polynomial of degree 2q−2 being positive in the interval
(a1, a2), h1, h2, the roots of polynomial H in (17), is a pair or real numbers, such that at least one of
them belongs to (a1, a2), and

D̃j(z) =
D(z)

(z − zj)(z − zj)
=

∏
l �=j

(z − zl)(z − zl) =
∏
l �=j

(
(z − Re zl)

2 + (Im zl)
2
)
> 0 .

Therefore, the increase or decrease of the endpoints when γj grows depends on the position of the points
h1, h2 , which, in turn, is determined by the relative position of the charge zj in the set {z1, . . . , zq}.
In a similar way, the dynamical system for the other zeros of the density of the equilibrium measure
(2q − 2 zeros of polynomial B) may be displayed.

In a similar fashion, the evolution of the support when one of the heights βj = Im zj varies may

be handled. In this case, we have that
∂ϕ(z)

∂βj
=

γj βj

(z − zj)(z − zj)
, and thus, Theorem 2.3 implies that

∂

∂βj

(
(T − t)

B(z)
√
A(z)

D(z)

)
=

K(z)

(z − zj)2 (z − zj)2
√

A(z)
, (18)

where now the polynomialK, not necessarily monic, has degree ≤ (k+2) and a zero of odd multiplicity
on each of the (k − 1) gaps of the support, and such that at least one of the other zeros lies inside
the convex hull of the support. As above, for k = 1, that is, when the one-cut case takes place, (18)
yields the following dynamical system for the endpoints of the single interval comprising the support:

∂a1
∂βj

=
2

T − t

K(a1)D(a1)

(a1 − a2)B(a1) (a1 − zj)2 (a1 − zj)2
,

∂a2
∂βj

=
2

T − t

K(a2)D(a2)

(a2 − a1)B(a2) (a2 − zj)2 (a2 − zj)2
,

Of course, it is possible to combine two or more of these dynamical systems to obtain a full description
of the evolution of the support of the equilibrium measure. Indeed, a suitably combined use of the
dynamical system with respect to the total mass t and the corresponding with respect to one of the
prescribed charges γj will play a key role in proving some results stated in the next section (see the
proofs in Section 4 below).

The next section is devoted to the simplest (but quite difficult) non-trivial case, where the external
field is created by two prescribed charges, that is, q = 2. The full description of the dynamics of the
equilibrium measure may be done for this situation.
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3. An external field created by two prescribed charges

Throughout this section, we restrict to the case of the equilibrium problem in the presence of a
couple of (attractive) prescribed charges. In particular, and without lack of generality (see Remark
3.3 below), we consider external fields of the form:

ϕ(x) = log |x− z1|+ γ log |x− z2| , γ > 0 , z1, z2 ∈ C \ R . (19)

That is, we are concerned with the case where q = 2 in (1) and, thus, we know that the number of
intervals (“cuts”) comprising the support St is given by 1 or 2. We can assume that Re z1 = −Re z2 =
−1, as well as Im z1 = β1 > 0, Im z2 = β2 > 0 , also without loss of generality. Now, the evolution
of the equilibrium measure λt and, in particular, of its support St, in the presence of the external
field (19), depending on three parameters, β1, β2 > 0 and γ > 0, for t ∈ (0, T ), with T = 1 + γ, is
investigated.

In the particular case handled in this section, where the external field is due to a couple of prescribed
charges (19), we have that (7) holds, with degA ∈ {2, 4} and degB = 3− degA

2 . Thus, taking residues
at z = z1 and z = z2 in (7) yields{

(T − t)B(z1)
√

A(z1) − i Im z1 (z1 − z2)(z1 − z2) = 0 ,

(T − t)B(z2)
√

A(z2) − i γ Im z2 (z2 − z1)(z2 − z1) = 0 ,
(20)

and, after taking real and imaginary parts, we finally arrive to a nonlinear system of four equations.
Thus, system (20) determines uniquely polynomials A and B in the one–cut case; but if the support
consists of two disjoint intervals, then an additional condition (9) is also necessary.

Now, combining the two ingredients above, that is, formulas (7) and (12), we have the following
possible settings for the support St of the equilibrium measure and its density (for non-singular values
of t ∈ (0, T )). On the sequel, D(x) = (x− z1)(x− z1)(x− z2)(x− z2) .

(one-cut) St = [a1, a2] , a1 = a1(t) < a2 = a2(t) and

λ′
t(x) =

T − t

π

(x− b1)(x− b2)
√
(x− a1)(a2 − x)

D(x)
,

with b2 < b1 < a1 < a2 and∫ a1

b2

(x− b1)(x− b2)
√

(x− a1)(x− a2)

D(x)
dx > 0 ,

or a1 < a2 < b1 < b2 and∫ b2

a1

(x− b1)(x− b2)
√

(x− a1)(x− a2)

D(x)
dx > 0 ,

or, finally, b2 = b1 ∈ C \ R . In this scenario, we also have, for i, j = 1, 2 and j �= i,

ȧi =
1

T − t

2D(ai)

(ai − aj)(ai − b1)(ai − b2)
, ḃi =

1

T − t

D(bi)

(bi − bj)(bi − a1)(bi − a2)
. (21)
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(two-cut) St = [a1, a2] ∪ [a3, a4] , a1 = a1(t) < a2 = a2(t) < a3 = a3(t) < a4 = a4(t) and

λ′
t(x) =

T − t

π

|x− b1|
√
(x− a1)(x− a2)(x− a3)(a4 − x)

D(x)
,

with a2 < b1 < a3 and∫ a3

a2

(x− b1)
√
(x− a1)(x− a2)(x− a3)(x− a4)

D(x)
dx = 0 .

In this case, the following dynamical system holds

ȧi =
1

T − t

2D(ai)F (ai)

A′(ai)(ai − b1)
, ḃ1 =

1

T − t

D(b1)F (b1)

A(b1)
, i = 1, 2, 3, 4 ,

where F (x) = x− ζ, with ζ uniquely determined by the condition∫ a3

a2

(x− ζ)√
(x− a1)(x− a2)(x− a3)(x− a4)

dx = 0 .

3.1. Main Result

Now, we are going to state our main result. In order to do it, consider the bivariate polynomial

f(x, y) = 27xy(x− y)2 − 4(x3 + y3) + 204xy(x+ y)− 48(x2 − 7xy + y2 + 4x+ 4y)− 256 . (22)

For x, y > 0, it is a symmetric function with respect to its arguments, and the graph of the curve

C =
{
(β1, β2) ∈ (0,+∞)× (0,+∞) : f(β2

1 , β
2
2) = 0

}
(23)

is decreasing and splits the open first quadrant of the (β1, β2)-plane into two domains: Ω0, with the
origin belonging to its closure, and Ω∞ (see Figure 1). The curve C has two asymptotes at β1 = 2

3
√
3

and β2 = 2
3
√
3
.

Theorem 3.1. Let St be the support of λt, the equilibrium measure in the external field (19), with
z1 = −1 + iβ1, z2 = 1 + iβ2. Then, we have

• If (β1, β2) ∈ Ω∞ ∪ C (that is, f(β2
1 , β

2
2) ≥ 0), then St consists of a single interval (“one-cut”)

for any γ > 0 and t ∈ (0, T ).

• If (β1, β2) ∈ Ω0 (f(β2
1 , β

2
2) < 0), then there exist two values 0 < Γ1 = Γ1(β1, β2) < Γ2 =

Γ2(β1, β2) such that for γ ∈ (Γ1,Γ2) there are two critical values 0 ≤ T1 = T1(β1, β2, γ) <
T2 = T2(β1, β2, γ) < T , in such a way that St consists of two disjoint intervals for t ∈ (T1, T2)
(“two-cut”). Otherwise, St consists of a single interval.

Remark 3.1. The expression of the “boundary-curve” C may be easily obtained by imposing that the
derivative ϕ′(x) of the external field (19) has a triple real root. The recipe to determine the values of
Γ1,Γ2 and T1, T2 will be shown within the proofs in Section 4 below. In the final Appendix, a more
detailed description, along with illustrative figures, of the region where the two-cut phase is feasible
will be given.
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Figure 1: Regions Ω0 and Ω∞ and the curve C

Remark 3.2. The result in Theorem 3.1 means that the relationship between the distances of the two
attractive charges to the real axis (“heights”) determines the possible existence of a two-cut phase.
It seems natural, but a curious phenomenon also takes place: if one of the charges is close enough to

the real axis, say β1 < 2
√
3

9 ∼ 0.385, then for any value of the other height β2, there always exists
an interval of values of the “mass” γ for which a two–cut phase takes place. Roughly speaking, it
seems to tell us that if one of the charges is sufficiently close to the real axis, then it is always possible
to distinguish both charges from there (in the sense that they are able to split the support of the
equilibrium measure), whatever the distance of the other one is (provided a suitable fit between the
masses, of course).

Obviously, this “positive” result has a “negative” counterpart: if the couple of attractive charges
are sufficiently far from the real axis (i.e., (β1, β2) ∈ Ω∞ ∪C), they are indistinguishable, in the sense
mentioned above, from there whatever the masses are.

Remark 3.3. For the sake of simplicity, Theorem 3.1 was stated for the external field (19). But
obviously the result may be immediately translated for external fields of the more general shape:

φ(x) = γ1 log |x− z1|+ γ2 log |x− z2| , γ1, γ2 > 0 , zj = αj + i βj , j = 1, 2

In this case, it is easy to see that βj , j = 1, 2, in the expression of the critical curve (23) must be

replaced by the respective ratios
2βj

|α2 − α1| . In addition, (3) provides the recipe to translate the results

for general γ1, γ2 > 0.

Remark 3.4. The result in previous Theorem 2.2 may be easily illustrated in the case of two attractors
considered in Theorem 3.1. Indeed, we have that the density of the limit measure (as t→ T = 1+ γ)
is given by

dμT

dx
=

1

Tπ

(
β1

(x+ 1)2 + β2
1

+
γ β2

(x− 1)2 + β2
2

)
, x ∈ R ,

whose zeros are imaginary for any β1, β2, γ > 0.

Remark 3.5. As it was said above, some particular situations were considered in [38]; in particular,
the so-called “totally symmetric” case, that is, where heights and masses are equal (β2 = β1 = β and
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γ = 1 in our current notation) and a “partially symmetric” case, where just the heights are supposed
to be equal. With respect to the latter one, it is easy to see that the intersection between the curve C
and the bisector β2 = β1 consists of the point β1 = β2 = 1. Thus, we conclude that a two-cut phase
is feasible in this partially symmetric situation if and only if the common height β < 1 or, what is the
same, if the two charges are close enough to the real axis to be able to split the support.

The special situation of the totally symmetric case will be revisited in detail after Theorem 3.4
below, where the evolution of the support St is described.

Remark 3.6. It is well-known that the convexity of the external field ensures that the support of
the equilibrium measure is an interval (see e.g. [41]). In [4] a weaker sufficient condition is given,
namely, the convexity of the function exp(ϕ) . We can check whether this condition is fulfilled when
(β1, β2) ∈ Ω∞ ∪ C and, thus, whether in this sense the first part of Theorem 3.1 is a consequence of
that previous result. However, it is possible to find examples with (β1, β2) ∈ Ω∞ ∪ C and γ > 0 such
that expϕ is not convex. Indeed, it is easy to check that (β1, β2) ∈ Ω∞ for β1 = 0.5 and β2 = 2.7,
but expϕ is non-convex for these values when we take, for instance, γ = 5.6.

Remark 3.7. In a similar fashion as in the applications to the asymptotics of Heine-Stieltjes poly-
nomials or to Random Matrix models considered in Sections 1.1-1.2, results in Theorem 3.1 are also
related to the asymptotic behavior of certain families of varying orthogonal polynomials (i.e., when
the weight depends on the degree of the polynomial); this connection was developed in some seminal
papers during the eighties, see e.g. [16], [27], [37] and also [41]. In the current case, the results in
Theorem 3.1 allow to describe the support of the limit zero distribution of polynomials Pn , with
deg Pn = n, satisfying varying orthogonality relations of the form∫

xk Pn(x)ωn(x) dx = 0 , k = 0, . . . , n− 1 ,

where the varying weight ωn is a generalized Jacobi–type weight given by

ωn(x) =
1

|x− z1|αn |x− z2|βn
, x ∈ R ,

with αn+βn > 2n , n ∈ N , in such a way that lim
n→∞

αn

n
= A > 0 and lim

n→∞
βn

n
= B , and A+B > 2.

Indeed, it is enough to set γ =
B

A
and t =

2

A
.

3.2. Auxiliary Results

For the proof of Theorem 3.1 we need a number of results which are also of interest themselves,
in such a way that all together describe the different scenarios in the evolution of the equilibrium
measure when t grows from 0 to T = 1 + γ. Indeed, our main result, Theorem 3.1, is a synthesis of
such a full description.

First, in [33] and [39], it was shown that the knowledge about the set of minima of the external
field plays a key role in describing the evolution of the equilibrium measure λt when t varies. In those
cases, the existence of two relative minima of the external field was shown as a sufficient condition
for the existence of a two-cut phase (that is, a range of values of t for which the support comprises
two disjoint intervals). It will be also true in the current case (see Theorem 3.4 below; in fact, the
existence of a two-cut phase when the external field has at least two minima is true for a more general
class of external fields).
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First, taking into account that the relative minima of the external field ϕ are roots of the polynomial

P (x) = (x2 − 1)((x− 1) + γ(x+ 1)) + γβ2
1(x− 1) + β2

2(x+ 1) , (24)

it is easy to see that the real relative minima lie on the interval (−1, 1). Moreover, we have,

Theorem 3.2. Consider the external field (19), with z1 = −1 + β1i , z1 = 1+ β2i and γ > 0 . Then,

• If f(β2
1 , β

2
2) < 0 , with f given by (22), or, what is the same, (β1, β2) ∈ Ω0, there exist two

values 0 < Γ̃1 = Γ̃1(β1, β2) < Γ̃2 = Γ̃2(β1, β2) , such that (19) has two real local minima for

γ ∈ (Γ̃1, Γ̃2). If γ /∈ (Γ̃1, Γ̃2), then (19) has a single real local (and, in fact, absolute) minimum.

• If f(β2
1 , β

2
2) ≥ 0 , that is, (β1, β2) ∈ Ω∞ ∪ C, then (19) has a single real local minimum for any

γ > 0.

Remark 3.8. In a similar fashion as in the previous Theorem 3.1, a simple recipe to compute the
critical values Γ̃1 and Γ̃2 is feasible. In fact, it is enough to compute the values of γ for which the
external field has a double (real) critical point.

Although the fact that the external field has two real minima is a sufficient condition for the
existence of a two-cut phase, it is not a necessary one. Indeed, roughly speaking, if the external field
is “sufficiently non-convex” a two-cut phase is still feasible. In order to get it, it is necessary the
appearance of a new local extrema of (2), that is, a double real root of polynomial B outside the
support, as it was said in Section 2. The border external fields in this sense are those for which a
type III singularity (that is, the confluence of a couple of imaginary zeros of B with a zero of A in the
AB-representation given by (7)), takes place for some critical value of t. Indeed, we have

Theorem 3.3. For the equilibrium measure λt in the external field (19), it holds:

• If (β1, β2) ∈ Ω0 , there exist two values Γ1 = Γ1(β1, β2),Γ2 = Γ2(β1, β2) , with 0 < Γ1 < Γ̃1 <

Γ̃2 < Γ2 , such that for γ = Γi , i = 1, 2, a type III singularity occurs at certain critical values of
t ∈ (0, T ).

• If (β1, β2) ∈ Ω∞ ∪ C, no type III singularity takes place.

Remark 3.9. In the situations discussed in Theorem 3.3, if (19) has a single minimum then for t
sufficiently small we have a one-cut phase and the polynomial B has a couple of imaginary roots

b1 = b and b2 = b. The sign of
∂ Im b

∂t
plays a central role in the description of the dynamics of the

support. In this sense, it is possible that Im b is always increasing and, thus, b and b are always going
away from the real axis; but also Im b could be initially increasing but becomes decreasing at a certain
moment, and so on. Indeed, for each value of t there is a critical curve such that if b = b(t) belongs

to this curve, then
∂ Im b

∂t
= 0 . This curve determines the regions where the zeros of B approach (or

not) the real axis. In previous [33] and [39], this curve was shown to take the form of a hyperbola and
a circle, respectively. In the present case, its shape is much more involved. Indeed, we have by (21),

∂ Im b

∂t
< 0 ⇔ Re

(
D(b)

A(b)

)
> 0 ⇔ ReD(b)ReA(b) + ImD(b) ImA(b) > 0 ,
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where A(b) = (b − a1)(b − a2) and D(b) = (b2 − z21)(b
2 − z22). Thus, in this case the critical curve is

given in terms of a bivariate polynomial of degree 6 in x = Re b and y = Im b.
Therefore, now the geometry of the problem is much more complicated. Furthermore, it is easy

to check that in this situation, while the support plays the role of a “repellent” for the couple of
conjugate roots b and b, the rest of the real line acts as an “attractor”. Indeed, for a general rational
external field, the support always repels the couple of imaginary roots, while each gap is split in an
odd number of subintervals by the roots of F and B in such a way that the first one acts as an
“attractor”, the second one as a “repellent”, and so on (of course, it is also necessary to take into
account the multiplicity of each zero).

Now, we have all the ingredients for describing the evolution of the equilibrium measure and,
especially, its support St when t grows from 0 to T . Our main result, Theorem 3.1, is a simplified
version of the following result.

Theorem 3.4. Let β1, β2 > 0, and 0 < Γ1 < Γ̃1 < Γ̃2 < Γ2 , as given in Theorems 3.2-3.3.

(a) If (β1, β2) ∈ Ω0 and γ ∈ (Γ̃1, Γ̃2) , consider the threshold values T1 = T1(β1, β2, γ) and T2 =
T2(β1, β2, γ), with 0 < T1 < T2 < T , whose existence is established in Theorem 3.1. Then, we
have the following phase diagram for the support of the equilibrium measure, St:

one-cut, for t ∈ (0, T1) −→ two-cut, for t ∈ (T1, T2) −→ one-cut, for t ∈ (T2, T ) .

At t = T1 (t = T2), a type I (respect., type II) singularity occurs. If the external field ϕ takes the
same value in its two relative minima, then T1 = 0 in the phase diagram above and the initial
one-cut phase is absent.

(b) If (β1, β2) ∈ Ω0 and γ ∈ (Γ1, Γ̃1] ∪ [Γ̃2,Γ2) , the phase diagram for St is the same as in (a), but
the appearance of a pair of new local extrema of (2) occurs at a certain t = T0, with T0 < T1.

(c) If (β1, β2) ∈ Ω0 and γ ∈ (0, Γ1] ∪ [Γ2, ∞) , one-cut phase holds for any t ∈ (0, T ) .

(d) If (β1, β2) ∈ Ω∞ ∪ C , we have one-cut phase for any γ > 0 and t ∈ (0, T ) .

In Figures 2-4 below, the phase diagram corresponding to the scenario (a) in Theorem 3.4 is
illustrated. We assume that the absolute minimum is the one on the left. Then, during the first
phase the support St consists of the interval [a1, a2], which enlarges as t increases; b1 (local maximum
of the total potential) moves to the left while b2 (local minimum of the total potential) moves to
the right. After the split of b2 in two new points, the support becomes comprised by two intervals,
St = [a1, a2] ∪ [a3, a4] , and both of them enlarge as t increases; b1 (the local maximum of the total
potential) can move to the left or to the right depending on its relative position with respect to the
unique root of F , which is also in the gap. Finally, after the collision of the endpoints a2 and a3 (and
hence, also of b1), during the final phase the support is comprised again by a single interval, which
enlarges as t increases, tending to fill the whole real axis, while the two roots of B are imaginary and
evolve according to (21).

Remark 3.10. The so-called totally symmetric case studied in [38], that is, when z2 = −z1 and γ = 1
(equal heights and masses), may be now revisited in the light of the results in Theorem 3.4. In this
case, the symmetry of the external field is inherited by the support, what means that a1 = −a2 = −a
and b = 0 when type II transition (fusion of the two cuts) occurs. Hence, (20) yields

(2− T2)
2 z41 (z

2
1 − a2) + 16 (Im z1)

2 (Re z1)
2 z1 = 0 ,
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a1 a2 b1 b2St

Figure 2: (β1, β2) ∈ Ω0 and γ ∈ (˜Γ1, ˜Γ2) . Phase 1 (t ∈ (0, T1)): one-cut.

a1 a2 b1 a3 a4St St

Figure 3: (β1, β2) ∈ Ω0 and γ ∈ (˜Γ1, ˜Γ2) . Phase 2 (t ∈ (T1, T2)): two-cut.

and thus, the following system of nonlinear equations arises, with T2 and a as unknowns (of course,
we are looking for solutions for which T2 < T = 2),{

K
(
(1− β2)(1− β2 − a2)− 4β2

)
+ 16β2 = 0 ,

2(1− β2)− a2 = 0 ,
(25)

where K = (2− T2)
2 > 0 . From the second identity in (25), it is clear that necessarily β < 1. Under

this condition, it is easy to check that the fusion of cuts takes place for

T2 = 2
(1− β)2

1 + β2
< 2 .

Finally, for t ∈ (T2, 2), the one–cut phase takes place and Theorem 2.2 implies, for the density λ′
t of

the equilibrium measure, that

lim
t→2

λ′
t(x) =

1

π

x2 + β2 + 1

D(x)2
,

with D(x) = ((x+ 1)2 + β2) ((x− 1)2 + β2).
Thus, in the totally symmetric case, when β < 1, we always have the phase diagram:

two-cut (0 < t < T2) −→ one-cut (T2 ≤ t < T = 2)

On the other hand, when β ≥ 1, it is easy to check that ϕ only has a real critical point, at
x = 0, where it attains its absolute minimum. Therefore, the support St starts being of the form

a1 a2

b1

b2St

Figure 4: (β1, β2) ∈ Ω0 and γ ∈ (˜Γ1, ˜Γ2) . Phase 3 (t ∈ (T2, T )): one-cut.
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St = [−a(t), a(t)] , with a(t) an increasing function as above. No phase transition occurs, since it
would imply by symmetry a three-cut situation, which is not possible.

The reader can check that the conclusions above agree with the results in [38].

4. Proofs

Throughout this section the proofs of Theorems 2.2 and 3.2–3.4 above will be displayed. As it was
said, they all together render the proof of the main result Theorem 3.1 and enrich it with auxiliary
results which are of interest themselves.

4.1. Proof of Theorem 2.2

Along this proof we will use the set ST = {x ∈ R : V λt(x)+ϕ(x) = ct} , where ct is the equilibrium
constant given by (2). Clearly, from (2), ST ⊆ ST .

As it was shown in [10, Theorem 2 (3)], we have that λt is increasing and continuous in the weak
topology of the set of measures with compact support in R. In addition, for any Borel set I ⊂ R, it
holds λt(I) ≤ λt(R) = t ∈ (0, T ) and, thus, there exists lim

t→T
λt = λT in the sense mentioned above.

Now, let us show that lim
t→T

St = R . For this, consider the function

φt(x) = V λt(x) + ϕ(x)− ct , t ∈ (0, T ) , x ∈ R .

It is clear that φt(x) ≥ 0 , x ∈ R and t ∈ (0, T ). Let τ ∈ (0, T ) fixed. If x ∈ Sτ , then φτ (x) = 0 and
since the family of supports {St} is increasing ([10, Theorem 2, (1)]), we have that φt(x) = 0, t ≥ τ .
On the other hand, if x ∈ R \ Sτ , formulas (1.8) and (1.13) in [10] yield,

∂φt(x)

∂t
|t=τ− = −gτ (x) < 0 ,

∂φt(x)

∂t
|t=τ+ = −gτ (x) < 0 ,

where gτ (gτ ) denotes the Green function of R \ Sτ (respect., R \ Sτ ) with a pole at infinity, and
Sτ = {x ∈ R : φτ (x) = 0} ⊇ Sτ . Hence, we have that φt(x) ≥ 0 , for any x ∈ R and t ∈ (0,+∞), and
that φt(x) is a decreasing function of t for any fixed x ∈ R. This shows that there exists

lim
t→T

φt(x) = φT (x) , x ∈ R .

Now, let us see that φT ≡ 0 . To do it, recall that for x ∈ St, we have that V λt(x) + ϕ(x) = ct and,
thus,

V λt(x) = − t

T
ϕ(x)− T − t

T
ϕ(x) + ct = V νt(x)− T − t

T
ϕ(x) + ct , (26)

where νt =

q∑
j=1

tγj
T

δzj , with νt(C) = t. Since ϕ has an absolute minimum on the real axis,

m = min
x∈R

ϕ(x) >

q∑
j=1

γj Im zj > −∞ , then (26) implies that

V λt(x) ≤ V νt(x)− T − t

T
m+ ct , x ∈ St .
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Thus, the Domination Principle [41, Theorem II.3.2] asserts that this inequality holds for any real x
(and, in fact, for any complex x). Thus,

φt(x) ≤ T − t

T
(ϕ(x)−m) , x ∈ R ,

which shows that
lim
t→T

φt(x) = 0 , x ∈ R

and, then, that ST = R. The fact that for rational external fields the difference St \ St consists of, at
most, a finite set of points, for each t ∈ (0, T ) (see [33] or [39]), implies that ST = R.

Now, we are going to prove the rest of the results. First, we are dealing with the function λ̂T , that
is, the Cauchy transform of the limit function λT . Taking into account (7) and the previous analysis,

we have that λ̂T must be analytic on C \ (R ∪
q⋃

j=1

{zj , zj}) , in such a way that

•
(
−λ̂T +Φ′

)
(x+) = −

(
−λ̂T +Φ′

)
(x−) for x ∈ R,

•
(
−λ̂T +Φ′

)
(x+) ∈ R+i , taking into account the positivity of the measure,

• For z → zj , (
−λ̂T +Φ′

)
(z) =

γj
2(z − zj)

+O(1)

• For z → zj , (
−λ̂T +Φ′

)
(z) =

γj
2(z − zj)

+O(1) .

Therefore, having in mind the Liouville Theorem and some immediate consequences, we have that

(
−λ̂T +Φ′

)
(z) =

⎧⎨⎩
∑q

j=1

(
γj

2(z−zj)
− γj

2(z−zj)

)
, Im z > 0 ,

−∑q
j=1

(
γj

2(z−zj)
− γj

2(z−zj)

)
, Im z < 0 .

The fact that the limit function
(
−λ̂T +Φ′

)
(z) has exactly 2q − 2 imaginary roots implies that,

for t close to T , the support is necessarily comprised by a single interval. Then, for the expression
of the density λ′

T it is enough to apply the Cauchy Theorem integrating along curves surrounding
the components of the support, but not the points zj and zj ; finally, by shrinking the curves to fit
the components of the support, the conclusion easily follows (alternatively, the application of the
Sokhotski-Plemelj inversion formula may be considered).

4.2. Proof of Theorem 3.2

Polynomial P in (24) may be rewritten in the form

P (x) = P (x, γ) = (x+ 1)
(
(x− 1)2 + β2

2

)
+ γ (x− 1)

(
(x+ 1)2 + β2

1

)
= u(x) + γ v(x) (27)

Let us study the zeros of (27) when γ increases. For γ = 0, P has a single real zero at x = −1
and a couple of conjugate imaginary zeros at z2 and z2. On the other hand, since γ > 0, then
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P (x) = γ

(
u(x) +

v(x)

γ

)
and, thus, the zeros of P (x) are the same as the zeros of u(x) +

v(x)

γ
,

yielding that when γ tends to infinity, the real root of P approaches x = 1 and the couple of imaginary
zeros tend to z1 and z1. Let us start with γ > 0 small enough. Since

∂P

∂γ
= v(x) < 0 , for x < 1 , (28)

the real zero, say ζ1, move to the right as γ increases. On the other hand, writing (27) in powers of x

yields that the arithmetic mean of the zeros of P equals
1

3

1− γ

1 + γ
and, thus, this mean decreases as γ

increases, which means that the real parts of the couple of imaginary roots ξ, ξ, move to the left. It
implies there are just two possible scenarios for the evolution of the critical points of ϕ as γ travels
across (0,+∞) .

• The pair of imaginary roots never reaches the real axis. In such a case, ϕ has a single minimum
for any γ > 0 .

• There exists a real number Γ̃1 > 0 , such that for γ = Γ̃1 the pair of imaginary roots reach the
real axis, giving birth to a double real root ξ located to the right of the simple real root ζ1 (this
is due to the fact that P (x) < 0 to the left of this simple real root with decreasing values of
P (x) as γ increases). Immediately after the collision, a pair of new simple real roots arises, say
ζ2, ζ3, in such a way that −1 < ζ1 < ζ2 < ξ < ζ3 < 1 and with ζ3 moving to the right and ζ2
to the left (because of (28)). This situation holds until ζ1 and ζ2 collide, creating a double real
root before immediately going to C \ R.

It is easy to see that the boundary between these possible evolutions is the case where the pair of
imaginary roots ξ, ξ collide with the real one, ζ1, giving birth to a triple real root for a certain value
of γ: that is, when (β1, β2) ∈ C, with C given by (23). It is also easy to check that the region where
two minima are feasible is Ω0: to check it, consider, for instance, the case with β2 = β1 taking small
positive values.

4.3. Proof of Theorem 3.3

This is, in fact, the most important theorem in order to prove our main result (Theorem 3.1).
Indeed, it is a direct consequence of Proposition 4.1 below, to whose proof it is devoted the most part
of this subsection.

From the results in the previous [33] and [39] we know that when the external field has two local
minima, then a two-cut phase may occur; but this is not the unique way to reach that phase. Indeed,
when the external field has a single minimum, the necessary and sufficient condition for the existence
of such a phase is the birth of a new local minimum of the total potential (2) in a previous “instant”
t. Proposition 4.1 below analyzes the possible birth of this minimum of (2) as γ varies.

The setting for the result below is as follows. Let (β1, β2) ∈ (R+)2 be fixed, and suppose that
for a certain γ = γ0 and t = t0 the polynomial B in the AB–representation (7) has a multiple real
root (i.e., double or triple), not belonging to the interior of the support (it means, as an immediate
consequence, that the support consists of a single interval). Now, let I = I(β1, β2) be the largest
interval containing γ0 such that B has a multiple real root (outside the interior of the support, too)
for some t = t(γ). Though it is not obvious, in principle, that the mass t must vary with γ in order to
maintain the multiple root of B, this is indeed the case (it will be shown in (30) and (40) below). In
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this setting, let us denote, as usual, by a1 and a2 the endpoints of the support and by b the multiple
root of B. Then, we have,

Proposition 4.1. The interval I is compact and the functions a1 = a1(γ), a2 = a2(γ), b = b(γ) (see
(7)) and t = t(γ) are analytic functions in the interior of I and continuous in I, with a1(t), a2(t) and
b(t) being monotonic. In particular, it holds,

• If a1 ≤ a2 ≤ b , then
∂a1
∂γ

> 0,
∂a2
∂γ

< 0,
∂b

∂γ
> 0 and there exists Γ1 > 0 such that I = [Γ1, Γ̃1],

with Γ̃1 given in Theorem 3.2, in such a way that a type III singularity takes place for γ = Γ1

and a certain value of t.

• If b ≤ a1 ≤ a2 , then
∂a1
∂γ

< 0,
∂a2
∂γ

> 0,
∂b

∂γ
> 0, and there exists Γ2 > 0 such that I = [Γ̃2,Γ2],

with Γ̃2 given in Theorem 3.2, in such a way that a type III singularity occurs for γ = Γ2 and a
certain value of t.

The following result, which in turn yields Theorem 3.3, is a direct consequence of Proposition 4.1
and Theorem 3.2.

Corollary 4.1. Let (β1, β2) ∈ (R+)2 be fixed. Then, the following statements are equivalent:

i) (β1, β2) ∈ Ω0

ii) There exists γ > 0 such that Φ′ has a double root.

iii) There exist γ > 0 and t ≥ 0 for which polynomial B in (7) has a multiple real root.

iv) There exist γ > 0 such that a type III singularity takes place for some t > 0.

Furthermore, if some of these statements holds, there exist exactly two values of γ satisfying it.

Proof. The proof is immediate. It is enough to take into account that Theorem 3.2 implies the
equivalence between (i)-(ii), while implications (iii) =⇒ (iv) and (iii) =⇒ (ii) comes from Proposition
4.1. Finally, (iv) =⇒ (iii) and (ii) =⇒ (iii) are straightforward.

Remark 4.1. Therefore, the two-cut phase is feasible only when (β1, β2) ∈ Ω0 , and the number of type
III singularities is 2 at most. Indeed, a double root of B outside St can only appear for (β1, β2) ∈ Ω0

and γ ∈ [Γ1, Γ̃1] ∪ [Γ̃2,Γ2].

Now, let us proceed with the proof of Proposition 4.1. Since it deals with the case where polynomial
B in (7) has a double (at least) root b, let us start pointing out that in this case (20) implies that the
following system of equations holds⎧⎨⎩(T − t) (z1 − b)2

√
(z1 − a1)(z1 − a2) − i (z1 − z2)(z1 − z2) Im z1 = 0 ,

(T − t) (z2 − b)2
√

(z2 − a1)(z2 − a2) − i γ (z2 − z1)(z2 − z1) Im z2 = 0 .
(29)
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Rewriting (29) in the form ⎧⎪⎨⎪⎩
(z1−b)2

√
(z1−a1)(z1−a2)

i (z1−z2)(z1−z2) Im z1
= 1

T−t ,

(z2−b)2
√

(z2−a1)(z2−a2)

i (z2−z1)(z2−z1) Im z2
= γ

T−t ,

(30)

the geometry of our problem becomes clear: once a1, a2 and b are obtained in such a way that both
left-hand sides in (30) are real, the values of t and γ are uniquely determined. Therefore, t and γ
must vary together in order to keep the double root b of the polynomial B.

Now, we first need the following technical results. On the sequel, Argz denotes the branch of the
argument of the complex number z belonging to (−π, π].
Lemma 4.1. Let c, d ∈ R. Then,

Arg(z1 − c) + Arg(z1 − d) < π if and only if c+ d < −2 , (31)

Arg(z2 − c) + Arg(z2 − d) < π if and only if c+ d < 2 , (32)

Proof. We know that
Arg(zj − c) + Arg(zj − d) ∈ (0, 2π) .

Thus, making use of well-known trigonometric identities, we have,

sin (Arg(zj − c) + Arg(zj − d))

=
βj(2Re zj − c− d)√

(Re zj − c)2 + β2
j

√
(Re zj − d)2 + β2

j

,

which shows that

Arg(zj − c) + Arg(zj − d) < π iff 2Re zj − c− d > 0 iff c+ d < 2Re zj ,

and it settles the proof.

Now, it is convenient to introduce the point

x0 =
−β2

1 + β2
2

4
,

that is, the intersection between the mediatrix of the segment joining [z1, z2] and the real axis, and
the points x1 < x2, where the circumference with center at x0 and passing through z1 and z2 meets
the real axis (see Figure 2). It is also worth to point out that

Arg(zj − x1) =
1

2
Arg(zj − x0) , Arg(zj − x2) =

π

2
+

1

2
Arg(zj − x0) , j = 1, 2 . (33)

Lemma 4.2. Suppose that for some fixed (β1, β2, γ) ∈ (R+)3 the polynomial B has a double root b.
Then, it holds

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) + 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2
= 0 , (34)

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) + 2Arg(z2 − b)−Arg(z2 − x0)− π

2
= 0 , (35)

where a1, a2 denote the endpoints of the support St.
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z1

z2

x0x1 x2�1 1

Figure 5: Location of points x0, x1, x2.

Proof. From (29), the following system must hold:

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) + 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2
= 2k1π , (36)

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) + 2Arg(z2 − b)−Arg(z2 − x0)− π

2
= 2k2π , (37)

with kj ∈ Z. Now, it will be shown that k1 = k2 = 0. First, let us see that these kj just can take
some particular values.

We initially deal with (36). First, since Arg(z1 − a1) ∈ (0, π), Arg(z1 − a2) ∈ (π/2, π) (because
a2(0) > −1 and ∂a2/∂t > 0), Arg(z1 − b) ∈ (0, π) and Arg(z1 − x0) ∈ (0, π), it yields

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) + 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2

∈
(−9π

4
,
3π

2

)
,

and we conclude that k1 = −1 or k1 = 0. In a similar way, it is easy to check that k2 ∈ {0, 1} in (37).
Now, let us show that k1 = −1 cannot occur. Let us see, first, that if k1 = −1, then we would

necessarily have that a1 + a2 < −2, b < x1. Indeed,

• We have a1 + a2 < −2, since otherwise, (31) would yield

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) ≥ π

2
,

and thus,

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) + 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2

≥π

2
+ 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2
= 2Arg(z1 − b)−Arg(z1 − x0)− π

>0− π − π = −2π ,

which would imply that k1 �= −1.
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• b < x1 , since

− 2π =
1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) + 2Arg(z1 − b)−Arg(z1 − x0)− 3π

2

=⇒2Arg(z1 − b) = −1

2
Arg(z1 − a1)− 1

2
Arg(z1 − a2) + Arg(z1 − x0)− π

2

=⇒Arg(z1 − b) <
1

2
Arg(z1 − x0) = Arg(z1 − x1) =⇒ b < x1.

Thus, taking into account (37), one has,

2k2π =
1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) + 2Arg(z2 − b)−Arg(z2 − x0)− π

2

<
1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) + 2Arg(z2 − x1)−Arg(z2 − x0)− π

2

=
1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2)− π

2
< 0 ,

where for the last inequality we have used (32). But this inequality would imply that k2 < 0, while it
is known that k2 = 0 or k2 = 1. Hence, we conclude that k1 = 0 and (34) is established.

In a similar fashion, (35) is established.

The following result, concerning the location of the point b and the arithmetic mean of the end-
points of St, is also useful.

Lemma 4.3.

i) The point
a1 + a2

2
∈ (−1, 1) or, equivalently,

Arg(z1 − a1) + Arg(z1 − a2) > π ,

Arg(z2 − a1) + Arg(z2 − a2) < π .

ii) b ∈ (−1, 1).

Proof. Let us show, first, that b ∈ (x1, x2). Indeed, (34) yields

2Arg(z1 − b) = −1

2
Arg(z1 − a1)− 1

2
Arg(z1 − a2) + Arg(z1 − x0) +

3π

2

> −π

2
− π

2
+ Arg(z1 − x0) +

3π

2
= Arg(z1 − x0) +

π

2
> Arg(z1 − x0) ,

which implies that

Arg(z1 − b) >
1

2
Arg(z1 − x0) = Arg(z1 − x1)

and, hence, it holds b > x1. Analogously, from (35) it is easy to get that b < x2.
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Although this first bound for b is rough, it allows to get the bounds for the arithmetic mean. In
fact, from (34) and using (33) and the bounds obtained for b, one has,

1

2
Arg(z1 − a1) +

1

2
Arg(z1 − a2) = −2Arg(z1 − b) + Arg(z1 − x0) +

3π

2

> −2Arg(z1 − x2) + Arg(z1 − x0) +
3π

2

= −2
(
π

2
+

1

2
Arg(z1 − x0)

)
+Arg(z1 − x0) +

3π

2
=

π

2
,

which, by (31), yields (a1 + a2)/2 > −1. In the same way, from (35) and (32), the inequality
(a1 + a2)/2 < 1 is easily obtained.

Finally, using these bounds for the mass center of the endpoints, it is possible to precise the location
of b. Let us start showing that b < 1. Indeed, if b ≥ 1, we have, using (35),

0 ≥ 1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) + 2

π

2
−Arg(z2 − x0)− π

2

=
1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2)−Arg(z2 − x0) +

π

2

and, hence,
1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) ≤ Arg(z2 − x0)− π

2
. (38)

Inequality (38) implies some consequences. First, it is easy to check that it would be possible as long
as Arg(z2 − x0) > π/2, which means that x0 > 1.

Moreover, let a ∈ R such that

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) = Arg(z2 − a) ,

that is, a ∈ (a1, a2) is the point where the bisector of the angle ̂a1, z2, a2 meets the real axis. On the
other hand, let ã ∈ R such that

Arg(z2 − x0)− π

2
= Arg(z2 − ã) .

This last point may be seen as the point where the tangent line to the circumference with center x0

and passing through z2 intersects the real axis. Since x0 > 1, then ã < x1 (see Figure 6). Thus,
inequality (38) yields a ≤ ã < x1 < 1, but this is a contradiction with the fact that a1 + a2 > 1.
Indeed, it is enough to make use of the following property from elementary geometry:

“Let ABC be a triangle and consider the bisector of the angle a, which splits the segment BC
into two parts, BD and DC. Then, the length of BD is less than the length of DC if and only if the
angle B is greater than the angle C”.

This simple property applied to the triangle a1a2z2, and taking the bisector joining z2 with a,
means that a2 − a < a− a1 but, then,

a1 + a2
2

= a− (a− a1)− (a2 − a)

2
< a ≤ ã < x1 < −1,

which contradicts the result in Lemma 4.1 above.
Proceeding in an analogous way, we can prove the lower bound, i.e. b > −1, using now (34).
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Figure 6: location of points a and ã if b ≥ 1.

Proof of Proposition 4.1

Let us take (β1, β2) fixed and γ and t varying in such a way that B has a double root: B(z) =
(z− b)2 , with b /∈ (a1, a2). It implicitly means a dependency relationship between t and γ, which will
indeed be shown below.

Let us consider first t and γ as being two independent variables, then, from (17), we have

∂

∂γ

(T − t)B(z)
√
A(z)

D(z)
=

H(z)√
A(z)D2(z)

with D2(z) = (z− z2)(z− z2) and H being a monic polynomial of degree 2 and having at least a root
in (a1, a2). Furthermore, taking into account that z2 and z2 do not depend on γ, the residue at both
points in the left hand side of the previous expression is equal to 1/2 and thus, the same must happen
for the right hand side, which yields

H(z2) =

√
A(z2)(z2 − z2)

2
, H(z2) =

√
A(z2)(z2 − z2)

2

and, hence, H can be written as H(z) = D2(z) + P (z), where

P (z) =

√
A(z2)

2
(z − z2) +

√
A(z2)

2
(z − z2) .

On the other hand, from (11) we also have

∂

∂t

(T − t)B(z)
√
A(z)

D(z)
= − 1√

A(z)
.

Therefore, considering now t = t(γ) in such a way that the double root of B takes place, and
applying the chain rule, one has, on the one hand,

∂

∂γ

(T − t)
√

A(z)(z − b)2

D(z)
=

H(z)√
A(z)D2(z)

+
−1√
A(z)

∂t

∂γ
=

H(z)− ∂t
∂γ D2(z)√

A(z)D2(z)
=:

L(z)√
A(z)D2(z)
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and, on the other,

∂

∂γ

(T − t)
√

A(z)(z − b)2

D(z)
=

1

D(z)

(
− ∂t

∂γ

√
A(z) (z − b)2 + (T − t)

∂A(z)
∂γ

2
√
A(z)

(z − b)2 + (T − t)
√

A(z) 2(z − b)(− ∂b

∂γ
)

)
.

Then, it yields,

−2 ∂t

∂γ
A(z)(z − b)2 + (T − t)

∂A(z)

∂γ
(z − b)2 − 4(T − t)A(z)(z − b)

∂b

∂γ
= 2L(z)D1(z) (39)

where D1(z) = (z − z1)(z − z1) = (D/D2)(z). The left and right hand sides of (39) are polynomials
of degree 4, with the left-hand one vanishing for z = b. This implies that L(b) = 0 and thus,

∂t

∂γ
=

H(b)

D2(b)
=

D2(b) + P (b)

D2(b)
. (40)

In particular, (40) indeed shows the real dependence of t on γ in the current setting, in such a way
that the derivative in (40) is well–defined and bounded. Therefore, computing the derivatives in (39)
and evaluating them at a1, a2 and b, the following differential equations hold

∂a1
∂γ

=
−2D1(a1)L(a1)

(T − t)(a1 − a2)(a1 − b)2
,

∂a2
∂γ

=
−2D1(a2)L(a2)

(T − t)(a2 − a1)(a2 − b)2
,

∂b

∂γ
=

−D1(b)L
′(b)

2(T − t)(b− a1)(b− a2)
.

Now, since polynomial L is very important for our analysis, we are concerned with its expression.
Indeed, we have for x ∈ R,

L(x) = H(x)− ∂t

∂γ
D2(x) = P (x)− P (b)

D2(b)
D2(x)

= Re

(√
A(z2)(x− z2)

(
1− x− z2

b− z2

))
= (b− x)Re

(√
A(z2)

x− z2
b− z2

)
.

Thus, if � denotes the other real root of L, then

L(x) = Re

(√
A(z2)

z2 − b

)
(x− b)(x− �) ,

and � is such that

Re

(√
A(z2)

�− z2
b− z2

)
= 0 .
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Consequently, taking into account Lemma 4.3, the following relation for the arguments holds:

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) − Arg(z2 − �) − Arg(z2 − b) = − π

2
. (41)

Now, we are in a position to study what happens in each of the scenarios in the statement of Proposition
4.1.

• If a1 ≤ a2 ≤ b holds, then recalling b < 1 (see Lemma 4.3), we obtain

Arg

(√
A(z2)

z2 − b

)
=

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2)−Arg(z2 − b) ∈

(
− π

2
, 0
)
,

and thus, the leading coefficient of L is given by

Re

√
A(z2)

z2 − b
> 0 . (42)

Now, let us show that � > b. Indeed, if this were not the case, by (41) we would have,

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) +

π

2
≤ 2Arg(z2 − b)

but, using (35),

2Arg(z2 − b) = − 1

2
Arg(z2 − a1) − 1

2
Arg(z2 − a2) + Arg(z2 − x0) +

π

2

and, hence,

1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) +

π

2
≤ −1

2
Arg(z2 − a1) +

−1
2

Arg(z2 − a2) + Arg(z2 − x0) +
π

2

=⇒1

2
Arg(z2 − a1) +

1

2
Arg(z2 − a2) ≤ 1

2
Arg(z2 − x0) = Arg(z2 − x1) ,

where the last inequality is due to (33). Thus, taking a such that
Arg(z2 − a1) + Arg(z2 − a2)

2
=

Arg(z2 − a), we would get a2 − a < a− a1 and, hence,

a1 + a2
2

= a+
(a2 − a)− (a− a1)

2
< a < x1 < −1 ,

which is not possible by Lemma 4.3. Therefore, the inequality � > b has been established, that
is, we have that a1 < a2 < � and taking into account the positivity of the leading coefficient of
L (by (42)), we have

∂a1
∂γ

=
−2D1(a1)L(a1)

(T − t)(a1 − a2)(a1 − b)2
> 0 ,

∂a2
∂γ

=
−2D1(a2)L(a2)

(T − t)(a2 − a1)(a2 − b)2
< 0 ,

∂b

∂γ
=

−D1(b)L
′(b)

2(T − t)(b− a1)(b− a2)
> 0 ,

(43)
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Moreover, having in mind (35), the fact that ∂b
∂γ > 0 necessarily implies that ∂a

∂γ < 0, what

means, by (41), that Arg(z2 − �) is a decreasing function of γ and, hence, ∂�
∂γ < 0.

Thus, considering the setting where (β1, β2) are fixed and γ is such that there exists t > 0
with a1 < a2 < b, if γ is allowed to increase as far as possible, we see that the endpoints a1
and a2 tend to collide, as well as points b and � on the interval (a2,+∞); but we know this last
collision cannot take place since the inequality b < � is strict. Therefore, the unique feasible final
setting consists in the collision a1 = a2, which obviously means that the support disappears or,
equivalently, that t = 0: we reach the situation where ϕ has two minima (for γ = Γ̃1 in Theorem
3.2).

• Finally, the reciprocal case b ≤ a1 ≤ a2 may be easily reduced to the previous one by means of
the transformation x → −x, with γ → 1

γ , which yields

a1 → −a2 , a2 → −a1 , b→ −b , t→ t

γ
.

4.4. Proof of Theorem 3.4

The full description of the dynamics of the equilibrium measure runs parallelling to the proof of
[33, Theorems 15–16] and [39, Theorem 2.1] (which are strongly based in the results for the dynamics
as t increases). Therefore, we restrict here to outline the proof, omitting certain details.

When (β1, β2) ∈ Ω0 and γ ∈ (Γ̃1, Γ̃2) , Theorem 3.2 shows that (19) has two relative minima
−1 < ζ1 < ζ3 < 1. First, assume that ϕ(ζ1) < ϕ(ζ3) and, thus, that the leftmost relative minimum is
the absolute one; in addition, ϕ has a relative maximum ζ2 such that −1 < ζ1 < ζ2 < ζ3 < 1 .

Therefore, by (7) we have for the endpoints of the support (zeros of A) and the zeros of B
that −1 < a1(0) = a2(0) = ζ1 < b1(0) = ζ2 < b2(0) = ζ3 < 1 , in such a way that (21) yields:
ȧ1 < 0, ȧ2 > 0, ḃ1 < 0 and ḃ2 > 0 (see Fig. 2 above). Thus, points a2 and b1 tend to collide, and this
collision would take place in a time T ∗ < T by Theorem 2.2; but this would contradict equilibrium
condition (2). Hence, there must exist a critical value T1 < T ∗ where the initial configuration changes.
The unique change which takes care of condition (2) is the birth of a couple of real zeros a3, a4 from the
rightmost double zero b2. That is, at this critical value T1 a type I singularity occurs and immediately
a new cut arises.

Then, for t > T1, combining again Theorem 2.1 and (2), we have that the central endpoints a2
and a3 tend to collide (and, of course, also collide with b1, see Fig. 3), producing a double root of
B, that is, a type II singularity. Finally, this double root necessarily splits into a couple of conjugate
imaginary roots which tend to some prescribed points in C \ R, while a1 → −∞ and a4 → +∞, as
established in Theorem 2.2 (see Fig. 4 above).

If ϕ(ζ1) = ϕ(ζ3) , which is possible for any (β1, β2) ∈ Ω0 and a suitable value of γ, then the
evolution is the same as above, but now T1 = 0 and, thus, the initial one–cut phase does not take
place. Obviously, when ϕ(ζ1) > ϕ(ζ3) , the evolution is also the same as above but starting at ζ3 in
place of ζ1.

The description of the dynamics in scenario (b) is similar, with the unique difference that we start
with a couple of conjugate imaginary roots b1 and b2 = b1 which at a certain time T0 < T ∗ collide
at the real axis, becoming a double real root of B, in such a way that this double root immediately
produces a pair of simple real roots b1 < b2, as at the beginning of the dynamics described above. The
fact that the double root immediately splits into two roots follows from (40), since the existence of
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such a double root for an interval of t of positive length would imply that ∂γ/∂t = 0 or, equivalently,
an unbounded ∂t/∂γ, which is not possible.

Conversely, in scenario (c), the initial couple of conjugate imaginary roots b1 and b2 = b1 never
attain the real axis and, consequently, the support always consists of a single interval.

Observe that the boundary between scenarios (b) and (c) occurs precisely when the pair of roots
of B collide with the root of A, producing a type III singularity, which has been studied in previous
Theorem 3.3

There is still an open question: can the roots of B fall back towards the real axis after a type II
singularity? Or, in other terms, can the two–cut phase repeat several times through the dynamics with
respect to t? In virtue of Proposition 4.1 (see Remark 4.1), this could happen only for γ ∈ (Γ1, Γ̃1) or

γ ∈ (Γ̃2,Γ2), but let us see that even under this assumption, a second two–cut phase can not happen.

Suppose, on the contrary, that it does happen, and consider for instance that γ ∈ (Γ1, Γ̃1), so there
are two values of t for which B has a double root outside the support: the previously described T0 and
a new T3; additionally, there is another value T2 where B has a double root inside the support (type
II singularity for the merger of two cuts). Let us denote aj1 = a1(Tj), a

j
2 = a2(Tj) and bj = b(Tj) for

j = 1, 2, 3. In particular, it holds

a31 < a21 < b2 < a22 < a32 < b3 . (44)

Now, using Proposition 4.1, we can vary γ (and therefore the values Tj) in such a way that the same

setting remains valid, which provides T1(γ) < T2(γ) < T3(γ), with its corresponding aj1(γ), a
j
2(γ) and

bj(γ), and property (44) holds for any γ. But increasing γ up to Γ̃1 and applying Proposition 4.1, we
see that every ajk collide at the global minimum of the external field and, by (44), b2 does the same
too. But, on the other hand, b3 is increasing in γ (see the dynamical system (43)); hence, we have

lim
γ↗˜Γ1

b2 < lim
γ↗˜Γ1

b3 .

This last property, along with the continuity of all the functions involved, imply that for γ = Γ̃1, the
derivative of the external field, Φ′, has two double roots, which is an absurd. The contradiction comes
from the assumption that, after the merger of the two cuts, the pair of complex roots of polynomial
B can fall to the real axis again.

Appendix: The “two–cut” body

Throughout this appendix, along with the three–dimension body

Δ̃ = {(β1, β2, γ) ∈ (R+)3 : (β1, β2) ∈ Ω0 , γ ∈ (Γ̃1(β1, β2), Γ̃2(β1, β2))} , (45)

where the external field ϕ has two local minima, we consider the larger body, strictly containing the
former one, given by

Δ = {(β1, β2, γ) ∈ (R+)3 : (β1, β2) ∈ Ω0 , γ ∈ (Γ1(β1, β2),Γ2(β1, β2))} , (46)

for which range of parameters a two–cut phase takes place.
In Theorems 3.2-3.3 above, the geometry of the problem has been mainly depicted in terms of the

admissible values of the heights (β1, β2) in order to guarantee the existence of a two-cut phase for a
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Figure 7: Vertical sections of Δ for β1 = 1, 2, 3.

certain range of the other parameter, the charge γ. However, next a description of the three-dimension
“two–cut” body Δ will be provided to get a better knowledge of the solution of the problem. As shown
in Theorem 3.3, it is a body in the first (positive) octant of the (β1, β2, γ)–space whose projection in
the (β1, β2)–plane is given by the Ω0 region in Figure 2. Theorems 3.2 also shows that the projection of

both Δ and Δ̃ on the (β1, β2)–plane is given by the same region Ω0. On the largest body, the existence

of a two-cut phase is provided; the unique difference between the phase diagram corresponding to Δ̃
and Δ \ Δ̃ lies on the fact that for the range of parameters belonging to Δ̃, the “life” of the two-cut
phase is longer.

In this section we restrict ourselves to show the main characteristics of these admissible bodies,
especially of Δ, defined in (46). This is a three-dimension body bounded by two surfaces (“top and
lower covers”).

In this sense, some results will be presented (without proof) and some graphics will be displayed.
First, the following properties holds for the three–dimension body Δ

• The intersection of both surfaces for (β1, β2) ∈ C is given by the curve

γ = −3β2
1 + 3β2

2 − 4

2(3β2
1 − 4)

+
1

2

√(
3β2

1 + 3β2
2 − 4

(3β2
1 − 4)

)2

− 4
3β2

2 − 4

3β2
1 − 4

• The intersection with the plane β2 = 0 is the whole quadrant (R+)2. The same occurs with
respect to the plane β1 = 0.

• The following limits hold:

lim
β1↘0

Γ1 = 0 , lim
β1↘0

Γ2 = +∞ ,

lim
β2↘0

Γ1 = 0 , lim
β2↘0

Γ2 = +∞ .

In Figures 7-9 different sections of Δ are shown.
Finally, with respect to the body Δ̃, in (45), the following are its main features:

lim
β2↘0

Γ̃1 = 0 , lim
β2↘0

Γ̃2 =
−1
2

+

√(
1

2

)2

+
1

β2
1

.
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Figure 9: Section of Δ for β1 = β2.
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lim
β1↘0

Γ̃1 =
β2
2

2
+

β2

√
4 + β2

2

2
, lim

β1↘0
Γ̃2 = +∞ .
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[12] Dı́az Mendoza, C., Orive, R.: The Szegö curve and Laguerre polynomials with large negative
parameters. J. Math. Anal. Appl. 379, 305-315 (2011).

[13] Dijkgraaf, R., Vafa, C.: Toda Theories, Matrix Models, Topological Strings, and N=2 Gauge
Systems. preprint arXiv:0909.2453.

35



[14] Dubrovin, B.: Periodic problems for the Korteweg-de Vries equation in the class of finite band
potentials. Funct. Anal. Appl., 9, 215–223 (1975).

[15] Eguchi, T., Maruyoshi, K.: Penner Type Matrix Model and Seiberg-Witten Theory. J. High
Energy Phys.,2, 022, 21 pp. (2010).

[16] Gonchar, A. A. and Rakhmanov, E. A.: Equilibrium measure and the distribution of zeros of
extremal polynomials. Mat. Sbornik, 125(2):117–127, 1984. translation from Mat. Sb., Nov. Ser.
134(176), No.3(11), 306-352 (1987).

[17] Grinshpan, A.: A minimum energy problem and Dirichlet spaces, Proc. Amer. Math. Soc. 130,
no. 2, 453–460 (2002).
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